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SINOPSE

Neste artigo, nés estudamos o problema de escolher precos sequencialmente, de
forma a maximizar a receita esperada, em um ambiente onde os parAimetros da fungao
de demanda sao desconhecidos, e o horizonte de vendas é finito. Vdrios métodos de
otimizagao seqiiencial s3o discutidos, onde os pregos e as vendas resultantes anteriores
sdo utilizados para determinar o prego no periodo atual. Expansdes de Taylor sao
empregadas para construir aproximagdes da funcao valor, explicitando a relagao de
compromisso entre maximiza¢io de receita no curto-prazo e maior ganho de
informagio para obter maior receita agregada no longo-prazo. A partir dessas
expansoes, nés derivamos estratégias promissoras, denominadas politicas de one-step
look-ahead que combinam otimizagio e aquisicio de informacio dinamicamente.
Simulagées de Monte Carlo sao apresentadas, onde constatamos a superioridade das
politicas de one-step look-ahead, quando comparadas a diversas outras regras de
otimizagao seqiiencial. Finalmente, nds discutimos problemas de endogeneidade, onde
fazemos um paralelo com a teoria de controle adaptativo, e discutimos a validade das
regras de one-step look-ahead, mesmo quando endogeneidade ¢ observada.

ABSTRACT

This paper considers the problem of changing prices over time to maximize expected
revenues in the presence of unknown demand distribution parameters. It provides
and compares several methods that use the sequence of past prices and observed
demands to set price in the current period. A Taylor series expansion of the future
reward function explicitly illustrates the tradeoff between short term revenue
maximization and future information gain and suggests a promising pricing policy
referred to as a one-step look-ahead rule. An in-depth Monte Carlo study compares
several different pricing strategies and shows that the one-step look-ahead rules
dominate other heuristic policies and produce good short term performance. The
reasons for the observed bias of parameter estimates are also investigated.



1 Introduction

A commonly encountered problem in the optimization literature is how to sequen-
tially set prices so as to maximize the cumulative expected revenues. Martinez
(2003), for example, presents an application where analysts working for Intrawest
Corporation, in Vancouver, had to develop approaches to set prices for ski lift tick-
ets to increase the company’s revenue. In that project, the analysis team quickly
found that historical data was not sufficient to determine the effect of price changes
on demand. At this point, the project focus shifted to determining data require-
ments and developing tools and methods to capture data to investigate the effect
of price on demand. But even if relevant data had been available, the question
of how management should vary its prices to maximize revenue remained. This
paper provides insights into how to do this by developing and evaluating several
implementable price setting mechanisms. Further it measures the benefits of using
these methods and provides implementable recommendations for how to use these

approaches.

In a nutshell, the main messages of this paper are:

e Managers can increase revenue by changing prices over time. This benefit
comes through using variable prices to learn about the relationship between

price and demand.

e Managers should collect and save pricing and sales data and use it to guide

pricing decisions.

e Managers can increase total revenue by intermittently choosing prices in a

random manner.

e Managers can increase total revenue by implementing a systematic approach

to choosing prices and using it in real time.
e The Internet and its host of e-commerce tools are ideal for using the ap-

proaches proposed in this paper.

In the latter sections of this paper, we will expand on and quantify the benefits

from following these recommendations. The results and techniques presented in



this paper can be extended to a great variety of situations where one needs to set

control variables in order to maximize a partially known objective function.

This paper considers the following pricing problem. Each period a manager
(who we refer to as "he”) sets the price of a good (for example, a ski ticket of a
particular type) and observes the total demand (skier visits) for that good during
the period. He seeks to choose prices so as to maximize total expected revenues
over a fixed finite horizon of length 7" which might represent the length of a season

or the lifetime of a good.

We assume an unlimited inventory of goods to simplify analysis and develop
generalizable principals that may apply in wider contexts. Clearly this assumption
is appropriate in the ski industry as well as in software and other information good
industries. Also it applies to settings in which pricing and inventory decisions
are made in separate units within the organization. From a technical perspective,
by focussing on pricing only we avoid joint optimization of inventory levels and
prices and can provide clearer recommendations. We have chosen not to take
a revenue management approach in which the inventory is finite and prices are
set to maximize the total expected revenue from selling this inventory of goods.
Conceptually either of these extensions would not change our approach, they would

only alter the dynamic programming equations on which our analysis is based.

We assume demand is stochastic and its mean is described by a demand function
which relates demand to price and possibly other factors such as season, time on
market and competitive factors. We further assume that the demand function form
is known, for example, its logarithm may be linear in price and quadratic in the
day of the season. When the parameters of the demand function are also known,
the choice of an optimal price reduces to a simple stochastic optimization problem.
However, when the parameters are not known, which is the setting we will focus
on, the manager may benefit from using variable pricing to learn them. Initially he
may rely on prior information or intuition to guide pricing decisions. After several
periods, he can use statistical methods to estimate the demand function and use

this information to guide his price setting for the rest of the planning horizon.

The simplest and most widely used approach to pricing is to set a single price
at the beginning of the planning horizon and use that price throughout the lifetime
of the product. To do this well requires complete knowledge of the demand curve

for the product. Alternatively the decision maker may specify an ”open loop” price



schedule which determines how to vary prices over the planning horizon indepen-
dent of any information that may be acquired throughout the planning period. We
will show that these approaches are not attractive when there is uncertainty about

the demand model.

We focus on adaptive or ”closed-loop” price setting, that is when the decision
maker varies prices on the basis of his record of historical demand and prices
chosen. He can do this "myopically” by setting the price p; at each period ¢, in
order to maximize the immediate expected revenue R;. Obviously, at time ¢, he
can use all past price and demand data to choose p;. As will be illustrated in
this paper, this strategy will not yield the maximum total expected revenues by
the end of the planning horizon. In fact, this myopic strategy may turn out to
be far from optimal. This is because the price set today will impact not only
the immediate expected return R;, but will also affect the amount of information
about the demand function that the retailer gains. In fact, we show that prices that
do not maximize immediate revenue will lead to better estimation of the demand

curve and better future price decisions.

On the other hand, there is a vast statistical body of literature (see Draper
and Smith, 1998) that addresses how to vary experimental conditions, which in
the setting of this paper are the prices, to best learn a parametric function that
relates outcomes to experimental conditions. Such optimal design approaches do
not usually focus on the impact of outcomes, herein the revenue gained, during
the experimental process and use optimality criteria based on covariance matrices

of parameters.

The trade-off between immediate reward maximization and learning has been
extensively studied in many areas. We draw inspiration from the reinforcement
learning (RL) literature where most of the techniques are suited for problems where
the horizon is infinite and the state space is of high dimension. In these cases, there
is a great interest in finding the optimal strategy, and much attention is devoted
to construct methods to uncover the optimal policy in the limit. RL methods seek
to approximate the value function with high accuracy and many algorithms have
been proposed to do this (see Anderson and Hong, 1994, Dietterich and Wang,
2003, Forbes and Andre, 2000, Sutton and Barto, 1998, Tsitsiklis, 1997).

The literature on learning and pricing appears to date back to Rothschild

(1974). He represents the problem of maximizing the firm’s revenue by choosing



between two prices as a two armed bandit model and shows among other results
that the manager can choose the wrong price infinitely often. Kiefer and Nyarko
(1989) study the general problem of learning and control for a linear system with
a general utility function. They formulate this as an infinite horizon discounted
Bayesian dynamic program; show that a stationary optimal policy exists and that
the posterior process converges with probability one but that the limit need not be
concentrated on the true parameter. Related work appears in Easley and Kiefer
(1988,1989).

Balvers and Cosimano (1990) apply the Kiefer and Nyarko framework to the
specific problem of a manager who sets prices dynamically to maximize expected
total revenue. They use a dynamic programming approach to ”gain some insight
into why it is important for the firm to learn”. They derive a specific expression
for the optimal price and then explore its implications. They conclude among
other results, that when varying price, an anticipated change in demand leads
to a small price change while an unanticipated shift in demand leads to greater
changes in price and that the effect of learning persists into the future. Their focus
is qualitative and does not quantify the potential benefits that can be gained from

using learning nor show to do it in practice.

Aviv and Pazgal (2002a and 2002b) introduce learning into a pricing model
formulated by Gallego and van Ryzin (1994) in which customers arrive singly
according to a Poisson process depending with rate depending on the price. Aviv
and Pazgal (2002a) are concerned with deriving a closed form optimal control
policy while Aviv and Pazgal (2002b) use a partially observed MDP framework
to consider a model with a finite number of scenarios. Petruzzi and Dada (2002)
also study learning, pricing and inventory control. In their model, the inventory
level censors demand and once the inventory level is sufficiently high or demand is
low so that it is not censored, the demand function parameters can be determined

with certainty and revenue can be maximized.

