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APPROXIMATE AND EXACT SOLUTIONS FOR
A CLASS OF FIXED CHARGE PROBLEMS

by

Roy E. Marsten

Northwestern University

Graves and Whinston {1968, 1970] have pioneered the application of
probability theory to problems of combinatorial optimization. Their basic
idea is to regard the set of feasible solutions as a discrete sample space
and the objective function as a random variable defined over that sample
space. The moments of the objective function, when they can be derived,
are used to guide a search of the sample space for near-optimal solutions.
The present paper will use this approach to construct an algorithm for a
class of fixed charge problems. A near optimal solution will be found by
means of a mean value search, and then the optimal solution determined by

a branch and bound search.

1. The Fixed Charge Problem

The fixed charge problem that will be addressed here is a slight genera-

lization of the form

m n n
(1.1) minimize % Ze..x,,*+ f.y
i=1 j=1 4 Y =1 77J
n
subject to 2 Xij =1 for i=1l,...,m

j=1



m -

z .. < my, for j=1,...,n

i=1 *J ]

x,. =0or1l for all i,j
1]

yj =0orl for all j

This problem has several practical interpretations, some of which are
discussed by Spielberg [1968]. One of the most interesting is the "lockbox
problem" of Ciochetto, Swanson, Lee, and Woolsey [1972]. They introduce

the problem as follows:

Companies which operate over wide geographic areas are
often faced with the problem of "accounts receivable float",
that is, inaccessible revenue for which investment opportunity
is being lost. '"Float'" is a product of customer remittances
which are either within the postal system or in the process
of clearing the banks on which they were drawn. An effort to
reduce float cost involves the location of '"lock boxes" within
a firm's distribution area. A "lock box" is a post office
box to which remittances are sent (and a local bank which
processes the checks), selected so that the time necessary to
have available the funds remitted to a firm by its customers
is a minimum. Maintaining a lock box is itself a somewhat
costly operation. The usual banking procedure is to charge the
firm a fixed fee for acting as a lock box bank, plus a
variatle charge determined by the number of checks processed by
the bank. These expenses need not be actual "out of pocket"
payments, but may be met by maintaining an appropriate "com-
pensating balance" at the bank. These costs vary from bank to
bank. Thus determining the "best" number and location of lock
boxes requires balancing decreasing float costs against increasing
banking costs.

To express this in the form (1.1), let A be the set of customers or

customer groups and let B be the set of potential lock box sites. Then

cij = cost of assigning customer group i € A to a lock box
at site j € B.

f = fixed charge for a lock box at site j ¢ B.



xij = 1 if customer group i is assigned to site j
0 otherwise

y = 1 if a lock box is opened at site j

0 otherwise

Form (1.1) also expresses the simple (uncapacitated) plant location

problem if we let

X . the fraction of the demand at city i met by a plant at site j,

1]

c.. the cost of meeting all of the demand at city i from a plant

1]
at site j.

Since there are no capacity constraints on the plants every Xij will be zero

or one at the optimum. See [Efroymson and Ray,1966] or [Spielberg, 1968].

A generalization of (1.1) is obtained by supposing that for each
i € A there is a non-empty set B, C B such that i must be assigned to one of

the elements of Bi' Equivalently, for each j ¢ B there is a set

(1.2) Aj ={ieAl je Bi}

such that only members of Aj can be assigned to j. Such a situation would
arise if, for example, each customer must be assigned to a site no more than

1000 miles away. This generalization is made primarily to simplify data

collection. Taking B, = B for all i will produce (1.1). The configuratign
for a typical problem is displayed in Figure 1. The circles are the elements
of A, while the squares represent the elements of B. The domains Aj are also
shown. The costs for this problem will be given later.

The problem to be addressed is therefore



Figure 1. Typical Problem Configuration.



m
(FC) minimize 2

c..X,.
i=1l je B, 34
i
subject to z x,. =1 for i=1,...,m
. ij
je B,
i
% x.,. < a,y. for j=1,...,n
ied, t ]
J
X.. =0o0r 1 for i=1,...,m; j € B,
ij i
Y =0or 1l for j=1,...,n

where aj is the number of elements in Aj' Notice that if y is fixed, the

resulting subproblem is trivial. TLet Y be the set of binary n-vectors and

for any y ¢ Y let us make the following definitions.

