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Abstract

Recent empirical evidence suggests that reversing current account balances imply costly ad-

justment processes leading to reduced economic growth. Using large panel data sets to analyze

determinants and costs of reversals asks for controls of heterogeneity among countries. This pa-

per contributes a Bayesian analysis, which allows a parsimonious yet flexible handling of country

specific heterogeneity via random coefficients. Furthermore, the analysis allows for serially corre-

lated errors in order to capture persistence within the employed macroeconomic data. Bayesian

specification tests provide evidence in favor of models incorporating heterogeneity and serial cor-

relation. The results suggest that consideration of serial correlation and heterogeneity is necessary

to assess correctly the determinants and costs of reversals. Results are checked for robustness

against the underlying reversal definition.
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1 Introduction

Costly current account adjustment processes succeeding changes in the world capital movements

have been subject to several studies in the literature. Beside studies being concerned with explaining

current account phenomena on a national level, see e.g. Calvo and Mendoza (1996), Cashin and

McDermott (1996), Calvo et al. (2003) and Ansari (2004), other investigations e.g. by Frankel and

Rose (1996) or Hutchinson and Neuberger (2001) analyze the impacts of readjustments of current

account deficits for the group of emerging countries. Also region specific groups, such as East

Asian and Latin American countries, as well as the countries in Central and Eastern Europe have

been analyzed, see e.g. Milesi-Ferretti and Razin (1996), Barro (2001), Calvo (2001) and Melecky

(2005). Furthermore, with larger data sets becoming available, the impact of reversing current

account deficits has been analyzed in the context of large country panels containing not only specific

groups. Milesi-Ferretti and Razin (1998) use panel data comprising mostly low and middle income

countries to explain the determinants of current account reversals and their influence on economic

growth. Utilizing panel data including industrial as well as less developed countries, Edwards (2004)

highlights the costs of current account adjustment processes.

Identification of explanatory variables of current account reversals is performed via probit re-

gressions, which allow to assess the impact of variables on seldom disruptive events. The set of

explanatory variables include external macroeconomic variables, such as openness and the level of

reserves, as well as domestic and global macroeconomic variables. Determinants of current account

as such have been analyzed by several authors, see e.g. Chinn and Prasad (2003) for a comprehensive

overview.

The effect of current account reversals on economic growth has been analyzed either by linear

regressions or via treatment models. In a before and after analysis Milesi-Ferretti and Razin (1998)

use linear regressions to assess the costs of reversal episodes in terms of economic growth. The results

suggests no systematic reduction of growth in the period after a current account reversal. Using a

treatment model Edwards (2004) analysis the costs of a reversal. His results are at odds to those of

Milesi-Ferretti and Razin (1998) and suggest that a current account deficit reduces economic growth

on average by four percentage points and inversely related to economic openness. While a treatment

analysis allows to account for a possible sample selection bias in the occurrence of current account

reversals, both methodologies are less concerned with country specific heterogeneity.

Although panel data sets provide more observations, they often deliver sets of explanatory vari-

ables, which are less detailed in terms of institutional particularities than group or country specific

studies, see e.g. Calvo (2003), and thus capture not all heterogeneity, which is likely present in
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the data. As early as Haberler (1964) noted, the group of less developed countries is still more

heterogenous than the group of industrial countries. The studies cited above either use the available

exogenous variables to capture institutional particularities of countries or, as these are often not

exhaustive for a large panel of countries, use a fixed effects approach. A fixed effects approach is

nevertheless problematic. Some countries do not experience a current account reversal, thus country

specific fixed effects are not identified within the probit framework. While for the treatment model

a fixed effects approach is in principle applicable within the growth equation, estimation in short

panels possibly causes an incidential parameter problem. Hence, alternative approaches to deal with

unobserved country specific heterogeneity are necessary in order to assess correctly the determinants

and costs of reversals.

The aim of this paper is therefore to analyze the changes in determinants and costs of reversals,

when allowing for a general form of heterogeneity. Via random coefficients, see e.g. Train (2003)

for a description of the mixed probit model, unobserved heterogeneity across countries is taken into

account. Such a modeling of heterogeneity among countries solves the identification problem of a

fixed effects approach for countries where no reversal is observed. Consideration of heterogeneity via

this specific form is new in the context of macroeconometric analysis of current account reversals.

The empirical literature sofar often classifies countries into regions, see e.g. Edwards (2004), to allow

for heterogeneity between this specific regions. Random coefficients offer a more flexible, yet parsi-

monious form of heterogeneity, which is analyzed in this paper. Next to analyzing the determinants

of reversals via a mixed probit model, this paper reviews the impact of reversals on economic growth

via a treatment model. The framework proposed by Heckman (1978) is therefore extended to incor-

porate heterogeneity via random coefficients. Furthermore, within the probit and treatment models

serial correlation within the errors is considered. Such an approach allows to account for persistence

in unobserved components, a feature likely present in the context of macroeconomic event studies

as argued by Falcetti and Tudela (2006).

The contribution of this paper is a Bayesian analysis dealing with the matters of heterogeneity

and serial correlation in the context of current account reversals. According to Bolduc et al. (1997),

Bayesian estimation might be more flexible and faster in the context of mixed probit models than

maximum likelihood approaches and allows furthermore to assess the significance of single variables

without relying on asymptotic properties as in a maximum likelihood analysis.1 For the Bayesian

estimation of the treatment model with random coefficients and serially correlated errors as well as

for the mixed probit model with correlated errors an approach based on a Markov Chain Monte
1Note that a small sample correction while theoretically possible via Bootstrap methods appears computationally

too burdensome.
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Carlo (MCMC) technique namely Gibbs sampling is employed. This approach allows to inspect the

properties of heterogeneity among countries, as Gibbs sampling provides the posterior distributions

of the random coefficients. Hence, differences in the way some variables affect a countries probability

of a reversals can be analyzed. The adequacy of the specifications allowing for heterogeneity and

serial correlation is tested via comparing of the marginal likelihoods, which are computed according

to the methodology proposed by Chib (1995). Furthermore it is highlighted in this paper whether

the inclusion of country specific heterogeneity and serial correlation improves the ability of the model

to identify reversals. The robustness of results is checked against several alternative definitions of

the shift magnitude in current account deficit, which triggers current account reversals.

The outline of the paper is as follows. Section 2 describes the data and provides some information

on the theoretical background of current account reversals. The specifics of the alternative reversal

identification schemes are also presented. The frameworks with and without heterogeneity and serial

correlation of the probit and treatment model are presented in Section 3. Within this section also

the applied Bayesian estimation techniques is described. Section 4 presents the empirical findings.

Section 5 concludes.

2 Data, Theoretical Background and Reversal Identification

Data is constructed using the Worldbank World Development Indicators 2005 (WDI) and the Global

Development Finance 2004 (GDF) databases. These databases provide annual data ranging from

1960-2004 for a total of 208 (WDI) and 135 (GDF) countries, respectively, but only for a few variables,

not including current account balance before 1970. As not all variables of interest are available for

each country and each year, an unbalanced panel including less than the possible 135 countries is

analyzed. A panel consisting out of 963 observations from 60 countries, when all the variables are

taken into account, remains. Furthermore a country has to provide at least 10 observations to be

included into the panel.2 The number of observations per country does not exceed 18 periods, since

some variables are only available from 1984 onwards. Following Milesi-Ferretti and Razin (1998),

Bagnai and Manzocchi (1999) and Edwards (2004) macroeconomic as well as external and global

variables are used as explaining variables for reversals and determinants of growth. The following
2The following list of countries are analyzed: Argentina, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burkina

Faso, Burundi, Cameroon, Central African Republic, Chile, China, Colombia, Congo. Rep., Costa Rica, Cote d’Ivoire,

Dominican Republic, Ecuador, Egypt. Arab Rep., El Salvador, Gabon, Gambia, The, Ghana, Guatemala, Guinea-

Bissau, Haiti, Honduras, Hungary, India, Indonesia, Jordan, Kenya, Lesotho, Madagascar, Malawi, Malaysia, Mali,

Mauritania, Mexico, Morocco, Niger, Nigeria, Pakistan, Panama, Paraguay, Peru, Philippines, Rwanda, Senegal,

Seychelles, Sierra Leone, Sri Lanka, Swaziland, Thailand, Togo, Tunisia, Turkey, Uruguay, Venezuela, RB, Zimbabwe.
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paragraphs will describe the included variables in these three categories and shortly review their

meanings suggested by different theories. In order to avoid endogeneity problems all variables except

the global ones are included with a lag of one period. Furthermore, following Milesi-Ferretti and

Razin (1998) the variables current account deficit, GDP growth rate and investment are included in

period t as three year averages over the periods t− 3 to t− 1.

Macroeconomic variables included are economic growth given as the annual growth rate of real

gross domestic product (GDP), the share of investment in GDP proxied by the ratio of gross capital

formation and GDP, as well as the log GDP per capita in 1975. These variables are considered as

determinants of economic growth and current account reversals. The relationship between growth,

investment and balance-of-payments is stated in the balance-of-payments stages hypothesis, see the

work of Fischer and Franklin (1974) and Halevi (1971). The value of log GDP per capita in 1975

proxies the initial state of development. A less developed country provides investment opportunities

what possibly causes current account deficits. High investment can trigger a rise in GDP growth

and a country’s stock of capital. Thus a country may change in the intercourse of development

from a capital importer to a capital exporter. A further macroeconomic variable considered is

general government final consumption expenditure as a fraction of GDP. Government consumption

is used to proxy the healthiness of the fiscal environment. Since the first generation models of crises,

e.g. Krugman (1979) and Flood and Garber (1984), an unsustainable fiscal environment serves as a

signal of crises.

As external variables are included the current account balance as a fraction of GDP, the share

of exports and imports of goods and services in GDP as a measure of trade openness, the share of

concessional debt in total debt, interest payments relative to GDP, the share of foreign exchange

reserves in imports, the ratio of official transfers to GDP and a terms of trade index (2000=100). In

their work on current account sustainability Milesi-Ferretti and Razin (1996) emphasize the effects

structural features captured by the above variables have on the ability of a country to sustain

external imbalances. Already high current account deficits may indicate a higher need for solving

these imbalances. A higher degree of openness may enable a country to balance domestic shocks

via the current account. As concessional debt is granted by institutional lenders below market

conditions, it may provide a source of stabilization for the current account balance. The same

argument is valid for granted official transfers relative to GDP. But, as the latter two variables are

subject to political decisions they may as well trigger sharp adjustment processes. Interest payments

relative to GDP are included in order to indicate the liabilities a country have to serve. Foreign

exchange reserves as stressed by Calvo (1996) play an important role. A low level of reserves may

cast doubts whether a country is able to serve its external liabilities. The role of foreign exchange
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reserves is also prominent in second generation models of balance-of-payments crises, see Obstfeld

(1986) among others, in which speculative attacks on the central banks stock of reserves result

inevitably in a balance-of-payments crises. Changes in the terms of trade may anticipate changes

in trade flows. The analytic model of Tornell and Lane (1998) analyze the effect of terms of trade

shocks on current account balance. Their model suggests that positive terms of trade shock can

result in a deterioration of current account thus delaying the occurrence of a reversal.

Global variables taken from the databases are the US real interest rates and the real growth rates

of the OECD countries. These two variables shall reflect the state of the world economy and the

implied influences on current account readjustments. Rising interest rates may cause higher costs of

credits for some countries and therefore lead to current account adjustment. Also a country may be

less attractive for foreign investment. A high growth in the merely industrial OECD countries can

for example lead to increasing demand for commodities, which may help to reduce some countries

deficits. Thus these two variables affect a country’s international borrowing constraint. As shown

by Atkeson and Rios-Rull (1996) changes in the international borrowing constraint may trigger a

balance-of-payments crises even when macroeconomic policies of a country are consistent.

