
Liesenfeld, Roman; Richard, Jean-François

Working Paper

Improving MCMC Using Efficient Importance Sampling

Economics Working Paper, No. 2006-05

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Liesenfeld, Roman; Richard, Jean-François (2006) : Improving MCMC Using
Efficient Importance Sampling, Economics Working Paper, No. 2006-05, Kiel University, Department
of Economics, Kiel

This Version is available at:
https://hdl.handle.net/10419/22010

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22010
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Improving MCMC Using Efficient Importance 
Sampling 

by Roman Liesenfeld, Jean-François Richard

Economics Working Paper

No 2006-05



Improving MCMC Using E�cient Importance Sampling

Roman Liesenfeld∗

Department of Economics, Christian-Albrecht-Universität, Ohlshausenstr. 40-60,

24118 Kiel, Germany

Jean-François Richard

Department of Economics, University of Pittsburgh, 4S01 Wesley W. Posvar Hall,

Pittsburgh, PA 15260, USA

May 15, 2006

Abstract

This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based

upon E�cient Importance Sampling (EIS) which can be used for the analysis of a wide range of

econometric models involving integrals without an analytical solution. EIS is a simple, generic

and yet accurate Monte-Carlo integration procedure based on sampling densities which are chosen

to be global approximations to the integrand. By embedding EIS within MCMC procedures based

on Metropolis-Hastings (MH) one can signi�cantly improve their numerical properties, essentially

by providing a fully automated selection of critical MCMC components such as auxiliary sampling

densities, normalizing constants and starting values. The potential of this integrated MCMC-

EIS approach is illustrated with simple univariate integration problems and with the Bayesian

posterior analysis of stochastic volatility models and stationary autoregressive processes.
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1 Introduction

Monte Carlo (MC) simulation methods are widely used to analyze a broad range of econometric

models involving integrals for which no analytical solution exist. Excellent surveys on MC based

econometric methods are available (see, e.g., Geweke, 1999, Gilks et al., 1996, Gourieroux and Mon-

fort, 1996 and Stern, 1997). Two methods dominate the �eld. Importance Sampling (IS) was

introduced in econometrics by Kloek and van Dijk (1978) and widely used in the eighties. It became

progressively supplanted by Markov Chain Monte Carlo (MCMC) in the nineties. Seminal papers are

that of Gelfand and Smith (1990), proposing MCMC techniques for Bayesian computations, and that

of Tanner and Wong (1987) who introduced data augmentation for the treatment of latent variables.

The main argument against the use of IS is the potential non-existence of the MC sampling variance

which could lead to disastrous properties of IS estimates (see, e.g., Geweke 1989, 1999 and more re-

cently Koopman and Shephard, 2004). In the present paper we will argue that the IS and MCMC are

more closely related than generally recognized and, in particular, that the argument of non-existing

variance which contributed to the relative demise of IS also apply to Metropolis-Hastings (MH) pro-

cedures which represent, together with the Gibbs-sampling techniques, the most widely used MCMC

algorithms.

The fundamental insight which motivates the present paper lies in the observation that the sam-

pling properties of both IS and MCMC critically depend upon the adequacy of an auxiliary sampler

m, meant to approximate (up to a proportionality constant c) a density kernel ϕ which needs to be

numerically integrated (by itself and/or to compute expectations of functions of interest). E�cient

Importance Sampling (EIS), as proposed by Richard and Zhang (2006), provides a generic and es-

sentially automated Least Squares (LS) procedure to construct such (near) optimal approximations

within a preassigned parametric class M of auxiliary samplers. Whence we should be able to fa-

cilitate the design as well as improve the sampling properties of MCMC by relying upon auxiliary

EIS regressions to construct m. Most importantly, once it is recognized how closely related EIS and

MCMC are, the key issue of deciding which approach to use for a particular application becomes

one of objective comparison, of respective ease of implementation and statistical adequacy within

the context of that application, not of subjective preference for one method or the other.