(1.3 I ={jeB|y, =1
min {Cij je B, N J(y)}
(1.4) s.(y) = if B. N J(y) £ ¢
. 1 1
+ o otherwise
m
(1.5) v(y) = = si(y)
i=1

Then problem (FC) is

(FC') min

equivalent to (FC')

fty + v(iy¥)

yeY

L.

in the sense that y% is an optimal solution of (FC) if and only if it is

also optimal for (FC'). Thus the x variables drop out of the problem entirely.
Problem (FC') can be solved by an implicit enumeration of the set Y. The

amount of searching required to find the optimal solution can be greatly

The next section is

reduced if a near optimal starting solution is known.

therefore devoted to finding such a starting solution.



2. Approximate Solution

n .
The set Y contains 2 points.

Let us make it a discrete sample space by

assigning probabilities according to the rule

where 0 < p < 1.
defined on the sample space Y.

following argument.

then

Clearly

and

(2.1) P[yj =1] =p

(2.2)

(2.3)

(2.4)

(2.5)

for j=1,iiA,n

The objective function of (FC') is then a random variable

Let

w(y) = fy + v(y)

Ew(y)

= Efy + Ev(y).

neag
h
m
<

373

[Py

hea 3
Hh
~J
<
1
=

L3

e

Its expected value can be derived by the

for all y e Y

The expected value of si(y) can be made finite by using a sufficiently large

number, PEN, in place of the + » in (1.4). The equivalence between (FC) and



(FC') holds as long as PEN is sufficiently large. (If PEN is not large
enough, then the optimal solution of (FC') will not be feasible in (FC).)
PEN is a penalty incurred for each i ¢ A that cannot be assigned to any of
the opened elements of B, B, N J(y) = @.

To compute the expected value of si(y) let
(2'6) Bi = {jl’jZ""’jb,}
i
be arranged so that

2.7) c¢.: <c,: <---<c.. < PEN
1

where bi is the number of elements in Bi' The random variable si(y) must
assume one of the (bi+ 1) values ordered in (2.7). It assumes the value

c.. 1f and only if y, = 1. 1In general
iy 1

(2.8) si(y) = Cijt if and only if

. =0andy, =1
le = e T th
t-1

for t = 1,...,b, and
(2.9 si(y) = PEN if and only if

3 ip



It follows that if q = (1-p), then

t-1
(2.10) P{s.(y) =c.. 1 =q p
1 ]__]t
for t = 1,...,bi and
bi
(2.11) Pfs;(y) = PEN] =q .
Consequently
i b,
(2.12) Es.(y) =p I q c,. +gq L. PEN.
* t=1 e

Combining (2.4), (2.5) and (2.12) we arrive at an expression for the mean

value of w(y) over the whole sample space Y.

b
n m
(2.13) Ew(y) =p 2 f*+p 2 S q

Notice that each set Bi must be sorted so that its costs are in increasing order.
Consider the sample problem of Figure 1. Let the costs be as in Table 1.

With PEN = 1000 the simple average of w(y) over the 8 elements of Y can be

computed directly as 2845. To apply (2.13) we construct two tables as in

Figure 2. TFor each i ¢ A, row i of the C TABLE gives the cost coefficients in

increasing order, while row i of the J TABLE gives the corresponding values of j.

Using p = 1/2 in formula (2.13) corresponds to making the elements of Y

equally likely. Hence with p = 1/2, (2.13) yields Ew(y) = 2845. Setting

p < 1/2 (> 1/2) makes Ew(y) > 2845 ( < 2845).



B
1 2 3

1 10

l
2! 20 10 30
3! 10
4 10 20 15
5 | 20
6 15 10
7i 5 15

%
8 10 20

Table 1.

Costs for the Sample Problem.



C TABLE

10

10

10

10

20

10

10

20 30

15 20

15

15

20

Figure 2,
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J TABLE
1 1
2 2 1 3
3. 2
4 1 3 2
5. 2
6 3 2
7 1 3
8 1 3

Sorted Tables for the Sample Problem.
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If some of the components of y are fixed, then formula (2,13) is
easily modified to give the conditional expected value of w(y). Thus we
can construct a solution y in n steps, at each step opening or closing that
element of B that results in the minimum conditional expected value. This

is the idea of the mean value search.

