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1 Introduction

Foreign exchange markets are excessively volatile and risky due to spec-

ulative bubbles and crashes. These transitory bubbles and crashes do not

reveal rational arbitrage-free pricing behavior but might be due to irrational

and trend-chasing behavior of speculators. Because trend-chasing behavior

and short-term speculation leads to excessive risks, policy instruments like

transaction taxes are proposed for reducing speculative attacks and exces-

sive risks.

Survey data of foreign exchange markets yields empirical evidence of het-

erogenous expectations among traders. Due to survey studies like the one

conducted by Taylor, M. and H. Allen (1992), these short term ex-

pectations are excessively volatile and display extrapolation behavior, while

long term expectations are regressive and therefore of a stabilizing nature.

Based on this empirical fact several studies like Brock and Hommes

(1997, 1998), Chiarella and He (2002), DeGrauwe and Grimaldi

(2006) and Lux and Marchesi (2000) start to incorporate heterogenous

expectations into economic models of exchange rate determination.

Because econometric tests on rational expectations in the foreign exchange

market1 are rejected and the efficient market approach cannot explain the

stylized facts of financial market time series, researchers switched to the

chartist-fundamentalist approach based on the empirical evidence of het-

erogenous expectations from survey studies. This model framework is an al-

ternative expectations hypothesis and an appealing building block for mod-

els of the foreign exchange market. It assumes that traders are bounded

rational in that they do not use all available information and economic

1See Taylor and Allen (1992) and Menkhoff (1997) among others.
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models to forecast the exchange rate. Instead they rely on simple rules of

thumb because they do not know the whole structure of the model. Most

of these interacting agent models assume that the market is populated by

two types of traders. The chartist trader type searches for patterns in past

exchange rates like trends and trend reversals for forecasting future rates,

while fundamentalist traders search for over- and undervaluations and ex-

pect them to be corrected in the future. Moreover, this approach allows

agents to choose endogenously one of this two views of the world. The suc-

cess of this model framework to explain stylized facts of financial markets

like the exchange rate disconnect, excess volatility, volatility clustering and

excess kurtosis encourages to elaborate on them. Moreover, there is also

empirical evidence for the chartist-fundamentalist approach2.

Studies like Westerhoff (2003) use the chartist-fundamentalist approach

for analyzing the effects of market regulations in foreign exchange markets.

Westerhoff finds that small transaction taxes lower exchange rate volatility

while a high Tobin tax rate will lead to an increase. He explains this finding

with the composition of chartists and fundamentalists in the population.

Small transaction taxes make destabilizing chartism unprofitable and in-

crease the fraction of fundamentalist traders which stabilizes the exchange

rate. If the tax rate exceeds a certain threshold also fundamentalism will

be unprofitable and the fraction of chartist traders will rise, so that this

destabilizes the exchange rate again and volatility will rise.

Mannaro et al. (2005) find in their simulation study within an artificial

stock market framework that volatility will fall by 2% for a tax rate of 0.1%,

2Engle and Hamilton (1990) find that there is regime switching in exchange rates in
that there are phases of trends and mean-reversion. Vigfusson (1997) finds empirical
evidence by estimating parameters of the chartist-fundamentalist model in a Markov-
switching framework.
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while it will fall by 8% for a tax rate of 0.5% with respect to the reference

situation without taxes. Moreover, the percentage fraction of fundamental-

ists will rise due to the imposition of the transaction tax. In a simulation

with only random traders and chartists a small tax can also lead to a small

increase in volatility.

In this paper we want to introduce an extended version of the chartist-

fundamentalist model for the foreign exchange market. Our model is similar

to the models of Brock and Hommes (1997, 1998), Chiarella and He

(2002) and DeGrauwe and Grimaldi (2006) among others. In contrast

to these models we allow agents to choose between different investment

horizons, such that there are short-term chartists and fundamentalists and

long-term chartists and fundamentalists. Moreover, we also deviated from

the commonly used discrete choice model for the evolution of trading rules

and introduce another evolutionary mechanism that also allows to choose

between different investment horizons. Simulations of the baseline model

show that the model does well in replicating stylized facts like the unit-root

property of exchange rates, clustering of return volatility and excess kurtosis

in the distribution of returns.

The second task of our paper is to introduce transaction taxes into the

model in order to analyze, how these taxes influence traders behavior and

financial market risks. Simulations yield the result that on the microscopic

level transaction taxes prevent long term traders to switch to short term

speculation. On the macroscopic level these taxes reduce the variance of

exchange rate returns but also increase their kurtosis. Moreover, the tax

harms short-term speculation in favor of long-term investment, while it also

harms trading rules based on economic fundamentals in favor to trend ex-

trapolating trading rules.
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The remainder of this paper is organized as follows: The next section

presents the model economy, while section three will present the numeri-

cal analysis of the model, while section four concludes.