Typically, EIS can be expected to have comparative advantages at integrating out high-dimensional

dynamic latent variables. The e�ciency of EIS in such situations is illustrated by its application for

the computation of the likelihood of various dynamic latent variable models (see, e.g., in Bauwens

and Hautsch, 2003, Bauwens and Galli, 2005, Jung and Liesenfeld, 2001, and Liesenfeld and Richard
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2003a, 2003b, 2005a). In particular, in the context of highly correlated latent variables, EIS can

usefully be interpreted as a single block MCMC step, providing an e�cient solution to the slow

convergence of MCMC in such context. On the other hand, intricate Bayesian posterior densities are

generally more amenable to MCMC integration. This is illustrated by the estimation of stochastic

volatility (SV) models where MCMC and EIS are combined together along this lines (subsection 6.1).

Moreover, even in applications where MCMC is unequivocally to be preferred, we will illustrate

ways of embedding EIS auxiliary steps within the MCMC algorithm in order to facilitate the con-

struction of the MCMC sampler and, in the process, to improve its convergence properties. This will

be illustrated in the context of the MCMC analysis of the roots of stationary AR models (subsection

6.2).

The rest of the paper is organized as follows. In section 2, we review the principles of the MC

integration procedures under consideration. Section 3 and 4 contain a brief description of the EIS

technique and MCMC approaches, respectively. In particular we, discuss how EIS can usefully be

combined with MCMC. This is illustrated in section 5 and 6 with numerical examples. In particular,

we discuss two simple univariate integration problems (subsections 5.1 and 5.2), a Bayesian analysis

of a SV model (subsection 6.1), and a MCMC analysis of the roots of AR models (subsection 6.2).

Section 7 concludes.

2 MC Integration

Consider a continuous random variable X with support ∆ ⊂ RT . We assume that its density function

f(x) is characterized by a density kernel ϕ(x) whose integrating constant on ∆ is unknown. That is

to say

f(x) = c−1 · ϕ(x), with c =
∫

∆
ϕ(x)dx. (1)

Let g(x) denote a ϕ�integrable function. Its expectation on f is given by

Ig = Ef [g(X)] =

∫
∆ g(x)ϕ(x)dx∫

∆ ϕ(x)dx
. (2)

IS and MCMC (MH) are commonly used to evaluate such (ratios of) integrals. In order to

motivate our paper, we �rst present both methods in a particular way which serves highlighting

their intrinsically close relationship. Technical assumptions validating these methods are extensively

discussed in the literature � see, e.g., Geweke (1989) and Robert and Casella (1999) � and are omitted

here.
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All MC integration techniques discussed in the present paper share the characteristic that they

rely upon a sequence of `primary' draws {x̃i; i : 1 → S}. While IS uses these draws as such, MH

requires additional auxiliary steps based upon uniform draws in order to determine which of the

primary draws are to be deleted, retained and/or repeated. For the purpose of the present discussion

it proves convenient to reinterpret both IS and MCMC estimates of Ig as (randomized) weighted

sums of functions of the primary draws, say

Īg =

∑S
i=1 g(x̃i) · α

(
x̃(i), ṽi

)∑S
i=1 α

(
x̃(i), ṽi

) , (3)

where x̃(i) = (x̃j ; j : 1 → i) and ṽi denote additional auxiliary uniform draws as required for MCMC.

Implicitly assuming convergence, let m(xi) denote the stationary margin of x̃i. IS relies upon i.i.d.

draws with weights

α
(
x(i), vi

)
≡ ω(xi) =

ϕ(xi)
m(xi)

. (4)

There exists a wide variety of MH techniques, some of which are described below, which generally

result in assigning integer values to the αs, which then represent the number of times a primary

draw appears in the average. Let µ denote the (stationary) joint distribution of the auxiliary draws

(x̃(i), ṽi). Additional notations are:

ω̄ = Em [ω(x̃i)] = c (5)

a(xi) = Eµ

[
α(x̃(i), ṽi) | x̃i = xi

]
(6)

ā = Em [a(x̃i)] . (7)