Current account reversals are defined using several ad hoc criteria.3 To attenuate the effect of

this ad hoc approach, different definitions of current account reversals are considered, four in total.

Identification schemes (I-IV ) are characterized as changes in the average level of current account

balance. The definitions follow Milesi-Ferretti and Razin (1998) and Alesina and Perrotti (1997) who

applied similar definitions in the context of fiscal stabilization. According to scheme (I) a reversal

episode in period t is given when the current account balance in t is indeed a deficit and the average

current account deficit t to t + 2 compared to the average current balance over periods t − 3 to

t− 1 is reduced by at least 3%. A further restriction is that the deficit level after the reversal does

not exceed 10%. Furthermore, in order to measure only sustainable reductions in current account

deficit, a reversal is classified in period t only, if the maximum deficit in the three years after the

reversal is below the minimum deficit in the three years before the reversal. To avoid that the same

reduction shows up twice in the averages, reversal scheme (II) allows no further reversal to happen

in the two consecutive years after a reversal. Scheme (III/IV ) differs from scheme (I/II) only with

respect to the shift magnitude of average current account balance triggering a reversal, which has

to exceed 5% now. The numbers of reversals identified under the alternative identification schemes

are reported in Table (1). Entries on the main diagonal provide the number of identified reversals

for the four alternative schemes, whereas the other entries provide the number of reversals which
3Identifying reversals is therefore not data driven as proposed by Bagnai and Manzocchi (1999) who use structural

break tests for identification of reversals.
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are jointly identified by alternative schemes. In total, the data summarizes 1312 time periods, as

three year averages are considered. When all identifications schemes are applied simultaneously only

53 reversals are identified from a maximum number of 127 reversals under scheme I. Given these

features of the different identification schemes, they are all used to yield access to the determinants

of current account reversals and their effect on economic growth.

3 Model Description and Estimation

This section introduces the probit and treatment models used to analyze the determinants of current

account reversals and the impact of a reversing current account on the growth process. The speci-

fied models allow for country specific heterogeneity and/or serially correlated error terms in order to

account for the characteristics of the considered panel data. Furthermore, the Gibbs samplers em-

ployed in estimation are shortly reviewed and the methods for comparing the different specifications

are introduced.

3.1 Probit Model

The determinants of current account reversals are analyzed via probit regressions. This approach

allows to assess the influence of a large set of explanatory regressors proposed in the literature on

the occurrence probability of a reversal. Starting point is the pooled panel probit model given as

δit =





1, if δ∗it ≥ 0

0, if δ∗it < 0,
(1)

where δit indicates the occurrence of a reversal identified under the different identification schemes

for each individual i = 1, . . . , N in each period t = S(i), . . . , T (i) observed for country i. The latent

process δ∗it linking the explanatory variables to the reversal is assumed to follow a linear regression

model

δ∗it = Xitβ + eit, (2)

where eit is an normally independently identically distributed (iid) error term. If the latent variable

δ∗it raises above zero, then a reversal is indicated.

Country specific heterogeneity is incorporated into the model as follows. The parameter vector β

is assumed to become an iid country specific random variable with common mean b and covariance

matrix Wb for all countries, i.e.

βi
iid∼ N (b,Wb), i = 1, . . . , N. (3)
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Note that Wb can also be diagonal assuming independence of the random coefficients. Inclusion

of random parameter heterogeneity induces a heteroscedastic error over time for each individual.

Consider the covariance matrix between the latent variables of one individual δ∗i·. The covariance

matrix of dimension T (i)− S(i) + 1× T (i)− S(i) + 1 is given as

Xi·WbX
′
i· + I, (4)

where I is an identity matrix denoting the covariance matrix of the latent errors ei·. Using random

coefficients allows a general form of country specific heterogeneity, which has the advantage that in

contrast to a fixed effects approach, heterogeneity is also permitted for countries not experiencing a

reversal. Such an approach possibly highlights how unobserved characteristics of a country e.g. the

institutional framework and political stability among others, alter the influence of a specific variable

on the occurrence probability of a current account reversal. Thus the mean vector b provides insight

into the relationship between determinants and reversals when heterogeneity among countries is

taken into account.

Furthermore, the case that not all parameters are randomized can be incorporated. The altered

model can be described as follows

δ∗it = Xitβ + Xran
it βi + eit, (5)

where superscript ran refers to the variables assigned a random coefficient and β denotes the constant

parameters. Hence, the probability of a country i being at time t in the observed state δit is

conditional on βi, β

Pit|βi,β
= Φ

(
(2δit − 1)(Xitβ + Xran

it βi)
)
, (6)

where Φ(·) is the cumulative density function of the standard normal distribution. Given the prob-

ability Pit|βi,β
the likelihood can be stated as

L(·|β, b,Wb) =
N∏

i=1

∫

βi




T (i)∏

t=S(i)

Pit|β,βi


 f(βi|b,Wb)dβi, (7)

where S(i) denotes the first and T (i) the last available period for country i.

Serial correlation can be introduced in two forms. It can be implemented via the error components

of the latent model. Alternatively, lagged values of the latent δ∗it can be included as explanatory

variables. In both forms one needs the unconditional distribution of δ∗iS(i) that is for the first period

observed for individual i. This is unproblematic when serial correlation is modeled within the

errors, as the moments of the error distribution are time invariant. In contrast, the moments of the
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dependent variable δ∗it are time varying, which allows no derivation of the unconditional moments of

δ∗iS(i). Note that this problem can also not be solved via conditioning on δ∗iS(i) as it is not observed.

Incorporating serial correlation within the error structure is hence modeled as an autocorrelated

error process of order one4

eit = ρeit−1 + uit, (8)

where uit is an iid normal white noise (0, 1) process. Thus, all errors for country i are jointly normal

distributed. The covariance matrix for individual i of the errors ei· is given as

Ωi = {ωhj}, h, j : {T (i)− S(i) + 1× T (i)− S(i) + 1}, ωhj =
ρ|h−j|

1− ρ2
. (9)

Denoting the vector of occurrence probabilities conditional on the random coefficients βi and the

fixed parameters β for country i as Pi·|βi,β
, this probability is given as the integral:

Pi·|βi,β
=

∫

d(δiS(i),XiS(i),β,βi)
. . .

∫

d(δiT (i),XiT (i),β,βi)
Ψ(eiS(i), . . . , eiT (i))deiS(i) . . . deiT (i), (10)

where Ψ(·) denotes a multivariate normal density with mean vector zero and covariance Ωi, and

d(δit, Xit, β, βi) =





(−∞,−(Xitβ + Xran
it βi)), if δit = 0,

(−(Xitβ + Xran
it βi),∞) if δit = 1.

(11)

defines the corresponding range for integration. The likelihood is thus given as

L(·|β, b, Wb, ρ, X) =
N∏

i=1

∫

βi

Pi·|βi,β
· f(βi|b, Wb)dβi, (12)

where δ and X gather all discrete dependent and explaining variables respectively. Estimation of

these models via a Bayesian approach is described in the next section.

3.1.1 Bayesian Estimation

The Bayesian estimation approach via Gibbs sampling, see Albert and Chib (1993), allows a flexible

handling of the discussed model features. The high dimensionality of the likelihood integral pro-

vides another argument in favor of MCMC methods, as they are well suited for high dimensional

integration.5 In a Bayesian setup the joint posterior of the parameters is hence proportional to

p(β, b, Wb, ρ|X, δ) ∝ L(δ|β, b, Wb, ρ, X)π(β, b,Wb, ρ), (13)
4Preliminary analysis suggests that one lag sufficiently covers the serial correlation.
5Geweke and Keane (2001) give an extensive description of integration methods for latent models.
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where π(β, b, Wb, ρ) denotes the prior distribution of the model parameters. Parameter estimates

are obtained via the realizations of the moments and quantiles of the posterior distribution. The

significance of a parameter estimate is assessed via the 95% highest density region of a posterior

distribution. The implemented prior distributions incorporate a priori information into the estima-

tion. The priors of β, b, Wb and ρ are assumed to be mutually independent and fairly uninformative.

Hence π(β) and π(b) are multivariate normal with mean zero and a large variance for each element.

π(Wb) is either Inverted Wishart distributed in case that the random coefficients are mutually de-

pendent, or the product Inverted Gamma distributions in case of mutual independence. The prior

for the autocorrelation parameter is uniform. More specifics on the applied prior moments are given

in Appendix C.

The implemented Gibbs sampler generates draws from the joint posterior of the models via

iteratively sampling from the set of full conditional distributions. The parameter set θ = {β, b, Wb, ρ}
is augmented to include the errors of the latent model {{eit}T (i)

t=S(i)}N
i=1. The inclusion of the latent

errors linearizes the setup and leads to closed forms for the full conditional distributions of the

parameters. For further details concerning the specific forms of the moments of the full conditional

distributions see Appendix A. The algorithm has hence the following structure:

(i) Simulate from fi({eit}Ti

t=S(i)|β, βi, {Xit, δit}Ti

t=S(i), ρ) i : 1 → N , which is a multivariate trun-

cated normal. As serial correlation is modeled via the error structure, the algorithm of Geweke

(1991) is used. Draws from the joint distribution of errors are obtained via iterative draws

from the set of full conditionals, which are in fact univariate truncated normals incorporating

the restrictions d(δit, Xit, β, βi), see Equation (11). Given the sampled errors one can compute

the latent variable δ∗it = Xitβ +Xran
it βi + eit. This linearization of the setup follows Albert and

Chib (1993).

– Given the sequences of the error terms, simulate from f(ρ|{{eit}T (i)
t=S(i)}N

i=1), which is a

truncated normal distribution arising from the equation eit = ρeit−1 + uit.

(ii) Simulate from fi(βi|{Xit, δ
∗
it}Ti

t=S(i), β, ρ), i = 1 → N , which is a multivariate normal distribu-

tion arising from the model δ∗it −Xitβ = Xran
it βi + eit.

– Conditional on the sampled random coefficients {βi}N
i=1, simulate from f(b|{βi}N

i=1,Wb),

which is multivariate normal.

– Simulate from f(Wb|{βi}N
i=1, b), which is Inverted Wishart distributed. In case that Wb

is diagonal, each element is Inverted Gamma.
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(iii) Simulate from f(β|{{Xit, δ
∗
it}Ti

t=S(i), βi}N
i=1, ρ), which is multivariate normal arising from the

model δ∗it −Xran
it βi = Xitβ + eit.

After providing the Gibbs sampler for the employed probit model, the treatment model allowing for

serial correlation and heterogeneity shall be introduced.

3.2 Treatment Model

A theoretical link between current account reversal as a balance of payments crises and economic

growth has been established by several theoretical models. In contrast to the first and second

generation models of Krugman (1979) and Obstfeld (1986), where no such link is provided, third

generation models which build upon the experience of the Mexican crises in 1994 and the Asian

crises in 1998 have provided several channels for a contractionary effect. According to Dornbusch et

al. (1995), a current account reversal may cause a disruption in the growth process as it brings an

end to an inconsistent macroeconomic policy often linked to inflation reduction. Others like Chang

and Velasco (1998) and Radelet and Sachs (1998) argue that increasing foreign borrowing causes

illiquidity making the countries more vulnerable to panic and sudden loss of confidence, see for a

detailed discussion Moreno (1999).