Lobo and Boyd (2003) consider a similar model to that in this paper. They
assume demand is linear in price and derive a Taylor series approximation for the
one-period difference between the expected reward under the policy that uses the
true optimal price and that based on the myopic policy. Although their Taylor
series expansion is similar to ours, they use it for a different purpose; that is,

to formulate a semi-definite convex program in which the objective function is



the sum of discounted one-period Taylor series approximations. They then solve
the problem over short planning horizons (10 and 20 periods) and compare the
average revenue from several approaches. In our view, the contribution of this
paper is primarily methodological; it does not focus on the managerial implications

of learning.

Cope (2004) and Carvalho and Puterman (2005) study a related dynamic pric-
ing problem. Their setting is as follows. Each period, the manager sets a price
and observes the number of people who arrive and the number who purchase the
product at that price. In these papers the focus is on estimating the relationship
between the probability of purchase and the price set. Cope uses a non-parametric
non-increasing model to relate price to the probability of purchase while Carvalho
and Puterman use logistic regression. Further, Cope uses Bayesian methods while
Carvalho and Puterman use maximum likelihood estimation. From a managerial
perspective this work of Cope and Carvalho and Puterman focus on low demand
items or a setting in which the prices can be changed frequently, while the focus
of this paper is on settings in which demand is high or prices can be altered less

frequently.

The work in Carvalho and Puterman (2005) differs from the work in this paper
in the following ways: (1) while Carvalho and Puterman assumes the retailer ob-
serves both the number of arriving customers and their decision to buy or not, in
this paper the retailer observes only the total number of items sold in each period;
(2) the parametric model in Carvalho and Puterman is based on a logistic regres-
sion for the purchase probability and a Poisson model for the arrival process, while
in this paper, we consider a log-linear regression model for the demand function; (3)
in this paper, we use Kalman filter closed form equations to update the parameter
estimates, whereas Carvalho and Puterman uses plain MLE because of the impos-
sibility of obtaining nice closed form expressions for sequential estimation. (4) this
paper presents the general theoretical foundations for the problem of pricing and
learning; (5) we provide a thorough discussion about endogeneity issues, where we
show the relation between the dynamic pricing problem and adaptive control; (6)
the Monte Carlo experiment presented here is more extensive, and we compare our
suggested one-step-ahead strategy to a more complete set of alternative policies;
(7) finally, even in the presence of parameter estimate bias, we provide a discussion

about why the one-step-ahead policy is still valid.



Raju, Narahari and Kumar (2004) study the use of reinforcement learning to
set prices in a retail market consisting of multiple competitive sellers and hetero-
geneous buyers who have different preferences to price and lead time. They use
a continuous time queuing model for their system and explore the effect of using

several different algorithms for computing optimal policies.

The effect of learning in other contexts have been considered by Scarf (1960),
Azoury (1985), Lovejoy (1990), and Treharne and Sox (2002) in the inventory con-
text and Hu, Lovejoy and Shafer (1996) in the area of drug therapy. In the papers
of Scarf, Azoury, Lovejoy and Treharne and Sox, learning is passive in the sense
that the policy selected by the decision maker does not impact the information
received. In particular, in these papers the decision maker observes the demand
each period regardless of the inventory level set by the decision maker. In con-
trast in this paper and the remaining papers above, learning is active, that is, the
policy set by the decision maker impacts the information that is received. In the
newsvendor models studied by Lariviere and Porteus (1999), Ding, Puterman and
Bisi (2002) the inventory levels censors demand so when setting inventory levels
the decision maker is faced with the tradeoff of myopic optimality and learning.
In Hu, Lovejoy and Shafer (1996) the dosage level impacts both the health of
the patient and subsequent parameter estimates so the decision maker must again

tradeoff short term optimality with learning.

The remainder of the paper is organized as follows. In Section 2 we formulate
our model, illustrate the trade-off between immediate revenue maximization and
learning and discuss demand distribution parameter updating. In Sections 3 and
4, we provide a formal treatment for the problem of dynamic pricing and learning
for arbitrary demand parametric models. We present Monte Carlo simulation
results to evaluate the performance of several heuristic methods on Section 5. In
Section 6 we describe why model parameter estimates may be biased. Conclusions
and recommendations appear in the final section. Proofs are presented in the

Appendix.

2 Model Formulation

Consider a manager who has an unlimited quantity of a product to sell at each

time period ¢, t = 1,...,T, where T is finite. The demand ¢; for the product is



represented by a continuous random variable and is assumed to follow a log-linear
model. Such a model was recommended by Kalyanam (1996) on the basis of an
analysis of marketing data. Consequently, we assume that the demand in period

t, is related to price set in that period, p; through the equation

gr = exp [04 + Bpy + Gt}, (1)

where o and (8 are unknown regression parameters, and ¢; is a random distur-
bance term that is normally distributed with mean 0 and variance o2. We will
start by focusing on this model but many generalizations are possible including
letting the regression parameters vary over time with both random and systematic
components, or we can add other factors to the model; for example if we assume

a quadratic time trend in the model, then (1) becomes

q = exp|a + Bpy + vt +nt* + €], (2)

A further enhancement of this model would be to include an interaction between

trend and price.

We argue here that from a modeling perspective parametric models are prefer-
able to non-parametric models in this finite horizon setting. Since our primary
focus is optimize revenues during a limited number of periods, say 7" = 100 or
T = 200, it would be difficult to obtain a reasonable approximation to a non-
parametric demand function with such little data without strong prior assump-
tions. Further, this parametric formulation enables the user to easily include ad-
ditional information in the demand equation, such as in (2) above, which would

be extremely difficult in a non-parametric setting.

The manager’s objective is to adaptively choose a sequence of prices {p; : t =
1,...,T} to maximize the total expected revenue Zthl piElq), over T periods. We
now focus on the model in (1). If the retailer knows the model parameters v and
(3, he can set the price p, to the value that maximizes the revenue R;(p;) = pE[q)
in each period ¢. The optimum price in this case is p; = —1/3, which does not
depend on a, and the maximum expected revenues are S, Rf = S/ R,(p}) =
—(T/B)e* M, where M = Ele‘] = exp[o?/2].

Of course, in any real setting, but especially for new products, the decision



maker does not know the true parameter values o and 3 so they must be estimated
from the data that is acquired during the planning horizon. The key concept on
which this paper is based is that the prices the manager sets influence both the
data received and the ongoing revenues. Thus the manager wants to use prices
both strategically, that is to learn about the demand function and optimally to

maximize immediate revenue. This paper is about this tradeoff.

The information flow in this system is linked through a feedback process. Each
period, the manager uses his current estimate of the demand function parameters
to set the price, then he observes demand in the period and finally he updates his
estimates of the demand function parameters. Then he repeats this process. The
paper now proceeds along two paths. First we discuss how to update the parameter
estimates given an additional demand observation and second we discuss how to

choose a price given estimates of the demand distribution parameters.

2.1 Updating Demand Distribution Parameter Estimates

This section describes how to update the demand function parameter estimates
once the demand in a particular period has been observed. We assume at time
t = 0, which means before we set the first price p; and observe the demand ¢,
that the manager has specified a prior distribution for the regression parameters.
The initial prior may either be subjective, derived from product information and
past history or based on some preliminary sales data for the current product. We
assume that the vector of regression coefficients § = [ 3] ~ N(6y,0°F,), where
0 is the 2 x 1 prior mean vector and o2P, is a 2 x 2 is the prior covariance matrix.

To simplify our initial analysis, we assume known o2,

At period ¢, based on the available estimates o;_; and ;_;, the manager sets
pi (hopefully by methods suggested below) and observes the demand ¢;. From (1),
we can rewrite the model as y, = log(¢;) = o+ Bp; + €. To simplify notation and
allow easy generalization of results we write y; = €'z, + ¢;, where z;, = [1 p;]' and
the covariance of the estimates of regression parameters as o?FP, where P, is an

explicit function of the prices up to and including decision epoch t.