Next, we reinterpret Īg as an MC-estimator of Ig, i.e. a decision rule which maps a ϕ-integrable

function g into a point estimate of its expectation on the density f . Under standard technical

conditions consistency of Īg obtains under the following condition

Em

[
g(x̃i) ·

a(x̃i)
ā

]
= Em

[
g(x̃i) ·

ω(x̃i)
ω̄

]
= Ig (8)

for all ϕ-integrable g. This implies that there exists a constant b > 0 such that

a(xi) = b · ω(xi), m− a.s. , (9)

where b accounts for di�erent implicit normalization rules associated with the weights. It follows

that

Varµ
[
α

(
x̃(i), ṽi

)]
= Em

[
Var

(
α

(
x̃(i), ṽi

))
| x̃i

]
+ b2Varm [ω(x̃i)] (10)

≥ b2Varm [ω (x̃i)] .
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Due to the complex correlation structure of the α weights under MH schemes, the inequality

(10) does not necessarily imply that IS is more e�cient than MH. However, it has two fundamental

implications which motivate the present paper: (i) The criticism commonly raised against IS that

Var[ω(X)] might not exist also applies to MH, a fact which is often ignored in the literature on

MCMC and cannot by itself justify the demise of IS procedures. (ii) More constructively, as we shall

discuss further below, the MH α weights are produced by accept-reject steps based upon ratios of

the form ω(x)/c, where c is a calibration constant. E�cient MH algorithms are those for which the

distribution of these ratios is tightly concentrated around one. Since, as discussed further below, EIS

is designed with that objective, we should be able to facilitate the construction of MH algorithms

and improve their e�ciency by relying upon EIS auxiliary steps to construct the MH samplers. This

is the objective of the present paper.

3 E�cient Importance Sampling (EIS)

The EIS procedure proposed by Richard and Zhang (2006) � hereafter RZ � provides a generic aux-

iliary LS algorithm to select an e�cient sampler within a preassigned class M . For low-dimensional

problems it approximates the integrand ϕ(x) � itself a density kernel � by a kernel k(x, a) for a ∈ A.

The correspondence between k and m is given by

m(x; a) =
k(x, a)
χ(a)

, with χ(a) =
∫

X
k(x, a)dx. (11)

A (near) optimal value of a obtains by solving the following auxiliary generalized LS (GLS)

problem

â = arg min
a∈A

q(a),

q(a) =
∫

X
d2(x, a) · ω(x, a) ·m(x; a)dx, (12)

with

d(x, a) = lnϕ(x)− γ − ln k(x, a), (13)

ω(x, a) =
ϕ(x)
m(x; a)

, (14)

and γ = ln c is an intercept (calibrating constant), which is included in a for the ease of notation.

For a tentative value âj ∈ A, an MC estimate of q(a) is given by

q̄S(a | âj) =
1
S

S∑
i=1

[
lnϕ

(
x̃j

i

)
− γ − ln k

(
x̃j

i , a
)]2

· ω
(
x̃j

i , âj

)
, (15)
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where {x̃j
i ; i : 1 → S} are i.i.d. draws from m(x; âj).

Let âj+1 denote the value of a which minimizes q̄S(a | âj). EIS consists of recursively solving the

GLS problem associated with Equation (15) until a �xed point solution obtains whereby âj+1 ' âj .

In earlier iterations where the variance of ω can be large, it is recommended to set the ωs in Equation

(15) equal to one in order to avoid imbalances due to large weights. Note that if k belongs to the

exponential family of distribution, then it can be parameterized in such a way that ln k is linear in

a and the search for â is reduced to a sequence of linear LS problems.

High-dimensional EIS requires that ϕ(x) be partitioned into low-dimensional components in ac-

cordance with a natural (model based) sampling preordering (allowing for parallel sequences under

appropriate conditional independence assumptions as for panels). Let x be partitioned conformably

with such a preordering into x = (x1, . . . , xL), under the convention that x` is to be drawn condi-

tionally on x(`−1) = (x1, . . . , x`−1). Both ϕ and m are factorized accordingly into

ϕ(x) =
L∏

`=1

ϕ`

(
x(`)

)
(16)

m(x; a) =
L∏

`=1

m`

(
x` | x(`−1), a`

)
. (17)

Note that ϕ`(x(`)), which is given by the model speci�cation, is typically not a kernel for the condi-

tional density f`(x` | x(`−1)). Kernels for f` obtain from the backward recursion

ϕ∗`
(
x(`)

)
= ϕ`

(
x(`)

)
·
∫
ϕ∗`+1(x(`+1)) · dx`+1, (18)

together with ϕ∗L = ϕL. Such integrals are generally intractable which is precisely why MC is used.

