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Abstract

All of the medians of a weighted network are shown to be extreme
points on the same polyhedron P. An algorithm is presented which makes
a tour of P, passing through most of these special extreme points and
through very few others. A problem of optimally locating facilities

in a network is treated and computational results are given.



I. Introduction

In a recent paper T. C. Hu (1971] has called attention to several
important problems in discrete optimization for which breakthroughs are

needed. One of these is the p-center problem. In Hu's own words:

The sixth problem may be called the p-center problem.
One example of how this problem may occur is as follows.
Assume that the population distribution of the state of
Wisconsin is known. It is decided to build p theaters
throughout the state such that the maximal number of people
can enjoy the shows. A reasonable objective function would
be to minimize the total distance travelled by all the peo-
ple to the p theaters. Another objective function might
be to minimize the maximal distance travelled by any one
person. The plant-location or warehouse problem also be-
longs to this class. More abstractly, we will have a
network with n nodes, each having a positive weight, and
p centers are to be located in the network so as to mini-
mize the total weighted distances between the centers and
their assigned nodes. Various other choices of objective
functions are possible, some choices making the problem
more difficult than the others........ Many seemingly un-
related problems belong to this class....... Very little
is known about the p-center problem.

The present paper addresses the case where the objective function
is the usual one of minimizing the total weighted distance. This problem
is also referred to in the literature as the 'p-median'' problem. See,
for example, Hakimi (1964, 1965), Teitz and Bart (1968), and Diehr (1972).
Hakimi has shown that even if we allow the placement of centers on the
arcs of the network, there will always be an optimal solution that has
every center at a node. Thus it suffices to restrict our attention to
the n nodes as the potential sites for the p centers.

ReVelle and Swain [1970] have taken advantage of this fact to
formulate the problem as follows. Let

wi = the non-negative weight assigned to node i (e.g. popu-

lation, demand, etc.)



d = the length of the shortest path from i to j, through

]
the network
1y = ¥1dyy
1  if node i is assigned to a center at node j
yij =

0 otherwise.

Note that yj = 1 if and only if a center is placed at node j. The prob-

3

lem is then to
n n
(RS) minimize 2 X e
i=

subject to

n
(1.1) Z y,,=p
jsl jj
z
(1.2) y =1 for { =1,..., n
j=1 ij
(1.3) yij < yjj for all i # j
(1.4) yij = 0 or 1.

A feasible solution of this problem is a set of p clusters, each cluster
containing one center (self-assigned node) and the other nodes assigned
to that center. An optimal solution is called a p-median of the network.

Problem (RS) is an integer linear program. It can be relaxed to a
linear program by replacing the binary condition (1.4) with

(1.5) Y13



It is not necessary to impose an upper bound, as this is insured by
the constraints (1.2). ReVelle and Swain have discovered that this
linear program, which we denote (§§), has in most cases a natural
integer solution. This is indeed very fortunate. The only difficulty
is that (Eg) is a very large linear program even for moderate values
of n, (Eg) has n2 variables and n2 + 1 constraints.

In this paper, it will be shown that every p-median of the network
(1 = p s n) is an extreme point of the same polyhedron P, and that it
is possible to take a tour around P that passes through most of these
special extreme points and through very few others. A typical step
on this tour is from an extreme point corresponding to, say, a 12-
median to an extreme point corresponding to an ll-median. The tour
may, however, pass through extreme points corresponding to "“p-medians"”
for fractional values of p. Finally, the tour may not encounter a p-
median for certain values of p, say p = 9. Except for such missing
values, then, the tour will produce a complete set of medians of the
network. An example of such a tour will be given below. An efficient

way of performing the necessary linear programming calculations will

also be given.



II. The Grand Tour

We begin by defining the polyhedron P. Although not necessary,
it will be convenient to eliminate the yjj variables by means of the
equations (l1.2). Thus

(2.1) y..=1- 2 y
1 k#§

ik for § = 1,..., n.