Using properties of the normal distribution and the fact that the normal prior
is conjugate to the normal distribution, we can easily derive the posterior distri-

bution of the parameters a and 3 using standard methods. It has been widely



established (see, for example, Harvey, 1994 or Fahrmeir and Tutz, 1994) that the
parameters of the posterior distribution are related to the parameters of the prior
distribution through the recursive equations which can be expressed in matrix and

vector notation as

O = 011 + Pz Fy [y — 011 24) (3)
P, =Py — P12, F] %Py, (4)
F, = 2P, 12z, + H,, (5)

where, in our model H; = 1 and all other quantities are defined above. At time
t, the variance of the estimate (3; is given by O'QPt,Q’Q, where P, 59 is the second
element in the diagonal of P,. Therefore, at the end of period ¢, after observing
¢;, we have updated estimates a; and f; for the parameters. These equations are
referred to as the Kalman Filter. They were originally developed in an engineering
context for a different purpose and are widely used in time series analysis and

control theory.

2.2 Choosing a Price

We investigate the trade-off between optimization and learning by focussing on the
case where we have observed the demands {¢ : ¢t = 1,...,T — 2}, corresponding
to the sequence of prices {p; :t =1,...,T — 2}, and now we seek to maximize the
expected revenues in the last two periods E[Ry_1(pr-1)] + E[Rr(pr)]. This can
be formulated as a two-period dynamic program; our analysis is motivated by that
observation. At the beginning of period t = T'—1, the information for 6 is provided
by the estimate fr_o which is normally distributed with mean # and covariance
matrix o2 Pr_,. After fixing the price pr_; and observing ¢r_;, we update 67_, and
Pr_, using the Kalman filter recursions (3) - (5). At the last period ¢ = T, learning
has no subsequent benefit so the manager should choose a price in that period to
maximize immediate expected revenue in period 7. Using simple calculus, the

optimum price, considering the estimate Sr_1, will be pp = —1/67r_;.

The estimate Gy, will be normally distributed with variance 03 = 0°Pp 1 35.
Here Pr_1 59 denotes the coefficient of the matrix Pr_; in the 2nd row and 2nd

column. Because 37_; is subject to estimation error, we expect the optimum price



pr = —1/pr_1 to deviate from its true optimum —1/3. Therefore, we may antic-
ipate some loss in the revenue at time 7' given the uncertainty about (. For an
estimate (p_q, if we use the rule py(fr_1) = —1/Br_1, the expected revenue in
the last period can be written as

L essraten) = gy L
/BT—I /BT—I

Ry(pr(fr-1)) = E eloh/br=1), (6)

where the expectation above is taken with respect to the noise er. Obviously
R.(pr(Br—1)) is maximum when fp_; is the true value 5. Theorem 1 below pro-
vides an approximation for the expectation E[R; (pr(fr—1))] based on a Taylor
expansion. The proof is presented in the Appendix and generalized considerably

in Section 3.

Theorem 1 Suppose that the price in period T is set equal to pyr = —1/P7 1.

Then the expected revenue in period T can be approrimated by

1 Mete—D)
B[R (pr(Br-1))] = Ry(pr(B)) + 57012#_1 +0((T—2)?), (7)

where the expectation above is calculated with respect to the distribution of the

random variable Br_q.

One of the crucial assumptions in Theorem 1 is that the sequence of prices {p;,
Pa, - .., pr—o} is non-random, or, if it is random, the dependence between p, and
Perk vanishes as k — oo. In practice, when the prices are updated recursively, this
hypothesis does not necessarily hold. The implications of violating this assumption

will be discussed in Subsection 4.2 and in Section 6.

Based on the result above, the expected loss at period 1" associated with the
uncertainty in Sy_; can be approximated by

1 Mele=t)
_§T06T*1 > 0. (8)

At the time t = T'—1, the fixed price pr_1 will affect not only the immediate return
R(pr_1) but will also affect the variance of (7_1, O'Z)T_l = O'%T_l(pT_l). Therefore,

we can choose the price py_; that maximizes the expression

1 Meloe—D)

FT—l(pT—l) = pT—leapr*lM + 57012%71(1%—1)7 (9)



which explicitly shows the trade-off between learning and maximization at time
t = T — 1. Note that (9) involves the parameters a and 3, which are exactly
what we want to estimate, but in computation we replace them by their current

estimates.

When the managers seeks to maximize revenue in an horizon exceeding 2 peri-
ods, writing down expressions equivalent to (9) is not an easy task and the dynamic
programming formulations become quickly intractable. However, as a result of (9)
and general observations about the growth of value functions over time, we propose
a simple heuristic pricing policy, hereafter referred to as one-step-ahead strategy,
to optimize the the total expected revenue over longer horizons. In this case, the
one-step-ahead policy consists of choosing the price p;, at each time period ¢, that

maximizes the objective function

G(t) My e telo-1)

Ft(pt) — pteat71+ptﬂt71 M, |+ -
2 Bi

a5, (pe)- (10)

Note that we replaced the unknown regression coefficients a and ( by their avail-
able estimates oy 1 and ;1 at the beginning of period t (before observing the
demand ¢;). Analogously, M; ; = e”gfl/z, where o7 | is the estimate of 02 at the
beginning of the period ¢. The first term in the objective function above corre-
sponds to the immediate revenue maximization, while the second term corresponds
to maximizing the information (minimizing the variance) about the model param-
eters. We include a multiplicative term G(t) in the second expression to reflect
the time remaining in the planning horizon. For a finite horizon 7', we can make
G(t) a decreasing function in ¢, with G(T') = 0, since we do not have to learn
anymore at the last stage. We can assume, for example, a piecewise linear form
G(t) = (T. —t) for t < T., and G(t) = 0 when ¢t > T,, where T, does not necessar-
ily equal the horizon T'. Alternatively, we can use an exponential decaying form
G(t)=Ke ' — Ke K7 for t < K, and G(t) = 0 when t > K.

3 A Formal Analysis of the Trade-Off between

Optimization and Learning

We now provide a formal treatment for the trade-off between optimization and

learning for an arbitrary parametric model, generalizing the results in the previous



section. The treatment here covers for example the binomial demand model in
Carvalho and Puterman (2005). This Section focusses on the case where we have
only two periods to go before the end of the sales season. Section 4 considers the

general N period model.

Similarly to Subsection 2.2, assume we have observed the responses {¢; : t =
1,...,T —2}, for the sequence of prices {p; : t =1,...,T —2}, and now we seek to
maximize the expected revenues in the last two periods E[Ry_1(pr—1)]+E[Rr(pr)].
At the last period t = T, we are not interested in further learning, because there
is no future to consider. Therefore, the price is set to optimize the revenue at
period T'. Recall that for the log-linear model in this paper, the optimum price,
considering the estimate (r_;, will be pr = —1/87_1. The optimum price at
period T" does not necessarily depend on the entire unknown parameter vector ¢,
but only on a sub vector §. We will write the vector ¢ as ¥ = (#', ¢')’ € RF x R/,
K,J > 1, where the optimum price at period T can be written p; = p*(6). In the
log-linear model, § = 3 and ¥ = (o, 3,0?)". For the binomial demand model in
Carvalho and Puterman (2005), § = (a, )" and ¥ = (o, 3, ). The optimum price
at epoch decision T is given by pr = p*(ar_1, Br_1), with p*(ar_1, fr_1) satisfying

p* (aT—la ﬁT—l) = arg maxp>0[p 604T—1+ﬁT—1P]/[1 + eaT—l‘HBT—lp]‘

At the beginning of period ¢t =T — 1, the information for 6 is provided by the
estimate 07 o, whose distribution, under certain regularity conditions (see Section
4), is approximately normal with mean 6 and covariance matrix X7 o. After
fixing the price pr_; and observing ¢r_;, we obtain the updated estimate 6;_1,
with covariance matrix ¥7_;. Because the 6;_; is subject to estimation error,
we expect the optimum price pr = p*(6r_1) to deviate from the true optimum
p*(0). Therefore, we may anticipate some loss in the revenue at time 7' given the
uncertainty about 6. For an estimate 6p_y, if we use the rule py(07_1) = p*(67_1),

the expected revenue in the last period can be written as

R (p*(0r-1)) = E|p*(0r-1) X q(p"(0r-1), €r;9) |, (11)

where the expectation above is taken with respect to the noise er. Obviously
R (p*(07_1)) is maximum when 67 ; = . Theorem 2 below provides an approx-
imation for the expectation E[R;(p*(6r—1))] based on a Taylor expansion. The

proof follows the same steps in the proof of Theorem 3, and will be omitted.



Theorem 2 Given the uncertainty in the parameter estimate Op_1, the exrpected

revenue at period T, for the price pr = p*(6r_1), can be approzimated as

E[R7(p"(0r-1))] = Rr(p*(0))
+ %traee 89T_1891T71R}(p*(07’,1)) XET,1 + O((T — 2)72),

Or_1=0

where the expectation above is calculated with respect to the random variable Op_.

