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ABSTRACT

In this work, we consider modeling the past volatilities through an asymmetric generalised
autoregressive conditional heteroskedasticity (Garch) model with heavy tailed sampling
distributions. In particular, we consider the Student-t model with unknown degrees of
freedom and indicate how it may be used adequately from a Bayesian point of view in
the context of smooth transition models for the variance. We adopt the full Bayesian
approach for inference, prediction and hypothesis testing. We discuss problems related
to the estimation of degrees of freedom in the Student-t model and propose a solution
based on independent Jeffreys priors, which correct problems in the likelihood function.
A simulated study is presented to investigate how estimation of model parameters in
the Student-t Garch model are affected by small sample sizes, prior distributions and
mispecification regarding the sampling distribution. An application to the Dow Jones stock
market data illustrates the usefulness of the asymmetric Garch model with Student-t erros.
In this context, the Student-t model is preferable for prediction in the case of high
volatility regimes.

Keywords: Student-t distribution; Garch model; Bayesian approach; Jeffreys prior.
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1 INTRODUCTION

In this paper we consider modeling the future volatility using a generalised autoregressive
conditional heteroskedasticity (Garch) model on the past error terms and volatilities.
The Garch approach (Bollerslev, 1986) models the variance as a function of past values
and an error term assuming that the variance is independent of shocks in the mean.
The main advantage of these models is that they allow for accessing directly the effect
of mean changes in the dynamics of the conditional variance. This is an important
issue in finantial time series, as changes in the mean tend to have relevant impact
in the uncertainty of the process under study. Several authors have considered Garch
models for finantial time series. In particular, from a Bayesian perspective, Vrontos et
al. (2000) proposed full Bayesian analysis for Garch models with Gaussian errors.
An alternative approach is presented in Jacquier et al. (2004) known as stochastic volatility
modeling which allow for correlated conditional variance and mean. However, it is

difficult to directly evaluate the past effects of the mean in the conditional variance.

A stylized fact that needs to be captured by the models is that the conditional
variance can react asymmetrically to positive versus negative shocks or large versus
small shocks. That is, the conditional variance may follow different regimes according
to the size and signal of the shock. News have asymmetric impact in the economy and,
for example, a large negative return might affect the future volatility in a different way
when compared to a positive return with the same size. Engle and Ng (1993) presents
a review regarding this issue. Awartani and Corradi (2005) discuss the importance of
asymmetries in the prediction of an economic index. This may be accommodated by smooth
transition models based on asymmetric specification of the conditional variance model.
Thus, different specifications of the skedastic functions will take into account size and
sign effects in the volatility. In this work we consider smooth transition Garch models and

discuss inferential issues related to the smooth transition function and Bayesian inference.

Regarding the sampling distribution for the error term, shocks are usually modeled
as Gaussian distributed due mainly to mathematical convinience rather than being
suitable for financial data. It is well known that financial time series exhibit havier tails
than allowed by the usual Gaussian model (Bollerslev et al., 1992). In this work we
relax the assumption of Gaussian errors and consider Student-t distributios for the
error terms in the Garch model. Since Mandelbrot (1963) several authors have discussed
the issue of fat tails in return datasets. Bollerslev (1987) introduced the Garch-t model

y
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as a solution to the typical heavy tails of returns. Also in the context of robust analysis,
Harvey and Chakravarty (2008) proposed a Beta-t-EGarch in which the volatilities
depend on the score of a t distribution. Zhang et al. (2011) proposed to use Generalized
Hyperbolic distributions to model volatilities to capture fat tails and skewness.
Bauwens and Lubrano (2002) comment on how the introduction of Student-t
errors in the Garch model may improve the fit to the data. However, the likelihood
is ill behaved as discussed in Bauwens and Lubrano (1998) and Fonseca et al. (2008).
Bauwens and Lubrano (1998) propose the use of Griddy-Gibbs sampler, which would
not work in the cases where the likelihood is monotonic (Fonseca et al., 2008).
Also Ardia (2008) describes Bayesian approach to Student-t Garch models using modified
exponential prior distributions. This proposal would not work either for the situation
where the likelihood is monotonic in the parameters. In this case, the choice of prior
distributions may dominate the inference and posterior distributions will be similar to
the prior selected. In this work, the degrees of freedom are estimated using the inde-
pendent Jeffreys priors presented in Fonseca et al. (2008) which corrects the problems
in the likelihood function for the Student-t model. Our proposal is a noninformative
prior and do not depend on the specification of hyperparameters. This prior give the
correct information regarding the curvature of likelihood functions and provide better
results than the maximum likelihood estimator and informative priors. We investigate
how estimation of model parameters in the Student-t Garch model are affected by small

sample sizes, prior distributions and mispecification regarding the sampling distribution.