Carrying out this elimination gives an equivalent form of (Eg), namely

(RS) minimize ?? :ES Cjkyjk

subject to

(2.2) Z Z y,=n-p
[ERTIREL
(2.3) y..+ Ly, s 1 for all i # j
17 gy Ik
(2.4) Yy 2 0 for all i # j.

P is now defined as

(2.5) p = {y e P D)ly2 0 andy satisfies (2.3)} :

It is clear that any integer solution of (RE) is an extreme point of P,
and that this is true regardless of the value of p.

Now dualize (§§3 with respect to the single constraint (2.2), using
A\ as the dual wvariable.

(2.6) minimize 2 2 (c

=Ny, + (- pA
yEP j Ky Ik Jk



Let us define

(2.7) v(\) = min & Z (c,, - Ny
y&P § k#j jk Jk

and

(2.8) 2,0 = (n - PA +V(N).

The dual problem is then

(2.9) max Z_(}d).
" P

If m =n(n -~ 1) and e is a vector of m ones, then (2.7) can be written

more compactly as

(2.10) v(A) = min (c - kem)y.
yEP

Equation (2.10) leads to the following observations.

(a) v()\) does not depend on p.

(b) v(\) is the optimal value of a linear program parameterized
in {ts objective function. (Note that A\ is a scalar.) Thus
v(L) 1is a plecewise-linear concave function.

(c) Zp(k) is just the linear function (n - p)A plus v(}). Therefore
v(A) gives us the whole family of Zp(k) functions for p = 1,..., n.
Note that each Zp(k) is also piecewise-linear and concave.

(d) Let Y()\) denote the set of optimal solutions for fixed 1},

(2.11) Y(A) = {y € P\v(k) = (¢ - Xem)y}.

Inspection of the objective function reveals that v(A) < O for all
A and that yjk cannot participate in an optimal solution as long as

A<¢C That 1s,

jk’

A <c implies y

1k =0 for ally € Y(O)).

jk



In fact, y = 0 is an optimal solution as long as

A< c* = min c

T L

i.e., as long as X\ is less than or equal to the smallest number

in the weighted distance matrix. So for A < c* we have

v(A) =0
and

Zp()\) =(n-p)r.

The tour of the polyhedron P mentioned in the previous section
will be made in the course of constructing the v(A) function. The con-
struction of v(A) is a straightforward application of parametric linear

programming. Let y° € Y(A\°). Then

(2.12) vl +8) =[c - (\° + 5)em]y°

as long as
(2.13) v’ € Y\ +8).
Equation (2.12) can be written as

(2.14) v()® +8) =v(\®) -5 emy°

which reveals that v(A) has slope -emy° as long as (2.13) holds.

If y° € P is a vector of zeros and ones, then emyO is simply the
number of ones, hence the number of assignments. When y = 0 there are
no assignments and therefore n centers. (Every node is a center.) Each
assignment reduces the number of centers by one. An integer solution y°
must therefore have n - emyo centers, This is illustrated in Figure 1,

where n = 5 and yiB = y°

= o = =
23 = Y53 1. Here there are e20y° 3 assignments



Figure 1. Three assignments, two centers.

and 5 - 3 = 2 centers (nodes 3 and 4). Finally, taking p = n - emy°

and using (2.8) and (2.14) we get

(2.15) zp(x° +8)=(n-p) (\° +8)+v(® +58)

(n-(a-ey)] (3 +8)

0y o
+ v(\) 8 emy

(o]
v(2°) + A emy°

as long as (2.13) holds., Subject to (2.13), then, Zp(k) has slope zero
for p=n - emyo. This means that \° maximizes the dual objective function
ZP(X), and since y° € Y(\°) it follows that y° is an optimal solution of
the primal problem (EE). Therefore y° is a p-median of the network for
p=n- emYO-

*

The argument just given proves that every integer extreme point y

* *
of P that belongs to Y(A ) for some value of A is a p-median of the



network for p = n - emy*. Note that it is possible that none of the,
say, 9-medians belong to Y(A) for any value of A. Fractional extreme
points of P that appear in some Y()A) can be thought of as ''generalized"
p-medians.

