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ABSTRACT

In this work, we consider modeling the past volatilities through an asymmetric generalised 
autoregressive conditional heteroskedasticity (Garch) model with heavy tailed sampling 
distributions. In particular, we consider the Student-t model with unknown degrees of 
freedom and indicate how it may be used adequately from a Bayesian point of view in 
the context of smooth transition models for the variance. We adopt the full Bayesian 
approach for inference, prediction and hypothesis testing. We discuss problems related 
to the estimation of degrees of freedom in the Student-t model and propose a solution 
based on independent Jeffreys priors, which correct problems in the likelihood function. 
A simulated study is presented to investigate how estimation of model parameters in 
the Student-t Garch model are affected by small sample sizes, prior distributions and 
mispecification regarding the sampling distribution. An application to the Dow Jones stock 
market data illustrates the usefulness of the asymmetric Garch model with Student-t erros. 
In this context, the Student-t model is preferable for prediction in the case of high 
volatility regimes.

Keywords: Student-t distribution; Garch model; Bayesian approach; Jeffreys prior.
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1 INTRODUCTION

In this paper we consider modeling the future volatility using a generalised autoregressive 
conditional heteroskedasticity (Garch) model on the past error terms and volatilities. 
The Garch approach (Bollerslev, 1986) models the variance as a function of past values 
and an error term assuming that the variance is independent of shocks in the mean. 
The main advantage of these models is that they allow for accessing directly the effect 
of mean changes in the dynamics of the conditional variance. This is an important 
issue in finantial time series, as changes in the mean tend to have relevant impact 
in the uncertainty of the process under study. Several authors have considered Garch 
models for finantial time series. In particular, from a Bayesian perspective, Vrontos et 
al. (2000) proposed full Bayesian analysis for Garch models with Gaussian errors. 
An alternative approach is presented in Jacquier et al. (2004) known as stochastic volatility 
modeling which allow for correlated conditional variance and mean. However, it is 
difficult to directly evaluate the past effects of the mean in the conditional variance.

A stylized fact that needs to be captured by the models is that the conditional 
variance can react asymmetrically to positive versus negative shocks or large versus 
small shocks. That is, the conditional variance may follow different regimes according 
to the size and signal of the shock. News have asymmetric impact in the economy and, 
for example, a large negative return might affect the future volatility in a different way 
when compared to a positive return with the same size. Engle and Ng (1993) presents 
a review regarding this issue. Awartani and Corradi (2005) discuss the importance of 
asymmetries in the prediction of an economic index. This may be accommodated by smooth 
transition models based on asymmetric specification of the conditional variance model. 
Thus, different specifications of the skedastic functions will take into account size and 
sign effects in the volatility. In this work we consider smooth transition Garch models and 
discuss inferential issues related to the smooth transition function and Bayesian inference.

Regarding the sampling distribution for the error term, shocks are usually modeled 
as Gaussian distributed due mainly to mathematical convinience rather than being 
suitable for financial data. It is well known that financial time series exhibit havier tails 
than allowed by the usual Gaussian model (Bollerslev et al., 1992). In this work we 
relax the assumption of Gaussian errors and consider Student-t distributios for the 
error terms in the Garch model. Since Mandelbrot (1963) several authors have discussed 
the issue of fat tails in return datasets. Bollerslev (1987) introduced the Garch-t model 
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as a solution to the typical heavy tails of returns. Also in the context of robust analysis, 
Harvey and Chakravarty (2008) proposed a Beta-t-EGarch in which the volatilities 
depend on the score of a t distribution. Zhang et al. (2011) proposed to use Generalized 
Hyperbolic distributions to model volatilities to capture fat tails and skewness. 
Bauwens and Lubrano (2002) comment on how the introduction of Student-t 
errors in the Garch model may improve the fit to the data. However, the likelihood 
is ill behaved as discussed in Bauwens and Lubrano (1998) and Fonseca et al. (2008). 
Bauwens and Lubrano (1998) propose the use of Griddy-Gibbs sampler, which would 
not work in the cases where the likelihood is monotonic (Fonseca et al., 2008). 
Also Ardia (2008) describes Bayesian approach to Student-t Garch models using modified 
exponential prior distributions. This proposal would not work either for the situation 
where the likelihood is monotonic in the parameters. In this case, the choice of prior 
distributions may dominate the inference and posterior distributions will be similar to 
the prior selected. In this work, the degrees of freedom are estimated using the inde-
pendent Jeffreys priors presented in Fonseca et al. (2008) which corrects the problems 
in the likelihood function for the Student-t model. Our proposal is a noninformative 
prior and do not depend on the specification of hyperparameters. This prior give the 
correct information regarding the curvature of likelihood functions and provide better 
results than the maximum likelihood estimator and informative priors. We investigate 
how estimation of model parameters in the Student-t Garch model are affected by small 
sample sizes, prior distributions and mispecification regarding the sampling distribution.