In section 2, we present the autoregressive moving average (Arma) model with a
Garch component. We flexibilize the Gaussian assumption and consider Student-t
error terms. We discuss the main issues related to the likelihood function and estimation
of parameters such as the degree of freedom which is not usually well estimated in the
literature. We present the prior considered to correct the problems with the Student-t
likelihood and simulated examples which illustrate the effects of model misspecification.
Section 3 presents the asymmetric Garch model and the proposed prior distribution
for the parameters of interest. The likelihood issues are discussed in the context of
asymmetric models. Section 4 presents a simulation study to evaluate the performance
of Bayesian estimators and Bayesian model selection. An application to the Dow Jones
returns is presented in section 5. Section 6 concludes the work with main results and

future developments of the proposed models.

3




Discussion
Paper

Full Bayesian Inference for Asymmetric Garch Models with Student-T Innovations

2 ARMA-GARCH-M MODELS

Consider a univariate time series y indexed in discrete time # € /V . For the mean term
we assume an autoregressive moving average (Arma) model and add a heteroskedasticity
term (M).

j2

q
yi=W+ 2 0y + 2 O+ 0Nh+ uy, (1)
j=1 j=1

where u,are error terms with variance h, which are often modeled as Gaussian distributed,

@,>-.., ¢, are autoregression coefficcients, 6,,..., ¢ are moving average coefficcients

1)
and 0 is a parameter allowing for a direct effect of the variance term in the mean.
This model is denoted as Arma (p, q) -M (1). As follows we consider Student-t error
terms and exploit the mixture model representation which could be used to capture

extreme observations in financial and economic time series as follows.

2.1 Student-t innovations with unknown degrees of freedom
Define the error term #, as a function of a white noise ¢, and a positive mixing random

variable ®, as follows.

_2 172
u=c"52he)  t=p+ 1. N, )

where & ~ N(0, 1), w ~ IG(v/2, v/2). Here N( p, 6°) denotes the Gaussian distribution
with mean g and variance ¢” and /G(a, b) denotes the Inverse Gamma distribution
with mean 4/ and variance a/6*. The parameter v € R _is responsible for the heavy tail
of the sampling distribution and is considered to be an unknown constant. The mixture
representation is obtained by considering the observation equation (1) and the error
term specification (2). Notice that as v — eo then # ~ N(0, /), while for finite v the
distribution of ut will be Student-t with v degrees of freedom. In the mixture
representation, @ is responsible for inflating the variance /75 This is an important modeling
tool in the identification of periods of larger volatility in the series. The marginal density of

u is the Student-t model given by
2

i u; —+1)2
Flusv, /o):”(%})z/f)«v—zm» v ht) . 3)
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2.2 Garch specification

The variances 4, are considered to be heterocedastic and given by the Garch model
which we denote by Garch(r, s).

r S
h[=a)+2ﬁ/h,,+ au,“ (4)
j=1 j=1

with the restriction Z Lo+ Z  B,<1,0>0,a,p >0 Without loss of generality

consider y = 0. Con51der observatlons Yo = (Jpn ), ) as known and set # = =...=

u  =u_, =0.From equation (1) we may define # , = p + 1,..., N recursively by
P q
_Zl A Zlej U™ o, (5)
j= j=

From an inferential point of view, it is convinient to rewrite Equation (1) as

y=Xp+A0+Hy+u (6)

where y = (yw,...,yN)', 0= (/)P)', u=(u

P+1,...,

u),0=00,.., Qq)', y =, p,) and

yp yp_l ces yl up cese up—qﬂ hp e hp*k‘*'l
Y Y, .Y u. .. u ~ |A h
ptl 2 2 ptl P—qt2 ] e k2
X = : : : P A= : : : > H= p- . p-
N-1 yN—Z yN—p Z/lN—l uN—q thl thk

In the next section, we allow for asymmetric shock effects in order to consider
more realistic set-ups for finantial time series analysis. However, the likelihood function
for this model is ill-behaved. This issue will be discussed and a solution will be proposed
in section 3. As follows we present the asymmetric Student-t Garch model.