The procedure for generating the entire v()\) function is to start
at y =0and A = c* and increase )\, moving from one extreme point of P
to another so that we are always at a member of Y(A) for the current
value of A. Every integer extreme point we pass through is a p-median
of the network. Note that these medians are encountered in decreasing
order (p = n, n - 1,....) since v(A) 1is concave with slope -emyo for
y° € Y(A). Thus y = O belongs to Y(c*) and we start with a p = n - emO =n
median. The pivoting mechanism will be discussed in more detail in the
next section, where the special structure of P will be exploited. We
conclude this section with Figure 2, a sketch of a portion of a typical

v(\) curve and the corresponding portion of 23(k).



III. Implementation

3.1 The coefficient matrix.
Let A be the coefficient matrix for the constraints (2.3) that
determine P. A is a square matrix of dimension m = n(n - 1). For

each element of the index set

(3.1) s ={, j)ltsi, §sn and i # j)

there 1is a row Aij and a column AiJ of the matrix A. The entries are

determined by the following rules:

(Rule 1) Row A, , has a one in column Aij and in every column AJk.

1]

It has zeros elsewhere.

(Rule 2) Column AiJ has a one in row Aij and in every row Aki' It

has zeros elsewhere.
Thus the matrix A does not-have to be stored in explicit form. Its

elements can be generated whenever needed by application of the two rules

given above.

3.2 Determining the entering basic variable.
Suppose that we have a basic feasible solution of the linear program

(2.10) for some fixed value of A, say A = \°. Let sij be the slack varjiable
for row Aij' Define

(3.2) 1

{1, 3) € s\yij is basic}

(3.3) I = {(1, j) € Slsij is basic}

and let I' and II' denote their complements with respect to S. The con-

straints can then be written as
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1
(3.4) A I, A, 0

where I, and I, are identity matrices of appropriate dimensions. The

1 2

rows and columns of A have been permuted and partitioned accordingly.

Thus
I I’
A A I’
(3.5) A = 1 3
Az A4 II
The basis matrix is then
Al 0
(3.6) B =
L4 L

where Al, to be called the kernal, is non-singular. The basis inverse

can be expressed in terms of the kernal as

1 A 0
(3.7) B =
-1
A I
Instead of storing B-1 (in either explicit or product form), we can store
-1

1" Let h denote the dimension of Al' At the

beginning of the tour y = O and therefore h = 0,

the generally much smaller A

The primal solution associated with the basis B is given by

o - ,-1 o -
(3.8) yI Al ey o yI, 0

o0 = _a o0 0 =
(3.9) SIT e -h AzyI R SII' 0.

1f y° € Y(O°), then every non-basic variable has a non-negative reduced
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cost, For the non-basic slack varjiables this is

o = - _ 40 -1
(3.10) X1 (c A em)I Al 20

and for the non-basic structural variables

o - _ 50 _ L0
(3.11) rI, \ (c A em)I' xII' A3 2 0.

Now consider increasing A to 2° +68. Then y° does not change, but

from (3.10) we get

= o -1
(3.12) xII.(G) L + 4§ en A1 20
since (em)I = e Define
(3.13) o, =e Al
) IT' h 71
so that GII' is just the vector of the column totals of Ail. Then
(3.14) x;p1(8) = in, +60,,.20

which can be used to simplify

(3.15) T (8) = fe - (\° + 6)em]I. - xII.(a) A2 0

to

(3.16)  r,(8) =17, - sle | -0, 4] 20,

I II

o

It follows that y- will remain optimal as long as § < min {61, 62} where

Q
X o] <0
(3.17) 5, = min q;ll 13
(1,j)€Ir’ ij
and
" r° o__ald <y
i I1'
(3.18) 62 = min ——‘L.—i-j

(1,3)€1' ) 10,
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~

where Aij is the (1, j) column of A3. These limits on 4 insure that

the critical condition (2.13) remains satisfied, y° € Y(A° + §).