Measuring the effect of current account reversals on economic growth shall be done within a

treatment model. Since Heckman (1978) established Maximum Likelihood estimation of the corre-

sponding simultaneous equation framework for continuous and discrete endogenous variables, this

framework has also been subject of Bayesian analysis, see among others Angrist et al. (1996). Follow-

ing Edwards (2004), joint consideration of growth and current account reversals within a treatment

model allows to take the possible correlation between shocks causing changes in the probability of a

reversal and growth into account. The purpose of this analysis to assess the costs of reversals under

a general form of heterogeneity and serial correlation tries to match the fact that reversal episodes

in different countries often show different characteristics, although they are often stemming from

the dilemma of a lack of credibility and inflation inertia, which is a common feature of developing

countries, see Calvo and Vegh (1999) for an overview.

The model consists of the two equations for growth grit and the latent variable δ∗it for the reversal

grit = Zitα + εit, (14)

δ∗it = Xitβ + eit. (15)

Within Zit the binary reversal indicator δit is included to capture the effect of a reversal on growth.

The effect on growth is correspondingly measured as E[grit|Zit, δit = 1] − E[grit|Zit, δit = 0]. The

set of explanatory variables in both equations contains the variables described in Section 2.
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Again, unobserved heterogeneity of countries stemming from unobserved characteristics shall be

incorporated. Random coefficients within the growth equation capture differences between countries

with respect to growth dynamics. As in the probit model this is achieved via random coefficients

within each equation, i.e.

αi ∼ N (a, Wa), βi ∼ N (b,Wb). (16)

As before, not to all variables a random coefficient has to be assigned. The two equations are

therefore altered into

grit = Zitα + Zran
it αi + εit, (17)

δ∗it = Xitβ + Xran
it βi + eit. (18)

Serial correlation is incorporated within the error terms of the probit regression. Hence

eit = ρeit−1 + uit, (19)

and

 εit

uit


 ∼ N





 0

0


 ,


 σ2 ψ

ψ 1





 . (20)

This form of error structure leads to correlation between past shocks of the growth equation and

contemporaneous shocks of the probit equation. Consideration of such correlation allows the latent

process of the reversal to be linked to the history of shocks hitting the growth process, which are

possibly not adequately represented by the included explaining variables. The likelihood contribution

of country i as a constituent part of the posterior distribution is given by the integral:

Li(·|a, b, Wa,Wb, σ, ψ, ρ, α, β) =
∫

αi

∫

βi

Ψ1(·)
(∫

· · ·
∫

Ψ2|1(·)deiS(i) . . . deiT (i)

)
f(αi, βi)dαidβi. (21)

Ψ1(·) denotes the marginal distribution of εi· evaluated at gri· − Zi·αi and Ψ2|1(·) the conditional

distribution of ei·|εi· with corresponding conditional mean and conditional variance. Given this

model setup, the next section will shortly provide the Gibbs sampler of this model.

3.2.1 Bayesian Estimation

Detailed Specifics on the moments of the full conditional distribution and the corresponding priors are

given in Appendix B, while the employed prior moments are stated in Appendix C. The corresponding

Gibbs Sampler, which is employed to simulate from the joint posterior distribution of the model,

has the following structure:
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(i) Simulate from fi({eit}T (i)
t=S(i)|αi, βi, {Xit, Zit, grit, δit, εit}T (i)

t=S(i), σ
2, ψ, ρ, a, Wa, b, Wb) i : 1 → N ,

which is similar to Step (i) described for the probit model. Nevertheless, here it is derived from

a multivariate truncated normal conditional on the observed errors εi· form the first equation.

The serial correlation parameter is drawn conditional on the set of errors from a truncated

normal distribution. Given the latent errors, the latent dependent δ∗it is computed to linearize

the setup in the following.

(ii) Simulate from fi(αi, βi|{Xit, Zit, grit, δ
∗
it}T (i)

t=S(i), σ
2, ψ, ρ, a,Wa, b,Wb, α, β), i : 1 → N , which is

a multivariate normal distribution. The moments are the same as in a seemingly unrelated

regression framework. Given the trajectories {αi, βi}N
i=1 one can simulate the underlying hy-

perparameters a,Wa, b, Wb. The full conditional distributions of a and b are both multivariate

normal. The full conditionals of Wa and Wb are either Inverted Wishart, or each element of the

main diagonal follows an Inverted Gamma distribution, if the random coefficients are assumed

to be mutually independent.

(iii) Simulate from f(α, β|{Xit, Zit, grit, δ
∗
it}T (i)

t=S(i), σ
2, ψ, ρ, a, Wa, b, Wb, {α, βi}N

i=1), which is multi-

variate normal arising from a panel model.

(iv) A difficulty arises in drawing the covariance matrix of the errors from an Inverted Wishart

distribution when the element of the main diagonal σ22 is normalized to 1. The full conditional

distribution has to be based on an appropriate prior incorporating this normalizing constraint.

This problem has been addressed in several ways, see McCulloch and Rossi (1994), Nobile

(2000) and McCulloch et al. (2000). In this analysis an identified prior is used as suggested

by McCulloch et al. (2000) although for medium large problems empirical experience suggests

viability also for a non identified prior scheme. Such a scheme would allow direct sampling from

a Wishart distribution but unfortunately no accurate calculation of the marginal likelihood.

Simulation of σ2 and ψ is obtained by using a reparametrization of the covariance of εit and

uit given as

 σ2 ψ

ψ 1


 =


 ξ + ψ2 ψ

ψ 1


 . (22)

ξ denotes the conditional part of the variance of εit and can be sampled from an Inverse

Gamma distribution. Draws of the covariance are obtained via setting up the linear regression

εit = ψuit + ζit, where ζit denotes an error term with variance ξ. Thus, sampling ψ is possible

from a normal distribution.6

The next section deals with comparison of the different specifications.
6Further details are given in McCulloch et al. (2000).
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3.3 Model Comparison

The Bayesian framework allows to compare the different specifications via the marginal likelihood

m(S), which gives the evidence of the sample data S under a specific model. This concept incorpo-

rates the parameter uncertainty and provides a consistent model assessment even for smaller samples

as it is not based on asymptotic properties. The derivation of the marginal likelihood is along the

way proposed by Chib (1995). A more general introduction is provided by Kass and Raftery (1995).

Starting point of the derivation is to decompose the log marginal likelihood into

ln m(S) = lnL(θ∗|S) + lnπ(θ∗)− ln p(θ∗|S). (23)

As this identity holds for all θ, it is calculated at a point within the highest density region where θ∗

is the posterior mean.

The first component gives the log likelihood. For the pooled panel probit and treatment model it

has a closed form. For the specifications allowing for serial correlation or heterogeneity, the likelihood

is computed using the GHK-simulator, see Geweke et al. (1994) or Börsch-Supan and Hajivassiliou

(1993) for details. The algorithm consists of the following steps.

(i.a—b) For the probit model simulate M draws β
(m)
i , m : 1 → M from f(βi|b, Wb). For the treatment

model simulate M draws α
(m)
i , β

(m)
i , m : 1 → M from f(βi|b, Wb) and f(αi|a,Wa) respectively.

(ii.a—b) For the probit model the likelihood, the simulator generates M draws from the correspond-

ing multivariate distribution. Therefore, the joint distribution of the errors is split into the

corresponding conditional distributions. The approximation has hence the form

L̃i =
1
M

M∑

m=1

T (i)∏

t=S(i)

ξ(e(m)
t |e(m)

−t , β
(m)
i ), (24)

where ξ(et|e−t) denotes the corresponding univariate truncated normal distribution being con-

ditional on all other elements of the error vector before time period t. The sample information

is included in mean and variance of the univariate distribution, which are derived from the mul-

tivariate distribution involved in Equation (12). For the treatment model the GHK-simulator

provides an estimate for the likelihood of one country i corresponding to Equation (21) via

L̃i =
1
M

M∑

m=1

ξεi·(α
(m)
i )




T (i)∏

t=S(i)

ξei·|εi·(e
(m)
t |e(m)

−t , β
(m)
i , α

(m)
i )


 , (25)

where ξεi·(·) denotes the multivariate distribution of the errors of the growth equation and

ξei·|εi·(·) the multivariate distribution of the errors ei· conditional on εi·.
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The second component is the log prior of all model parameters evaluated at the estimated pa-

rameter values. The last component of the marginal likelihood is the full posterior distribution

of the model parameters θ = (θ1, θ2, ..., θk) adequately decomposed into blocks of parameters θi,

i = 1, . . . , k, which are sampled together. The full posterior including all integrating constants is

obtained via decomposing the posterior distribution into

p(θ∗|S) = p(θ∗1|S) · p(θ∗2|θ∗1, S) · . . . · p(θ∗k|θ∗k, θ∗k−1, . . . , θ
∗
1, S).

For the pooled panel probit model the posterior distribution is provided by the Gibbs output, as

only one block of parameters (θ = β) is present, i.e.

p̃(β|S) =
1
M

M∑

m=1

f(β∗|δ∗(m)
, S), (26)

where f(·) denotes the full conditional distribution of β and δ∗(m)
denotes the draws of the latent

variable. For all other model specifications, the posterior is obtained via running shortened Gibbs

runs, where stepwise one full conditional distribution is discarded, see Appendix A and B for the spe-

cific forms of the full conditional distributions. For the specification incorporating serial correlation

one additional Gibbs run is necessary, where it is sampled from the full conditional distribution of ρ.

When random coefficients are considered, two further shortened Gibbs runs have to be conducted.

These principles apply as well to the treatment model, where additional shortened Gibbs runs for

the parameters of the error structure have to be added. Given the log marginal likelihood, model

comparison is conducted using the scale of Jeffrey’s (1962), which classifies the log Bayes factor as

the difference between two log marginal likelihoods.7

Furthermore, the different probit specifications are assessed according to their ability to identify

a reversal. It shall be highlighted whether the inclusion of serial correlation and random coefficients

improve the ability to indicate a reversal. The ability to indicate a reversal is assessed via estimates

of the probability that a reversal occurs. To obtain a simple closed form of this probability, it is

calculated as follows

1
M

M∑

m=1

p(δit = 1|Xitβ
(m) + X

ran(m)
it β

(m)
i + ρ(m)e

(m)
it−1). (27)

Thus all information available a time time t via regressors, parameters and latent errors is included,

such that this probability is a byproduct of the Gibbs sampler. When the estimated probability
7If B < 0 no evidence for the specification under H0, for 0 ≤ B < 1.15 very slight evidence in favor of H0 is found,

with 1.15 ≤ B < 2.3 the evidence is slight, strong evidence is found for 2.3 ≤ B < 4.6 and very strong evidence is

found for B ≥ 4.6.
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exceeds 0.5 an observation is classified as a reversal.8 The ratio of correct and misclassified reversals

serves as a model selection criterion. As all explaining variables Xit provide only information up to

period t − 1, this probability highlights the models capabilities to predict a reversal although the

parameters and latent variables are obtained using the full sample information.

4 Empirical Results

In this section the estimation results accounting for heterogeneity across countries and serial corre-

lation are presented. Determinants of reversals are assessed via probit regressions. The impact of

reversals on economic growth is analyzed via treatment regressions. The robustness of findings is

checked for different reversal identification schemes as described in Section 2. Comparison of the

different specifications is conducted via Bayes factors and the ability of the specifications to predict

a reversal. Bayesian estimators are based on a total of 10.000 draws, where inspection of the Gibbs-

runs was used to check for convergence. A Burn-in phase of 2.000 draws is found to discard the

effect of initialization over all models and specifications sufficiently.9

4.1 Determinants of Current Account Reversals

The estimates for four probit specifications incorporating serial correlation and heterogeneity at

different degrees will be discussed. Starting point is the pooled panel probit model given in Equa-

tions (1) and (2). The next specification accounts for serial correlation as stated in Equation (8).

Afterwards, no serial correlation in the errors, but random coefficients modeling country specific

heterogeneity described in Equation (3) are considered. Finally, a specification incorporating both

serial correlation in the errors and random coefficients is estimated.