However, a similar recursive procedure can be applied to a sequence of (operational) IS approximating

kernels k`(x(`), a`). Speci�cally, the ratio ϕ/m can be rearranged as

ϕ(x)
m(x; a)

= χ1(a1) ·
L∏

`=1

[
ϕ`(x(`)) · χ`+1(x(`), a`+1)

k`(x(`), a`)

]
, (19)

together with

χ`+1

(
x(`), a`+1

)
=

∫
k`+1(x(`+1), a`+1)dx`+1 (20)

and χL+1(·) ≡ 1. Step j of the EIS �xed point search for â = (â`; ` : 1 → L) consists of drawing

full trajectories {x̃j
i`; ` : 1 → L; i : 1 → S} from the previous step sampler m(x; âj) and solving

a backward sequence of auxiliary GLS problems � of the form given by Equation (15) � whereby

ln(ϕ` · χ`+1) is approximated by ln k` as a function of x(`).

5



High-dimensional EIS implicitly assumes that ϕ` · χ`+1 and, therefore, k` only depend on a su�-

ciently low-dimensional subvector of x(`) in accordance with conditional independence assumptions

built into the model under consideration (see RZ, 2006 for full notation and implementation details).

It is important to emphasize that in order to secure smooth convergence towards a �xed point

solution â, all EIS iterations are to be run under Common Random Numbers (CRNs), in the sense

that all auxiliary draws {x̃j
i ; i : 1 → n} are constructed as transformation of a single set of canonical

draws {ũi; i : 1 → n}, i.e. draws whose densities do not depend on a (for example, uniforms on (0, 1)

from which the xs obtain by inversion of the cdf). As discussed in RZ (2006), the use of CRNs also

robusti�es EIS against outlier draws in the sense that outliers from m(x; âj) will be highly in�uential

in the auxiliary (G)LS problem, as given by Equation (15) and will generate an immediate adjustment

in âj+1. While the use of CRNs thereby critically contributes reducing the estimated variance of Īg,

it obviously does not eliminate the possibility that this variance might actually not exist (whether

under EIS or MCMC) as would be the case if the tails of k are thinner than those of ϕ (examples are

provided below). RZ (2006) propose a simple and highly sensitive test to detect such imbalances. It

consists of computing the ratio between two alternative MC estimates of the MC sampling variance

of Īg, one based upon draws from the EIS sampler m(x; â) itself and the other from an alternative

sampler m(x; a0) with arti�cially in�ated variance (by a factor of 3 to 5). This ratio is given by

Γ2
S (â, a0) =

σ̂2
S (â, a0)
σ̂2

S (â, â)
, (21)

where

σ̂2
S (â, a) =

1
S

S∑
i=1

h
[
d2 (x̃a

i , â)
]
· ϕ (x̃a

i )
m (x̃a

i ; a)
, (22)

h(c) = e
√

c + e−
√

c − 2, (23)

and {x̃a
i ; i : 1 → S} denotes (CRN) draws from m(x; a). (The MC sampling variance of Īg under a

sampler m(x; a) is given by {
∫
h[d2(x, a)]ϕ(x)dx}/S, see RZ, 2006.) One might consider calibrating

such a ratio by means of auxiliary MC simulations. Experience suggests that such calibration is

hardly necessary as Γ2
S rapidly explodes in the presence of even mild imbalances between the tails

of m and those of ϕ. Note that by in�ating the variance of the sampler m(x; a) used to compute

σ̂2
S (â, a), one increases the probability of drawing points in the potentially critical regions. Hence, in

the presence of a thin-tail problem one would expect σ̂2
S (â, a) to increase rapidly with the variance

of m(x; a). Illustrations are provided in section 5 below.