In section 2, we present the autoregressive moving average (Arma) model with a 
Garch component. We flexibilize the Gaussian assumption and consider Student-t 
error terms. We discuss the main issues related to the likelihood function and estimation 
of parameters such as the degree of freedom which is not usually well estimated in the 
literature. We present the prior considered to correct the problems with the Student-t 
likelihood and simulated examples which illustrate the effects of model misspecification. 
Section 3 presents the asymmetric Garch model and the proposed prior distribution 
for the parameters of interest. The likelihood issues are discussed in the context of 
asymmetric models. Section 4 presents a simulation study to evaluate the performance 
of Bayesian estimators and Bayesian model selection. An application to the Dow Jones 
returns is presented in section 5. Section 6 concludes the work with main results and 
future developments of the proposed models.
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2 ARMA-GARCH-M MODELS

Consider a univariate time series yt indexed in discrete time t ∈ N+. For the mean term 
we assume an autoregressive moving average (Arma) model and add a heteroskedasticity 
term (M).

,	 (1)

where ut are error terms with variance ht which are often modeled as Gaussian distributed, 
φ1,..., φp are autoregression coefficcients, θ1,..., θq are moving average coefficcients 
and δ is a parameter allowing for a direct effect of the variance term in the mean. 
This model is denoted as Arma (p, q) -M (1). As follows we consider Student-t error 
terms and exploit the mixture model representation which could be used to capture 
extreme observations in financial and economic time series as follows.

2.1 Student-t innovations with unknown degrees of freedom

Define the error term ut as a function of a white noise εt and a positive mixing random 
variable ωt as follows.

,	 (2)

where εt ∼ N(0, 1), ωt ∼ IG(ν/2, ν/2). Here N( µ, σ2) denotes the Gaussian distribution 
with mean µ and variance σ2 and IG(a, b) denotes the Inverse Gamma distribution 
with mean a/b and variance a/b2. The parameter ν ∈ ℜ+ is responsible for the heavy tail 
of the sampling distribution and is considered to be an unknown constant. The mixture 
representation is obtained by considering the observation equation (1) and the error 
term specification (2). Notice that as ν → ∞ then ut ∼ N(0, ht), while for finite ν the 
distribution of ut will be Student-t with ν degrees of freedom. In the mixture 
representation, ωt is responsible for inflating the variance ht. This is an important modeling 
tool in the identification of periods of larger volatility in the series. The marginal density of 
ut is the Student-t model given by

.	 (3)
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2.2 Garch specification

The variances ht are considered to be heterocedastic and given by the Garch model 
which we denote by Garch(r, s).

 
,	 (4)

with the restriction . Without loss of generality 
consider µ = 0. Consider observations y0 = ( y1,..., yp )

’ as known and set up = up−1 =...= 
up−q = up−q+1 = 0. From equation (1) we may define ut , t = p + 1,..., N recursively by

.	 (5)

From an inferential point of view, it is convinient to rewrite Equation (1) as

	 (6)

where y = (yp+1,..., yN)’, φ = (φ1,..., φp)
’, u = (up+1,..., uN)’, θ = (θ1,..., θq)

’, ψ = (ψ1,..., ψk)
’ and 

X =

 

, A = , H = .

In the next section, we allow for asymmetric shock effects in order to consider 
more realistic set-ups for finantial time series analysis. However, the likelihood function 
for this model is ill-behaved. This issue will be discussed and a solution will be proposed 
in section 3. As follows we present the asymmetric Student-t Garch model.

2.3 Asymmetric Garch model

Consider the observation equation as specified in (1). We now modify the variance 
equation (4) to accommodate asymmetric shocks in the volatility modelling. The asymmetric 
Garch model for the conditional variance term is given by

	 (7)

where ω, λ > 0 are unknown parameters. The functions defining asymmetric volatilities may 
be specified to accommodate small and large (or positive and negative) effects as follows.
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1.	 If ft (ut–1, γ) = (1 – e–γu2
t–1) then f ’t(ut–1, γ) = u2

t–1 e 
–γu2

t–1. This function allows 
for mall and large effects.

2.	 If ft (ut–1, γ) = (1 + e–γut–1) then f ’t(ut–1, γ) = ut–1 e 
–γut–1 (1+ e –γut–1)–2. This functions 

allows for positive and negative effects.