MEAN VALUE SEARCH

1. Set R=B, k =1, V= Ew(y)
2. Compute M(j,h) = E{w(y) | Vi = h]
for h = 0,1 and for ali j € R.
3. Choose j and hk so that
M(jk,hk) = min min M(j,h)
jeR h=0,1

4. sety, =h,R=R- {3}, v=M@G,h).

k
5. Setk=%k+ 1. 1If k> n, stop.
6. Compute

M(j)h) = E[W(Y) ] Yj1= hli"')ij_l - hk_l) YJ = h]

for h = 0,1 and all j € R.

Then go to 3.

At each step in the construction of yV we have

(2.14) M(j,0 q + M(,)p =V
for all j € R so that

(2.15) M(3,0) = [V-M(j,D)pl/q.
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Therefore all that is needed is a formula for M(j,1). Consider the first

step. If k =1 and r ¢ R we have

(2.16) M(r,1) = E[w(y) | y = 1].

If i ¢ Ar’ then

(2.17) Els;(y) | y = 1] = Es. (y).

If i¢ Ar’ then vy, = 1 means that Bi N J(y) is non-empty and that i does not

. th . .
have to be assigned to any j with cij > Cip- If r is the b entry in row i
of the J TABLE, then
b-1
i _ _ t-1 b-1
(2.18) E[si(y) Py, = 1] P tfl q cijt + q Cipe

Finally

(2.19) E[fy | y, =1l =£f +pz f

So M(r,1) can be expressed as

(2.20) M(r,1) = fr +p Zf.+ I Es;(y)
. ] . 1
J+r 1¢Ar

+ 2 Els;(y) |y, = 1]
ieAr

where the appropriate substitutions are made from (2.12) and (2.18). The
extension to the later steps k= 2,,..,n is straightforward.

The mean value search for the sample problem is shown in Figure 3. The

tabulated values of M(j,h) are shown for k 1,2,3. The calculations were made

With p = 1/2 and PEN = 1000. The solution y constructed is in fact optimal.
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First step, k =1

h
0 1
1 4041 1/4 1648 3/4
R 2 4252 1/2 1437 1/2% ¥, =1
3 3680 2010
Second step, k = 2
h
‘ 0 1
1 2387 1/2 487 1/2%* y; =1
R
3 | 1782 1/2 1092 1/2
Third step, k = 3
h
0 1
R 3 340 635 y3 =0

Figure 3. Mean Value Search for the Sample Problem,
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3. Exact Solution

In this section a branch and bound algorithm for finding the exact
optimal solution of problem (FC') will be presented. To begin, let the
set B be sorted according to the order in which its elements were selected
by the mean value search, and then renumbered from 1 to n. 1In the example,
elements 2, 1, and 3 of B would be renumbered as 1, 2, and 3 respectively.
This will force the branch and bound search to use the same branching order
as the mean value search. This is not essential but appears to give

consistently good results.

For 1 < k < m, let Y denote the set of partial solutions that have
A RRREE 4" fixed and Y17 -+ +5¥y still free. Let YO contain the null solution
with no components fixed. A partial solution will also be called a candidate.

If z ¢ Yy the set of possible completions of z is denoted C(z) and defined

as

(3.1) ¢c(z) ={ye ¥ Yy = Zpree ¥y = zk}.

The lower bound functional must be defined for every partial solution z and

must satisfy

(3.2) BOUNi(z) < w(y) for all y ¢ C(2)

and

(3.3) BOUND(z) w(z) if z ¢ Yn =Y.

Any such bounding functional can be used. The one employed in this study will
be derived below. All of the pending candidates are kept in the candidate list,

each with its associated bound. We shall always select the candidate with
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the minimum bound as the next one for consideration.

BRANCH AND BOUND SEARCH

1. Set V = w(y) where y is the solution found by the mean value
search. Set y* = ;-
2. Place the null solution @ in the candidate list, with BOUND (@) = 0.
3. If the candidate list is empty, stop.
4. Select from the candidate list the candidate with the minimum
associated bound. Call it z and suppose that it belongs to Y, -
If BOUND(z) > V, stop.
® =3z, for j=1 k and z__ . = 0
5. Set zj zj or j=1,...,kand 2z, ,, = 0.
6. If BOUND (z) > V, go to 9.
o
7. If k+1=n, set V= BOUND(ZO) and y* = z , then go to 9.
8. Place zo and BOUND(zO) in the candidate list.
g9 L z, for j =1 k and 1 =1
. Set zj 3 j yeass n zk+1 .
1
10. If BOUND (z ) > V, go to 3.