2.3 Asymmetric Garch model

Consider the observation equation as specified in (1). We now modify the variance
equation (4) to accommodate asymmetric shocks in the volatility modelling. The asymmetric
Garch model for the conditional variance term is given by

ht: w+ A uil ft‘(ut—l’y) +j;]ﬁj ht*jd'—j; ajuf*j (7)

where @, A > 0 are unknown parameters. The functions defining asymmetric volatilities may

be specified to accommodate small and large (or positive and negative) effects as follows.
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L Iff(u, ,y)=(1- ¢7+1) then £ (u,_,y) =u_, ¢ 71 This function allows
for mall and large effects.

2. Uf(u ,y) = +e™)thenf (u ,y) =u_ e (14 ¢ "1)2 This functions
allows for positive and negative effects.

Consider the function f (s, y) = 1 - exp{-yu*}. If |4] is large, then f will tend
to 1 and /4 will be affected by 4 . On the contrary, if [#| is small then £ will be close to
0 and /4, will be less affected by 4 . This reflects different effects of small and large past
error terms in the variance 4, . Consider the logistic function £, («, y) = (1 + exp{-yu})”',
if # — 0 then f () — 1/2. In this scenarium the total impact of f (u) is A/2.
If # — oo then f (x) — 1 and the effect in / is Au* — oo. On the other hand,
if u — —oco f () — 0 and the impact in /5, € [0, 4#’]. As a result, when £ (u_, y) = (1 + ¢ 7=1)!
the asymmetric effects generated from positive and negative shocks depend also on
the shock size. If the shocks are large their effect in the variance will be significantly
asymmetric. On the contrary, if the sizes are small then the model will have small asymmetry.
For more details on this issue see Gonzalez-Rivera (1998) and Hagerud (1997).

Furthermore, from an inferential point of view in smooth transition models if
we set y — oo then /imy — oo _}f (u, y) = 1, which implies that the likelihood function
for the asymmetric Garch model tends to a constant given by the likelihood function of
the symmetric Garch model. This condition may lead to ill behaved likelihood functions.
That is, there is a positive probability that the likelihood function is a increasing
function of y . Theorem 1 of Lubrano (1998) states this problem of the likelihood and
suggest an informative prior to correct this problem. We will consider this correction

in this work and focus on the degrees of freedom estimation.

3 LIKELIHOOD ISSUES AND BAYESIAN INFERENCE

If we consider latent variables @, ~ GI(v/2, v/2) and the mixture representation (2)
then the likelihood function for model (1) is given by

L0, p.v| XA H,y, y)[H[ > exp{ S-2H ®)

withz=y—Xop — A0 — Hy, H= diag(w v=2 w Y=2 h,). The estimation of the

1 v e Wy y
degree of freedom parameter v is not straighforward. As discussed in Fonseca et al. (2008)

11
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the likelihood function is ill behaved and the use of naive noninformative priors such as
the uniform may lead to improper posterior distributions for the parameters of interest.
As showed in the paper, there is a positive probability that the maximum likelihood
estimator does not exist for some data sets. This is not an issue related to the frequentist
approach but an intrinsic problem of the likelihood. The following test may be applied to a
given data set in order to test whether the likelihood of v is well behaved or does not have
a maximum. If the following condition is satisfied, the likelihood is not well behaved.

Y (-1 <2n, )

i=1

where 7 is the sample size and Z, are standardized residuals under normality. In this
paper, we consider the correction for the likelihood proposed by Fonseca et al. (2008),
that is, we consider Jeffreys prior for the degree of freedom v in the Arma-Garch set up.
For the parameters @, 0, y, a, f we consider flat prior distribution given by

p(@, 0, y,a,f|v) <k (10)

While for v we consider the independent Jeffreys prior given by

() o((v _\; 3)1/2{3r (v2) =8 ((v+ 1)/2) — %}m’ o

where 9 (a) = d logl'(a)/da and §(a) = d{9 (a)}/da are the digamma and trigamma

functions, respectively.