2 The Model Economy

The model is similar to that proposed by De Grauwe and Grimaldi

(2006). Building blocks of the model are

(i) the agents’ portfolio selection problem,

(ii) the agents’ forecasts via different forecasting models,

(iii) agents’ evaluation of these portfolio rules by comparing their past

profitability, and

(iv) in our model the exchange rate is set by a market maker in contrast to

DeGrauwe and Grimaldi (2006) , while traders are also allowed

to choose between different investment horizons.

2.1 Fundamental Factors and Arbitrage

In this model the fundamental factors driving the exchange rate are the

gross rates of return on the domestic and foreign bond with one-period

maturity. We assume both interest rates R = (1 + r) to follow stochastic

mean-reverting processes of the form

ln Rt = (1 − α) ln R + α ln Rt−1 + εt, εt ∼ N (0, σ2), (1)
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where R is the long-run average interest rate, α ∈ [0, 1] is the rate of mean-

reversion and εt is a random innovation to the interest rate.

Analogue, the rate of return on the foreign one-period-bond follows

ln R∗

t = (1 − α) ln R∗ + α ln R∗

t−1 + ε∗t , ε∗t ∼ N (0, σ2). (2)

Assuming homogeneous interest rate expectations and that all agents know

the data generating processes for the interest rates, they can price the long-

term bonds according to the expectations hypothesis of the term structure.

The expectations hypothesis states that no arbitrage should be possible

between the rates of return of a long-term bond and the rates of return of

a sequence of one-period bonds over the maturity of the long-term bond.

This gives us the following valuation formula for long-term bonds

ln Rt,N =
1

N

N
∑

n=0

Et ln Rt+n. (3)

Using the fact that the n-period-ahead forecast of the autoregressive process

for the interest rate is

Et ln Rt+n = αn ln Rt + (1 − αn) ln R (4)

and applying the rule for the finite geometric series yields the long-term

interest rate

ln Rt,N =
1

N

{

·
1 − αN

1 − α
· ln Rt + n −

1 − αN

1 − α
ln R

}

. (5)

Figure 1 shows the time series of short-term and long-term interest rates

of a typical simulation run.
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Fig. 1: Fundamental Factors
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Deviations from the no-arbitrage interest rate parity condition

Ei
tst+n

st

=

(

Rt,n

R∗

t,n

)n

(6)

arise because interest rates follow stochastic processes. This deviation

promises profits for foreign exchange traders and provokes them to demand

foreign currency in the financial market. Note, that st is the bilateral ex-

change rate, while τ is the transaction tax rate. If this equation holds with

equality the expected interest rate change will offset the interest rate dif-

ferential and no trade will occur, because all profits are already arbitraged

away.
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2.2 Traders’ Demand for Foreign Currency

Following DeGrauwe and Grimaldi (2006) we assume that each agent

can invest into a domestic asset and a foreign asset. In contrast to De-

Grauwe and Grimaldi (2006) both assets are risky due to the random-

ness of domestic and foreign interest rates and due to exchange rate risks.

We assume overlapping generations of traders, who enter the market for

their pertinent investment horizon. Afterwards they will leave the market

and consume their profits. The timing of each period is as follows:

(i) trader i enters the market. He observes interest rates, the exchange

rate and the past profits of the other traders. Depending on the past

profits of the other traders, he decides to be a short-run or long-run

fundamentalist or to be a short-run or long-run chartist trader,

(ii) depending on the interest rate differential and his expected depreciation

of the exchange rate the trader decides how much to invest in the

domestic and the foreign asset,

(iii) after the trader has realized his profit, he leaves the market and con-

sumes.

Agents are assumed to have preferences towards risks with constant absolute

risk aversion characterized by the following utility function

U(W i
t+n, αi) = − exp{−αiW

i
t+n}, (7)

where W i
t is agent i’s wealth at time t, n ∈ {1, ..., N} is the agents’ invest-

ment horizons, and αi is the agents Arrow-Pratt measure of absolute risk
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aversion. The agent’s wealth is assumed to follow

W i
t+n = (R∗

t )
nst+nd

i
t(1 − τ)2 + (Rt)

n(W i
t − std

i
t), (8)

where R = (1+r) and R∗ = (1+r∗) are the gross returns on the domestic and

foreign bond, while st is the bilateral exchange rate between both countries.

The tax rate for foreign exchange market transactions is denoted with τ ∈

[0, 1]. The first part is the return on the foreign asset, while the second term

measures the costs of borrowing in the domestic country. For n = 1 and

τ = 0 this budget constraint collapses to the one proposed by DeGrauwe

and Grimaldi (2006).