1 1
11, If k + 1 = n, set V = BOUND(Z ) and y* = z , then go to 3.

12, Place z1 and BOUND(ZI) in the candidate list, then go to 3.

Upon termination, y* is the optimal solution of problem (FC') and therefore
of (FC) as well.

The approximate solution ; is used in two ways. It is used at Step 1 to
provide an upper bound on the optimal value w(y*). The amount of searching
required to find y* is very directly related to the gap between w(y) and w(y¥*),
as can be seen in Steps 6 and 10. When a partial solution z is extended, as

in Steps 5 and 9, there is a choice as to which component of z to fix next.
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These choices are resolved by always fixing the components in the same
order as in the construction of y.
The lower bound functional used to obtain the computational results

of the next section is constructed as follows. For any partial solution

z e Y let
(3.4) J(z)={13jsk\yj——1}
(3.5) 0(z)={1§j§k\yj=o}
and
min {cijl je B - 0(z)}
(3.6) si(z) = if Bi -0(z) £ 0

PEN otherwise
Thus si(z) is a lower bound on the cost of assigning element i ¢ A. There may
be some i ¢ A for which no member of B has yet been opened. Let i* be any

such i, say the first one,
(3.7) i* = min {1 | B, B - J(z)}.

Any completion of z that does not incur the penalty for i* must open at least
one el:ment of B, Therefore let

(3.8) t(z) = min {f, | 3e B
and combine (3.6) with (3.8) to give

m

(3.9) BOUND(z) = b2 £f.+ 3 si(z) + t(z).
jed(z) 3 i=1
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It is easy to show that this BOUND satisfies (3.2) and (3.3). A somewhat
* *
stronger bound could be obtained by defining A as the set of all i

satisfying (3.7) and replacing (3.8) by

(3.10) t(z) = max min £,.
icA* jeB, J
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4. Computational Results

Some test problems of the simple plant location type have been
constructed and solved. The set A consists of 100 major U.S. cities.
These are listed in Table 2. 1In each problem the set B is some subset of
these 100 cities. A fixed cost fj is assigned to each element of B and
Cij's are computed as

(4.1) €5 = Kwidij
where

w, = the population of city i (1960 census) divided

by 1000,

dij = the approximate air distance in miles between
city i and city j,

K = a constant (.0134)

The problems were constructed in this way so as to resemble, very crudely, real
data. The cost of serving city i from a plant in city j is assumed to be
proportional to the demand in city i and the inter-city distance. The demand
in each city is further assumed proportional to its population.

The results are presented in Table 3. The column headings used are

ID - problem number.

m - number of points in A, i.e. demand points.

n - number of points in B, i.e. potential plant sites.

(o4 - the solution found by the mean value search was within a%

of being optimal.

va - the time, in seconds, required for the mean value search.
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Tbb - the time, in seconds, required for the branch and bound
search.
CAND -~ the number of partial solutions placed in the candidate

list during the branch and bound search.
All times reported are for a CDC6400 computer. T v includes the initial
sorting to set up the C TABLE and J TABLE. All of the problems were run with
p = 1/4 and PEN = 10 million.
In every case the branch and bound search was started from the near

optimal solution found by the mean value search. The number a is defined by

w(y) - w(y*) - 100

4.2)
w(y*)

In problems 4 and 7 the mean value search sctually found the optimal solution
(@ = 0%). The poorest starting solution (o = 9%) was for problem 3. 1In this
case y had 3 plants open while y* had only 2.

In problems 1 and 2 the overlapping domains Aj were drawn in by hand.

In the remainder of the problems each Aj contains every city within 1000 miles
of the site j.

To illustrate the solutions found by the mean value search, consider
problem 2. The potential sites and their fixed costs are given in Table 4.
The solution ; found by the mean value search is shown in Figure 4. The
optimal solution, y*, appears in Figure 5. Solution ; has cost $5,345,087
while the cost for y* is $5,240,727.