Fonseca et al. (2008) present a simulated study showing that the posterior
median is a better estimator for v than the maximum likelihood estimator. They also
prove that the marginal posterior distribution of v is proper. In the frequentist context
this may be seen as a problem of bias reduction of maximum likelihood estimates
as presented in Firth (1993). Thus the likelihood are penalized by a function, the
Jeffreys invariant prior, which is responsible for correcting the estimation problems.

Other authors also reported results related to the Student-t likelihood being ill
behaved such as Bauwens and Lubrano (1998). Their theorem 1 is about the flatness of
the likelihood function for the Student-t model in the Garch model. However, the
suggested priors for the degrees of freedom would not work in cases where the likelihood has

12
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not a maximum as the posterior will have the same behaviour as the prior distribution.
Thus sufficient prior information would be needed to well estimate this parameter.
Thus, this solution will not work in situations where there is no prior information.
The authors propose a Griddy-Gibbs sampler to solve the inferential problem.
The method will find an estimate for the degrees of freedom, however, this will tend to the
limit of the grid whenever the likelihood is too much ill behaved. Villa and Walker (2014)
recently proposed a reference prior distribution for the degrees of freedom parameter.
However, their proposal considered a discrete set of possible values for the degrees of

freedom and truncated the upper limit of this set so that the Gaussian case is no considered.

The issue of likelihood functions tending to a constant will always come up whenever
there are limiting cases or distributions in the model. Indeed, this is the case of
the asymmetric model used here for the volatility. Regarding the asymmetric model (7),
consider the case where y — oo. Then limy —oo ft (u, y ) = 1, which implies that the
likelihood function for the asymmetric Garch model tends to a constant given by the
likelihood function of the symmetric Garch model. This condition may lead to ill
behaved likelihood functions. That is, there is a positive probability that the likelihood
function is a increasing function of y. Theorem 1 of Lubrano (1998) states this
problem of the likelihood. In other words, the likelihood for the asymmetric model is also
ill behaved, and may be increasing in y. Thus, the prior distribution of y needs to have
tails that go fast enought to 0, allowing the posterior distribution to be an integrable function
of y . An alternative is to consider the prior proposed by Lubrano (1998) which is given by

() =0+ @G-y))" (12)

7 7, > 0. Notice that for this proposal it is required to specify a hyperparamerter y,.
The focus of this paper is the estimation of the degrees of freedom in the Student-t model
for the error term. Thus we consider a proper prior for the asymmetry parameter as
suggested by Lubrano (1998) but an actual derivation of Jeffreys noninformative priors

for this case will be considered in a future work.

Having defined all the required prior distributions, posterior analysis may be
obtained by Gibbs sampling algorithm generating from the complete conditional
distributions with Metropolis steps for a, f and v. The complete conditional
distributions are presented in the Appendix.

13
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4 BAYESIAN MODEL SELECTION

In this work model uncertainty in the sampling distribution of the data is considered
through Bayes Factor computations and Bayesian hypothesis testing. As follows the main
tools used are described. Consider M competing models, so that we have M likelihood and
prior distributions, denoted respectively by p (x[0 ) and p (0 ),0 € 0O ,m=1,.., M.
Let us introduce a discrete prior distribution over the set of M alternative models,
denoted by p(m) = 7, with ZIM z =1. The joint distribution of (x, », 0 ) is given
by p(x, m, 0 ) = p (|0 )p (0 )p(m). Using Bayes theorem we immediately obtain
the posterior distribution p(, € |x) and the marginal distribution p(m|x) which
encapsulates the uncertainty about the unknowns (2, 6 ) after observing x. The posterior
inference in the presence of uncertainties about the correct model involves the evaluation
of the posterior p(m|x), m = 1,... M which depends on the marginal distribution p (x)
and the evaluation of pm(@ |x) the posterior distribution of 6 . Let the Bayes Factor
(Kass and Raftery, 1995) of model 1 with respect to model 2 be

_ palm)
2 plalm,)- (13)

In the model choice problem one may consider the following benchmarks
to decide between models. The guideline provided in Kass and Raftery (1995) for
interpretation of the Bayes factor is presented in Table 1.

Let us now consider the special case of just two alternative models. This is known
in the literature as the hypothesis test problem. A decision problem is completely
specified by the triple {A, ©, X}, where A is the decision space, @ the parameter space
and Xis the sample space. Let LA x ® — {0, £} be a loss function.