Table (3) reports the results for the pooled panel specification obtained by Bayesian estimation.

The upper part of Table (3) contains the set of macroeconomic variables, which display low ex-

planatory power across all reversal schemes. Only the variable government expenditures becomes
8Hyslop (1999) highlights the improved ability to fit the observed sequences of the binary variable via comparison

of observed and predicted frequencies for all possible sequences of the binary variable in context of a panel with seven

time periods. As the number of observations per country ranges for this panel from 10 to 18 the number of possible

sequences becomes prohibitively large.
9All empirical results presented below were broadly confirmed using Maximum Likelihood Estimation. The estima-

tion was performed using the GHK-simulator of Geweke et al. (1994), see for further details Börsch-Supan et al. (1993)

and Hajivassiliou (1990). Using 200 replications yielded for every model specification similar results as for the Bayesian

analysis, although incorporation of parameter uncertainty within the Bayesian methodology causes differences with

respect to reached significance levels for several parameter estimates.
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significant for reversal scheme I and III respectively. Neither mean growth rate, nor investment,

nor initial log GDP capturing the initial state of a country’s development bear significant influence

on the probability of a reversal. Similar results are presented in Milesi-Ferretti and Razin (1998)

for maximum likelihood based analysis. Taken together, a country experiencing higher investment

and growth in the intercourse of development stages is not exposed to a higher reversal risk. This

points out that solving imbalances via reversals are less connected to the macroeconomic state of an

economy but to its external. This is underlined by the estimation results of the external variables

given in the middle part of Table (3). A higher current account deficit raises significantly the prob-

ability to experience a reversal. This is in line with solvency conditions stressed by Milesi-Ferretti

and Razin (1996) in their work on current account sustainability. Trade openness as a key variable

describing international relationship is not a significant determinant of current account reversals.

Thus changes in trade flows seem not to precede current account reversals. Reserves as stressed

by Obstfeld (1986) play an important role in lowering the risk of a reversal. Defending a pegged

exchange rate against speculative attacks often preceding current account reversals depends on the

stock of international reserves, see Sachs et al. (1996) for a discussion in the context of the Mexican

crises in 1994.

The role of external debt discussed in Calvo (2005) is captured by official transfers, concessional

debt and interest payments. Official transfers and interest payments are not significant across

all reversal schemes. In contrast, higher concessional debt has a significant stabilizing effect for

reversal schemes II to IV on current account deficits. The higher the fraction of debt gained below

market conditions, the longer a current account deficit can be sustained. Concessional debt often

provided by institutional lenders generally constitutes a component of debt with low volatility and

long maturity. This in line with the view of Cole and Kehoe (2000) who show in their model the

impact of high volatile, short maturity debt on the occurrence of a crises. The terms of trade index

has also significant negative impact on the occurrence probability of a reversal across all reversal

definitions. This is in line with the view of Tornell and Lane (1998) that higher terms of trade can

lead to further deficits. Furthermore, higher export prices reflected in the terms of trade may allow

to sell of a country’s debt via trade. Higher terms of trade contribute therefore to the credibility of

a country, what is an important factor stressed by Guidotti and Vegh (1999).

The results for the global variables are given in the lower part of Table (3). Higher US real interest

rates and OECD growth rates raise the probability of a reversal, although significant only for reversal

scheme I, where only a 3% reduction in current account deficit triggers a reversal. Changes in a

countries borrowing constraint implied by these variables seem to influence only smaller deficit

reductions. Differences occur between reversal schemes I and II, which rely both on a 3% reduction
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of current account deficit, but refer to different restrictions of reversal dynamics. In scheme I,

the aftermath of a reversal is not strictly excluded from bearing a further reversal episode. This

definition allows a reversal episode to happen over several years. Thus changes in a country’s

borrowing constraint therefore seem to trigger only adjustment processes spanning several years.

The results for the specification accounting for serial correlation are given in Table (4). The

estimation results document a strong positive correlation for reversal schemes I and III where

only the dynamic behavior of current account in the aftermath of a reversal is restricted. Negative

correlation is found for definitions II and IV which imply a strict restriction on the two consecutive

periods after a reversal. Note that the correlation parameter is not significant within scenario IV .

This pattern might be due to to the different restriction on the aftermath of a reversal implied by

the different reversal schemes. Table (10) summarizes the log marginal likelihoods for all estimated

model specifications. Bayes factors provide mixed evidence in favor of serial correlation across the

different reversal schemes. While strong to very strong evidence is provided for schemes I and III,

no evidence can be found for reversal scheme II and IV . According to Falcetti and Tudela (2006)

accounting for serial correlation is important in order to allow for possible intertemporal linkages

between crises. Constraints moderating the occurrence of a reversal may be altered once a country

experienced a reversal in the past. Also persistent unobserved heterogeneity can be captured by

serial correlated errors. The above reported evidence suggests that this issues are more prominent

in reversal schemes I and III, although the estimated correlation is significant for reversal scheme

II. Changes with respect to the determinants of reversals compared to the pooled specification

occur only in OECD growth rates and government expenditures. Both become overall insignificant.

As these variables are likely to be highly correlated over time, they seem to capture in the pooled

specification part of the serial correlation in the dependent variable linked to persistent unobserved

heterogeneity.

After accounting for possible persistent unobserved heterogeneity via correlated errors, unob-

served heterogeneity among countries shall be modeled via random coefficients. Given the low

variation of the dependent variable implied by the low number of reversals specification of all pa-

rameters as random coefficients would possibly stress the data too much. In particular, random

coefficients are therefore assigned to external variables only, which show a low ratio of variance be-

tween countries to total variance. These variables are the mean current account deficit, the level of

reserves and official transfers.10 Bayesian estimates are given in Table (5). The findings with respect

to the macroeconomic and global variables are unchanged when compared to the two former specifi-
10A Maximum likelihood analysis with heteroscedastic variance modeled as σit = exp{γXit} pointed in the same

direction.
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cations. Again the importance of the external variables is underlined. The estimated variances of the

three random coefficients range from 0.021 to 0.045 implying a considerable degree of heterogeneity,

which will be discussed in detail below. Interestingly via consideration of a random coefficients in

connection to the official transfers, this variable becomes overall significant. In contrast, the vari-

able concessional debt becomes insignificant over all reversal schemes. Note that concessional debt

has the highest ratio of between country variance to total variance. These findings suggest that

the role of a country’s debt situation in explaining reversals depend on unobserved heterogeneity.

Unobserved heterogeneity alters also the influence of interest payments which is now significantly

positive for reversal scheme III. Bayes factors provide overall reversal schemes strong to very strong

evidence in favor of incorporation of unobserved heterogeneity via random coefficients compared to

the two former specifications.11 The heterogeneity connected to the mean level of current account

deficit before the reversal accounts for the ability of some countries to maintain deficits over a con-

siderable period of time. Their institutional background, e.g. within the financial sector as analyzed

by Kaminsky and Reinhart (1999), seems to provide a stable environment, such that deficits do

not raise the risk of a reversal. For the level of reserves, the random coefficient approach matches

two possible sources of heterogeneity. The heterogeneity of the influence of reserves accounts for

differences between countries with pegged and flexible exchange rates. This influence might differ as

for some countries the reserves are managed by central banks with a varying degree of independence

from politics.

Finally, a more parsimonious specification allowing for heterogeneity and serially correlated er-

rors including only the external variables is estimated. This specification illustrates that only few

variables are needed to identify the actually observed reversals, see Table (11) and discussion below.

Bayesian estimation results can be found in Table (6). All external variables show similar behavior

and significance as in the above specifications. The estimated serial correlation is again positive for

reversal scheme I and III, while negative for reversal scheme II and IV . According to the marginal

likelihood, this parsimonious specification is to be preferred against the other ones. This stresses

the importance of country specific heterogeneity and the external variables for explaining current

account reversals.

The next paragraph discusses the improved ability of the models to identify reversals, when

serially correlated errors and random coefficients are considered. The criterion to classify a period

as a reversal period is given in Equation (27). Table (11) gives the number of identified reversals
11Note that this specification of heterogeneity is also strongly preferred against inclusion of regional dummies within

the pooled specification capturing region specific heterogeneity. The corresponding marginal likelihoods for the different

reversal schemes are -393.23, -322.74, -302.10 and -247.13.
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under the four considered model specifications. While in reversal scheme I the pooled specification

gets 10 out of 100 reversals correctly classified, the serial correlation specification classified 19 out of

100 correctly. The latter also reduces the number of incorrect classified periods from 105 to 88. The

specification with heterogeneity improves further. The number of identified reversals increases to 29

while 78 periods are incorrectly classified. The ratio of correctly classified reversals increases from

89,1% for the pooled specification to 91,9% for the heterogenous specification. The parsimonious

specification incorporating serial correlation and a random coefficient identified 24 reversals correctly

and 84 periods incorrect. It provides therefore a better classification of reversals than the pooled and

serial correlation specification, but performs slightly worse than the heterogenous specification. For

reversal scheme II all different specifications can identify only a lower fraction of reversals (at most

10% compared to 27% under reversal scheme I). Especially the specification with serially correlated

errors cannot improve on the pooled specification. This confirms also the results obtained from the

marginal likelihoods for this reversal scheme, where no evidence was found for serially correlated

errors. The heterogenous specification performs best and the parsimonious specification is second

best. For reversal scheme III and IV the parsimonious specification is found to classify reversals

best and the heterogenous specification is performing second best, although the overall performance

to identify reversals is quite poor, especially for reversal scheme IV .

Furthermore, Bayesian estimation allows to access the form of country specific heterogeneity

contained within the panel data set. Figure (1) shows the distribution of the sampled country

specific coefficients for the mean CAD level, the level of reserves and official transfers for all panel

members (upper panel). Especially the influence of the mean current account on the occurrence of a

probability differs between countries. For some countries current account deficits have no impact on

the probability of a reversal. Differences in the impact of current account deficits on the probability

of a reversal may be due to the different institutional frameworks, which are not accounted for by

observable variables. In the lower panel, the distribution of the sampled mean effect is shown for

the three variables. This allows to assess which countries show atypical behavior.

Summarizing, heterogeneity and serial correlation affect the analysis of determinants of current

account in two ways. It stresses the importance of the external variables in explaining reversals and

improves the models’ ability to indicate the observed reversals.

4.2 Costs of Reversals

The relationship between economic growth and current account reversals established in the third

generation models of balance-of-payments crises is analyzed via treatment regressions in order to

measure the costs of a reversal in terms of economic growth. The applied methodology allows to
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assess the impact of a parsimonious form of heterogeneity and serial correlation on the estimated costs

of a reversal. Firstly, the results are reviewed for a pooled specification ignoring heterogeneity, see

Equations (14) and (15). Afterwards, the relationship is investigated allowing for serial correlation

in the probit equation (Equation 19). Finally, results for a specification incorporating heterogeneity

via random coefficients, Equation (16-18), and serially correlated errors are discussed. The set of

explanatory variables for the probit equation is taken from the analysis of determinants of current

account reversals.

The Bayesian estimates for the pooled model specification are given in Table (7). For all consid-

ered reversal schemes, the correlation between the two equations is significant, varying from about

0.66 in scenarios I/II to approximately 0.41 in scenarios III/IV . Such a contemporaneous corre-

lation implies that shocks affect jointly both growth and the occurrence probability of a reversal.