Consider the function ft (u, γ ) = 1 − exp{−γu2}. If |u| is large, then ft will tend 
to 1 and ht will be affected by λ . On the contrary, if |u| is small then ft will be close to 
0 and ht will be less affected by λ . This reflects different effects of small and large past 
error terms in the variance ht . Consider the logistic function ft (u, γ) = (1 + exp{−γu})−1, 
if u → 0 then ft (u) → 1/2. In this scenarium the total impact of ft (u) is λ/2. 
If u → ∞ then ft (u) → 1 and the effect in ht is λu2 → ∞. On the other hand, 
if u → −∞ ft (u) → 0 and the impact in ht ∈ [0, λu2]. As a result, when ft (ut–1, y) = (1 + e –yut–1)–1 
the asymmetric effects generated from positive and negative shocks depend also on 
the shock size. If the shocks are large their effect in the variance will be significantly 
asymmetric. On the contrary, if the sizes are small then the model will have small asymmetry. 
For more details on this issue see Gonzalez-Rivera (1998) and Hagerud (1997).

Furthermore, from an inferential point of view in smooth transition models if 
we set γ → ∞ then limγ → ∞ ft (u, γ) = 1, which implies that the likelihood function 
for the asymmetric Garch model tends to a constant given by the likelihood function of 
the symmetric Garch model. This condition may lead to ill behaved likelihood functions. 
That is, there is a positive probability that the likelihood function is a increasing 
function of γ . Theorem 1 of Lubrano (1998) states this problem of the likelihood and 
suggest an informative prior to correct this problem. We will consider this correction 
in this work and focus on the degrees of freedom estimation.

3 LIKELIHOOD ISSUES AND BAYESIAN INFERENCE

If we consider latent variables ωt ∼ GI(ν/2, ν/2) and the mixture representation (2) 
then the likelihood function for model (1) is given by

.	 (8)

with . The estimation of the 
degree of freedom parameter ν is not straighforward. As discussed in Fonseca et al. (2008) 
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the likelihood function is ill behaved and the use of naive noninformative priors such as 
the uniform may lead to improper posterior distributions for the parameters of interest. 
As showed in the paper, there is a positive probability that the maximum likelihood 
estimator does not exist for some data sets. This is not an issue related to the frequentist 
approach but an intrinsic problem of the likelihood. The following test may be applied to a 
given data set in order to test whether the likelihood of ν is well behaved or does not have 
a maximum. If the following condition is satisfied, the likelihood is not well behaved.

,	 (9)

where n is the sample size and ẑi are standardized residuals under normality. In this 
paper, we consider the correction for the likelihood proposed by Fonseca et al. (2008), 
that is, we consider Jeffreys prior for the degree of freedom ν in the Arma-Garch set up. 
For the parameters Φ, θ, ψ, α, β we consider flat prior distribution given by

p(Ф, θ, ψ, α, β | v) ∝ k.	 (10)

While for ν we consider the independent Jeffreys prior given by

,	 (11)

where ϑ (a) = d logΓ(a)/da and ϑ'(a) = d{ϑ (a)}/da are the digamma and trigamma 
functions, respectively.

Fonseca et al. (2008) present a simulated study showing that the posterior 
median is a better estimator for ν than the maximum likelihood estimator. They also 
prove that the marginal posterior distribution of ν is proper. In the frequentist context 
this may be seen as a problem of bias reduction of maximum likelihood estimates 
as presented in Firth (1993). Thus the likelihood are penalized by a function, the 
Jeffreys invariant prior, which is responsible for correcting the estimation problems.

Other authors also reported results related to the Student-t likelihood being ill 
behaved such as Bauwens and Lubrano (1998). Their theorem 1 is about the flatness of 
the likelihood function for the Student-t model in the Garch model. However, the 
suggested priors for the degrees of freedom would not work in cases where the likelihood has 



Discussion 
Paper

2 1 5

13

Full Bayesian Inference for Asymmetric Garch Models with Student-T Innovations

not a maximum as the posterior will have the same behaviour as the prior distribution. 
Thus sufficient prior information would be needed to well estimate this parameter. 
Thus, this solution will not work in situations where there is no prior information. 
The authors propose a Griddy-Gibbs sampler to solve the inferential problem. 
The method will find an estimate for the degrees of freedom, however, this will tend to the 
limit of the grid whenever the likelihood is too much ill behaved. Villa and Walker (2014) 
recently proposed a reference prior distribution for the degrees of freedom parameter. 
However, their proposal considered a discrete set of possible values for the degrees of 
freedom and truncated the upper limit of this set so that the Gaussian case is no considered.