Model m, is defined by 6 € ©, and the alternative model m, by € 0, which are denoted
by H, i =1, 2. The parameter space is partitioned in two disjoint components ®, and ©,.
The action space is defined by two components, 4 = {al, az}, meaning that a, -
the hypothesis /7 is the true one and so must be accepted. Often L(6, 2) = 0 if 0 € ©, and
K ifg e @j_, j # i. Actually a hypothesis test is a decision rule defined on the sample
space and assuming values {z,, 4.}, that is: 6 : X — {0, 1}. As is well known from the
decision making literature #, > «, if and only if E[L(0, a,) < E[L(0, a,), where the
expectation is with respect to the posterior distributions. This is equivalent to accept /7,
ifand only if  P(H |x) k,, which is equivalent to

NS PHEN) T,
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kP,
12k P(H))

(14)

This will be used in the paper to chose between models of interest (e.g. Gaussian
versus Student-t, asymmetric versus symmetric). Some drawbacks with the Bayesian
hypothesis testing include the treatment of precise hypothesis or point null and one side

hypothesis. Also the choice of the prior distribution are influential in the final results.

The computation of the predictive distribution p(x|7) is not straighfoward.
It is needed to consider the samples obtained from the MCMC algorithm in order to
numericaly compute the precidtive distribution for each model of interest. For a given
model 72, Newton and Raftery (1994) proposed the following estimator based on

samples from the posterior distribution.

3T P19 () + (1 - Dp(0”)]

— P — (15)
UTpl(x)sz,-: Hdp () + (1 = d)p(x|9)}

where 6,..., ™ are generated from the posterior distribution p(6 |x). This estimator
performs well for & as small as 0.01. An alternative proposal is the shifted gamma estimator
proposed by Raftery et al. (2007). In this proposal, the outputs of the MCMC algorithm
is used to calculate a sequence of loglikelihood values {/, : % = 1...., n} and the posterior
distribution of the loglikelihoods is given by

[ -1~ Gamma(a, 1), (16)
where / is the maximum achievable likelihood, & = 4/2, d is the number of parameters

in the model and 4 < 1. In practice, 4 is not much less than 1. Combining the harmonic

mean identity 1 _ E{U 1 }with (16) results in
p(x) (x[0)

log(p(x)) = [+ alog(1 - A) (17)

. A - . - 2.
In general, / is not known, thus7 = max{l"+s*,/} is used, where 7 + s; is the
max max Pk 1

. - 2 .
moment estimator of / , 7and s, are the sample mean and variance of the /'s.
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5 SIMULATION STUDY

In this section we perform a simulation study to evaluate the effects of model
mispecification in the results of Bayesian hypothesis testing as described in section 4.
We define a sucess when the optimal decision selected in the Bayesian test coincides
with the true model. The optimal decision is to choose the model which has Bayes
Factor greater than 3 as described in table 1. We compute the rate of sucess by Monte
Carlo simulation considering 100 replicates of each data scenarium. In this simulation
study we vary the sample size (7= 150, 500) and the sampling distribution (Gaussian
and student-t). We also evaluate the one-step-ahead variance in order to compare the
Gaussian and Student-t models. The model considered for simulation is defined

according to equations (1) and (7), that is,

¥,= ¢yt Ou_+oNh +u,

ht = + /lutz_l_ft(u[_l’ 7) +ﬁh[_1 + autz—l

The parameters are set to be w = 0.25,2=0.5, = 0.1,7=5,90=0.8,0=0.1,6=0,4=1.
The sampling distribution considered for # is either Gaussian with # = ¢ 5 or Student-t with