Based on the result above, the expected loss at period T associated with the

uncertainty in #7_; can be approximated by

Ry (p*(0)) — E[Ry(p*(0r-1))] =

1
- itrace Oor_, 09, R (p*(07-1)) XY 1.

Or_1=

(12)

At t = T'—1, the fixed price pr_; will affect not only the immediate return R(pr_1)
but will also affect the covariance matrix Yo = X1 (pr_1) of parameter estimate

Or_1. Therefore, we can choose the price py_; to maximize

Fr_i(pr—1) = Rp_y (pr-1)
1 o (13)
+ §trace anglag/T_lRT(p (GT—l)) XET—I(pT—l) .

07— 1=0
Note that the first term in the right-hand-side of (13) represents the expected
revenue in period T — 1, while the second term is related to the potential future
revenues due to more precise parameters estimates. We may choose a price pr
which not necessarily provides the maximum revenues at the current period 7'—1,
but implies a reduction in the covariance matrix Y7 _1, reducing the average revenue

loss in the last period t = T.

Equation (13) extends the representation in (9) to a general framework. In
fact, for the log-linear demand function, the expected revenue R}, (pr_1) at period
T—1, for price pr_1, is given by R:_, (pr_1) = pr_1e®+PP7-1 M. Besides, p*(07_1) =
p (Br-1) = =1/Br—1, Rp(p*(0r-1)) = —ﬁMea_ﬂ/ﬂT” (recall that 67 = fr_1),
and

Meo—1
proa=p PP

0o, Opy,_, B (0" (0r-1)) =03, , By (0" (Br-1)) (14)

Or_1=0



For the derivation of (14), see the proof of Theorem 1 in the Appendix. Finally,
Yp_1(pr—1) = 0},_, and we obtain (9) from (13).

The objective function in (13) may be used not only to explain the trade-off
between revenue optimization and demand learning, but it also can be employed
in practice to provide algorithms for dynamic pricing setting when the demand is
unknown. Similarly to equation (9), equation (13) involves the parameter vector
6, which is exactly what we want to estimate. When implementing the algorithms
in practice, we can replace it by its current estimate, as suggested in Section 2.2.
The consequences of replacing 6 by its estimate will be addressed in Subsection
4.2 and Section 6.

4 The general multiperiod problem

In this section, we give a formal treatment for the general problem of learning
and optimization when we have more than two periods to go. Remember that the
demand ¢, is governed by a parametric probabilistic model, indexed by the true
parameter vector ¥ = (0, ¢') € RExR’, K, J > 1, with (#', ¢’)’ unknown. We can
write ¢; = q(p, €;), where ¢, t =1,2,...,T, are independent random innovations.
The decision maker has to fix the price p; at period ¢t in order to maximize the
immediate revenues and gather more information about (¢, ¢’)" at the same time.
Assume that his decision depends on the estimate 6;_; of 6§ and on the covariance
matrix 3; ; of 6; ;. In the log-linear model above, § = 3 and ¢ = (a 0?)’, and
in the binomial demand model § = (o ()" and ¢ = A. The policy the decision
maker will use is based on the specific rule p;, = hy(6;_1,%;_1), so that the sum of

expected revenues from period ¢ to the final period 7" is given by

T
Vi(he(O1=1,S121)) = Ri(he(0r—1,S0m1)) + Y Ri(pelhe(01=1,Si21)),  (15)
k=t+1

where Ry(hy(0i—1,%-1)) = E¢,[q(he(04—1,%:-1),€)] is the expected revenue at pe-
riod ¢, with expectation corresponding to the noise ¢;. Similarly, R} (pg|ht(6i—1,X¢-1))
is the maximum expected revenue at time k, k =t+1,...,T, given that the price
pe = hy(6,_1,%;_1) is chosen at epoch t. We assume that rule p, = hy(6;_1,3;_1) is

unbiased, according to the definition below.



Definition 1 An optimization policy p, = hy(6; 1,%; 1) is called unbiased if the
value function at period t, Vi(hy(04_1,%4_1)), is mazimum when 6,_; = 0 (true

parameter) and ¥, 1 = 0.

In the next two subsections, we provide a discussion about the optimiza-
tion/learning solutions to the dynamic problem in (15). Initially, we treat the
case where the retailer wants to set the price at time ¢, in order to optimize the
present and future revenues, provided that the information available at the begin-
ning of ¢ is based on a sequence of fixed prices {py : k = 1,...,t—1}. We will refer
to this analysis as static solution, because it only applies to the optimization at a
specific period ¢, given that the previous prices are fixed. If we repeat the same
solution at period t 41 for example, the analysis in Subsection 4.1 will not be valid
anymore, because p;, in the history {p; : £ = 1,...,¢} will be a random variable,
as will be discussed in Subsection 4.2. Nonetheless, Subsection 4.1 provides the
basis for the more realistic analysis in Subsection 4.2, where the sequence of prices

{pr: k=1,...,t} is random.

4.1 Static solution based on fixed prices

Initially, we will consider the optimization/learning problem at period ¢, where the
retailer has to fix the price p; in order to maximize the present and future revenues,
based on a sequence of fixed prices {py : k = 1,...,t — 1} and on a sequence of
observed demands {q; : £k = 1,...,t — 1}. A discussion about the implication
of relaxing the hypothesis of fixed previous prices is discussed in Subsection 4.2.
After setting the price p; and observing the demand ¢;, the retailer obtains the
estimate ; with covariance matrix ;. We will assume that both the bias and the
covariance matrix of the estimator 6; are of order O(t™'), so they go to zero at
rate t~'. This is normally the case for usual estimators in parametric models (the
reader can refer to Lehmann, 1999, pp. 233, for more details). After obtaining
0;, the retailer fix the price p;1 according to the policy py1 = hyy1(0, X4). Be-
cause 0 is a random variable, so is Vi1 (hi11(6;, %)), and from the distribution of
hi1(0:, %) it is possible to find the distribution of Vi (hy1(6:, %)), To derive
the price decision at epoch t, consider the following theorem, which provides an

approximation for the expectation FEy, {Vii1(hsi1(0s, X))} of the value function,



based on a second order Taylor expansion. The proof is provided in the Appendix.

Theorem 3 Consider the optimization/learning decision at time t + 1 based on
the decision rule pi1 = hyy1(0y, 1), where 0, is the estimate for 0 and ¥, is the
corresponding covariance matriz, based on the prices pi,pa,...,p;. Assume that:
(A) the prices pi,pa, ..., py are nonstochastic;

(B) the policy pry1 = hyy1(0;, %) is unbiased;

(C) the function Viyq(hiy1(0i,24)) is twice continuously differentiable at 6; = 0 and
¥ =0;

(D) the estimator 6; has both bias E{Ht — 9} and covariance matriz X, of order
o).

Then, we can write the approrimation

Egt{w+1(ht+1(0t’ Et))} = Vip1(hi41(6,0)) + %trace[EtAtJrl] +O((t—1)7%), (16)

where

Ay = [aetaagvtﬂ(htﬂ(@t, %))

6t:0]. (17)

If 0 is real, the second term in the right-hand side of (16) becomes

1 1
itrace[EtAtH] = 3 [3§t‘/}+1(ht+1(9t; )

2 18
9t9:| Oat’ ( )

where o, is the variance of ;. This is the case for the simple log-linear model in
Section 2. Because of the unbiasedness assumption for the rule h; 1(6;,%;), the
value function Vi yq(hiy1(6;,0)) is concave at the true 0, and the expected loss in
terms of total expected revenues, given the uncertainty (variance) in the estimate

f;, can be approximated by

Lt+1 = ‘/;5+1(ht+1(9, 0)) — E,gt{V}H(htH(Gt, Et))} = —O.5trace[EtAt+1]. (19)

The loss Lyyq given in (19) depends on the covariance matrix of ;, which depends
on the prices from period ¥ = 1 up to k& = t. Therefore, the pricing problem
at epoch ¢ can be solved by choosing the price p; that maximizes the objective
function

Gy = Ri(p;) + 0.5trace[X;(py) A1) (20)



In equation (20), we wrote ¥; = ¥4(p;) to make explicit the dependence of ¥; on

the price set at epoch ¢. If § € R, we can rewrite (20) as

G, = Ri(p)) + 0.5 agtwﬂ(hm(at,zt))‘ }agt(pt). (21)

The inclusion of a discount factor v € (0,1) in the analysis can be accommo-
dated by replacing (15) and (20) by

T
Virr(h1(02,50) = Reca(hesa (0, 50)) + Y 4P Ry (el hesa (6, 50)  (22)
k=t+2
and
Gt = Rt(pt) + 0.5’ytrace[2t(pt)At+1]. (23)

Equations (20), (21) and (23) provide the solution for the trade-off learning
versus optimization at time ¢, assuming the prices p,...,p, 1 are fixed. Even
when p; is random (it may depend on the previous estimate (6, ;, @} ;)’), the ap-
proximation (19), for the expected revenue loss, is still valid, since the importance
of p; in the sequence {p1,...,p; 1,p;} vanishes as t — co. Subsection 4.2 presents
a further discussion for the issue of nonstochastic versus random prices. Section 6
discusses the reasons why the one-step-ahead pricing policy is still valid even when

the prices are random.