If we assume wealth to be normally distributed we can simplify the portfolio

selection problem by maximizing the certainty equivalent

U(W i
t , αi) = Ei

t−1[W
i
t ] −

αi

2
Varit−1[W

i
t ] (9)

subject to the same budget constraint. Maximization yields the following

demand function for agent i with investment horizon n

d
i,n
t =

Ei
t[W

i
t+n]

αiVarit[W
i
t+n]

=
(R∗

t )
n(1 − τ)2Ei

t[st+n] − (Rt)
nst

ασ2
i,t

. (10)

Thus, trader i’s demand is decreasing in his degree of risk aversion, in a

higher risk σ2
i,t, decreasing in the transaction tax rate τ , and increasing in

the expected profit. For n = 1 and τ = 0 the demand function collapses to

the one used in DeGrauwe and Grimaldi (2006).

If we assume, following Brock and Hommes (1997) that the risk evaluation

is the same for all agents and constant over time, the demand function
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simplifies to

d
i,n
t = ψ

(

(R∗

t )
n(1 − τ)2Ei

t[st+n] − (Rt)
nst

)

. (11)

2.3 Traders’ Forecasting Models

We assume that the true data generating process for the exchange rate is

unknown to the agents. Therefore they use ad-hoc rules for forecasting. We

assume that two types of forecasting rules are used. A rule which reacts

on trends in the exchange rate is commonly called chartist rule or technical

trading rule. The other technique called fundamentalist forecasting rule

looks for over- and undervaluations of the exchange rate with respect to its

arbitrage free fundamental value and expects a reversion back to it.

The fundamentalist forecasting rule for the one-step-ahead prediction of the

exchange rate can be written as

E
f
t [st+1 − st] = κf · (sf

t − st). (12)

Thus, this rule predicts an exchange rate change such that κf ·100% of the

disequilibrium s
f
t − st, that is the deviation of the realized exchange rate st

from the arbitrage-free exchange rate s
f
t , will be corrected by the subsequent

exchange rate change. Note that the two step ahead forecast assumes that

κf ·100% of the remaining disequilibrium (1−κf ) · (sf
t −st) will be corrected

by the subsequent exchange rate change and so on. Thus, the n-step ahead

forecast will be

E
f
t [st+n − st+n−1] = κf (1 − κf )n−1 · (sf

t − st). (13)
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For n = 1 this forecasting model collapses to the one used in DeGrauwe

and Grimaldi (2006), Lux and Marchesi (2000), Chiarella and He

(2002) and Brock and Hommes (1997).

The expected exchange rate change E
f
t [st+n] can be derived from the fore-

casted exchange rate changes as

E
f
t [st+n] − st = E

f
t [st+n − st+n−1] + E

f
t [st+n−1 − st+n−2] + ... + E

f
t [st+1 − st]

=
[

1 − (1 − κf )n
]

· (sf
t − st), (14)

where the explicit derivation can be found in the appendix.

Fundamentalists believe that the arbitrage-free exchange rate s
f
t is the ex-

change rate under which the uncovered interest rate parity condition holds

with equality

s
f
t = st−1 ·

Rt−1

R∗

t−1

. (15)

Therefore, if s
f
t realizes, the exchange rate change offsets the possible profits

from the interest rate differential and no arbitrage should be possible.

The technical forecasting rule for the one-step-ahead prediction can be spec-

ified as follows

Ec
t [st+1 − st] = (κc) · (st − st−1). (16)

Thus, this forecasting model predicts a trend continuation. If the exchange

rate change st − st−1 is one, than this forecasting model predicts the next

exchange rate change to be κc. As usual in the theory of autoregressive

models we use the last period’s forecast to predict the next future exchange

rate if we do not have information about realizations. Thus, the two-step-

ahead forecast expects an exchange rate change of (κc)2 and so on. Thus,
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the n-step-ahead prediction will be

Ec
t [st+n − st+n−1] = (κc)n · (st − st−1). (17)

For n = 1 this forecasting model collapses to the one used in DeGrauwe

and Grimaldi (2006), Lux and Marchesi (2000), Chiarella and He

(2002) and Brock and Hommes (1997).

Equivalent to the fundamentalists’ technique, chartists calculate the ex-

pected exchange rate change Ec
t [st+n − st] as

Ec
t [st+n − st] = Ec

t [st+n − st+n−1] + ... + Ec
t [st+1 − st] (18)

=
1 − (κc)n

1 − κc
· κc · (st − st−1), (19)

where the explicit derivation can be found in the appendix.

2.4 Evolution of Trading Rules

The agents’ strategy space consists of five trading rules. The agent can either

be a short-run fundamentalist or a short-run chartist, or the trader can be

a long-term fundamentalist or a long-term chartist. The fifth possibility for

the agents is to stay inactive, that means not to trade.
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Fig. 2: Possibilities to Change Trading Strategies
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Note: The abbrevation SRTT denotes short-run technical trader, while LRTT denotes

long-run technical trader, while SRFT denotes short-run fundamental trader and LRFT

long-run fundamental trader. The fifth alternative for traders is to stay inactive for one

period which is not included in the graphic.