In the growth equation several variables which are also considered within the probit equation

function as covariates. For instance, openness is considered as an explaining factor for economic

growth, as well as investment and initial GDP per capita in 1975. Investment and openness are

found to be overall significant, with larger openness and higher investment enhancing growth. The

estimated costs within the pooled specification given by the reversal dummy range from 6.99 for

the second reversal scheme to 4.56 for reversal scheme IV , which is at the upper end of the costs

reported in the literature. Following Edwards (2004), it is of interest to study, whether a more open

economy is less severely influenced by reversal than more closed economies. As the highest density

regions across all reversal schemes do not exclude zero at any conventional level, the Bayesian results

do not support the hypothesis that higher openness reduces the costs of reversals.

Within the joint analysis the results concerning the determinants of reversals are in line with

those obtained in the probit regressions. All variables have expected signs, with minor changes in

the reached significance level for some variables.

Estimation results of the treatment model incorporating serial correlation within the probit equa-

tion are given in Table (8). Similar to the results of the probit specifications, serial correlation is

significant for all reversal schemes. The serial correlation parameter is again positive for reversal

schemes I and III and negative for reversal scheme II and IV , although it is significant only for

reversal scheme I and III. Further, the magnitude of the serial correlation is reduced significantly,

when compared to the probit estimations, as the imposed correlation structure allows the transi-

tion of past and contemporaneous growth shocks towards the reversal equation. Compared to the

pooled treatment model, inclusion of serial correlation reduces the correlation between the equations

and estimated costs slightly, but not significantly. Differences in all other estimated parameters are

negligible. Comparison of the marginal likelihood reveals strong evidence for inclusion of serial cor-
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relation within reversal scheme I, while no or only weak evidence is found in reversal schemes II to

IV .

The simultaneous consideration of heterogeneity and serial correlation is based on a slightly more

parsimonious specification of the probit equation focusing on the external variables.12 Heterogeneity

in the probit equation is again connected to the current account deficit, the level of reserves and the

concessional debt. Within the growth equation random coefficients are assigned to the constant and

the lagged growth rate. This allows for country specific dynamics of growth, which is likely present

due to institutional differences as argued by Lee et al. (1998). Estimation results are given in Table

(9).

The findings with respect to costs of reversals and the correlation between the two equations

differ substantially compared to the other treatment specifications. Estimated costs of a reversal

become insignificant and are substantially reduced for all reversal schemes and also no significant

correlation between the two model equations can be found. Allowing for a country specific growth

process alters therefore the results concerning the impact of current account reversals on economic

growth. Furthermore, the parameter capturing the influence of investment is no longer significantly

estimated. These variables therefore seem to have captured some heterogeneity, which is now present

within the random coefficients. The marginal likelihood indicates that including heterogeneity via

random coefficients is the preferred model structure, see Table (10). This underlines the importance

to consider heterogeneity in order to measure the costs of a reversal correctly. In order to check

the findings against robustness against the underlying prior assumptions concerning the variance of

the random coefficients, the results were checked for two alternative prior scenarios, see Table (1),

see lines • and ••. The estimated costs and correlation parameters were similar across the different

prior specifications and the marginal likelihood given in Table (10) indicate strong evidence in case

of all priors for inclusion of heterogeneity via random coefficients. The determinants of current

account reversals behave similar compared to the previous specifications and no evidence is found

for a systematic link between costs and trade openness.

Concerning the costs of a reversal in terms of economic growth the results suggest that neglecting

country specific growth dynamics leads to higher estimated costs as when heterogeneity is incorpo-

rated. Moreover incorporation of random coefficients is the preferred model. Thus these results are

in line with the results of Milesi-Ferretti and Razin (1998) who also report no systematic slowdown

of growth in the aftermath of a reversal. However, they are at odds with those of Edwards (2004)

obtained under classical estimation of the treatment model. Although the estimated costs under
12Note that results have been checked also for the full specification revealing similar results. The log marginal

likelihoods are given in Table (10), line full.
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for the treatment model incorporating serial correlation and heterogeneity are comparable (2%-4%)

the incorporation of parameter uncertainty renders estimated costs insignificantly for all reversal

schemes.

5 Conclusion

Bayesian analysis allows a flexible handling of unobserved heterogeneity and serial correlation. The

necessity to model heterogeneity via random coefficients arises from the data set, since not all coun-

tries experience a reversal and thus hence leaving a fixed effects approach unidentified. The Bayesian

framework offers also a possibility to compare the different model specifications without relying on

asymptotic properties and provides small sample inference accounting for parameter uncertainty.

The findings suggest that incorporating country specific heterogeneity and serial correlation is es-

sential to meet the macroeconomic character of the panel data set and to assess the determinants

and costs of reversal correctly. Results for the probit regressions suggests that inclusion of serial

correlation is necessary to account for the correlation pattern induced via the different reversal def-

initions. Consideration of unobserved heterogeneity, which also implies a form of serial correlation,

leads to a preferred specification highlighting the importance of the external variables in explaining

the occurrence of a reversal. The form of country specific heterogeneity given as a byproduct of the

Gibbs output reveals that for some countries the probability of a reversal is not depending on the cur-

rent account deficit although the estimated mean effect is highly significant. A possible explanation

may arise from the different institutional backgrounds of the countries, which are hardly accessible

via observable variables. Furthermore, via the incorporation of heterogeneity the model’s ability to

indicate the observed variables is improved. Heterogeneity and serial correlation therefore provides

a parsimonious way to incorporate country specific heterogeneity due to unobserved variables.

The treatment analysis reveals that costs in terms of economic growth are overestimated when

heterogeneity modeled via random coefficients is neglected. The sample selection found in the pooled

specifications is not present when country specific dynamics is allowed. Thus, within the preferred

model specification, no significant negative effect of current account reversal on economic growth

is detected. Also more open countries seem not to suffer less from a reversal than more closed

economies. As the evidence provided by the analysis is in favor of accounting for heterogeneity,

further attempts should aim on linking heterogeneity to observed variables.
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Appendix

The functional forms of the full conditional distributions employed within the Gibbs Samplers are given for
the Probit and Treatment model with serially correlated errors and partial random coefficients. Furthermore,
the hyperparameters of the prior distributions are given.

A – Probit model with serial correlation and partial heterogeneity via random

coefficients

The Gibbs sampler for this model specification consists out of the set of full conditional distributions for
{βi}N

i=1, b, Wb, ρ, {{eit}T (i)
t=S(i)}N

i=1 and β. In the following the parameters of each full conditional distribution
are explicitly given. Define

Σi =




1
1−ρ2

ρ
1−ρ2 · · · ρT (i)−D(i)

1−ρ2

ρ
1−ρ2

1
1−ρ2

...
...

. . .
ρT (i)−D(i)

1−ρ2 · · · 1
1−ρ2




as the covariance matrix of the error vector ei·. The full conditional distributions are given as follows

(i) For each individual i define

ξi· = δ∗i· −Xi·β,

hence vector of random coefficients is drawn from a multivariate normal distribution N (µβi , Σβi), where

µβi =
(
Xran′

i· Σ−1
i Xran

i· + W−1
b

)−1 (
Xran′

i· Σ−1
i ξi· + W−1

b b
)

Σβi =
(
Xran′

i· Σ−1
i Xran

i· + W−1
b

)−1

.

(ii) The mean parameter b is sampled conditional on the country specific random coefficients {βi}N
i=1 from

a multivariate normal distribution N (µb, Σb), when a normal prior (µb0, Ωb0) is assumed. Hence

µb =
(
NW−1

b + Ω−1
b0

)−1

(
NW−1

b

(
1
N

N∑

i=1

βi

)
+ Ω−1

b0 µb0

)
, Σb =

(
NW−1

b + Ω−1
b0

)−1
.

(iii) The covariance matrix of the random coefficients can either be diagonal or allowing for correlation
between the parameters. In case of a diagonal matrix with nran denoting the number of random
coefficients, the diagonal elements W jj

b , j = 1, . . . , nran are sampled, when a conjugate inverse gamma
prior IG(αW jj

b 0, βW jj
b 0) is used, from independent inverse gamma distributions IG(αW jj

b
, βW jj

b
), where

αW jj
b

=
N

2
+ αW jj

b 0, βW jj
b

=
1
2

N∑

i=1

(βjj
i − bjj)2 + βW jj

b 0.

In case of a full specified matrix, Wb is sampled from an inverted Wishart distribution IW(qWb
, SWb

)
with an inverted Wishart IW(qWb0, SWb0) as a prior distribution. Hence

qWb
= qWb0 +

N∑

i=1

(T (i)− S(i) + 1) ,

SWb
= qWb0SWb0 +

N∑

i=1

(T (i)− S(i) + 1)

(
N∑

i=1

(βi − b)(βi − b)′
)

.
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(iv) The serial correlation parameter ρ is obtained via regressing the residuals eit on their lagged counter-
parts. Define

ζ1
i = (eiS(i), . . . , eiT (i)−1)′, ζ2

i = (eiS(i)+1, . . . , eiT (i))′.

Hence, given a uniform prior, ρ is sampled from a truncated normal distribution NT (µρ, σ
2
ρ), where

µρ = (ζ1′
i ζ1

i )−1(ζ1′
i ζ2

i ), σ2
ρ = (ζ1′

i ζ1
i )−1, T = (−1, 1).

(v) The Bayesian estimation approach allows to linearize the model via inclusion of the latent dependent
variable δ∗it within the augmented parameter vector. The latent dependent δ∗i· is obtained via calculation
of

δ∗it = Xi·β + Xran
i· βi + eit.

The latent errors are hence sampled from a multivariate truncated normal distribution NT (µei· ,Σei·),
where

µei· = 0

Σei· = Σi,

T = (tS(i), . . . ,tT (i))′,

tt =

{
(−(Xi·β + Xran

i· βi),∞), if δit = 1
(−∞,−(Xi·β + Xran

i· βi)), if δit = 0
, t = S(i), . . . , T (i).

As draws from a multivariate truncated normal distribution cannot be obtained from a closed form
density, the algorithm of Geweke (1991) is employed. Each element of ei· is drawn conditional on all
other elements from a univariate truncated normal distribution. Denote Ik×k as identity matrix and
Ok×k as a matrix containing only zeros. Hence, define for t = 1, . . . , T (i)− S(i) + 1

Mi/t =




It−1×t−1 Ot−1×1 Ot−1×1 Ot−1×T (i)−S(i)−t

O1×t−1 0 1 O1×T (i)−S(i)−t

OT (i)−S(i)−t×t−1 OT (i)−S(i)−t×1 OT (i)−S(i)−t×1 IT (i)−S(i)−t×T (i)−S(i)−t




and

M i/t =
(

O1×t−1 1 0 O1×T (i)−S(i)−t

)
,

such that Mi/t filters the tth row out of matrix and M i/t filters all rows except the tth. Hence the
moments of the univariate conditional truncated distributions for eit are given as

µeit
=

(
M i/tµei·

)
+

(
M i/tΣei·M

′
i/t

)(
Mi/tΣei·M

′
i/t

)−1

(Mi/t(ei· − µei·),

σ2
eit

=
(
M i/tΣei·M

′
i/t

)
−

(
M i/tΣei·M

′
i/t

)(
Mi/tΣei·M

′
i/t

)−1 (
M i/tΣei·M

′
i/t

)′
.

The truncation sphere remains unchanged.

(vi) Finally, define

κi· = δ∗i· −Xran
i· βi.
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The vector of fixed parameters corresponding to fixed variables β is hence sampled from a multivariate
normal distribution (µβ ,Σβ), where

µβ =

(
N∑

i=1

(
X
′

i·Σ
−1
i Xi·

)
+ Ω−1

β,0

)−1 (
N∑

i=1

(
X
′

i·Σ
−1
i κi·

)
+ Ω−1

β,0
µβ,0

)
,

Σβ =

(
N∑

i=1

(
X
′

i·Σ
−1
i Xi·

)
+ Ω−1

β,0

)−1

and µβ,0, Ωβ,0 denote the corresponding prior moments.