In conclusion of this brief description of EIS, we ought to mention that, relative to MH, EIS o�ers

an additional degree of �exibility which can produce additional and occasionally important e�ciency
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gains in the computation of ratios of integrals such as Ig in Equation (2). Consider �rst the case

where g(x) > 0 on X. It is then trivial to compute separate EIS samplers for the numerator and

denominator of Ig (under a single set of CRNs). Speci�cally, let m(x; âN ) denote an EIS sampler for

the product g · ϕ and m(x; âD) one for ϕ alone. Let (x̃Ni; i : 1 → S) and (x̃Di; i : 1 → S) denote

corresponding sets of draws obtained by transformation of a single set of CRNs. An EIS-2 samplers

estimate of Ig is then given by

Īg2 =
∑S

i=1 ωN (x̃Ni)∑S
i=1 ωD(x̃Di)

, (24)

where ωN = ϕ · g/m(·; âN ) and ωD = ϕ/m(·; âD). Illustrations of the signi�cant e�ciency gains

produced by EIS-2 samplers for g(x) = x with x > 0 and g(x) = x2 are provided in section 5 below.

A similar idea applies to situations when g(x) though not strictly positive on X can be decomposed

into the product of a positive function and a remainder. Note that there is no MH counterpart

to EIS-2 samplers since MH aims at producing draws from ϕ itself, from which expectations are

evaluated as simple arithmetic means.

4 Markov Chain Monte Carlo (MCMC)

The object of MCMC is to construct an auxiliary Markov Chain whose stationary distribution is

the one associated with the density kernel ϕ. Such chains include acceptance steps. Whence, in line

with our discussion in section 2, we introduce an explicit distinction between `primary' draws (x̃i)

and `accepted' draws (ỹi). As for EIS, we �rst discuss low-dimensional integration problems.

A baseline MH Markov Chain consists of two components:

(i) A transition probability density m(x | y);

(ii) An acceptance probability ρ(x | y) de�ned as:

ρ(x | y) = min
[

ϕ(x)
m(x | y)

· m(y | x)
ϕ(y)

, 1
]
. (25)

Assuming convergence after an initialization run, the MH algorithm proceeds as follows: Condition-

ally on the latest accepted draw ỹi, draw x̃i+1 from m(x | ỹi) and accept x̃i+1, i.e. set ỹi+1 = x̃i+1,

with probability ρ(x̃i+1 | ỹi). Otherwise, set ỹi+1 = ỹi. The corresponding MH estimate of Ig is a

simple arithmetic mean over accepted draws

Īg =
1
S

S∑
i=1

g(ỹi). (26)
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It trivially corresponds to formula (3) when reformulated in terms of the x̃is with α(x̃(i), vi) repre-

senting the number of time a primary draw was counted in the sum. Note, in particular that a ỹi

which obtains as the outcome of s successive rejections equals x̃i−s, and that a rejected primary draw

x̃i receives an α weight of zero. The MH algorithm as de�ned above is quite general in the sense

that Īg converges almost surely toward Ig as long as the chain {ỹi} is ergodic (see, e.g. Chib and

Greenberg, 1995 or Robert and Casella 1999).

A special version of MH is the independent MH (see Tierney, 1994), which is widely used in

econometrics as a key component of MCMC algorithms. This method, which is most closely related

to IS, relies upon auxiliary sampling densities which are independent from previous draws, in which

case m(x | y) = m(x). The corresponding acceptance probability ρ is then given by

ρ(x | y) = min
[
ω(x)
ω(y)

, 1
]
, (27)

with ω(x) = ϕ(x)/m(x). A necessary and su�cient condition for ergodicity of a chain from an

independent MH (and hence for convergence) is that m is almost everywhere positive on the support

∆ of ϕ, which is not particularly restrictive per se (see Robert and Casella, 1999, Chapter 6.2). This

being said, the rate of convergence and the e�ciency of MH critically depends upon how well m

approximates ϕ � up to a multiplicative constant c which actually cancels out in Equations (25) and

(27). Note, in particular, that the better the approximation of ϕ by m, the lower the variation in the

ratio (min {ω(x̃)/ω(ỹ), 1}), and hence, the higher the average acceptance rate. Furthermore, only for

densities m, satisfying

ω(x) <∞ ∀x ∈ ∆,

a fast exploration of the support ∆ implied by uniform ergodicity of the resulting chain {ỹi} can be

guaranteed (see Robert and Casella, 1999, Chap. 6.3). Without such a strong ergodicity property,

which is rarely met in practical applications, the convergence can be very slow. In particular observe,

that when m is lighter-tailed than ϕ, the algorithm can get stuck at points in the tails with very

low acceptance rates for new candidate draws, leading to potentially very large α weights for such

points. Finally, notice the close accordance between the condition for uniform ergodicity and the

requirement for a �nite MC variance of IS procedures.