Because we assume that agents may have multi-period investment horizons,

the information concerning the individual agents investment horizon is saved

in the matrix Φt, which has the dimension 5×M and may have for example

the following form

Φt =



















1 1 100 84 1

1 1 61 31 1

1 1 87 54 1

...
...

...
...



















. (20)

The first two columns of this matrix identify the short run fundamental-

ist and the short run chartist, who have an investment horizon of one by

construction. Columns three and four identify the long term fundamental-

ist and the long term chartist and the time until their investment matures.

Agents are allowed to stay inactive for one period. This information is given

in column five. Agents 1, ...,M are given in rows. Thus, this matrix reads as
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follows. If agent 1 is a long run fundamentalists, then the time to maturity

of his investment is 100 periods. If he is a long term chartist, then the time

to maturity is 84 periods. This matrix is updated as follows

Φt+1 = Φt − [0,0,1,1,0], (21)

where 0 is a 1 × M vector of zeros, 1 is a 1 × M vector of ones and M is

the number of agents. Thus, the investment horizon of long term agents

decreases by one period until maturity is reached. After that it switches

back to the maximum investment horizon of N periods. The starting value

for this updating process is generated by a random draw for the columns

three and four.

Agents are only allowed to change their trading rules when maturity is

reached. Thus short-term traders and inactive traders are allowed to switch

every period, long term traders are not allowed to switch for N periods.

The information about which agent is allowed to switch is contained in the

matrix St, with

St(i, j) = 1 ⇐= Φt(i, j) = 1 (22)

St(i, j) = 0 ⇐= Φt(i, j) 6= 1. (23)

Thus, if St(i, j) = 1 then agent i is allowed to change his trading rule, if he

is type j. If St(i, j) = 0, then agent i with trading rule j is not allowed to

change his type. Because this matrix only contains information if an agent

is allowed to switch or not. The matrix tells us for example that agent one

is allowed to change his type, if he is type one, two or three, but he is not

allowed to switch if he is type four. Thus, this matrix does not tell us, which

trading rule the agent is currently using. This information is contained in
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the matrix Γt, where Γt(i, j) is one if agent i uses the trading rule j and

zero otherwise. Thus, the row sum of this matrix is one, because an agent

can only use one trading rule at the same time.

We assume that agents switch to the trading rule, which was the most suc-

cessful in the past if they are allowed to switch. Therefore agents calculate

the profits each trading rule yielded over the last N periods. The vector of

past profits is given by

Πt =
[

π
f,1
t , π

c,1
t , π

f,N
t , π

c,N
t , 0

]

, (24)

where the agents realizes a profit of zero if he stays inactive.

The profit of agent i is measured by the variable π
i,n
t

π
i,n
t =

{

st(R
∗

t−n)n(1 − τ)2 − st−n(Rt−n)n
}

· di,n
t , (25)

for i ∈ {c, f} and n = 1, ..., N .

Table 1: Cash Flows of Short-term and Long-term Traders

Short-term Trader

time t t + 1 ... t + N

d
i,1
t −d

(i,1)
t

(

(1 − τ)2(1 + R∗

t )St+1

)

— —

Long-term Trader

time t t + 1 ... t + N

d
i,N
t — — −d

(i,N)
t

(

(1 − τ)2(1 + R∗

t,N)NSt+N

)

Here we replaced the forecast Ei
t−nst with the realized exchange rate st.

Thus, π
i,n
t measures the profit per unit currency that results from the ex-
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change rate change and the interest rate differential times the amount of

currency demanded. This expression is similar to the one used in Grimaldi

(2004) and DeGrauwe and Grimaldi (****) with the difference that we scale

the profit per unit currency by the currency demanded by the agent.

The vector Π∗

t has the entry one at the same place, where Πt has its

maximum and zeros at all other entries. Thus, this vector indicates to which

trader type the agent has to switch if he is allowed to switch. The switching

of agents is conducted, by replacing the pertinent row in the matrix Γt with

the vector Πt. This operation is conducted if an agent is allowed to switch.

This is possible if the condition

S(i, j) = 1 & Γ(i, j) = 1 (26)

holds. If

S(i, j) = 0 & Γ(i, j) = 1, (27)

then Γ(i, j) = 1, that means, the agent is not allowed to switch and has to

use his old trading strategy. In all other cases the matrix Γ(i, j) has the

entry zero.

The information about the number of agents, who are allowed to trade and

the number of agents being using one special trading rule is contained in

these matrices.