The references to A3 in the calculation of ri, and 62 are handled
implicitly by an application of Rule 2. Let xij = 0 and T 0 for
all (i, j) € 1II. Then

1
(3.19) 3 A I = Qy * > < for (1, j) € T'
(k,1)€11’
and
R > Lo e g
(3.20) UII' A = cij + Ted for (i, j) € 1'.
(k,i)€11'

One step in the construction of v(\) is to take § = min {61, 62}

and move to

(3.21) I

We know that

(3.22) v(aly = vy - G*emyo
and that

(3.23) © €yl .

Furthermore, the optimal tableau for (2.10) with A = 11 contains at least
one non-basic variable with a reduced cost of zero. This is either a
slack variable or a structural variable depending on whether 6* equals

51 or 62. This signals the possible existence of alternate optimal
solutions, i.e., other members of Y(Xl) besides y°. Choosing an entering

basic variable with zero reduced cost and pivoting will move us to a new

extreme point y1 of P, unless the new variable enters the basis at zero.
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Barring degeneracy, then, we arrive at
1
(3.24) yIEY()\ ).

When there is degeneracy, the pivot is simply a change of basis and we
remain at y°. This i{s, in fact, very common since the problem is highly
degenerate. Typically, several basis changes are followed by a break-
through to a new extreme point. The slope of v(X) cannot change until
such a breakthrough is made.

An illustration is given in Figure 3. 1In this case we have some
y> € Y(A°). Slope q, = -emy°. There is a basis change at Xl and
y° € Y(Xl). There is another basis change at Xz, this time accompanied
by a move to a new extreme point yl. Both y° and y1 belong to Y(Xz).
Slope q, = -emyl. If y° and y1 are both binary vectors, then the con-

cavity of v()A) implies that y1 has at least as many ones as y°.

\° AL A2
+ 4 A
qO
9
v(})

Figure 3. A step in the constructiom of v(}).
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3.3 Determining the exiting basic variable.

The only matter remaining to be discussed is the question of whether
or not a breakthrough to a new extreme point has occurred. This involves
the determination of the exiting basic variable for each pivot. In the
simplex method the entire pivotal column {s computed. It will suffice,
however, to compute only those h components that correspond to the rows
in II'. There are two cases. First, however, note that since A, has a

1
1 has a column, (A;l)ij,

row for every (i, j) € II' it follows that Al

for every (i, j) € II'.
Case 1. The entering basic variable is S v for some (u, v) € 11'.

Refer to equation (3.4). Let

- a1 uv
(3.25) a=A (1T = (A

where (Il)uv is the column of the identity matrix I1 corresponding to
Suv” The vector o has a component aij for each (i, j) € I. Define
aij = 0 for all (i, j) € 1'.

Case 2. The entering basic variable is Yav for some (u, v) € I'.

Referring again to (3.4), let

(3.26) a = A (4)

where (A3)uv is the column of A, corresponding to Vv Applying Rule 2

3

we see that

(3.27) o = > (A{l)k“ + (A{l)“v if (u, v) € IT'
(k,u)€Ir’
z (AII)ku otherwise.
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Again, a has a component aij for each (i, j) € I. Thié Eimé define
= ' =
aij 0 for (4, j) € I' with (1, j) # (u, v) and @ 1.
Now suppose that we increase the entering variable above zero by
the amount T. For either of the above cases we have ;
(3.28) y(t) =y°® -1«
It is easy to show that we remain feasible as long as T € min {Tl, 72}.
These are given by
(3.29) T, = min y° a,, >0
oaper il I
ij
(3.30) T, = min -s%, o, + L a,, <
2 P e e e - -
(1,1)€11 L S gaeer Ik
o, ¥ 2z o
- (J,k)€I

These limits insure the non-negativity of the structural and slack vari-
* *
ables, respectively. Let T = min {Tl, 72]. If T =0, then this pivot

*
is simply a basis change and we remain at y°. If T > 0, then we have a

*
breakthrough and move to yl = y(T ) as given by (3.28). If T* > 0 when

C—— —— — e ———— —— ———_.—

— - —

*
67 = 0, then we move to a new extreme point without changing the value of ).