B – Treatment model with serial correlation and partial heterogeneity via random

coefficients

The Gibbs sampler for this model specification consists of the set of full conditional distributions for {θi =
(βi, αi)}N

i=1, b, Wb, a, Wa, ρ, σ2, ψ, {{eit}T (i)
t=S(i)}N

i=1 and θ = (β, α). Define the covariance of the composed
error vector (εi·, ei·)′ as

Ωi =




σ2 0 . . . 0 ψ ρψ · · · ρT (i)−D(i)+1ψ

0 σ2 . . . 0 0 ψ
...

...
. . . 0

... 0
. . . ρψ

0 · · · 0 σ2 0 · · · 0 ψ

ψ 0 · · · 0 1
1−ρ2

ρ
1−ρ2 · · · ρT (i)−D(i)

1−ρ2

ρψ ψ 0
... ρ

1−ρ2
1

1−ρ2

...
...

. . . 0
...

. . .

ρT (i)−D(i)+1ψ · · · ρψ ψ ρT (i)−D(i)

1−ρ2 · · · 1
1−ρ2




.

The full conditional distributions are given as follows.

(i) For each individual i a vector of random coefficients is drawn from the multivariate normal distribution
N (µθi , Σθi). Define

Hran
i =

(
Zran

i 0
0 Xran

i

)
and ξi· =

(
gri· − Zi·α

δ∗i· −Xi·β

)

and

Ωθi =

(
Wa 0
0 Wb

)
µθi =

(
a

b

)
.

Hence

µθi =
(
Hran′

i· Ω−1
i Hran

i· + Ω−1
θi

)−1 (
Hran′

i· Ω−1
i ξi· + Ω−1

θi
µθi

)

Σθi =
(
Hran′

i· Ω−1
i Hran

i· + Ω−1
θi

)−1

.
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(ii.a+b) (a) When a conjugate normal prior with moments (µa0,Ωa0) is assumed, the mean parameter a is
sampled conditional on the country specific random coefficients {αi}N

i=1 from a multivariate normal
distribution N (µa,Σa), where

µa =
(
NW−1

a + Ω−1
a0

)−1

(
NW−1

a

(
1
N

N∑

i=1

αi

)
+ Ω−1

a0 µa0

)
,

Σa =
(
NW−1

a + Ω−1
a0

)−1
.

(b) When a conjugate normal prior with moments (µb0, Ωb0) is assumed, the mean parameter b is
sampled conditional on the country specific random coefficients {βi}N

i=1 from a multivariate normal
distribution N (µb, Σb), where

µb =
(
NW−1

b + Ω−1
b0

)−1

(
NW−1

b

(
1
N

N∑

i=1

βi

)
+ Ω−1

b0 µb0

)
,

Σb =
(
NW−1

b + Ω−1
b0

)−1
.

(iii.a+b) (a) The covariance matrix of the random coefficients can either be diagonal or allowing for correlation
between the parameters. In case of a diagonal matrix and when conjugate inverse gamma priors
IG(αW jj

a 0, βW jj
a 0) are used, the diagonal elements W jj

a , j = 1, . . . , rana are sampled independently
from inverse gamma distributions IG(αW jj

a
, βW jj

a
), where

αW jj
a

=
N

2
+ αW jj

a 0, βW jj
a

=
1
2

N∑

i=1

(αjj
i − ajj)2 + βW jj

a 0.

In case of a full specified matrix, Wa is sampled from an inverted Wishart distribution IW(qWa , SWa)
with an inverted Wishart IW(qWa0, SWa0) as a prior distribution. Hence

qWa = qWa0 +
N∑

i=1

(T (i)− S(i) + 1) ,

SWa = qWa0SWa0 +
N∑

i=1

(T (i)− S(i) + 1)

(
N∑

i=1

(αi − a)(αi − a)′
)

.

(b) The covariance matrix of the random coefficients can either be diagonal or allowing for correlation
between the parameters. In case of a diagonal matrix and when conjugate inverse gamma priors
IG(αW jj

b 0, βW jj
b 0) are used, the diagonal elements W jj

b , j = 1, . . . , ranb are sampled independently
from inverse gamma distributions IG(αW jj

b
, βW jj

b
), where

αW jj
b

=
N

2
+ αW jj

b 0, βW jj
b

=
1
2

N∑

i=1

(βjj
i − bjj)2 + βW jj

b 0.

In case of a full specified matrix, Wb is sampled from an inverted Wishart distribution IW(qWb
, SWb

)
with an inverted Wishart IW(qWb0, SWb0) as a prior distribution. Hence

qWb
= qWb0 +

N∑

i=1

(T (i)− S(i) + 1) ,

SWb
= qWb0SWb0 +

N∑

i=1

(T (i)− S(i) + 1)

(
N∑

i=1

(βi − b)(βi − b)′
)

.
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(iv) The serial correlation parameter is obtained according to Step (iv) for the probit specification above.
Hence, serial correlation parameter ρ is obtained via regressing the residuals of the probit equation on
their lagged counterparts. Define

ζ1
i = (ηiS(i), . . . , ηiT (i)−1)′ and

ζ2
i = (ηiS(i)+1, . . . , ηiT (i))′.

Hence, given a uniform prior, ρ is sampled from a truncated normal distribution NT (µρ, σ
2
ρ), where

µρ = (ζ1′
i ζ1

i )−1(ζ1′
i ζ2

i ), σ2
ρ = (ζ1′

i ζ1
i )−1, T = (−1, 1).

(v) The correlation between the two equations captured via parameter ψ is obtained via regressing the
residuals of one equation on their counterparts from the other. Note that

(
εit

uit

)
∼ N

((
0
0

)
,

(
σ2 ψ

ψ 1

))
.

Standardizing εit on uit elementwise by σ and regressing ε̃it = εit√
σ2−ψ2

on ũit = uit√
σ2−ψ2

leads to the

full conditional distribution of ψ given as a normal distribution NT (µψ, σ2
ψ), when a normal prior is

assumed. Hence

µψ =

(
N∑

i=1

ũ′i·ũi· +
1

σ2
ψ0

)−1 (
N∑

i=1

ũ′i·ε̃i· +
µψ0

σ2
ψ0

)
, σ2

ψ =

(
N∑

i=1

ũ′i·ũi· +
1

σ2
ψ0

)−1

.

Note that standardization by the conditional variance σ2 − ψ2 does not violate the Gibbs principle, as
in the next step only the conditional variance is sampled.

(vii) The unconditional variance of the growth equation σ is obtained via sampling the conditional variance
and adding the parting stemming form the covariance. Starting point is again the conditional distribu-
tion εit|uit. The conditional variance ζ = σ2−ψ2 is hence sampled from an inverse gamma distribution
IG(αζ , βζ), where

αζ =

(
1
2

N∑

i=1

(T (i)− S(i) + 1)

)
+ αζ0, βζ =


1

2

N∑

i=1

T (i)∑

t=S(i)

(εit − uitψ)2


 + βζ0.

(viii) The Bayesian estimation approach allows to linearize the model via inclusion of the latent dependent
variable δ∗it computed via

δ∗it = Xi·β + Xranb
i· βi + eit

As grit and δ∗it are jointly normal distributed, the latent error ei· is sampled from a multivariate
truncated normal distribution conditional on the errors of the growth equation εi·. Define Ωε,e as upper
right block of Ωi capturing the covariance of εi· and ηi·, Σε as upper left block of Ωi capturing the
covariance of εi· and Σi as lower right block of Ωi. Hence

ei· ∼ NT (µei· , Σei·),
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where

µei· = Ω′ε,e∗Σ
−1
ε (εi·)

Σei· = Σi − Ω′ε,eΣ
−1
ε Ωε,e,

T = (tD(i), . . . ,tT (i))′,

tt =

{
(−(Xi·β + Xranb

i· βi),∞), if δit = 1
(−∞,−(Xi·β + Xranb

i· βi)), if δit = 0
, t = S(i), . . . , T (i).

As draws from a multivariate truncated normal distribution cannot be obtained from a closed form
density, the algorithm of Geweke (1991) is employed. Each element of ei· is drawn conditional on all
other elements from a univariate truncated normal distribution. Denote Ik×k as identity matrix and
Ok×k as a matrix containing only zeros. Hence, define for t = 1, . . . , T (i)− S(i) + 1

Mi/t =




It−1×t−1 Ot−1×1 Ot−1×1 Ot−1×T (i)−S(i)−t

O1×t−1 0 1 O1×T (i)−S(i)−t

OT (i)−S(i)−t×t−1 OT (i)−S(i)−t×1 OT (i)−S(i)−t×1 IT (i)−S(i)−t×T (i)−S(i)−t




and

M i/t =
(

O1×t−1 1 0 O1×T (i)−S(i)−t

)
,

such that Mi/t filters the tth row out of matrix and M i/t filters all rows except the tth. Hence the
moments of the univariate conditional truncated distributions for eit are given as

µeit
=

(
M i/tµei·

)
+

(
M i/tΣei·M

′
i/t

)(
Mi/tΣei·M

′
i/t

)−1

(Mi/t(ei· − µei·),

σ2
eit

=
(
M i/tΣei·M

′
i/t

)
−

(
M i/tΣei·M

′
i/t

)(
Mi/tΣei·M

′
i/t

)−1 (
M i/tΣei·M

′
i/t

)′
.

The truncation sphere remains unchanged.

(ix) Finally, the vector of fixed parameters is drawn from a multivariate normal distribution N (µθ, Σθ).
Define

Hi· =

(
Zi· 0
0 Xi·

)
and ξi· =

(
gri· − Zrana

i· αi

δ∗i· −Xranb
i· βi

)
.

Hence with µθ,0 and Ωθ,0 denoting the prior moments

µθ =

((
N∑

i=1

Hi·Ω−1
i Hi·

)
+ Ω−1

θ,0

)−1 ((
N∑

i=1

H
′
i·Ω

−1
i ξi·

)
+ Ω−1

θ,0
µθ,0

)
,

Σθ =

((
N∑

i=1

H
′
i·Ω

−1
i Hi·

)
+ Ω−1

θ,0

)−1

and µθ,0, Ωθ,0 denote the corresponding prior moments.

C – Specification of Prior Moments

The following Table provides the values of the employed prior moments. Ik×k denotes an identity matrix
and ran, fix, rana and ranb

denote the corresponding number of random coefficients. Robustness of the results
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concerning the treatment model including serial correlation and random effects are checked using alternative
variance priors given in lines • and ••.

Table 1: Prior Distributions

Probit Model
(µb0, Ωb0) N 0 Iran×ran · 1000

{(αW jj
b 0, βW jj

b 0)}ranj=1 IG 5 5

(qWb0, SWb0) – – –
(µβ0, Ωβ0) N 0 Ifix×fix · 1000

Treatment Model
(µa0, Ωa0) N 0 Irana×rana

· 1000
(µb0, Ωb0) N 0 Iranb×ranb

· 1000
{(αW jj

a 0, βW jj
a 0)}rana

j=1 IG 5 5
• IG 1 1
•• IG 10 10

(qWa0, SWa0) – – –
{(αW jj

b 0, βW jj
b 0)}ranb

j=1 IG 5 5

(qWb0, SWb0) – – –
(µψ0, σ

2
ψ0) N 0 1000

(αζ0, βζ0) IG 1 1
(µβ0, Ωβ0) N 0 Ifix×fix · 1000

D – Functional Forms of Densities

In the following the functional forms of the densities employed within the calculation of the posterior are
given.

1. Multivariate Normal:
Let x ∈ Rp, µ ∈ Rp and Σ be a positive definite matrix of dimension p× p. Then

fN (x; µ, Σ) = (2π)−
p
2 |Σ|− 1

2 exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)
.