2.5 Institutional Properties and Price Setting

The market maker collects all individual demands in order to determine the

market demand. Individual demands d
i,n
t can be aggregated to the market

demand Dt by adding them, while weighting them with the population
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fractions w
i,n
t of traders, who are allowed to trade

Dt = w
c,1
t d

c,1
t + w

c,N
t d

c,N
t + w

f,1
t d

f,1
t + w

f,N
t d

f,N
t (28)

− w
c,1
t−1π

c,1
t−1 − w

c,N
t−Nπ

c,N
t−N − w

f,1
t−1π

f,1
t−1 − w

f,N
t−Nπ

f,N
t−N . (29)

Agents are allowed to trade at the beginning of their investment and at the

end of their investment. They have to pay back the loan they raised in order

to invest which is denoted in their home currency and because they want

to consume in their home country. The last effect is captured by the last

term in this equation.

If market demand is positive, the market maker will rise the price of the

exchange rate, while he will lower it, if market demand is negative. Thus

the exchange rate changes proportional to the sum of all market orders.

The behavior of the market maker can be approximated by the following

price impact function3

st+1 = st + βstDt. (30)

The exchange rate return can be calculated as

ρt+1 =
st+1 − st

st

= βDt. (31)

Thus, the model is complete now. Because it cannot be solved analytically,

we will rely on results derived by numerical simulations in the next section.

3Kyle (1985) derives this price impact function as the solution of his continuous double
auction model. Lux and Marchesi (2000) and Westerhoff (2003) also use this pricing
rule within an agent-based-framework.



Markus Demary

Transaction Taxes, Traders’ Behavior and Exchange Rate Risks 17

3 Non-Stochastic Steady States

At the steady state all shocks will be zero and all variables will be constant.

Thus a steady state is characterized by

εt = ε∗t = 0 (32)

and

Rt = Rt−1 = R,R∗

t = R∗

t−1 = R∗, st = st−1 = s, (33)

di,t = di,t−1 = 0, πi,t = πi,t−1 = 0, (34)

while the population fractions are undetermined.

Summing up, the steady state is characterized by equal rates of return

in both countries and no exchange rate change. Therefore we get zero

demands and zero profits, because the exchange rate equals its no-arbitrage

fundamental value.

4 Simulation Results

The model is simulated with the parameters given in table 2. For the

baseline simulation we set the transaction tax rate to zero in order to have

a benchmark for the policy simulations conducted later.
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Table 2: Calibrated Parameters for Baseline Simulation

Model Parameters

mean reversion parameters standard deviations of shocks

α1 = 0.96 α2 = 0.96 σ1 = 0.03 σ2 = 0.03

risk aversion parameters max. horizon simulation length

δC = 1 δF = 1 N = 100 T = 100 000

exchange rate response forecasting parameters

β = 0.01 κC = 0.9 κF = 0.8

transaction tax number of agents

τ = 0 300

Note: These parameters are used for the baseline simulation of the model without trans-

action taxes.

We assume the interest rates in both countries to be quite persistent because

empirical exchange rate data are also quite near a unit-root process. Thus,

we assume the two interest rate processes to follow

ln Rt = 0.04 · 1.005 + 0.96 · ln Rt−1 + 0.03 · εt, εt ∼ N (0, 1). (35)

For the risk aversion we assume chartist traders and fundamentalist traders

to have the same value for the Arrow-Pratt measure of absolute risk aversion.

Moreover, we assume chartists to have an extrapolation parameter less than

one

EC
t st+n − st = 0.9n(st − st−1), (36)

such that their forecasting model predicts a return of 0.9 for the next period,

if the current return is one and the two-period return to be 0.81.
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For the fundamentalist traders we assume that they expect exchange rate

disequilibria to be corrected with 80% per period. Thus, their forecasting

model becomes

EF
t st+n − st = 0.8 · 0.2n−1 · (sf

t − st). (37)

Furthermore, we set the exchange rate response to

st+1 = st + 0.01 · stDt. (38)

4.1 The Baseline Simulation

Figures 3 and 4 show the simulation outcome of the baseline model with-

out taxes. The exchange rate shows a random walk like behavior like empir-

ical financial time series. One can clearly see that the time series displays

periods of trends and crashes as we typically find in financial market time

series.
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Fig. 3: Exchange Rate: Baseline Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 2. The first 1000 data points were removed.

A second stylized fact which the model is able to reproduce is volatility

clustering and excess kurtosis which can be seen from figure 4.
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Fig. 4: Exchange Rate: Baseline Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 2. The first 1000 data points were removed.

Both, in empirical time series as well as in the model produced time series

periods of high volatility and periods of low volatility tend to cluster to-

gether. Moreover as can be seen in the figure is, that extreme returns are

realized quite frequently.

By looking at figure 5 we can analyze this phenomenon in greater detail.

The upper subfigure shows a quantile-quantile-plot with respect to the nor-

mal distribution. Here quantiles of the standard normal distribution are

plotted against the quantiles of the empirical return distribution. If the

data is normally distributed all points should lie on the 45◦ line.
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Fig. 5: Return Distribution: Baseline Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 1. The blue line represents the kernel density of the

model generated exchange rate returns, while the green line is the density of a normally

distributed random variable with the same mean and the same variance. The first 1000

data points were removed. The used parameter values are those given in table 2.