N _
Once T 1s known the exiting basic variable 1is also known. (There

may be a choice among several in the case of ties.) Using Al1 and Rule 1

the necessary portion of the pivotal row is generated and then Ail is

updated by a pivot operation. If the entering variable is a slack and

the exiting variable is a structural, then h (the dimension of A;l)

decreases by one. If the entering variable is a structural and the exiting
variable is a slack, then h increases by one. In both of the remaining
cases h remains the same.

Note that T, involves considerably more calculation than Ty In

2

_many cases T, = 0 and this can be detected quickly by checking 73, which

2

o~
e
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is defined as

(3.31) T, = min 1 -y°
3w, per —3 1

-

1}

3 But, by (2.3),
> < d < .

yij 1 means that sij 0 an Sii 0 for all k. Thus any structural

variable exceeding one immediately forces n different slack variables

If T, = (1 - y"ij) / (-ay4)» then y, (T) > 1 when 7 > 7

negative. When 73 = 0 any one of these slacks can be chosen as the

exiting basic variable.
3.4 The algorithm.
The algorithm for making the grand tour of P can now be stated

concisely as follows.
*
Step 0. Set A =¢c , v(A\) =0, y=0, p =n.
*
Step 1. Determine § and the entering basic variable.
* * *
Step 2. Set v(A +8 ) =v()) - & ey. Then set A = A + § .
Step 3. Compute «.
*
Step 4. Determine T and the exiting basic variable.
-1
Step 5. Update A1 .

* *
Step 6. Set y=y -Ta. IfT >0 and y is binary, then y is a median

of the network. Set p =n - ey

Step 7. If p = 1, stop. Otherwise go to Step 1.



-17-
IV. Computational Results

Preliminary computational results have been very encouraging. For
a small test problem with n = 10 nodes, the tour of P passed through
exactly 10 extreme points including the origin. Each of these was an
integer extreme point and hence a median of the network. There was a
median for each p = 10, 9,..., 1. The v()) function is presented in
Table 1. There is one row of this table for each extreme point on the

tour. The last four columns contain
Zp(k) - the minimum weighted distance for p centers,

h - the size of the kernal upon arrival at this extreme point,
iter - the number of pivot operations required to reach this

extreme point from the previous one,

time the time, in CPU seconds on a CDC6400, required to reach

this extreme point from the previous one.

The total number of pivot operations and the total time are given at
the bottom of their respective columns. The entire tour took less than
one second. The successive rows of Table 1 represent adjacent extreme
points of P, hence (iter - 1) gives the number of basis changes preceeding
each breakthrough. Note that 8 = 0 for p = 10, 9, 6, and 4.

Results for a 33-node network are given in Table 2. For this prob-
lem c* = 136 and all of the node weights are equal. The distance matrix
was taken from [Karg and Thompson, 1964]. Starting at the origin, integer
extreme points corresponding to p-medians for p = 33 down to p = 10 were
encountered. The solution for p = 10 is displayed in Figure 4. There

is an arc drawn for each y,,6 that is equal to one. (The direction of the

i}

assignment is indicated by an arrow when necessary.) The next extreme
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point visited was fractional with ey = 23%. This solution, shown in
Figure 5, is therefore a '"median' for p = 9%. 1In Figure 5, all of the
arcs inside the circle in the northwest corner represent yij's that are
at ¥. The next two extreme points (Figures 6 and 7) were also fractional,
with p = 8% and 7% respectively. In Figure 8, the difficulty in the
northwest corner has been resolved and we have a 7-median. Figures 9-13
portray the remainder of the tour down to the 4-median. The tour was
halted at this point because of the storage space required for the

kernal.