The issue of likelihood functions tending to a constant will always come up whenever 
there are limiting cases or distributions in the model. Indeed, this is the case of 
the asymmetric model used here for the volatility. Regarding the asymmetric model (7), 
consider the case where γ → ∞. Then limγ →∞ ft (u, γ ) = 1, which implies that the 
likelihood function for the asymmetric Garch model tends to a constant given by the 
likelihood function of the symmetric Garch model. This condition may lead to ill 
behaved likelihood functions. That is, there is a positive probability that the likelihood 
function is a increasing function of γ. Theorem 1 of Lubrano (1998) states this 
problem of the likelihood. In other words, the likelihood for the asymmetric model is also 
ill behaved, and may be increasing in γ. Thus, the prior distribution of γ needs to have 
tails that go fast enought to 0, allowing the posterior distribution to be an integrable function 
of γ . An alternative is to consider the prior proposed by Lubrano (1998) which is given by

π (γ) = (1 + (γ − γ0)
2)−1,	 (12)

γ, γ0 > 0. Notice that for this proposal it is required to specify a hyperparameter γ0. 
The focus of this paper is the estimation of the degrees of freedom in the Student-t model 
for the error term. Thus we consider a proper prior for the asymmetry parameter as 
suggested by Lubrano (1998) but an actual derivation of Jeffreys noninformative priors 
for this case will be considered in a future work.

Having defined all the required prior distributions, posterior analysis may be 
obtained by Gibbs sampling algorithm generating from the complete conditional 
distributions with Metropolis steps for α, β and ν. The complete conditional 
distributions are presented in the Appendix.
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4 BAYESIAN MODEL SELECTION

In this work model uncertainty in the sampling distribution of the data is considered 
through Bayes Factor computations and Bayesian hypothesis testing. As follows the main 
tools used are described. Consider M competing models, so that we have M likelihood and 
prior distributions, denoted respectively by pm(x|θm) and pm(θm), θm ∈ Θm, m = 1,..., M. 
Let us introduce a discrete prior distribution over the set of M alternative models, 
denoted by p(m) = πm, with ∑1

M πm = 1. The joint distribution of (x, m, θm) is given 
by p(x, m, θm) = pm(x|θm)pm(θm)p(m). Using Bayes theorem we immediately obtain 
the posterior distribution p(m, θm|x) and the marginal distribution p(m|x) which 
encapsulates the uncertainty about the unknowns (m, θm) after observing x. The posterior 
inference in the presence of uncertainties about the correct model involves the evaluation 
of the posterior p(m|x), m = 1,... M which depends on the marginal distribution pm(x) 
and the evaluation of pm(θm|x) the posterior distribution of θm. Let the Bayes Factor 
(Kass and Raftery, 1995) of model 1 with respect to model 2 be

.	 (13)

In the model choice problem one may consider the following benchmarks 
to decide between models. The guideline provided in Kass and Raftery (1995) for 
interpretation of the Bayes factor is presented in Table 1.

Let us now consider the special case of just two alternative models. This is known 
in the literature as the hypothesis test problem. A decision problem is completely 
specified by the triple {A, Θ, X}, where A is the decision space, Θ the parameter space 
and X is the sample space. Let LA × Θ → {0, ki} be a loss function.

Model m1 is defined by θ ∈ Θ1 and the alternative model m2 by θ ∈ Θ2, which are denoted 
by Hi, i = 1, 2. The parameter space is partitioned in two disjoint components Θ1 and Θ2. 
The action space is defined by two components, A = {a1, a2}, meaning that ai - 
the hypothesis Hi is the true one and so must be accepted. Often L(θ, ai) = 0 if θ ∈ Θi and 
Ki if θ ∈ Θj, j ≠ i. Actually a hypothesis test is a decision rule defined on the sample 
space and assuming values {a1, a2}, that is: δ : X → {0, 1}. As is well known from the 
decision making literature a1  a2 if and only if E[L(θ, a1) < E[L(θ, a2), where the 
expectation is with respect to the posterior distributions. This is equivalent to accept H1 
if and only if , which is equivalent to 
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 > 	 (14)

This will be used in the paper to chose between models of interest (e.g. Gaussian 
versus Student-t, asymmetric versus symmetric). Some drawbacks with the Bayesian 
hypothesis testing include the treatment of precise hypothesis or point null and one side 
hypothesis. Also the choice of the prior distribution are influential in the final results.

The computation of the predictive distribution p(x|mi) is not straighfoward. 
It is needed to consider the samples obtained from the MCMC algorithm in order to 
numericaly compute the precidtive distribution for each model of interest. For a given 
model mi Newton and Raftery (1994) proposed the following estimator based on 
samples from the posterior distribution.