It follows that in order to construct (independent) MH algorithms with fast convergence and

high e�ciency, one should select a density m which closely approximates ϕ and, in particular, such

that the ratio ϕ/m is bounded. Therefore, subject to the usual thin-tail caveat, an EIS density

m which, as discussed in section 2, provides a global LS approximation to ϕ should also result in

high acceptance rates when used as an MH sampler. This even though there remains a conceptual

8



di�erence between the intrinsic objectives of optimizing an IS procedure and improving the rate of

convergence of MH (through faster exploration of ∆). Nevertheless, as illustrated below, e�cient IS

samplers can signi�cantly accelerate the convergence of MH.

MH is often used in combination with other (MC)MC techniques. In particular, the combination

of independent MH with Accept-Reject (AR) sampling leads to the AR-MH algorithm proposed by

Tierney (1994). In the initial AR step of AR-MH, candidates drawn from m are accepted with

probability

p(x) = min
[
1
c
ω(x), 1

]
, (28)

where c > 0 represents a calibration (tuning) parameter. MH is then applied to the accepted

(primary) draws x̃i from this initial step, with a probability ρ modi�ed as follows:

ρ(x | y) = min
[
ϕ(x) ·min [ϕ(y), c ·m(y)]
ϕ(y) ·min [ϕ(x), c ·m(x)]

, 1
]
. (29)

The AR-MH algorithm is particularly useful in situations when the precondition for pure AR sampling

� i.e. the existence of a constant c such that ϕ(x) ≤ c ·m(x), ∀x ∈ ∆ � either is hard to verify or leads

to unacceptably high numbers of rejections. On the other hand, it is obvious that the convergence

of an AR-MH algorithm also critically depends upon the constant c. In the absence of operational

optimality criterion for the selection of c, rules of thumb are widely used in applications (see, e.g.,

Jacquier et al., 1994 or Chib and Greenberg, 1995). In contrast, the use of EIS to construct an AR-

MH auxiliary samplerm o�ers the additional bene�t that the tuning parameter c is a fully automated

by-product obtained from the estimation of the intercept γ in the EIS regression (15). In particular,

the estimate γ̂ captures the average di�erence between lnϕ and the EIS approximation ln k(x, â).

Hence, by setting c = χ(â) · eγ̂ , one can expect a balanced trade-o� between too frequent rejection in

the initial AR-step from high c values and too frequent repetitions in the subsequent MH-step due

to low c values. Accordingly, automated selection of c should be an important contribution of EIS

within the AR-MH algorithm which, as illustrated below, can considerably accelerate convergence.

In higher dimensional problems, Gibbs sampling (itself an MCMC algorithm) is often used in

combination with MH. Gibbs relies upon a partitioning of x into low-dimensional components, say x =

(x1, . . . , xL) such that the conditional densities f(x` | x\`), where x\` = (xi; i 6= `), are MC tractable,

in the sense that they are either amenable to direct simulation, or can be sampled through MC

approximations. Gibbs then repeatedly cycles across the complete set of such conditional densities

until convergence obtains. While Gibbs o�ers the advantage that its low-dimensional components can

be easy to draw from, it su�ers from the fact that high correlations among xs can dramatically slow

convergence and, therefore, produce highly ine�cient estimates of Ig (see, e.g., Carter and Kohn, 1994
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or Shephard and Pitt, 1997). Important examples of such problems are high-dimensional dynamic

latent variable models such as SV models, an example of which is discussed below. Bayesian analysis

of such models require integrating out a high-dimensional vector λ of latent variables in addition to

a vector θ of unknown parameters, in which case x = (θ, λ). Partitioning λ into blocks instead of

individual variables alleviates the high-correlation problem but also complicates approximating the

corresponding (block) conditional densities. On the other hand, EIS has proved to be very e�cient

for (single block) high-dimensional integration of λ | θ (see, e.g., Liesenfeld and Richard, 2003b).