For general parametric forms for the demand function ¢, it is possible to write
down the variance of 0, as a function of p;, given the history py,...,p; 1. Therefore,
the only term missing in the implementation of the static solution at time ¢, based
on (20) or (23), is the matrix A, of second partial derivatives of the value function
Vit1(hir1(0;, %)) at the true . In Carvalho and Puterman (2005) and in Section 5,
heuristic approximations based on piecewise linear and exponential decaying forms
for G(t) are employed. Similarly to Carvalho and Puterman (2005), the simulations
in Section 5 suggest the validity of the one-step-ahead pricing strategy.

4.2 Dynamic solution based on random prices

The optimization/learning solution at time ¢ discussed in the previous subsection
assumes that sequence of prices {py : k = 1,...,t — 1} is fixed. However, the

objective functions in (20) and (23) are also functions of the unknown parameter



vector (€', ¢")’, and to find the optimum price p;, we have to replace (€', ¢')’ by its
estimate (0;_,,¢}_;)". Therefore, the price p; chosen by maximizing (20) or (23)
will also be a function of the estimates (0;_;,@}_,)’, which are random variables
depending on the history of the random sequence {qx : k = 1,...,t—1}. It implies
that the price p; is also a random variable, and the sequence {pi,...,p; 1,p:}
now contains ¢ — 1 fixed elements and 1 random component. This fact does not
invalidate the approximations based on Theorem 3, since the importance of the
pair (ps, ;) in the estimate 6;, and its covariance matrix ¥, vanishes as t goes to

infinity.

If we employ the optimization rule recursively, by maximizing the objective
functions (20) or (23), at periods k = ¢ to k = T, with (¢',¢')" replaced by
(0)._1, Px—1)", the whole sequence of prices py,...,pr is random. Therefore, the
importance of the random prices on the sequence {p, : k = 1,...,t — 1,t,...,s}
increases as s becomes large relatively to t — 1. In reality, because we want to
find a solution to the optimization/learning problem from period ¢t = 1 to period
t = T, the whole sequence of prices {p; : t = 1,...,T} will be random, assuming

!, The randomness of the price sequence

the initial estimate (6, ¢p)’ is random
compromises some of the hypothesis in Theorem 3. In fact, as will be discussed in
Section 6, the estimator 6; presents a bias E{6; — 0}, which does not go to zero as ¢
increases. Fortunately, although the assumptions in Theorem 3 do hold anymore,
Subsection 6.2 presents arguments to show that a recursive policy based on the

sequential optimization of the objective functions (20) or (23) may still be valid.

The dynamic pricing algorithms based on the maximization of the objective
function in (20) and (23) can be viewed as an adaptive control problem. In a general
adaptive control model, the control variable z; (p; in our case) is derived from a
control law z; = f(6;_1) which assumes that 6, ; is an estimate for the unknown
parameter # based on a sequence zq,...,z;_; assumed fixed. However, because
x1,...,%; 1 are not random and depend on the previous estimates 6y, 61, ...,60; o,
the estimator #; does not converge in probability or almost surely to the true
parameter vector 6, as discussed in Campi and Kumar (1998), Chen and Guo
(1988), Kumar (1990) and Sternby (1977). Subsection 6.1 extends this discussion

to the log-linear demand model discussed in Sections 2 and 5.

!Even if the initial estimates are not random, they will eventually be random for some small

t, so that the general conclusions remain the same.



5 Monte Carlo Simulation

In this section, we present and discuss results of an extensive Monte Carlo sim-
ulation that investigates the performance of the one-step ahead policy and other

heuristic pricing strategies. We begin with a discussion of the simulation setup.

5.1 Simulation Design

We describe the classes of price selection rules that will be compared in the simu-

lation study.

1. Myopic rule. The simplest strategy is the myopic rule, which at each period ¢
sets the price p, = —1/,_1, where 3;_; is the most recent estimate of the regression
slope. We will see that this strategy produces prices which get "stuck” at a level

far away from the optimum p* = —1// and do not benefit from learning.

2. Muyopic rules with random exploration. An alternative to the myopic rule
is to choose the optimum price p, = —1/3,_1 with probability 1 — 7, and choose
a random price with probability 7, (Sutton and Barto, 1998). Because learning
is more important at initial periods, we let 17, — Ky when ¢ — o0, where K|
equals zero or a very small value, in the case we wish to continue experimenting
indefinitely. We used an exponential decay function, 7, = K, + K;e X2, with
different values for the parameters Ky, K; and K,. Some care must be taken
here, because when implementing the proposed methodology in practice, prices
must be chosen in an economically viable range. Further, since the proposed
parametric model is only an approximation for the real data generating process,
the approximation may be reasonable only for a limited range of prices. In light of

this when learning, we choose random prices periods from a uniform distribution

on a pre-specified interval [p;, p,].

3. Softmaz exploration rules. An alternative to the myopic rule with random
exploration is to use the softmax exploration rule described in Sutton and Barto
(1998). The basic idea is to draw, at each time period ¢, the price p; from the
distribution with density

f(pt) x exp{[pteatfl+,3t—1pt€0—t2—1/2]/7—t}’ (24)

with 7, — 0 as ¢ — oo. The density in (24) has a single mode at —1/4;_; and,



as 73 — 0, it becomes more concentrated around the mode, so that, in the limit,
we only select the price p, = —1/3;_1, and the softmax rule becomes equivalent to

the myopic policy. The same way as before, we used 7, = K + K;e X2!.

4. Optimal design rules. Another approach to price selection is to choose
a "statistically” optimal design in terms of model estimation during the first C
periods, and then apply the myopic rule for the rest of the process. We may think
of this as acting as a ”statistician” from ¢ = 1 to ¢t = C, and as an ”optimizer”
fromt =C +1 tot =T. Therefore, for t =1,...,C, we select p; = p, if t is odd
and p, =p, if tiseven. Fromt=C+1tot =T, we use p, = —1/5; 1.

5. One-step look ahead rules. Less arbitrary strategies are based on the one-
step ahead rule, which explicitly account for the trade-off between learning and
revenue maximization through (10). As noted in Section 2, we use functions G(t)
with piecewise linear, G(t) = max{T, — t,0}, and exponential decaying, G(t) =
max{Ke ¥ — Ke %7 (0}, functional forms. Alternatively, to overcome the lack of
consistency of the ordinary least squares estimator, discussed in Subsection 6.1, we
also simulated modified versions of the one-step ahead rules, by performing random
exploration with constant probability 7, = 0.01. Similarly to the myopic policy
with random exploration, at the exploration stage, the prices p; were drawn from
a uniform distribution on [p;, p,]. We refer to these strategies as unconstrained
one-step ahead rules (to differentiate from the policies described below) or simply

one-step ahead rules.

6. Price constrained one-step ahead rules. Figure 4 below shows that the prices
vary considerably at the beginning of the process, in order to allow for faster
learning. In practice, a manager may wish to avoid such abrupt price changes.
We explored this possibility by imposing a limit on period to period price changes.
Given the price p;, the price p; 1 at decision epoch ¢ + 1 is restricted to be in the

interval [p; — 0.25py, py + 0.25p,].

In all the above policies, we restricted the prices to be within the range [p;, p.].
Therefore, if, at a certain period ¢, the calculated optimum price is p; > p,, we used
Pr = Pu. Analogously, if the calculated optimum price is p; < p;, we used p; = py.
In the different policies described above, we tried different values for Ky, K;, Ks,
C, T., K and p, and the results reported here correspond to the configurations

providing the best performances.



For all the strategies described above, the Kalman filter updating equations (3)
- (5) require initial values 6y = [ag (o]’ for the regression parameters § = [ (]" and
for the matrix F,. Besides, all strategies except the optimum design rules require
an initial value [y to set the price p;. To avoid any bias related to wrong prior
information, we assumed that we had information from two previous data points
[log g_2 p_s] and [log q_1 p_1]', with logq_; = a+Bp_;+e_;, e_; ~ N(0,02),i=1,2
2. Avoiding bias in the initial values is particularly important when studying the
bias in the ordinary least squares estimator. If incorrect prior information were
used, one may argue that the bias observed in the estimates Bt is due to this initial

misleading set up.