From this figure we can see deviations from the normal distribution in the

positive and negative extreme parts. In the lower subfigure the estimated

kernel density of the returns is plotted together with the density of a nor-

mally distributed random variable with the same mean and variance as the

input sample for comparison. From this figure can be seen that the density

of the model generated data has a higher peak and fatter tails with respect

to the normal distribution which means that this distribution is leptokurtic.
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The phenomenon of volatility clustering can be analyzed in more detail from

figure 5.

Fig. 6: Autocorrelation Functions: Baseline Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 2. The first 1000 data points were removed.

Figure 6 plots the autocorrelation function of returns and squared returns

for 100 lags. Here, raw returns display only small serial correlation which

means that exchange rate returns are not predictable from their past data.

This finding is in line with the efficient market hypothesis. In contrast to this

squared returns display strong correlations over 100 lags. This indicates that

although returns themselves are uncorrelated they are not independently

distributed because squared returns display high serial dependencies. We
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can interpret squared returns as a noise measure for volatility because

Var[rt|It−1] = E[r2
t |It−1] and r2

t = E[r2
t |It−1] + vt (39)

=⇒ r2
t = Var[r2

t |It−1] + vt. (40)

Therefore, high serial correlations of squared returns indicates that volatility

is serially correlated and therefore predictable. Small correlations in returns

and large correlations in squared returns can also be found in empirical date

as you can see in figure 6. Thus, our model is also able to replicate this

stylized fact of financial data.

Table 3: Summary Statistics of the Baseline Simulation

Model USD-Euro YEN-USD GBP-USD

mean 0.000 0.000 0.000 0.000

st. deviation 0.006 0.006 0.007 0.006

skewness -0.021 0.014 -0.487 -0.135

kurtosis 4.549 3.619 7.335 6.573

ARCH 0.285 0.014 0.056 0.065

GARCH 0.715 0.977 0.942 0.922

Note: Mean, variance, skewness and kurtosis are calculated from the model generated

exchange rate return data by using the parameters given in table 2. ARCH and GARCH

are the coefficients of an GARCH(1,1) model fitted to the model generated return data.

The exchange rate data used in columns 3,4 and 5 are taken from the FRED2 database

of the Federal Reserve Bank of St. Louis in daily frequency. The data is available under

the series-ID: DEXUSEU, DEXJPUS, and DEXUSUK.
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Table 3 contains summary statistics of the baseline simulation in compar-

ison with summary statistics of empirical exchange rate return data. The

mean of simulated returns and empirical returns is always zero, while the

variance of the model equals the empirical returns because of the model

calibration. The kurtosis of empirical data and of the baseline simulation is

always greater than 3, which is the kurtosis of a normally distributed ran-

dom variable. This fact also could be seen from the quantile-quantile-plot

and the kernel density graphs. Moreover, we fitted a GARCH(1,1) model to

the baseline simulation data and the empirical data. The GARCH-model

due to Bollerslev (1996) assumes the data to be conditional normally

distributed

rt|It−1 ∼ N (0, σ2
t ), (41)

while the variance is assumed to follow an autoregressive process

σ2
t = ω + αr2

t−1 + βσ2
t−1. (42)

New information about volatility can enter the model through squared re-

turns, while the last term measures the persistency of volatility. Empirical

studies usually find α to be less than 0.1 and β approximately 0.9, with

α+β close to one. This is an indication of the strong persistency in volatil-

ity. From table 3 you can infer, that this fact can also be found in estimates

for the three exchange rate return time series as well as for the model gen-

erated return time series. Thus, our model is also able to replicate this

stylized fact.



Markus Demary

Transaction Taxes, Traders’ Behavior and Exchange Rate Risks 26

Fig. 7: Fraction of Fundamentalist and Technical Traders: Baseline

Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 2. The first 1000 data points were removed.

Figure 7 plots the evolution of the population fractions of traders using

the technical trading rules and the fundamental trading rules. We can

clearly see from this figure that from time to time majorities for one of this

two trading rules emerge. It seems that the system is switching between

states in which one of the two rules is used by all traders and that their

view changes surprisingly. This is an indication of herding behavior among

traders. If we compare this figure with figure 4 we see that the periods

in which one of the two trading rules dominates the market correspond to

the high volatility and low volatility period in the exchange rate returns.



Markus Demary

Transaction Taxes, Traders’ Behavior and Exchange Rate Risks 27

Thus, herding behavior is a source of the volatility clusters produced by the

model.

Fig. 8: Fraction of Short-run and Long-run Traders: Baseline Simulation
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Note: Model generated time series from the baseline simulation. The used parameter

values are those given in table 2. The first 1000 data points were removed.

Figure 8 plots the time variation of population fractions of traders hav-

ing either short-term investment horizons or long-term investment horizons.