2. Gamma:
Let x be a scalar and α, β > 0. Then

fG(x;α, β) =
βα

Γ(α)
xα−1 exp (−xβ) .

3. Univariate Truncated Normal:
Let x ∈ [l, u] and Φ denote the cumulative density of a standard normal distribution. Then

fNT (x;µ, σ) =
(2π)−

1
2 σ−1 exp

(− 1
2σ2 (x− µ)2

)

Φ(u−µ
σ )− Φ( l−µ

σ )
.
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Table 2: Number of reversals under different identification schemes

positive reversals
I II III IV

I 127 86 82 56
II – 86 53 56
III – – 82 53
IV – – – 56

all 53

# of observations 1312

Notes: Reversals refer to a reduction of deficits; (all) gives the number of reversals identified under all
schemes; (I) – refers to a 3% reduction of average current account over a period of three years when the
maximum deficit after the reversal is below the minimum deficit before the reversal (II) – refers to a 3%
reduction of average current account over a period of three years with no reversal allowed in the consecutive
two years (III) – refers to a 5% reduction of average current account over a period of three years when the
maximum deficit after the reversal is below the minimum deficit before the reversal (IV) – refers to a 5%
reduction of average current account over a period of three years with no reversal allowed in the consecutive
two years .
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Table 3: Pooled probit model - Bayesian estimates

I II III IV

constant −3.2336∗
(0.8493)

−2.4587∗
(0.9449)

−2.4867∗
(0.9684)

−1.8293
(1.0862)

macroeconomic
mean growth rate 0.0140

(0.0206)
−0.0045
(0.0231)

0.0282
(0.0239)

0.0077
(0.0267)

mean investment −0.0010
(0.0106)

0.0078
(0.0119)

0.0129
(0.0122)

0.0128
(0.0142)

initial log GDP 0.1277
(0.0893)

0.0646
(0.0983)

0.0734
(0.1043)

0.0337
(0.1176)

government 0.0233∗
(0.0118)

0.0100
(0.0135)

0.0301∗
(0.0133)

0.0173
(0.0153)

external
mean CAD −0.0609∗

(0.0120)
−0.0457∗

(0.0130)
−0.0525∗

(0.0125)
−0.0416∗

(0.0140)

openness −0.0018
(0.0022)

−0.0012
(0.0024)

0.0002
(0.0024)

0.0003
(0.0027)

reserves −0.0784∗
(0.0305)

−0.0553
(0.0337)

−0.1102∗
(0.0392)

−0.1215∗
(0.0464)

official transfers −0.0084
(0.0104)

−0.0039
(0.0113)

0.0071
(0.0115)

0.0129
(0.0127)

concessional debt −0.0050
(0.0042)

−0.0079
(0.0047)

−0.0125∗
(0.0053)

−0.0177∗
(0.0063)

interest payments 0.0239
(0.0306)

−0.0020
(0.0350)

0.0529
(0.0332)

0.0188
(0.0372)

terms of trade −0.0032∗
(0.0017)

−0.0033
(0.0019)

−0.0075∗
(0.0024)

−0.0063
(0.0026)

global
US real interest rate 0.1303∗

(0.0532)
0.0673
(0.0600)

0.0523
(0.0593)

0.0246
(0.0671)

OECD growth rate 0.1413∗
(0.0714)

0.1240
(0.0814)

0.0935
(0.0806)

0.0832
(0.0925)

log(marg-lik) -381.3095 -308.7889 -295.4025 -244.0496

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 4: Probit model with serial correlation - Bayesian estimates

I II III IV

constant −3.7337∗
(1.7891)

−2.4967∗
(0.9110)

−1.6105
(2.5208)

−1.8703
(1.0337)

macroeconomic
mean growth rate 0.0058

(0.0319)
−0.0066
(0.0224)

0.0332
(0.0389)

0.0090
(0.0269)

mean investment 0.0102
(0.0223)

0.0079
(0.0113)

0.0172
(0.0314)

0.0130
(0.0140)

initial log GDP 0.2105
(0.1970)

0.0577
(0.0934)

0.0097
(0.3007)

0.0282
(0.1095)

government 0.0100
(0.0208)

0.0103
(0.0121)

0.0190
(0.0250)

0.0196
(0.0144)

external
mean CAD −0.0898∗

(0.0235)
−0.0460∗

(0.0120)
−0.0973∗

(0.0314)
−0.0422∗

(0.0135)

openness −0.0048
(0.0047)

−0.0011
(0.0023)

0.0002
(0.0060)

0.0003
(0.0026)

reserves −0.1646∗
(0.0717)

−0.0565
(0.0313)

−0.2894∗
(0.1414)

−0.1241∗
(0.0456)

official transfers −0.0056
(0.0152)

−0.0057
(0.0111)

0.0162
(0.0189)

0.0125
(0.0124)

concessional debt −0.0073
(0.0085)

−0.0084
(0.0044)

−0.0282
(0.0165)

−0.0190∗
(0.0065)

interest payments 0.0452
(0.0438)

−0.0040
(0.0332)

0.0857
(0.0536)

0.0105
(0.0377)

terms of trade −0.0076∗
(0.0038)

−0.0035
(0.0018)

−0.0153∗
(0.0066)

−0.0064
(0.0023)

global
US real interest rate 0.1941

(0.0813)
0.0763
(0.0606)

0.1123
(0.0984)

0.0326
(0.0697)

OECD growth rate 0.1343
(0.0977)

0.1249
(0.0813)

0.0972
(0.1161)

0.0825
(0.0943)

ρ 0.6390∗
(0.0742)

−0.2682∗
(0.1203)

0.7263∗
(0.0883)

−0.2486
(0.1647)

log(marg-lik) -357.0324 -307.3159 -262.4228 -244.2613

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.

35



Table 5: Probit model with partial heterogeneity - Bayesian estimates

I II III IV

constant −3.4913∗
(1.7002)

−3.3853
(1.7983)

−3.4977
(2.0291)

−2.8575
(2.0265)

macroeconomic
mean growth rate 0.0399

(0.0332)
0.0240
(0.0356)

0.0734
(0.0445)

0.0598
(0.0477)

mean investment 0.0007
(0.0217)

0.0102
(0.0223)

0.0180
(0.0260)

0.0123
(0.0267)

initial log GDP 0.2092
(0.1943)

0.1723
(0.2044)

0.2161
(0.2360)

0.1378
(0.2323)

government 0.0279
(0.0211)

0.0285
(0.0232)

0.0346
(0.0272)

0.0428
(0.0294)

external
mean CAD −0.2274∗

(0.0392)
−0.1583∗

(0.0371)
−0.1946∗

(0.0455)
−0.1389∗

(0.0443)

σ2
mean CAD 0.0262

(0.0074)
0.0212
(0.0063)

0.0273
(0.0080)

0.0228
(0.0068)

openness −0.0062
(0.0041)

−0.0040
(0.0041)

−0.0039
(0.0042)

−0.0037
(0.0043)

reserves −0.2453∗
(0.0731)

−0.2134∗
(0.0798)

−0.3493∗
(0.0966)

−0.3476∗
(0.0955)

σ2
reserves 0.0384

(0.0144)
0.0346
(0.0143)

0.0454
(0.0226)

0.0377
(0.0177)

official transfers −0.1244∗
(0.0467)

−0.1536∗
(0.0521)

−0.1295∗
(0.0554)

−0.1526∗
(0.0623)

σ2
official transfers 0.0288

(0.0095)
0.0279
(0.0089)

0.0308
(0.0121)

0.0312
(0.0119)

concessional debt −0.0018
(0.0078)

−0.0052
(0.0084)

−0.0005
(0.0114)

−0.0129
(0.0127)

interest payments 0.0676
(0.0483)

0.0092
(0.0582)

0.1767∗
(0.0623)

0.0824
(0.0668)

terms of trade −0.0126∗
(0.0038)

−0.0095∗
(0.0038)

−0.0159∗
(0.0049)

−0.0102∗
(0.0046)

global
US real interest rate 0.1477∗

(0.0694)
0.1108
(0.0793)

0.0490
(0.0824)

0.0560
(0.0902)

OECD growth rate 0.1676
(0.0930)

0.1506
(0.1031)

0.0504
(0.1103)

0.0369
(0.1228)

log(marg-lik) -352.6263 -300.7738 -258.3797 -229.1459

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 6: Probit model with partial heterogeneity and serial correlation- Bayesian estimates

I II III IV

constant −0.3336
(0.8251)

−0.7587
(0.5185)

−1.5751
(1.0557)

−0.9577
(0.6122)

external
mean CAD −0.2313∗

(0.0459)
−0.1458∗

(0.0318)
−0.1868∗

(0.0527)
−0.1237∗

(0.0349)

σ2
mean CAD 0.0418

(0.0184)
0.0180
(0.0047)

0.0501
(0.0226)

0.0193
(0.0053)

openness −0.0021
(0.0054)

−0.0007
(0.0031)

0.0056
(0.0058)

0.0015
(0.0033)

reserves −0.3216∗
(0.0975)

−0.1712∗
(0.0618)

−0.3417∗
(0.1061)

−0.2452∗
(0.0755)

σ2
reserves 0.1056

(0.0596)
0.0243
(0.0074)

0.1160
(0.0581)

0.0249
(0.0079)

official transfers −0.0865∗
(0.0395)

−0.0982∗
(0.0353)

−0.0670∗
(0.0429)

−0.0814∗
(0.0378)

σ2
official transfers 0.0262

(0.0086)
0.0190
(0.0050)

0.0268
(0.0087)

0.0198
(0.0053)

concessional debt −0.0113
(0.0100)

−0.0091
(0.0060)

−0.0097
(0.0124)

−0.0144
(0.0078)

interest payments 0.0879
(0.0560)

0.0180
(0.0486)

0.1494∗
(0.0678)

0.0561
(0.0592)

terms of trade −0.0122∗
(0.0052)

−0.0077∗
(0.0033)

−0.0122∗
(0.0059)

−0.0085∗
(0.0039)

ρ 0.6100
(0.0904)

−0.3355∗
(0.1675)

0.6123∗
(0.0988)

−0.3665
(0.2069)

log(marg-lik) -291.6727 -268.2328 -203.1616 -198.9042

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 7: Pooled treatment model - Bayesian estimates

I II III IV

σ 4.9960
(0.1393)

4.9527
(0.1301)

4.7916
(0.1184)

4.7849
(0.1162)

ψ/σ 0.6590∗
(0.0724)

0.6851∗
(0.0893)

0.4079∗
(0.1123)

0.4162∗
(0.1404)

constant 1.7255
(1.0732)

1.6683
(1.0695)

1.7096
(1.0528)

1.7853
(1.0459)

lagged growth rate 0.1611∗
(0.0324)

0.1603∗
(0.032)

0.1656∗
(0.0315)

0.1653∗
(0.0319)

reversal −6.9888∗
(1.1753)

−7.0228∗
(1.4288)

−5.7425∗
(1.6464)

−4.6573∗
(1.9739)

reversal × openness 0.0101
(0.0121)

−0.0038
(0.0145)

0.0181
(0.0145)

−0.0031
(0.0171)

openness 0.0089
(0.0050)

0.0086
(0.0048)

0.0095∗
(0.0047)

0.0095∗
(0.0047)

mean investment 0.0694∗
(0.0236)

0.0713∗
(0.0232)

0.0676∗
(0.0227)

0.0632∗
(0.0225)

initial log GDP −0.0415
(0.1502)

−0.0645
(0.1475)

−0.0951
(0.1465)

−0.1049
(0.1451)

constant −2.6534∗
(0.7592)

−2.2508∗
(0.8648)