Based on the discussion above, we set the initial matrix Py = (Z',Z_1)7,
for Z_; a two by two matrix, Z_; = [[1 p_,]',[1 p,l]’}’, with p_o and p_; the
same for all simulation replicates. The vector dq is equal to (2,7 1)"'Z" Y 4,
with Y_; = [logg_» logq_;|'. Note that, although ¢ is a random vector, it has
expectation equal to the true vector 6 and covariance matrix equal to 02 P,, so that
we are not biasing the conclusions due to wrong priors. In the simulation results
presented in this paper, we fixed p_5 = p, and p_; = p;. We also tried other values
for p_, and p_y, but the conclusions remained the same. It is important to mention
that all the rules considered in the simulation, including the ”optimal design rule”,

benefited from the fact that we used correct information about d; and F,.

Specifically for the one-step ahead strategies, we need, at each decision period ¢,
t=1,...,T, an estimate for the variance o2. Because the prior information for o
will affect only the one-step ahead strategies, we decided not to worry about wrong
initial values for of. The idea of having two extra data points [logq 5 p_»]' and
[logq 1 p_1] does not provide enough degrees of freedom to estimate o2. Therefore,
at time ¢ = 1, the one-step ahead rule was based on 02 = ¢?/2 (wrong prior).
After fixing the price p; and observing log ¢;, we have three data points in total,
what makes it possible to obtain the first estimate o7, used at the decision epoch
t = 2. In fact, for ¢ = 1,...,T, we can use the ordinary least squares estimator
o = tléca+éor + S €], where &, = yp — oy — Bipp, k= —2,-1,1,...,t. To
evaluate the effect of the choice or prior oZ, we also performed simulations with

os = 202, but the general conclusions did not change.

2We used the indices p_» and p_1, instead of p_; and pg, to make explicit that the information

is available before the first decision period ¢t = 1.



To compare these different strategies, we performed L = 10,000 simulations

for each policy and computed the cumulative revenues in each simulation
t
CR(t)=> Ri(ps), t=1,...,T. (25)
k=1

The expected cumulative revenues can then be estimated by the sample means

Lt

B[CR(1)] = %Z > () (26)
By plotting the path of E[CR(t)] against ¢, ¢t = 1,...,T, we gain insight into
how these different computational strategies perform. In general, we focus on
maximizing revenues in short planning horizon (7" = 100 or 7" = 200). On the
other hand, it is interesting to look at the path of other measures as ¢ tends to
infinity. The sample paths for the estimate [3;, for example, provide insight into the
long run convergence of the model parameters under each of these computational

methods.

5.2 Simulation Results

The simulations show that the unconstrained one-step ahead rules provide greater
mean cumulative revenues E[CR(t)] than the other strategies. Figure 1 provides
a comparison of a selected one-step ahead rule in which G(t) is piecewise linear,
and the other rules. A comparison between several one-step pricing rules is shown

in Figure 2.

For these simulations the parameter values are set to a = 8.0, f = —1.5 and
0? = 5.0. The optimum price in this case is p* = 0.667, which implies that
the maximum mean cumulative revenues equal to 8,906.5, when p, = p* for all
t = 1,...,7. The minimum allowed price was p; = 0.167 and the maximum

allowed price was p, = 3.00.

After 100 periods, by using the one-step ahead rule we obtain a relative gain of
at least 3.7% over all the none one-step ahead rules. This relative gain is equal to
3.0% after 200 periods and equal to 2.4% after 400 periods. Note that the myopic
rules performed poorly by getting "stuck” at a price level away from the optimum.
The policies with optimal statistical design at the beginning of the pricing pro-

cess perform better than the policies with random exploration (myopic rule with



random exploration and the softmax rule) during the initial periods. However, as
the random exploration policies keep learning about the model parameters, they

eventually outperform the statistical design rules.

Comparing the mean cumulative revenues for different pricing policies
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Figure 1: Comparison of expected mean cumulative revenues for several pricing
policies (optimal expected revenue per period under known parameters values is
8,906).

Figures 1 also displays the mean cumulative revenues for a one-step ahead
policy with price change constraints. At each time period ¢ € {2,...,T}, the
prices were chosen by maximizing the objective function in (10) with the restriction
Pir1 € [pr — 0.25p;, py + 0.25p;]. At the initial period ¢t = 1, the price was only
restricted to be within the interval [p;, p,]. We considered piecewise linear G(t) with
T. = 170 (fast learning) and T, = 70 (slow learning). To simplify the presentation,
the results for the slow-learning case are shown in Figure 2. Although none of the
other rules had price change restrictions, the constrained one-step ahead policies
still presented a superior performance when compared to the rules other than the
one-step ahead ones. As we already expected, the one-step ahead policy with fast
learning performs better than the one of slow learning methods after some initial
periods. To validate the analysis, we performed other simulations with different
choices of model parameters, and minimum and maximum allowed prices, and the

conclusions remained the same.



Figure 2 presents the mean cumulative revenues for the six one-step ahead
strategies studied here. Note that there does not seem to be any significant dif-
ference between the four unconstrained policies. For ¢ < 400, the rule with expo-
nential decaying G(t), without random exploration seems to slightly outperform
the other ones. For ¢ > 400, the policy with piecewise linear G(t) and random ex-
ploration with 7, = 0.01 presents a somewhat better performance than the others.
By imposing the price change constraint, the relative loss in the one-step-ahead
policies is not higher than 1.2% after 100 periods, 1.4% after 200 periods, and 1.0%
after 400 periods.

Comparing mean cumulative revenues for one—step ahead policies
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Figure 2: Expected mean cumulative revenues for several one-step ahead policies

(optimal expected revenue per period under known parameters values is 8,906).

In Figure 3, we plot the mean paths of the estimated slope [, for the different
strategies. We observe that all strategies produce biased estimates of 3 for all
t =1,...,1000. This effect is real and is supported by theory. The reason for this
will be discussed in Subsection 6.1. However, for the myopic rule with random
exploration and the one-step ahead rules with random exploration, the bias tends
to go to zero, as t grows, what was already expected based on the discussion about
adaptive control with random perturbation presented in Subsection 6.1. An addi-
tional strategy, which sets random prices at all periods t = 1,...,1000, was also

simulated and produced unbiased estimates for 3. However, its revenue perfor-



mance was very poor, since it never uses the produced estimates for optimization
purposes. For the one-step ahead policies, the bias is quite significant. However,
because of asymmetry in the revenue function, the loss incurred by a negative
bias is not as harmful as that incurred by a positive bias. This phenomenon has
been previously observed in the inventory literature as for example by Silver and
Rahnama (1987).

Comparing the estimated slopes for different pricing policies
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Figure 3: Mean estimates for the slope coefficient 3 in the log-linear model.

Finally, Figure 4 shows the mean paths of selected prices for some of the differ-
ent strategies. For almost all the policies, the prices get stuck at a fixed level after
80 periods. For the myopic rule with random exploration, although the prices
are set initially in a level above the optimal price p* = 0.667, they tend to ap-
proach p* as t grows and there is more exploration about the true slope value.
For the one-step ahead rule specifically, the prices tend to go up and down, with
the variations around p* decreasing as more information is added. It illustrates
the idea behind the one-step ahead policies: as more information is obtained, the
marginal value of extra information decreases and the algorithm values more the
maximization of immediate revenues. Note that, although the estimates [(; are
biased, as shown in Figure 3, the mean prices in the one-step ahead policies con-

verge to levels very close to the optimal price p* = 2/3. This can be explained by



the nonlinearity in the function p, = —1/6; 1, so that E[p;] # —1/FE[3;_1]. For
the two constrained one-step ahead policies, note the smoother evolution of the
chosen prices, when compared to the price paths for the unconstrained one-step
ahead rules. The constrained one-step ahead policy with fast learning presents
a higher price variation during the initial periods than the constrained one-step
ahead policy with low learning. This fact was already expected, given the higher
weight for the learning component (second term in the right-hand-side of equation

(10)) in the fast-learning case.

Mean path of chosen prices for different policies
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Figure 4: Comparison of chosen prices for several policies (optimal price p* =
1/1.5).

6 Random Prices and Estimation Bias

This section focuses on two important technical issues that underlie the observed
bias of the regression parameters in the previous section and the derivation of the
Taylor series expansion which is the basis for the one step ahead rules in Sections
2, 3 and 4. Initially, we discuss the source of bias in the sequencial parameter
estimates. We then present a discussion for why the one-step-ahead policies are

still valid, even in the presence of estimate bias.