Similar to figure 7 the system is switching between the two views of the

world. Thus, the market is either dominated by long-term traders or by

short-term traders. The dominance of short-term traders is an indication

of speculative attacks on one currency. If we compare this figure to figure

4 we can again see that speculative attacks correspond to high volatility

periods in the exchange rate returns.
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All in all, this section showed, that our model is able to reproduce devi-

ations of the exchange rate from the fundamental value, random walk or

martingale behavior of the exchange rate, volatility clustering and fat tails

in the distribution. Moreover, we learn about traders behavior that our fi-

nancial market is characterized by herding behavior of traders. The market

is either dominated by traders using trend-extrapolating trading rules or

trading rules based on economic fundamentals. Moreover we see that the

market is characterized by periods dominated by long-term or by short-term

traders. This is an indication of speculative attacks on one currency.

The success of our model in replicating stylized facts of financial data en-

courages to use it for economic policy analysis by varying the transaction

tax rate in order to analyze the effects of transaction taxes on financial risks.

This we will do in the next section.

4.2 Sensitivity to Transaction Tax Rate Changes

4.2.1 Statistical Properties of the Exchange Rate

Table 4 shows summary statistics of the model generated exchange rate

returns for different values of the transaction tax rate.
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Table 4: Variation of the Transaction Tax

τ 0% 1% 2% 4% 6%

mean 0.000 0.000 0.000 0.000 0.000

SE (0.000) (0.000) (0.000) (0.000) (0.000)

variance 0.005 0.004 0.003 0.002 0.002

SE (0.001) (0.001) (0.002) (0.001) (0.001)

skewness 0.051 0.084 0.206 0.369 0.425

SE (0.102) (0.242) (0.481) (0.774) (0.817)

kurtosis 3.617 5.923 9.911 15.048 16.667

SE (0.649) (4.178) (6.787) (8.929) (9.632)

Note: The remaining parameters are set to the values given in table 2. The statistics

are averages of 100 simulation runs of size 1000. The used parameter values are those

given in table 2. Standard errors are reported in parenthesis.
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The statistics reported in this table are averages over 100 simulation runs of

size 1000. From the table one can infer that the mean exchange rate return

does not change due to changes in the transaction tax rate, while their

variance is monotonically declining. Moreover one can see that although

positive transaction tax rates reduce the variance of exchange rate returns

they rise their kurtosis. Thus, positive transaction tax rates increase the

probability of extreme positive and negative returns. This limits the success

of taxes to reduce risks in foreign exchange markets.

4.2.2 Fundamental Traders and Technical Traders

From table 5 one can infer how positive transaction tax rates influence

traders behavior. The numbers belonging to this table are also averages

over 100 simulation runs of size 1000 and are based on the same seed of ran-

dom numbers like the statistics in table 3. From this table one can infer

that the number of traders using the fundamental trading rules is decreas-

ing in the transaction tax rate while the number of traders using chartist

rules is increasing. Moreover, the number of traders staying inactive are

rising slightly in the transaction tax rate. Thus, under positive transac-

tion tax rates chartist rules are more profitable than fundamental trading

rules which is a contradiction to the conventional view of the proponents

of a securities transaction tax who propose that traders will rely more on

economic fundamentals under positive tax rates.
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Table 5: Average Percentage Fractions of Used Trading Rules

τ 0% 1% 2% 4% 6%

fundamental 0.875 0.847 0.787 0.750 0.756

SE (0.107) (0.102) (0.085) (0.080) (0.070)

technical 0.125 0.152 0.212 0.249 0.242

SE (0.107) (0.101) (0.085) (0.080) (0.070)

inactive 0.000 0.001 0.001 0.001 0.002

SE (0.000) (0.001) (0.001) (0.001) (0.001)

short-term 0.868 0.633 0.413 0.256 0.228

SE (0.113) (0.217) (0.197) (0.127) (0.110)

long-term 0.132 0.366 0.586 0.743 0.770

SE (0.113) (0.217) (0.197) (0.127) (0.110)

inactive 0.000 0.001 0.001 0.001 0.002

SE (0.000) (0.001) (0.001) (0.001) (0.001)

Note: Average percentage fractions of used trading rules during a typical simulation run
for different transaction tax rates τ . The results of each column are based on the same
seed of random variables. The statistics are averages of 100 simulation runs of size 1000.
The used parameter values are those given in table 2. Standard errors are reported in
parenthesis.

4.2.3 Short-term and Long-term Traders

From table 5 one can also infer that the number of short term traders is

decreasing in the transaction tax rate while the number of long term traders

is increasing. This is in line with the conventional view that a transaction

tax makes short term trading more costly and therefore prevents speculative

attacks in favor of long term investments.