V—2 12
ht a)t) 9 t

”,:3,( =2,.., N, (18)
where &, ~ N(0, 1), @, ~ IG(v/2, v/2). For the degrees of freedom we considered datasets
with v=3 ouv= 6. Tables 2, 3 and 4 shows the Mean Square Error (MSE) for datasets
simulated (n = 150, 500) using the Gaussian and the Student-t models with asymmetric
volatility. In the case of Gaussian data both models (Gaussian and Student-t) have
similar behaviours in the estimation of all parameters (a, f , 4, y) as presented in table 2.
Indeed, this is a good property of Student-t models as it is able to acommodate gaussianity
as a limiting case. On the other hand, for Student-t data with 3 degrees of freedom the
Gaussian model has a poor performance when compared with the Student-t model as
presented in table 3. Notice that the Gaussian model give very high MSE for the asymmetry
parameter A. In fact, the MSE for the Gaussian model is more than fourteen times
larger than for the Student-t model. As expected, the same does not happen for v = 6
degrees of freedom, which is closer to the Gaussian case as shown in table 4. In this

scenario both models give similar results.
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Table 5 presents the proportion of right decisions regarding the model which
was used to simulate the data. The hypothesis testing procedure led to the correct
decisions (Gaussian against Student-t model) as expected for most of scenarios.
Gaussian model is selected for Gaussian data and Student-t model is selected for Student-t data.
Except for small samples (7 = 150) and v = 6, which is a scenario with quite light tails,
in this case both models are similar. In summary, we recomend the use of the Bayes
factor for model choice for the Arma-Garch with Student-t or Gaussian errors.

In terms of predictive variance the Gaussian model presented smaller MSE in
general, with the Student-t model having a smaller MSE in scenarios with high values of
J., as presented in Table 6. These scenarios are the ones with very large MSE values.

6 APPLICATION

In this section we present an application of the proposed model to study the dynamics
in the daily Dow Jones returns. Our main goal in this application is to highlight the
predictive advantages of the Student-t model when compared to the Gaussian model
in periods of high volatility of the series. In this context, we analysed the daily Dow
Jones index of the New York stock market and is given by » = 100/»(DJ/DJ-1).
We present results from 02/01/2007 to 31/12/2008, with the first period going up to
30/05/2008 used for estimation which results in 354 observations and the final part
used for predictive performance evaluation. We sucessively update the data with one
observation after prediction of this point resulting in a total of 503 observations.
The period selected for prediction has two different volatility regimes. The first period
from 02/06/2008 to 12/09/2008 is before the bankruptcy of Lehman Brothers Bank.
This event and the Estate Market crisis resulted in large volatility in the american stock
market from 15/09/2008. This instability decreased from December 2008. Thus,
the data selected for prediction will allow comparison of predictive performance of the
models for different kinds of volatility.

In this application we fitted three kinds of asymmetric models: the logistic and
exponential as presented in subsection 2.3 and a modified logistic model which we call
logistic model 2, which is defined as follows. As pointed out by Gonzalez-Rivera (1998)
in the finantial market good news are associated with positive shocks which tend to
result in small volatility while bad news tend to result in negative shocks which will
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usually be associated with large volatilities. In this regard, we consider also the logistc
function 2 defined by f(x) = (1 + exp{yu})™". Thus, we have six model formulations:
Gaussian Garch with logistic asymmetry types 1 and 2, Gaussian Garch with exponencial
asymmetry, Student-t Garch with logistic asymmetry types 1 and 2 and Student-t Garch
with exponencial asymmetry. In addition, we compute prediction based on a hybrid
approach which considers the results from hypothesis tests as presented in section 4.
We fitted a Arma(3,0) for the mean which resulted in a stationary time series and a
Garch(1,1) for the variance modeling. In the MCMC algorithm we considered ten
thousand iteractions and the acceptance rate was tunned to be in the range 0.2 to 0.4.
We follow Awartani and Corradi (2005) and considered the squared observed returns
as proxy for the variance of the process in the computation of Mean Squared Errors

(MSE) for the four competing models.

Graph 1 present the variance proxy evolution through time and the predictions.
Table 7 to table 9 present a summary of main MSE results for this application.
In general, the asymmetric logistic model 2 presented a better predictive performance.
This result was expected for daily returns as negative shocks in the mean tend to have
greater impact in the volatilities than positive shocks with the same size. This behaviour
is well modeled by a logistic function 2. In the context of model selection, the majority
of the testes indicate the Student-t model as the best fit. Although the Gaussian model
had the best predictive performance in general, the Student-t model was more competitive
in the larger volatility periods. The best Gaussian model with logistic asymmetry 1
against the best Student-t model (which has exponential asymmetry) for the period
from 02/06/2008 to 12/09/2008 was 0.915, that is, the best Gaussian model had a
8,5% smaller MSE. While in the period from 15/09/2008 to 31/12/2008 the MSE
ratio for the best Gaussian model with logistic asymmetry 2 against the best Student-t
model (which has logistic asymmetry 2) was 0.995, that is, the best Gaussian model
had a 0,54% smaller MSE.