6.1 Bias in Parameter Estimates 0

We now discuss why the estimates of the regression parameters may be biased
when prices are chosen adaptively. This phenomenon was observed in Figure 3
which showed that estimates of the regression parameter [ did not converge to

their true value.

To understand the reason for the bias of Bt, the estimate of  based on ¢ ob-
servations, consider the usual ordinary least squares estimator 6, = (Z]Z,)~' Z!Y;,
where Z; is the t x 2 design matrix [[1 p1|', [1 p2), ..., [1 p]'] and Y is the ¢ x 1 re-
sponse vector [logq; logqs ... loggq]'. Although the parameter vector § = [« 3" is
recursively estimated with the Kalman filter, given the choice of prior N (&, 02P,)
employed in our simulations, the resulting estimate &, is numerically equivalent to
the ordinary least squares (OLS) estimator (Z;Z;)~'Z]Y;. According to the classi-
cal regression analysis theory (see Draper and Smith, 1998) when Z, is fixed, the

expected value of ¢ is equal to

E{} = E{(Z,2))"' Z}Yi} = (Z,2) 7' ZiE{Y}} = (Z,Z)) "' Z/E{Z6 + v}, (27)

where v, = [e1 €5 ... &]'. Because E{v,} = 0, we conclude that E{5,} = ¢, and

hence 5,5 is unbiased for fixed Z;.

As we discussed above, the sequence of prices pi,...,p; is usually random,
and hence the design matrix Z; is not fixed. Therefore, the classical theory for
OLS estimation is not valid in this case specifically, and we cannot ensure the

unbiasedness of d;. Besides, following the same derivation in (27), we have

E{} = 6+ E{(Z2,) Ziwi}, (28)

and if Z; and v; were independent, it is easy to show that the second term in (28)
would be zero and the OLS estimator would be still unbiased. However, because
the price p, set at period k£ depends on the estimate Sk,l, and the estimate o,
depends on the history of disturbances €1, ..., €,_1, we conclude that the p; depends
on€q,...,€e;_1. Therefore, the random variables Z; and v; are not independent and
we cannot guarantee that E{(Z/Z,) ' Z/v,} = 0, so it is expected that 6, is biased
for finite t.

Although o, is biased for finite t, one may be interested in the behavior of o, as

t — oo. As is well known in the econometrics literature, when Z; is random, under



some regularity conditions, the estimate o, is strongly consistent (i.e., converges
almost surely) to the true parameter §, in the sense that 6 L5 5 as t — oo,
as discussed in White (2001). These conditions, interpreted in the context of the
pricing model, are that the random sequence of prices {p; : t = 1,..., 00} satisfies
a strong Law of Large Numbers and that there exists a A > 0, such that the
sequence of minimum eigenvalues A, of Z}Z; satisfies Apip, > Afort =1,...,00
with probability 1. However, for the one-step ahead rules the sequences of prices
{pt : t =1,...,00} does not satisfy either of these two conditions. In particular,
because Z; contains a column of ones and for each simulation replicate the prices
approach a constant value as indicated in Figure 4, the smallest eigenvalue of Z;Z,
converges to zero as t goes to infinity. Besides, looking at different sample paths
for different simulations (not shown here), the price level to which the sequences
of prices converges varies across the simulation replicates. Therefore, the Law of
Large Numbers does not apply to the price sequence. We conclude that the usual
conditions for consistency of the ordinary least squares estimator are not satisfied,

and we cannot guarantee that St L S ast goes to infinity.

Some of these issues have been addressed in the adaptive control literature
by Campi and Kumar (1998), Chen and Guo (1988), Kumar (1990) and Sternby
(1977) who show that the parameter estimates 6 L2 8., where 84 depends on
the random path of the state variable which in this example is the demand se-
quence {¢;}$°,. Further d,, # J. To guarantee the consistency of the estimates
5, to the true parameter vector ¢ in adaptive control problems Campi and Kumar
(1998), and Chen and Guo (1988) suggest the addition of persistent yet infrequent
random perturbations to the control law. These perturbations should be small
in magnitude and sufficiently infrequent, so that they do not incur a high extra
cost. Specifically for our dynamic pricing problem, the addition of random pertur-
bations can be accomplished by choosing the price p; according to the objective
function (10) with probability 1 — 7, and drawing p; from a uniform distribution
with probability n;, with 1, very low. Although the addition of the random exper-
imentation guarantees the consistency of 5,5, it does not improve the performance

of the one-step ahead rules over short horizons.

The use of biased parameter estimates also has some precedence in the inventory

literature as for example in Silver and Rahnama (1987).



6.2 Validity of the one-step-ahead rule

A crucial assumption in the derivations for Theorem 1 is that the sequence of prices
{p1,p2, ..., pr_2} is fixed, or, if it is random, the dependence between p; and p;
vanishes as £k — oo. However, if we employ the optimization rule recursively
by maximizing the objective function Ft(pt) in (10), at each period ¢, the opti-
mum price p; will be a function of the estimates ay_y, ;1 and o7 ;, which are
random variables calculated using the sequence of prices {p1,pa,...,p;1}. There-
fore, the price p; will also be a random variable and will depend on the sequence
{p1,p2,--.,pi—1}. If the initial estimate [y Bo OTQO]' is random, and we use the
objective function in (10) to recursively update the prices, the whole sequence
{p :t=1,2,...,T} will be random. The randomness of the price sequence com-
promises the derivation of Theorem 1. In fact, as discussed in Subsection 6.1 and
illustrated in the simulations in Section 3, the bias of 3, bias E{ﬁt — [}, does
not converge to zero as t increases. Fortunately, although the assumption of non-
randomness of {py, pa,...,pr} does not hold, the Taylor series approximation, on
which the one-step ahead policies are based, may still be valid. In this subsec-
tion, we give a informal discussion of why the one-step ahead rules work well even

though the assumptions on which they are based do not hold.

To understand the problems caused by the inconsistency of ét, consider the
following approximation, based on the Taylor expansion in (31), presented in the

proof of Theorem 1 in the Appendix.

E{Ry(pr(Br-1))} = Br(pr(B)) + 9pr_, By (pr(8)) E{Br— — 7}

1 (29)
+ 505, Ri(pr(B) E{[Br-1 — 5},

Because of the inconsistency of Gr_;, the term E{[ﬁT,l - 5]2} in (29) is not equal
to the variance fr_; anymore. In this case, we have E{[r_1 — (]} = MSEg,_, #
Var(fr_1), even for large T.. Therefore, the approximation in (29) can be rewritten

as

B{R}(pr(Br-1))} = Bior(3)) + 5, Ripr (8) B {571 — )
+ 50, Rilpr(9)MSEs, .

and the objective function to be maximized in the recursive pricing procedure



should be

G(t) My_jetelat-1)

Ft(pt) — pteat—lJrPtﬁt—lMt_l + -
2 Bia

MSEg, (p1), (30)

where o;_1, fi_1 and M;_; = exp[67_,/2] are the estimates for o, § and M =
exp[o? /2], based on the information available at the end of period ¢t — 1. We wrote
MSEs, = MSEg, (p:) to emphasize that the mean square error at the end of period
t depends on the price p,.

To implement the optimization/learning policy based on maximizing ﬁ’t(pt) in
(30), we need an expression for MSEg, (p;), which may be very hard to obtain
in explicit form. In Section 5, we implemented the one-step ahead rule in the
simulations by maximizing at each period ¢, t =1,...,T, the objective function in

(10), where we replace the unconditional MSEg, (p;) by the conditional o3, (p;).

In order to evaluate the approximation of the unconditional mean square error
MSEjg, (p:) by the conditional variance azt (pt), assuming fixed prices, we can use
the generated paths for 5;, t = 1,...,T, in the Monte Carlo experiment. Figure
5 presents the comparison between the mean 024, (p;) of the estimates for a3, (p1)
and the estimate RTS\E,@ (pt), for the unconditional mean square error MSEg, (p;),
obtained from the simulations. The upper graph in Figure 5 shows the evolution of
1\78\]3@ (p;) and 024, (p;) over time. Note that both decay at the same rate, although
the 02, (p;) is slightly higher than I\TSTEM (py) for all time periods. The lower graph
in Figure 5 show the scatter plot of @gt (p;) versus o2g,(p;). According to the
graph, there is an approximate linear relationship between these two measures.
Besides, the corresponding regression line has slope 1.0274, intercept -0.0527 and
R* = 0.9975. Therefore, the approximation MSEg,(p;) = K '03,(p,), with K
very close to one, is justified empirically. These empirical results suggest that
the objective function in (30) can be reasonably approximated by the objective

function in (10), used the simulations.