The tour did not produce a 9-median or an 8-median. Inspection of
Figures 4-8, however, led to easy guesses as to the identities of these
missing solutions. These guesses were subsequently verified by a dif-
ferent algorithm. The location of centers for the 9-median is
{1, 6, 9, 12, 16, 20, 25, 29, 33} and for the 8-median is
{1, 6, 9, 12, 16, 20, 24, 29}. 1In general, the series of solutions
that are available should make it easy to find the missing ones by means
of a branch-and-bound search.

The computational burden increases as the number of centers decreases.
This is apparently because the necessary changes in the configuration of
the solution become more and more drastic. Let nJ represent the number
of nodes, including node j, that are assigned to a center at node j. At
the beginning of the tour every node is a center and hence nj = 1 for
all j =1,..., n. As the tour proceeds there are fewer and fewer centers,

hence the nodes are grouped into fewer and larger clusters. This means

most of the n,'s become zero and the rest become large since

3

n
(4.1) 2 n,=n
J=
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must always hold. At the end, when p = 1, we have nyx =0 for some j*
*
and n, = 0 for all J # J . It is clear however that closing a center at

3

node j involves at least n  reassignments. It is not surprising, then,

J
that the number of basis changes preceeding a breakthrough increases as
the number of surviving centers decreases. Unfortunately, these pivot
operations must be performed on an inverse that is getting larger.

The present computer code for this algorithm is not very efficient,
particularly in its handling of the inverse.. Further experimentation
is under way and should result in substantial improvements.

The next stage of this research will be to attempt to isolate network
median problems in more complex location problems than the one treated

here. The goal will be to develop efficient algorithms for a variety of

problems that have heretofore been handled only heuristically.



v(})

2300

23(1) = 2X + v(})

2 = slope

Figure 2. Portions of typical v()\) and 23(X) when n = 5.
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Table 1. Results for a 10-node network

A v\ B 2500 h iter time
10 0 10 0 0 0 .000
10 0 9 10 1 1 .012
10 0 8 20 2 1 .024
22 -24 7 42 6 4 .045
28 =42 6 70 7 1 .033
28 -42 5 98 8 1 .025
41 -107 4 139 16 9 . 117
41 -107 3 180 17 1 .035
63 =261 2 243 25 8 . 189
106 -605 1 349 36 12 421

38 .901




Table 2. Results for a 33-node network

A v(y) P ngll h iter time
136 0 33 0 0 0 .000
136 0 32 136 1 1 .027
184 -48 31 320 2 1 .038
195 -70 30 515 3 1 .039
195 -70 29 710 4 1 .013
200 -90 28 910 5 1 .038
211 -145 27 1121 6 1 .040
219 -193 26 1340 10 6 . 142
224 -228 25 1564 11 1 .039
225 -236 24 1789 12 1 041
237 -344 23 2026 13 1 .042
243 -404 22 2269 15 4 .132
251 -492 21 2520 16 1 .042
266 -672 20 2786 18 2 .075
282 -880 19 3068 22 4 . 106
295 -1062 18 3363 28 6 .206
295 -1062 17 3658 28 2 .112
313 -1352 16 3971 30 2 .122
343 -1860 15 4314 34 5 274
346 -1914 14 4660 35 1 .063
368 -2332 13 5028 40 5 .210
379 -2552 12 5407 41 2 .097
380 -2573 11 5787 42 1 .065
480 -4773 10 6267 61 23 1.752
577 -7004 9% 6555% 78 18 2,005
581 -7098 8% 7136% 79 1 .182
647 -8715 7% 7783% 87 10 1.679
671 -9327 7 8119 88 1 .196
713 -10419 6 8832 89 3 .559
1533 -32559 5% 9598% 154 81 19.274
1599 ~-34374 5 10398 158 10 3.669
1896 ~42690 4% 11346 178 39 17.172

2034 | 46623 4 12363 191 25 13.522

261 61.973
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