We shall present below a highly e�cient Gibbs-EIS-MH combination for the Bayesian analysis of SV

models, whereby EIS is used to draw complete (single block) trajectories for λ | θ, and conventional

MH-Gibbs is used to draw θ | λ.

5 Two Univariate Examples

In this section we discuss two simple univariate examples, illustrating how EIS can be used to

automate the selection of an MH sampler (within a preassigned class). We show that the performance

of such an EIS-MH combination is very close to that of EIS itself. The auxiliary statistic ΓS de�ned

in Equation (21) is used under both EIS-MH and EIS to detect thin-tail problems. We also illustrate

the fact that neither EIS nor EIS-MH can match EIS-2 samplers for the estimation of (positive)

moments.

5.1 Inverse Gaussian Density

Consider the computation of the mean Ef (x), when x follows an inverse Gaussian distribution f with

a density kernel

ϕ(x, θ) = x−3/2e−θ1x−θ2/x, x > 0, θ1 > 0, θ2 > 0, (30)

where θ = (θ1, θ2)′. The analytical form of the mean is Ef (x) =
√
θ2/θ1. Following Robert and

Casella (1999, Chap. 6.4.1) � hereafter RC � let k be the following gamma kernel

k(x, a) = xκ−1e−x/δ, x > 0, κ > 0, δ > 0. (31)

For MC estimation of Ef (x) based upon independent MH, RC (1999) propose to select a value of

a = (κ, δ)′ which (approximately) maximizes the MH acceptance rate subject to the simplifying

assumption that the mean of the auxiliary sampler m(x; a) coincides with that of f . This requires

setting κ =
√
θ2/θ1/δ. The acceptance rate to be maximized in δ is also subject to the constraint
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that the ratio

ω(x, a) =
f(x)
m(x; a)

∝ x−κ−1/2e(1/δ−θ1)x−θ2/x (32)

be bounded. The latter requires that 1/θ1 < δ and ensures uniform ergodicity. Since the expected

acceptance rate is impossible to compute it has to be approximated by simulation. For θ1 = 1.5 and

θ2 = 2, the optimal value for δ subject to the constraint 1/1.5 < δ, as obtained by RC (1999), lies at

the boundary δ∗ = 1/1.5. The corresponding value for a is given by a∗ = (
√
θ2/θ1/δ

∗, δ∗)′.

Note that the procedure described above is not easy to generalize to a wider range of applications.

Optimization based upon estimated acceptance rates is a non-trivial and time consuming operation

(with a discontinuous objective function). Nor would Ef be generally available in which case the RC

approach would require iterations based upon intermediate estimates of Ef .

In contrast (unconstrained) EIS relies upon trivial bivariate linear auxiliary regression associated

with the following expression for d(x, a) as de�ned in Equation (13):

d(x, a) =
[
−3

2
lnx− θ1x−

θ2
x

]
− γ − [α1 lnx+ α2x] , (33)

where α1 = κ − 1, α2 = −1/δ, and γ denotes the regression intercept. It should be noted that the

variance of ω(x, a) remains �nite even when 1/θ1 > δ, in which case ω(x, a) is unbounded. Actually,

the MC variance of ω(x, a) can be expressed in terms of Bessel functions of imaginary argument (see

Gradshteyn and Ryzhik, 1979, 3.471.9). Whence we do not impose the uniform ergodicity condition

and, unsurprisingly in view of the RC results, �nd that the EIS solution â violates that condition.