,	 (15)

where θ(1),..., θ(m) are generated from the posterior distribution p(θ |x). This estimator 
performs well for d as small as 0.01. An alternative proposal is the shifted gamma estimator 
proposed by Raftery et al. (2007). In this proposal, the outputs of the MCMC algorithm 
is used to calculate a sequence of loglikelihood values {lk : k = 1,..., n} and the posterior 
distribution of the loglikelihoods is given by

lmax − lk ∼ Gamma(α, λ−1),	 (16)

where lmax is the maximum achievable likelihood, α = d/2, d is the number of parameters 
in the model and λ < 1. In practice, λ is not much less than 1. Combining the harmonic 
mean identity  with (16) results in

log(p(x)) = lmax + αlog(1 − λ)	 (17)

In general, lmax is not known, thus îmax = max{l¯+ s2
l , lk } is used, where ī +  is the 

moment estimator of lmax, ī and  are the sample mean and variance of the l 'k s.
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5 SIMULATION STUDY

In this section we perform a simulation study to evaluate the effects of model 
mispecification in the results of Bayesian hypothesis testing as described in section 4. 
We define a sucess when the optimal decision selected in the Bayesian test coincides 
with the true model. The optimal decision is to choose the model which has Bayes 
Factor greater than 3 as described in table 1. We compute the rate of sucess by Monte 
Carlo simulation considering 100 replicates of each data scenarium. In this simulation 
study we vary the sample size (T = 150, 500) and the sampling distribution (Gaussian 
and student-t). We also evaluate the one-step-ahead variance in order to compare the 
Gaussian and Student-t models. The model considered for simulation is defined 
according to equations (1) and (7), that is,

The parameters are set to be ω = 0.25, α = 0.5, β = 0.1, γ = 5, φ = 0.8, θ = 0.1, δ = 0, λ = 1. 
The sampling distribution considered for ut is either Gaussian with ut = εtht or Student-t with

,	 (18)

where εt ∼ N(0, 1), ωt ∼ IG(ν/2, ν/2). For the degrees of freedom we considered datasets 
with ν = 3 ou ν = 6. Tables 2, 3 and 4 shows the Mean Square Error (MSE) for datasets 
simulated (n = 150, 500) using the Gaussian and the Student-t models with asymmetric 
volatility. In the case of Gaussian data both models (Gaussian and Student-t) have 
similar behaviours in the estimation of all parameters (α, β , λ , γ) as presented in table 2. 
Indeed, this is a good property of Student-t models as it is able to acommodate gaussianity 
as a limiting case. On the other hand, for Student-t data with 3 degrees of freedom the 
Gaussian model has a poor performance when compared with the Student-t model as 
presented in table 3. Notice that the Gaussian model give very high MSE for the asymmetry 
parameter λ. In fact, the MSE for the Gaussian model is more than fourteen times 
larger than for the Student-t model. As expected, the same does not happen for ν = 6 
degrees of freedom, which is closer to the Gaussian case as shown in table 4. In this 
scenario both models give similar results.
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Table 5 presents the proportion of right decisions regarding the model which 
was used to simulate the data. The hypothesis testing procedure led to the correct 
decisions (Gaussian against Student-t model) as expected for most of scenarios. 
Gaussian model is selected for Gaussian data and Student-t model is selected for Student-t data. 
Except for small samples (n = 150) and ν = 6, which is a scenario with quite light tails, 
in this case both models are similar. In summary, we recomend the use of the Bayes 
factor for model choice for the Arma-Garch with Student-t or Gaussian errors.

In terms of predictive variance the Gaussian model presented smaller MSE in 
general, with the Student-t model having a smaller MSE in scenarios with high values of 
yT+1 as presented in Table 6. These scenarios are the ones with very large MSE values.

6 APPLICATION

In this section we present an application of the proposed model to study the dynamics 
in the daily Dow Jones returns. Our main goal in this application is to highlight the 
predictive advantages of the Student-t model when compared to the Gaussian model 
in periods of high volatility of the series. In this context, we analysed the daily Dow 
Jones index of the New York stock market and is given by rt = 100ln(DJt/DJt−1). 
We present results from 02/01/2007 to 31/12/2008, with the first period going up to 
30/05/2008 used for estimation which results in 354 observations and the final part 
used for predictive performance evaluation. We sucessively update the data with one 
observation after prediction of this point resulting in a total of 503 observations. 
The period selected for prediction has two different volatility regimes. The first period 
from 02/06/2008 to 12/09/2008 is before the bankruptcy of Lehman Brothers Bank. 
This event and the Estate Market crisis resulted in large volatility in the american stock 
market from 15/09/2008. This instability decreased from December 2008. Thus, 
the data selected for prediction will allow comparison of predictive performance of the 
models for different kinds of volatility.

In this application we fitted three kinds of asymmetric models: the logistic and 
exponential as presented in subsection 2.3 and a modified logistic model which we call 
logistic model 2, which is defined as follows. As pointed out by Gonzalez-Rivera (1998) 
in the finantial market good news are associated with positive shocks which tend to 
result in small volatility while bad news tend to result in negative shocks which will 
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usually be associated with large volatilities. In this regard, we consider also the logistc 
function 2 defined by ft(u) = (1 + exp{γu})−1. Thus, we have six model formulations: 
Gaussian Garch with logistic asymmetry types 1 and 2, Gaussian Garch with exponencial 
asymmetry, Student-t Garch with logistic asymmetry types 1 and 2 and Student-t Garch 
with exponencial asymmetry. In addition, we compute prediction based on a hybrid 
approach which considers the results from hypothesis tests as presented in section 4. 
We fitted a Arma(3,0) for the mean which resulted in a stationary time series and a 
Garch(1,1) for the variance modeling. In the MCMC algorithm we considered ten 
thousand iteractions and the acceptance rate was tunned to be in the range 0.2 to 0.4. 
We follow Awartani and Corradi (2005) and considered the squared observed returns 
as proxy for the variance of the process in the computation of Mean Squared Errors 
(MSE) for the four competing models.