7 Conclusions

In this paper, we have prescribed and analyzed methods for setting prices in the
presence of demand function parameter uncertainty focussing especially on short

planning horizons. Our contributions are both practical and technical with each
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Figure 5: Comparing the mean of the variance estimates based on fixed prices to

the true mean square error.

of these aspects being important.

The key practical issue addressed by this paper arises from the fact that the de-
mand function is never known in practice!! Thus the prudent decision maker must
maker an explicit tradeoff between variance reduction and revenue optimization.
Theorems 1, 2 and 3 in this paper makes that tradeoff rigorous by using statistical

asymptotic theory to approximate the MDP value function.

Extensive simulations produce important managerial implications and deep

insights into the mathematical foundations of active learning.

The key managerial insights are:

e Myopic policies perform poorly for all planning horizons.

e Myopic policies plus occasional random price changes outperform myopic

policy over the long term but not over the short term.

e Active learning (such as the one step ahead rules) are better than all other



approaches over all planning horizons.

e It is possible to constrain price changes each period and still drastically
improve over myopic policies but of course, unconstrained policies produce

greater revenue.

The bottom line is that managers should use active learning and if its not pos-
sible, at least be willing to experiment with some price changes to learn about the
demand function. The methods in this paper suggest how to do this experimen-
tation and would have been of use to Intrawest’s management when it sought to

increase revenue by varying prices.

From a technical perspective we have observed that the adaptive rules lead to
biased parameter estimates. Even though the demand function is never estimated
accurately, active learning still produces good revenue streams. This also suggests
that one should consider biased parameter estimates when combining estimation
with optimization. Bias is present in all active learning (adaptive control). This
bias is due to randomness in both prices and noise. Under repeated simulations,
we would still get biased parameter estimates unless prices were fixed and the
only source of variability was the random disturbance in the demand function. We
have shown why this is the case and also why one step ahead methods still produce

excellent results.

The authors are investigating several extensions of this model.

e Empirically testing the methods of this paper in real or simulated markets.

e Including other explanatory variables in the demand function that might
be fixed (seasonal dummy variables, time trend, day of the week) or random
(competitor prices, market indicators) covariates. In particular, by regarding
the constant in (1) as market size, we can view a time trend as a changing
market size and investigate its implications on price choice throughout the

planning horizon.

e For low demand items, Poisson, binomial or other generalized linear models
may be more appropriate demand distribution models. A first step in this

direction is pursued in Carvalho and Puterman (2005).



e Allowing model parameters to change over time following a state space model

or a step-change model.

e Exploring enhanced price setting mechanisms that may yield higher revenues

or have reduced biased.

e Allowing for heterogeneity in markets by using mixture models (see, for ex-
ample, Jacobs, Jordan, Nowlan and Hinton, 1991, Hastie, Tibshirani and
Friedman, 2001, and Carvalho and Tanner, 2005), where we increase the
number of components as we observe more data. In this case, we expect that
the number of components or basis functions .J will be an increasing function

of the number of available observations t.

Appendix

Proof of Theorem 1. By using a Taylor’s series expansion for R}.(pr(-)) around

the true parameter 3, we have

Ry (pr(fr-1)) = By (pr(B)) + Op_, By (pr(8))[Br-1 — 6]
1
B Rilpr () 61 — B+ 0%, Ri(pr (9)[Brs — O
b2y, Rior () [Brr — 81
where 3 is located between ($r_; and /3, and 95, , denotes the r-th derivative with

respect to Br_;. Taking expectations with respect to the random variable (Gr_q,

we obtain
B{R3(pr(Br-1))} = Bipr(8)) + 05, Ripr (8) B {51 — )
45 Reor (D) E{Br1 — B} + 588, Bilpr(9) E{I6r — 51} (31)
b (0, Bior(B)Br 1 — A1),

The second term in the right-hand-side of (31) is equal to zero, provided that Gr_;
is unbiased for 4. The third term is equal to

S0 Bipr (BN E{ e — B} = L%, Ripe()Var{r 1]



The fourth term in (31) is equal to zero because 71 is normally distributed,
so the third central moment is zero. Finally, for the fifth term, employing Jensen’s

and Cauchy-Schwarz inequalities

B0}, Ry(pr(B) Br-1 — 011 < B0k, R (or(D)[Brs — 61"}
< B{|8},  By(pr(B)PY 2 E{[5r1 — 6P}

We can show that E{|95 _ Ry (pr(3))]*} = O(1), so it does not diverge as the

sample size (T — 1), used in the estimation of Oy i, goes to infinity. Besides,

Var[Br_1]7V?[Br_1 — ] ~ N(0,1), so that E{Var[Br_,]"*[8r_1 — B]®} = s, where
pg is the 8-th central moment of a standard normal random variable. We then

have E{[Br_1 — ¥} = Var[Br_1]*us, and therefore
| E{05,_, Rip(pr(B)[Br1 — A1} < E{10},_, Ry (pr(B)) P} *Var By pig”.

We know that, Var[fr_1] = 0?Pr_1 9.5, with Pr_; has the form (Z'Z)~", where Z is
the corresponding design matrix for the regression model in (1). If the magnitude
of the rows in the design matrix Z do not change as (T"— 1) goes to infinity, we
have Var[37_ 1] = O((T —2)7"), in the sense that it goes to zero at order (T —2)~!

when the sample size n goes to infinity. Hence,
|E{05,_ Ry (pr(8))[Br—1 — B} = O((T — 2)?),

and

E{R;(pr(Br-1))} = Ry(pr(B))
L8, Balr )l — )+ 0T )Y

By differentiating (6) twice with respect to fr_1, we have

B, Ri(pr(Br1)) = —2— expla — /Br1)

B
M M3?
+4— b exp(a— B/Br-1) — 5—5 exp(a — B8/6r-1),
Br_ Br 4
and
B Mele=1) 9

2 *
aﬂT,lRT(pT(ﬂTfl)) ﬂT—1:ﬂ_ 33 9Bp_1-



Therefore,

1 Mele=l)

B[R} (pr(Br-1))] = Ry (pr(B)) + 5 T +0((T-2)7?),

as we wanted to show. [

Proof of Theorem 3. Using a Taylor expansion around the point 6; = 0, we can

write the following approximation for the expected value of Vi, (hey (0, 32¢))3

Eo, {Vis1 (his1(01,0)) } =Via (husa (0, %))

+ [aegvtﬂ(htﬂ(gt, ¥)) ‘GFJ E{6, -0} (32)

+ %E{(Qt —0) Ay (0, — 9)} +0(t7).

with,
Ay = [39t39;‘/2+1(ht+1(9ta %))

|
0:=0

where the expectation Fjy,[-] is calculated with respect to the random variable 6;.
Because 6, is not necessarily unbiased, the second term in the right-hand side of
(32) is not necessarily zero. However, when ¥; = 0, from the unbiasedness of the
policy hy1(0;, %), according to Definition 1, and because Vii1(hi1(+,-)) is twice

continuously differentiable at §; = € and ¥; = 0, we conclude that

99, Vis1(hi11(0:,0))

=0. 33
ot (33)
On the other hand, we know that ¥; = O(¢~'). Therefore, given the continuity of

the second derivative of Vi1 (hiy1(+,-)) at ¥y = 0, we have

g, Vir1 (hu1 (61, 20)| = O™, (34)

0:=0

and, because the bias E{6; — 0} = O(t"'), we conclude that the second term in
the right-hand side of (32) is O(¢t72).

For the first term in (32), a first order Taylor expansion implies

Vit (heg1(0,%4)) = Vg1 (hey1(0,0))
+ avec(zt)‘/;f—l—l(ht-l—l(ga Et))

} vec (X)),

Y=3%

3For more details on approximation of moments, see for example Lehmann (1999).



where vec(Y;) is a vector obtained by stacking the columns of ¥, and vec(X}) is a

convex combination of 0 and vec(X;). From the continuity of Ovec(s,) Vi1 (hit1(6, 1))
at ¥; = 0 and from the fact that 3, = O(¢~!), we conclude that the second term

in the right-hand side of (35) is also O(¢72). Therefore, combining (32) and (35),

we can write the approximation

B { Vi1 (her1 (06,%4)) } = Via(hey1(6,0))

+ %E{(Gt — ) Ay (6; — 9)} L O®2). (36)

Finally, note that

E{(Gt ) A (6, — 9)} — trace[E{ (6, — 0)(0, — 0)'}Ay] = trace[S,A ],

concluding the proof. [J
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