−2.1011∗
(0.8903)

−1.5821
(1.0588)

macroeconomic
mean growth rate 0.0321

(0.0187)
0.0243
(0.0211)

0.0427
(0.0238)

0.0273
(0.0273)

mean investment 0.0023
(0.0098)

0.0067
(0.0115)

0.0139
(0.0117)

0.0121
(0.0136)

log initial GDP 0.0822
(0.0779)

0.0572
(0.0849)

0.0302
(0.0938)

0.0025
(0.1082)

government 0.0128
(0.0112)

0.0005
(0.0127)

0.0292∗
(0.0130)

0.0159
(0.0147)

external
mean CAD −0.0677∗

(0.0113)
−0.0591∗

(0.0127)
−0.0604∗

(0.0131)
−0.0529∗

(0.0151)

openness −0.0016
(0.0021)

−0.0018
(0.0023)

0.0002
(0.0024)

−0.0004
(0.0027)

reserves −0.0884∗
(0.0263)

−0.0740∗
(0.0289)

−0.1246∗
(0.0383)

−0.1365∗
(0.0479)

official transfers −0.0356∗
(0.0115)

−0.0357∗
(0.0131)

−0.0116
(0.0135)

−0.0089
(0.0156)

concessional debt −0.0054
(0.0037)

−0.0073∗
(0.0041)

−0.0143∗
(0.0054)

−0.0187∗
(0.0064)

interest payments 0.0104
(0.0273)

−0.0092
(0.0297)

0.0454
(0.0333)

0.0126
(0.0353)

terms of trade −0.0022
(0.0015)

−0.0023
(0.0018)

−0.0067∗
(0.0023)

−0.0055∗
(0.0025)

global
US real interest rate 0.1103∗

(0.0449)
0.0712
(0.0510)

0.0501
(0.056)

0.0324
(0.0655)

OECD growth rate 0.1276∗
(0.0619)

0.1223
(0.0724)

0.0846
(0.0803)

0.0858
(0.0873)

log(marg.-lik.) -3280.0 -3207.6 -3199.2 -3146.8

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 8: Treatment model with serial correlation- Bayesian estimates

I II III IV

σ 4.8833
(0.1310)

4.8753
(0.1251)

4.7669
(0.1133)

4.7718
(0.1145)

ψ/σ 0.5275∗
(0.0927)

0.5673∗
(0.0966)

0.3221∗
(0.1148)

0.3610∗
(0.1506)

ρ 0.0974∗
(0.0486)

−0.0712
(0.0515)

0.0785
(0.0474)

−0.0262
(0.0488)

constant 1.7935
(1.0611)

1.7186
(1.0377)

1.7993
(1.0389)

1.7955
(1.0382)

lagged growth rate 0.1635∗
(0.0321)

0.1614∗
(0.0327)

0.1657∗
(0.0319)

0.1659∗
(0.0315)

reversal −5.7542∗
(1.3021)

−5.9554∗
(1.5105)

−5.0010∗
(1.6737)

−4.2330∗
(2.0123)

reversal × openness 0.0100
(0.0125)

−0.0037
(0.0148)

0.0169
(0.0148)

−0.0035
(0.0170)

openness 0.0085
(0.0048)

0.0087
(0.0048)

0.0091∗
(0.0046)

0.0096∗
(0.0048)

mean investment 0.0661∗
(0.0230)

0.0684∗
(0.0232)

0.0658∗
(0.0224)

0.0627∗
(0.0225)

initial log GDP −0.0579
(0.1480)

−0.0755
(0.1451)

−0.1054
(0.1445)

−0.1083
(0.1444)

constant −2.8188∗
(0.8316)

−2.1998∗
(0.8488)

−2.1046∗
(0.9817)

−1.4697
(1.0248)

macroeconomic
mean growth rate 0.0263

(0.0210)
0.0175
(0.0221)

0.0412
(0.0249)

0.0269
(0.0274)

mean investment 0.0038
(0.0115)

0.0070
(0.0110)

0.0139
(0.0128)

0.0115
(0.0137)

log initial GDP 0.1035
(0.0861)

0.0362
(0.0880)

0.0445
(0.1046)

−0.0038
(0.1061)

government 0.0167
(0.0117)

0.0034
(0.0129)

0.0282
(0.0132)

0.0183
(0.0149)

external
mean CAD −0.0714∗

(0.0124)
−0.0588
(0.0127)

−0.0628∗
(0.0136)

−0.0525∗
(0.0150)

openness −0.0025
(0.0024)

−0.0015
(0.0023)

−0.0005
(0.0026)

−0.0004
(0.0026)

reserves −0.0987∗
(0.0310)

−0.0721∗
(0.0310)

−0.1385∗
(0.0434)

−0.1375∗
(0.0446)

official transfers −0.0306
(0.0114)

−0.0353∗
(0.0136)

−0.0073
(0.0138)

−0.0080
(0.0163)

concessional debt −0.0055
(0.0040)

−0.0079
(0.0042)

−0.0144∗
(0.0055)

−0.0196∗
(0.0063)

interest payments 0.0147
(0.0293)

−0.0045
(0.0306)

0.0470
(0.0344)

0.0125
(0.0361)

terms of trade −0.0029∗
(0.0017)

−0.0025
(0.0019)

−0.0074∗
(0.0024)

−0.0055∗
(0.0025)

global
US real interest 0.1166∗

(0.0498)
0.0750
(0.0531)

0.0527
(0.0612)

0.0222
(0.0638)

OECD growth 0.1230∗
(0.0668)

0.1217
(0.0753)

0.0817
(0.0833)

0.0772
(0.0933)

log(marg.-lik.) -3277.2 -3207.9 -3197.5 -3150.9

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 9: Treatment model with serial correlation and heterogeneity - Bayesian estimates

I II III IV

σ 4.5420
(0.1123)

4.5919
(0.1266)

4.5323
(0.1106)

4.5434
(0.1129)

ψ/σ 0.1126
(0.1538)

0.3861
(0.2466)

0.0379
(0.1249)

0.1514
(0.1972)

ρ 0.0562
(0.0460)

−0.0293
(0.0490)

0.0432
(0.0473)

−0.0136
(0.0469)

constant 2.1834
(1.1334)

2.0265
(1.1457)

2.1553
(1.1079)

2.0911
(1.1238)

σ2
constant 0.0494

(0.0263)
0.0505
(0.0271)

0.0505
(0.0266)

0.0516
(0.0311)

lagged growth rate 0.2176∗
(0.0436)

0.2135∗
(0.0444)

0.2190∗
(0.0438)

0.2177∗
(0.0438)

σ2
lagged growth 0.0401

(0.0110)
0.0409
(0.0110)

0.0400
(0.0109)

0.0399
(0.0109)

reversal −2.0890
(1.4380)

−3.8804
(2.3037)

−2.6211
(1.5769)

−2.4797
(2.1991)

reversal × openness 0.0064
(0.0132)

−0.0046
(0.0156)

0.0145
(0.0154)

−0.0015
(0.0181)

openness 0.0092
(0.0052)

0.0102
(0.0052)

0.0094
(0.0052)

0.0105∗
(0.0052)

mean investment 0.0205
(0.0241)

0.0233
(0.0243)

0.0215
(0.0245)

0.0206
(0.0241)

initial log GDP −0.0775
(0.1584)

−0.0569
(0.1625)

−0.0894
(0.1549)

−0.0850
(0.1590)

constant −0.1828
(0.5947)

−0.3730
(0.5999)

−0.4765
(0.7283)

−0.6061
(0.6680)

external
mean CAD −0.2155∗

(0.0378)
−0.1522∗

(0.0362)
−0.2067∗

(0.0429)
−0.1448∗

(0.0375)

σ2
mean CAD 0.0248

(0.0071)
0.0201
(0.0054)

0.0274
(0.0086)

0.0224
(0.0067)

openness −0.0039
(0.0033)

−0.0009
(0.0033)

0.0004
(0.0037)

0.0007
(0.0036)

reserves −0.2598∗
(0.0873)

−0.2452∗
(0.0798)

−0.3757∗
(0.1125)

−0.3564∗
(0.1013)

σ2
reserves 0.0382

(0.0162)
0.0340
(0.0135)

0.0530
(0.0268)

0.0399
(0.0175)

official transfers −0.1156∗
(0.0424)

−0.1304∗
(0.0433)

−0.1548∗
(0.0648)

−0.1469∗
(0.0505)

σ2
official transfers 0.0262

(0.0084)
0.0250
(0.0080)

0.0329
(0.0118)

0.0287
(0.0092)

concessional debt −0.0086
(0.0065)

−0.0112
(0.0071)

−0.0070
(0.0094)

−0.0159
(0.0091)

interest payments 0.0675
(0.0460)

0.0049
(0.0512)

0.1405∗
(0.0578)

0.0533
(0.0605)

terms of trade −0.0102∗
(0.0038)

−0.0080∗
(0.0034)

−0.0147∗
(0.0047)

−0.0088∗
(0.0044)

log(marg.-lik.) -3224.8 -3177.2 -3127.6 -3095.2

Notes: Bayesian estimates are given as the means of the posterior distributions. Standard errors are given in
parentheses. Bold figures indicate the 90% highest density region does not include zero. Bold figures with ∗

indicate the 95% highest density region does not include zero.
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Table 10: Log Marginal Likelihoods

probit I II III IV

pooled -381.3095 -308.7889 -295.4025 -244.0496
serial -357.0324 -307.3159 -262.4228 -244.2613
heterogeneity -352.6263 -300.7738 -258.3797 -229.1459
serial & heterogeneity -291.6727 -268.2328 -203.1616 -198.9042

treatment I II III IV

pooled -3280.0 -3207.6 -3199.2 -3146.8
serial -3277.2 -3207.9 -3197.5 -3150.9
serial & heterogeneity -3224.8 -3177.2 -3127.6 -3095.2
• -3254.9 -3205.3 -3152.3 -3130.6
•• -3225.2 -3178.6 -3101.4 -3108.4
full -3253.2 -3204.8 -3164.1 -3121.9
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Table 11: Classification Analysis for Reversals with Bayesian Probit Estimates

I II III IV

0 1
∑

0 1
∑

0 1
∑

0 1
∑

pooled
0 848 15 863 903 0 903 890 6 896 921 1 922
1 90 10 100 59 1 60 65 2 67 40 1 41∑

938 25 963 962 1 963 955 8 963 961 2 963

0 1
∑

0 1
∑

0 1
∑

0 1
∑

serial
0 856 7 863 903 0 903 891 5 896 922 0 922
1 81 19 100 59 1 60 52 15 67 41 0 41∑

937 26 963 962 1 963 943 20 963 963 0 963

0 1
∑

0 1
∑

0 1
∑

0 1
∑

hetergeneity
0 856 7 863 903 0 903 892 4 896 921 1 922
1 71 29 100 56 4 60 45 22 67 36 5 41∑

927 36 963 959 4 963 937 26 963 957 6 963

0 1
∑

0 1
∑

0 1
∑

0 1
∑

het.+serial
0 856 7 863 903 0 903 889 7 896 921 1 922
1 76 24 100 56 4 60 39 28 67 36 5 41∑

932 31 963 959 4 963 927 35 963 957 6 963

Notes: The columns refer to the identified state, whereas the rows give the observed state.
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Figure 1: Heterogeneity within the Probit Coefficients
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Notes: Heterogeneity for reversal scheme I: left - histograms of the sampled country specific coefficient for
variable mean CAD; middle - histograms of the sampled country specific coefficient for variable reserves -
histograms of the sampled country specific coefficient for variable official transfers; The upper panel shows all
countries; the lower panel shows the histogram of the average over all countries of the sampled coefficients.
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