Graph 1 present the variance proxy evolution through time and the predictions. 
Table 7 to table 9 present a summary of main MSE results for this application. 
In general, the asymmetric logistic model 2 presented a better predictive performance. 
This result was expected for daily returns as negative shocks in the mean tend to have 
greater impact in the volatilities than positive shocks with the same size. This behaviour 
is well modeled by a logistic function 2. In the context of model selection, the majority 
of the testes indicate the Student-t model as the best fit. Although the Gaussian model 
had the best predictive performance in general, the Student-t model was more competitive 
in the larger volatility periods. The best Gaussian model with logistic asymmetry 1 
against the best Student-t model (which has exponential asymmetry) for the period 
from 02/06/2008 to 12/09/2008 was 0.915, that is, the best Gaussian model had a 
8,5% smaller MSE. While in the period from 15/09/2008 to 31/12/2008 the MSE 
ratio for the best Gaussian model with logistic asymmetry 2 against the best Student-t 
model (which has logistic asymmetry 2) was 0.995, that is, the best Gaussian model 
had a 0,54% smaller MSE.

In order to analyse closely the predictive performance for the Gaussian and 
Student-t models in the two different regimes we define the MSE ratio for the Gaussian 
against Student-t model for the last five observed days given by 
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with ht+n the conditional variance (squared observed returns),  and  the one step ahead 
prediction for the conditional variance in the Gaussian and Student-T models, respectively.

Graph 2 presents the MSE ratio (Gaussian versus Student-t) for It+5 across time for 
the logistic, logistic 2 and exponential asymmetric models, respectively. The evolution in 
panel (a) and (b) indicate that for the logistic model and logistic model 2, periods of time 
with high volatility tend to have It+5 greater than 1, which suggests that the Student-t 
model would be more indicated for these periods. For the exponential asymmetric 
model (panel (c)) this difference is less evident, although there are periods in which the 
Student-t model would be more recommended. Indeed, the correlation between 
It+5 and the mean squared returns in the five past days is 0,54 for the logistic model 1, 
0,42 for the logistic model 2 and it is 0,29 for the exponential model.

7 CONCLUSIONS

This work shows how Student-t smooth transition models can be used adequately from 
a Bayesian point of view. Our main interest in this paper was to investigate the 
prediction and estimation performances of Student-t sampling distributions based on 
the independent Jeffreys prior assumption for the degrees of freedom parameter in the 
context of smooth transition models. The degrees of freedom in the Student-t model 
are difficult to estimate and it was considered independent Jeffreys prior to solve this 
estimation problem. The likelihood tends to a constant with positive probability. 
This behaviour is intrisic to the likelihood and not corrected by usual parametric 
priors such as exponential and gamma. This is due to the existance of limiting cases 
(Gaussian and symmetric models) for the sampling distributions assumed for the data. 
Thus, we suggested the use of independent Jeffreys priors, which are proved to lead to 
proper posteriors and have nice frequentist properties (Fonseca et al., 2008).

The proposed prior gave positive results as presented in the simulated study. 
For model selection we use Bayesian Hypothesis testing based on the numerical computation 
of predictive distributions. The Bayesian test based on Bayes factors was effective in the 
decision between Gaussian and Student-t models. Furthermore, the simulated study 
indicate that some factors such as parameter estimation and prediction one step ahead 
may increase competitivity of Student-t models. For instance, this is the case when data 
is simulated from Student-t models with relatively heavy tails (ν = 3).
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For the Dow Jones application, in general the Gaussian model had the best 
predictive performance with the Student-t model being preferable in large volatility periods, 
specially for the logistic asymmetric model 2. This is crucial to correctly estimating the 
uncertainty in periods of large volatility in the market.

In this work the informative prior proposed by Lubrano (1998) was considered 
for the smooth transition parameter. However, this prior depends on hyperparameters, 
thus in a future research it will be considered the development of new reference priors 
for this problem which would not depend on hyperparameter specification.

REFERENCES

ARDIA, D. Financial risk management with bayesian estimation of Garch models: 
theory and applications. Springer-Verlag, 2008. (Lecture Notes in Economics and 
Mathematical Systems, v. 612).