In order to analyse closely the predictive performance for the Gaussian and
Student-t models in the two different regimes we define the MSE ratio for the Gaussian

against Student-t model for the last five observed days given by
5 G

_ zn =1 (ht+11 - ht+n)2 19
s G hy (1)

5
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with /4 the conditional variance (squared observed returns), 4%, and 4%/, the one step ahead
prediction for the conditional variance in the Gaussian and Student-T models, respectively.

Graph 2 presents the MSE ratio (Gaussian versus Student-t) for /__ across time for
the logistic, logistic 2 and exponential asymmetric models, respectively. The evolution in
panel (a) and (b) indicate that for the logistic model and logistic model 2, periods of time
with high volatility tend to have I .5 greater than 1, which suggests that the Student-t
model would be more indicated for these periods. For the exponential asymmetric
model (panel (c)) this difference is less evident, although there are periods in which the
Student-t model would be more recommended. Indeed, the correlation between
I, and the mean squared returns in the five past days is 0,54 for the logistic model 1,
0,42 for the logistic model 2 and it is 0,29 for the exponential model.

7 CONCLUSIONS

This work shows how Student-t smooth transition models can be used adequately from
a Bayesian point of view. Our main interest in this paper was to investigate the
prediction and estimation performances of Student-t sampling distributions based on
the independent Jeffreys prior assumption for the degrees of freedom parameter in the
context of smooth transition models. The degrees of freedom in the Student-t model
are difficult to estimate and it was considered independent Jeffreys prior to solve this
estimation problem. The likelihood tends to a constant with positive probability.
This behaviour is intrisic to the likelihood and not corrected by usual parametric
priors such as exponential and gamma. This is due to the existance of limiting cases
(Gaussian and symmetric models) for the sampling distributions assumed for the data.
Thus, we suggested the use of independent Jeffreys priors, which are proved to lead to
proper posteriors and have nice frequentist properties (Fonseca et al., 2008).

The proposed prior gave positive results as presented in the simulated study.
For model selection we use Bayesian Hypothesis testing based on the numerical computation
of predictive distributions. The Bayesian test based on Bayes factors was effective in the
decision between Gaussian and Student-t models. Furthermore, the simulated study
indicate that some factors such as parameter estimation and prediction one step ahead
may increase competitivity of Student-t models. For instance, this is the case when data
is simulated from Student-t models with relatively heavy tails (v = 3).
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For the Dow Jones application, in general the Gaussian model had the best
predictive performance with the Student-t model being preferable in large volatility periods,
specially for the logistic asymmetric model 2. This is crucial to correctly estimating the
uncertainty in periods of large volatility in the market.

In this work the informative prior proposed by Lubrano (1998) was considered
for the smooth transition parameter. However, this prior depends on hyperparameters,
thus in a future research it will be considered the development of new reference priors

for this problem which would not depend on hyperparameter specification.
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APPENDIX

This appendix presents the complete conditional distributions used in Markov Chain
Monte Carlo sampling of model parameters for the Student-t Garch model with
Independent Jeffreys prior for the degrees of freedom. The code where this algorithm
is implemented is available for general R package users.

e Parameter O:

016, y, o, f. X, yr 7, ~ N (@, (CH X)),

where ® = (CH'X)\(X'H'y - X' H'A0 - X H' Hy).
e Parameter 6:

0|0, v, o, B, X,y y, ~ N (4, V),

where V, = (A'H'A)" and y, = (A" H' A \A'H'y - A H'X D - A'H' Hy).
e Parameter y:

Y@, 0,0, 8, X, y, 5, ~ N (g, , V),

where V, = (H'H'H)"' and #, = (H'H'H)y"(H'H'y - HH'X® - H'H'A6).
e Parameter o and f:

P ) =TT 0 ),

where H= ZP],:I ¢j Vot qu:l Gju ot zk].:ll///? _and ¢(.) is the Gaussian density function.