Markus Demary

Transaction Taxes, Traders’ Behavior and Exchange Rate Risks 32

5 Conclusion

This study wants to analyze the effectiveness of a transaction tax within an

agent-based framework. We propose a new model for the foreign exchange

market with four types of agents: short- and long term fundamentalists and

short- and long-term chartists. Stochastic interest rates in both countries

lead to temporal arbitrage opportunities and therefore to demand for foreign

currency. A market maker aggregates the agents’ market orders and rises the

exchange rate due to positive excess demand and lowers it due to negative

excess demand.

Simulations of the baseline model without transaction taxes produce time

series with realistic time series properties like in empirical exchange rate

date. This means that the model is capable to reproduce stylized facts of fi-

nancial variables like the unit root property, volatility clustering and excess

kurtosis. A comparison with empirical data shows that the model is able

to replicate these stylized facts very well. Moreover, our financial market

is characterized by periods dominated by traders using trend-extrapolating

trading rules or by trading rules based on economic fundamentals. Further-

more, periods emerge which are dominated either by short-term speculators

or by long-term investors. This is an indication of sudden speculative at-

tacks on one currency.

The economic policy analysis of our model shows that positive transaction

taxes are capable of reducing volatility. The disadvantage of this policy

instrument is, that the probability of extreme positive or negative exchange

rate returns is increased. That means higher transaction tax rate increases

the kurtosis of the return distribution. The tax alters traders behavior by

reducing short-term speculation in favor of long-term investments, which is



Markus Demary

Transaction Taxes, Traders’ Behavior and Exchange Rate Risks 33

in line with the arguments of the proponents of the Tobin tax. In contrast

to their view, in our model the tax favors trend extrapolating trading rules

an punished trading rules based on economic fundamentals. Because trend

extrapolating trading rules are a source of destabilization of the exchange

rate, this can be the reason why the transaction tax increases the kurtosis

of the return distribution.

Summing up, further research should look for analytical solutions to a sim-

plified version of this model and for extensions by the incorporation of other

long-term investment strategies into the model in order to get more infor-

mation about the effectiveness of transaction taxes on traders’ behavior and

the reduction of risks in financial markets.

6 Appendix: Derivation of the Multi-Period

Forecasts

6.1 Fundamentalists’ Forecasts

The one-step-ahead forecast of the future change in the exchange rate is

given by

EF
t

[

st+1 − st

]

= κf
(

s
f
t − st

)

. (43)

Thus, the fundamentalists’ forecast yields, that (1 − κf )
(

s
f
t − st

)

disequi-

librium will remain. Thus, the next predicted exchange rate change will

be

EF
t

[

st+2 − st+1

]

= κf (1 − κf )
(

s
f
t − st

)

. (44)
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Again, (1 − κf )2
(

s
f
t − st

)

disequilibrium will remain. In general, we have

EF
t

[

st+n − st+n−1

]

= κf (1 − κf )n−1
(

s
f
t − st

)

. (45)

If fundamentalists want to forecast the exchange rate st+n, they have to

forecast the future exchange rate changes as we have done before and then

to calculate

E
f
t st+n = st + E

f
t

[

st+1 − st

]

+ E
f
t

[

st+2 − st+1

]

+ ... + E
f
t

[

st+n − st+n−1

]

(46)

= st + κf (sf
t − st) + κf (1 − κf )(sf

t − st) + ... + κf (1 − κf )n−1(sf
t − st)

= st +
(

κf (1 − κf )0 + κf (1 − κf ) + ... + κf (1 − κf )n−1
)

(sf
t − st)

= st + κf
(

(1 − κf )0 + (1 − κf ) + ... + (1 − κf )n−1
)

(sf
t − st)

By applying the rule for the geometric series, we can write this as

E
f
t st+n = st +

(

1 − (1 − κf )n
)

(sf
t − st). (47)

6.2 Chartists’ Forecasts

The one-step-ahead forecast of the next exchange rate change is given by

Et

[

st+1 − st

]

= κc(st − st−1), (48)
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while the one-step-ahead forecast for the subsequent exchange rate change

is given by

Et

[

st+2 − st+1

]

= κcEc
t(st+1 − st) (49)

= (κc)2(st − st−1).

In general, we have

Et

[

st+n − st+n−1

]

= κcEc
t(st+n−1 − st+n−2) (50)

= (κc)n(st − st−1). (51)

For forecasting the future exchange rate st+n chartists have to forecast the

exchange rate changes as we have done before and then to calculate

Ec
tst+n = st + Ec

t [st+1 − st] + Ec
t [st+2 − st+1] + ... + Ec

t [st+n − st+n−1](52)

= st + κc(st − st−1) + (κc)2(st − st−1) + ... + (κc)n(st − st−1)

= st +
(

κc + (κc)2 + ... + (κc)n
)

(st − st−1)

= st + κc
(

(κc)0 + (κc)1 + ... + (κc)n−1
)

(st − st−1)

By applying the formula for the geometric series we get

Ec
tst+n = st + κc ·

(1 − κc)n

1 − κc
· (st − st−1). (53)
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