AWARTANI, B. M.; CORRADI, V. Predicting the volatility of the S&P-500 stock index 
via Garch models: the role of asymmetries. International Journal of Forecasting, v. 21, 
p. 167-184, 2005.

BAUWENS, L.; LUBRANO, M. Bayesian inference on Garch models using the gibbs sampler. 
Econometrics Journal, v. 1, p. 23-46, 1998.

______. Bayesian option pricing using asymmetric garch models. Journal of Empirical 
Finance, v. 9, n. 3, p. 321-342, 2002.

BOLLERSLEV, T. Generalized autoregressive conditional heteroscedasticity. Journal of 
econometrics, v. 37, p. 307-327, 1986.

______. A conditionally heteroskedastic time series model for speculative prices and rates of 
return. The Review of Economics and Statistics, v. 69, n. 3, p. 542-547, 1987.

BOLLERSLEV, T.; CHOU, R. Y.; K. KRONER, F. Arch modeling in finance. Journal of 
econometrics, v. 52, p. 5-59, 1992.

ENGLE, R. F.; NG, V. K. Measuring and testing the impact of news on volatility. Journal of 
Finance, v. 48, n.1, p. 1749-1778, 1993.

FIRTH, D. Bias reduction of maximum likelihood estimates. Biometrika, v. 80, p. 27-38, 1993.

FONSECA, T. C. O.; FERREIRA, M. A. R.; MIGON, H. S. Objective bayesian analysis for 
the student-t regression model. Biometrika, v. 95, p. 325-333, 2008.



Discussion 
Paper

2 1 5

21

Full Bayesian Inference for Asymmetric Garch Models with Student-T Innovations

GONZALEZ-RIVERA, G. Smooth transition Garch models. Studies in Nonlinear Dynamics 
and Econometrics, v. 3, p. 61-78. 1998.

HAGERUD, G. E. A new non-linear Garch model. 1997. Thesis (Ph.D) – Stockholm School 
of Economics, 1997.

HARVEY, A.; CHAKRAVARTY, T. Beta-t-(e)-garch. Technical report, University of Cambridge, 2008.

JACQUIERA, E.; POLSON, N. G.; ROSSI, P. E. Bayesian analysis of stochastic volatility 
models with fat-tails and correlated errors. Journal of Econometrics, v. 122, p. 185-212. 2004.

KASS, R.; RAFTERY, A. E. Bayes factor. Journal of the American Statistical Association, 
90, p. 773-795, 1995.

LUBRANO, M. Smooth transition Garch models: a bayesian perspective. Université catholique 
de Louvain, Center for Operations Research and Econometrics. 1998. (Core discussion papers, 
n. 1998066).

MANDELBROT, B. The variation of certain speculative prices. Journal of Business, 
v. 36, p. 394-419, 1963.

NEWTON, M. A.; RAFTERY, A. E. Approximate bayesian inference with the weighted 
likelihood bootstrap. Journal of the Royal Statistical Society Series B, v. 56, p. 3-48, 1994.

RAFTERY, A. E.; et al. Estimating the integrated likelihood via posterior simulation using the 
harmonic mean identity. In: Bayesian Statistics. Oxford University Press, v. 8 p. 371-416, 2007.

VILLA, C. WALKER, S. G. Objective prior for the number of degrees of freedom of a t distribution. 
Bayesian Analysis, v. 9, p. 197-220, 2014.

VRONTOS, I. D.; DELLAPORTAS, P.; POLITIS, D. N. Full bayesian inference for Garch 
and egarch models. Journal of business and economic statistics, v. 18, p. 187-198, 2000.

ZHANG, X. et al. Modeling dynamic volatilities and correlations under skewness and fat tails. 
Technical report, Tinbergen Institute, 2011.



22

o c t o b e r  2 0 1 6

APPENDIX

This appendix presents the complete conditional distributions used in Markov Chain 
Monte Carlo sampling of model parameters for the Student-t Garch model with 
Independent Jeffreys prior for the degrees of freedom. The code where this algorithm 
is implemented is available for general R package users.

•	 Parameter Φ:

Φ|θ, ψ, α, β, X, y, y0 ∼ N ( , (X’H−1X)−1),

where  = (X’H−1X)−1(X’H−1y − X’H−1Aθ − X’H−1 ψ).

•	 Parameter θ:

θ|Φ, ψ, α, β , X, y, y0 ∼ N (µθ,Vθ),

where Vθ = (A’H−1A)−1 and µθ = (A’H−1A)−1(A’H−1y − A’H−1X Φ − A’H−1 ψ).

•	 Parameter ψ:

ψ|Φ, θ, α, β, X, y, y0 ∼ N (µψ ,Vψ),

where Vψ = ( ’H−1 )−1 and µψ = ( ’H−1 )−1( ’H−1y − ’H−1X Φ − ’H−1Aθ).