J

We define independent proposal distributions given by

a,~ NG, Za), p,~ NGB, L), B~ NB,2,)

e Parameter v:

D, 0 -1/ | (v/2) e
P(Vl , 0, ¥, a, ﬂ , X, Yy, yO) o |H| eXp{_T zZH Z} W

N-p —v/2-1 1 N-p N
)

t=1

where z = (y - X¢ - A0 - H y).
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TABLE1
Guideline for interpretation of the Bayes factor B, which is the evidence in favour of model M,
versus model M,

2In(B,,) B, Evidence against M,

0to2 Tto3 Not worth more than a bare mention

2t06 31020 Positive

61t 10 20to 150 Strong

>10 >150 Very strong

Elaborated by the authors.

TABLE 2
Mean Square Error (MSE) for o, B, A and y obtained in the simulated study, n = 150 e n = 500

Gaussian data (v = 3)

Model n=150 n =500
Gaussian Student-t Gaussian Student-t
o 0.044 0.046 0.023 0.024
s 0.003 0.026 0.001 0.003
A 0.197 0.386 0.113 0.142
y 13.006 13.646 9.718 10.225

Elaborated by the authors.

TABLE 3
Mean Square Error (MSE) for o, 3, A and y obtained in the simulated study, n = 150 e n = 500

Student-t data (v = 3)

Model n=150 n =500
Gaussian Student-t Gaussian Student-t
o 0.081 0.067 0.064 0.041
g 0.007 0.027 0.008 0.003
A 1.414 0.739 5.903 0.403
y 12.319 13.291 11.193 12.523

Elaborated by the authors.

TABLE 4

Mean Square Error (MSE) for o, 8, A and y obtained in the simulated study, n = 150 e n = 500

Student-t data (v = 6)

Model
Gaussian Student-t Gaussian Student-t
a 0.048 0.051 0.038 0.037
B 0.004 0.026 0.003 0.005
2 0.531 0.531 0.181 0.156
y 13.016 13.643 11.107 11.528

Elaborated by the authors.

23




october 2016

TABLE5
Results for the hypothesis testing procedure based on Bayes Factors
Proportion of right decisions obtained in the simulated study, n = 150 and n = 500.

Model
Gaussian Student-t
Gaussian 0.86 -
Data (n = 150) Student-t (v = 3) - 0.89
Student-t (v = 6) - 0.45
Gaussian 1.00
Data (n = 500) Student-t (v = 3) - 0.99
Student-t (v = 6) - 0.93

Elaborated by the authors.

TABLE 6
Mean Square Error (MSE) for the predictive variance obtained in the simulated study in
the one-step-ahead prediction, n = 150 e n = 500

Model
n=150 n =500
Gaussian Student-t Gaussian Student-t
Gaussian 7.4046 16.9097 830.23 791.66
Data Student-t (v = 3) 15.26 20.70 4.93 3.63
Student-t (v = 6) 11650.43 11186.32 9.04 9.34
Elaborated by the authors.
TABLE 7
Square root of MSE for the Garch model with logistic asymmetry 1 and model selection test
Time period Gaussian model Student-t model Model selection
02/06/2008 - 12/09/2008 7.14 13.16 12.32
15/09/2008 - 31/12/2008 499.90 523.27 523.27
02/06/2008 - 31/12/2008 258.48 273.35 272.94
Elaborated by the authors.
TABLE 8
Square root of MSE for the Garch model with logistic asymmetry 2 and model selection test
Time period Gaussian model Student-t model Model selection
02/06/2008 - 12/09/2008 7.28 8.62 9.06
15/09/2008 - 31/12/2008 444.86 447.30 449.78
02/06/2008 - 31/12/2008 230.47 232.38 233.86
Elaborated by the authors.
TABLE 9
Square root of MSE for the Garch model with exponential and model selection test
Time period Gaussian model Student-t model Model selection
02/06/2008 - 12/09/2008 7.7 7.80 8.41
15/09/2008 - 31/12/2008 727.16 817.82 820.75
02/06/2008 - 31/12/2008 374.41 420.96 422.76

Elaborated by the authors.
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GRAPH 1

Squared returns (blue line), Gaussian (red line) and Student-t (black line) predictions with
asymmetric volatility model
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Elaborated by the authors.
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GRAPH 2
Mean squared error ratio between the Gaussian and Student-t models with asymmetric

volatility for the past five days
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Elaborated by the authors.
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