In spite of the near optimal starting solution, the Zime required for
the branch-and-bound search is increasing exponentially as the number of

potential sites increases. Some of the test problems were repeated with a
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stronger lower bound functional, that of Efroymson and Ray [1966]. While

stronger, their bound takes longer to compute and the net result was an

increase in running time. Problem 8, for example, generated only 286 candidates

but took 13.3 seconds. Another way to attempt to improve performance would

be with a strategy for choosing the branching order. The essential difficulty,

however, is that the branch and bound search must account for every path,

whereas the mean value search need only choose one path.
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Seattle, Washington
Spokane, Washington
Portland, Oregon
Sacramento, California
San Francisco, California
Los Angeles, California
San Diego, California
Reno, Nevada

Las Vegas, Nevada
Boise, Idaho

Eugene, Oregon

Helena, Montana

Butte, Montana

Salt Lake City, Utah
Flagstaff, Arizona
Phoenix, Arizona
Cheyenne, Wyoming
Denver, Colorado
Pueblo, Colorado
Albuquerque, New Mexico
El Paso, Texas
Amarillo, Texas

Ft. Worth, Texas
Dallas, Texas

San Antonio, Texas
Houston, Texas

Bismark, North Dakota
Fargo, North Dakota
Pierre, South Dakota
Sioux Falls, South Dakota
Grand Island, Nebraska
Tincoln, Nebraska
Omaha, Nebraska

Topeka, Kansas

Wichita, Kansas

Tulsa, Oklahoma
Oklahoma City, Oklahoma
Duluth, Minnesota
Minneapolis, Minnesota
Des Moines, lowa

Cedar Rapids, Iowa
Kansas City, Missouri
St. Louis, Missouri
Little Rock, Arkansas
Shreveport, Louisiana
New Orleans, Louisiana
Green Bay, Wisconsin
Madison, Wisconsin
Milwaukee, Wisconsin
Chicago, Illinois

Table 2.

51,
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62,
63,
64.
65.
66.
67.
68.
69.
70.
71,
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92,
93.
94,
95.
96.
97.
98.
99.
100.

Peoria, Illinoia
Memphis, Tennessee
Jackson, Mississippi
Gary, Indiana
Indianapolis, Indiana
Louisville, Kentucky
Nashville, Tennessee
Knoxville, Tennessee
Chattanooga, Tennessee
Birmingham, Alabama
Montgomery, Alabama
Mobile, Alabama
Atlanta, Georgia
Columbus, Georgia
Tallahassee, Florida
Jacksonville, Florida
Tamps, Florida

Ft. Myers, Florida
Miami, Florida
Cincinnati, Ohio
Columbus, Ohio

Akron, Ohio

Cleveland, Ohio
Pittsburgh, Pennsylvania
Charleston, West Virginia
Roanoke, Virginia

Winston-Salem, North Carolina

Columbia, South Carolina
Charleston, South Carolina
Charlotte, North Carolina
Richmond, Virginia
Baltimore, Maryland
Washington, D. C.
Wilmington, Delaware
Philadelphia, Pennsylvania
Newark, New Jersey
Buffalo, New York
Hartford, Connecticut
Syracuse, New York

New York, New York
Providence, Rhode Island
Boston, Massachusetts
Montpelier, Vermont
Concord, New Hampshire
Bangor, Maine

Detroit, Michigan
Lansing, Michigan

Long Beach, California
Santa Barbara, California
San Jose, California

Cities Used in the Test Problems.
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ID m n a Tmv Tbb CAND
| * |
1 100 g 22 | o9 | o6 | 3
| i ? ‘r
! i i
2 100 9 ! 2%, 1.0 0.8 50
3 100 9 9% 1.5 2.3 123
4 100 10 0% 1.9 3.4 122
5 100 11 1% ©2.3 15.2 448
6 100 12 1% 2.7 29.3 701
7 100 10 0% 1.7 3.3 122
8 100 11 2, 2.1 12.4 415
9 100 12 2% 2.8 30.6 739
10 100 16 ; - 4.9 - -
Table 3. Computational Results
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Site Fixed Cost (in millions)
Los Angeles 1.00
San Francisco 1.50
Chicago 1.00
Atlanta .60
Denver .60
New York 2.00
Dallas .75
Washington 1.20
Boise .60

Table 4. Fixed Costs for Problem 2
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