•	 Parameter α and β:

,

where µt = ∑p

j=1 ϕj  yt−j + ∑q

j=1 θjut–j + ∑k

j=1ψjht−j and ϕ(.) is the Gaussian density function. 
We define independent proposal distributions given by

αi ∼ N( i, Σ αi), βi ∼ N( i , βi), βi ∼ N( i , βi)

•	 Parameter ν:

p(ν|Φ, θ, ψ, α, β , X, y, y0)	 ∝	

					     	 ,

where  = (y − X  − Aθ −  ψ).
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TABLE 1
Guideline for interpretation of the Bayes factor B12 which is the evidence in favour of model M1 
versus model M2

2ln(B12) B12 Evidence against M2

0 to 2 1 to 3 Not worth more than a bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

>10 >150 Very strong

Elaborated by the authors.

TABLE 2
Mean Square Error (MSE) for α, β , λ and γ obtained in the simulated study, n = 150 e n = 500

Model

Gaussian data (ν = 3)

n = 150 n = 500

Gaussian Student-t Gaussian Student-t

α 0.044 0.046 0.023 0.024

β 0.003 0.026 0.001 0.003

λ 0.197 0.386 0.113 0.142

γ 13.006 13.646 9.718 10.225

Elaborated by the authors.

TABLE 3
Mean Square Error (MSE) for α, β , λ and γ obtained in the simulated study, n = 150 e n = 500

Model

Student-t data (ν = 3)

n = 150 n = 500

Gaussian Student-t Gaussian Student-t

α 0.081 0.067 0.064 0.041

β 0.007 0.027 0.008 0.003

λ 1.414 0.739 5.903 0.403

γ 12.319 13.291 11.193 12.523

Elaborated by the authors.

TABLE 4
Mean Square Error (MSE) for α, β , λ and γ obtained in the simulated study, n = 150 e n = 500

Model

Student-t data (ν = 6)

n = 150 n = 500

Gaussian Student-t Gaussian Student-t

α 0.048 0.051 0.038 0.037

β 0.004 0.026 0.003 0.005

λ 0.531 0.531 0.181 0.156

γ 13.016 13.643 11.107 11.528

Elaborated by the authors.
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TABLE 5
Results for the hypothesis testing procedure based on Bayes Factors 
Proportion of right decisions obtained in the simulated study, n = 150 and n = 500.

Model

Gaussian Student-t

Data (n = 150)

Gaussian 0.86 -

Student-t (ν = 3) - 0.89

Student-t (ν = 6) - 0.45

Data (n = 500)

Gaussian 1.00 -

Student-t (ν = 3) - 0.99

Student-t (ν = 6) - 0.93

Elaborated by the authors.

TABLE 6
Mean Square Error (MSE) for the predictive variance obtained in the simulated study in 
the one-step-ahead prediction, n = 150 e n = 500

Model

n = 150 n = 500

Gaussian Student-t Gaussian Student-t

Data

Gaussian 7.4046 16.9097 830.23 791.66

Student-t (ν = 3) 15.26 20.70 4.93 3.63

Student-t (ν = 6) 11650.43 11186.32 9.04 9.34

Elaborated by the authors.

TABLE 7
Square root of MSE for the Garch model with logistic asymmetry 1 and model selection test

Time period Gaussian model Student-t model Model selection

02/06/2008 - 12/09/2008 7.14 13.16 12.32

15/09/2008 - 31/12/2008 499.90 523.27 523.27

02/06/2008 - 31/12/2008 258.48 273.35 272.94

Elaborated by the authors.

TABLE 8
Square root of MSE for the Garch model with logistic asymmetry 2 and model selection test

Time period Gaussian model Student-t model Model selection

02/06/2008 - 12/09/2008 7.28 8.62 9.06

15/09/2008 - 31/12/2008 444.86 447.30 449.78

02/06/2008 - 31/12/2008 230.47 232.38 233.86

Elaborated by the authors.

TABLE 9
Square root of MSE for the Garch model with exponential and model selection test

Time period Gaussian model Student-t model Model selection

02/06/2008 - 12/09/2008 7.17 7.80 8.41

15/09/2008 - 31/12/2008 727.16 817.82 820.75

02/06/2008 - 31/12/2008 374.41 420.96 422.76

Elaborated by the authors.
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GRAPH 1
Squared returns (blue line), Gaussian (red line) and Student-t (black line) predictions with 
asymmetric volatility model
1A – Logistic asymmetric model
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1B – Logistic 2 asymmetric model
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1C – Exponential asymmetric model
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Elaborated by the authors.
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GRAPH 2
Mean squared error ratio between the Gaussian and Student-t models with asymmetric 
volatility for the past five days
2A – Logistic asymmetric model
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2B – Logistic 2 asymmetric model
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2C – Exponential asymmetric model
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Elaborated by the authors.
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