Results are reported in Table 1 for the RC approach based on the optimized acceptance rate and for

the corresponding MH-EIS (using 20 EIS iterations to obtain the �nal EIS value â). The results which

are reported are sample means and standard deviations based upon 100 independent replications of

the complete algorithms, providing a reliable measure of numerical accuracy. Individual runs are

based upon S = 5, 000 draws. The results of the experiment indicate that the optimized MH

algorithm based on m(x; a∗) and the MH-EIS procedure using m(x; â) perform very similarly with

respect to numerical e�ciency: while the former has a MC standard deviation of 0.011, the latter has

one of 0.013. The acceptance rates for the MH-EIS procedure (90%) is signi�cantly larger than that

for the optimized MH (71%). This indicates that the EIS kernel k(x, â) based on an unconstraint

GLS optimization associated with Equation (33) provides a signi�cantly better global approximation

to ϕ(x, θ) than the kernel k(x, a∗), which is selected subject to the constrained that the ratio (32)

remains bounded. For comparison, we considered the direct EIS estimate of Ef (x) using the same

EIS-sampler as for MH-EIS. The MC standard deviation of this estimate (EIS-1) provided in the

third row of Table 1 indicates a numerical e�ciency which is close to that of the MH procedures.
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In order to make sure that the unboundedness of ω(x, â) does not adversely impact the estimation

of Ef (x) we computed the ΓS statistic, as de�ned in Equation (21), under variance ratios varying

from 5 to 30 (replacing (κ̂, δ̂) by (κ̂/q, qδ̂) amounts to multiplying the variance of m(x; â) by q). We

�nd that ΓS remains tightly distributed around one in all cases (only the results for q = 5 are reported

in Table 1), indicating the complete absence of adverse thin-tail e�ects. Clearly, MH-EIS provides

a fully operational (and generic) alternative to the RC procedure as well as one which enables us to

verify that we can safely relax the boundary condition in this application.

Last but not least, in order to illustrate the �exibility and full potential of EIS in the present case,

we also computed an EIS-2 samplers estimate of Ef (x) whereby, as described in section 2, separate

EIS samplers (under CRNs) are used to approximate x ·ϕ and ϕ, respectively. The EIS for x ·ϕ only

requires adding lnx to d(x, a) in Equation (33) (which represents the EIS for ϕ). The results for

this EIS-2 are reported in the last row of Table 1. Note the large e�ciency gain with MC-variance

reduction by a factor of 150.

The results discussed above are also con�rmed by Figure 1, where we reproduce plots of MC

estimates of Ef (x) under increasing size S for MH based on optimized acceptance rate, MH-EIS, and

EIS-2. Note that both MH procedures have similar convergence patterns with MH-EIS performing

somewhat better. Clearly none of the MH approaches can remotely match the performance of EIS-2.

5.2 Student-t Density

In our second example, we consider the classical pathological problem of approximating a Student-t by

a Normal density. In particular, we focus on the MC estimation of Ef (x2) where f is a standardized

t density with a kernel

ϕ(x, ν) =
(

1 +
x2

ν − 2

)−(ν+1)/2

, (34)

such that Ef (x) = 0, and Ef (x2) = 1 for all degrees of freedom ν > 2. The normal sampling density

kernel under consideration is parameterized as

k(x, a) = e−ax2/2, a > 0, (35)

such that Em(x) = 0 and Em(x2) = a−1. Notice that limν→∞ f(x; ν) = m(x; 1). The EIS univariate

linear regression for ϕ corresponds to the following expression for d(x, a)

d(x, a) =
[
−1

2
(ν + 1) · ln

(
1 +

x2

ν − 2

)]
− γ − αx2, (36)

where α = −a/2. Our initial sampler is a N(0, 1)-density obtained by setting α0 = −1/2.
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Table 2 and Figure 2 summarize the result for EIS and (independent) MH-EIS estimation of

Ef (x2). Since draws for MH-EIS need to be from f itself, we use �rst an EIS for ϕ as de�ned by

Equation (36). The maximum number of EIS iterations is conservatively set equal to 100, as low

degrees of freedom require more iterations. As in the example of subsection 5.1, we computed also

direct EIS-1 estimates of Ef (x2) using the same EIS sampler as for the MH-EIS as well as EIS-2

estimates using di�erent EIS samplers for the numerator and denominator of Ef (x2) though based

upon a single set of CRNs (see, �fth and sixth row of Table 2). The EIS for the denominator only

requires adding lnx2 to d(x, a) in Equation (36). The results in Table 2 are means and standard

deviations from 100 replications of the full estimation procedure, each based upon a sample size

S = 1, 000. The ΓS statistic as de�ned in Equation (21), is computed using the EIS sampler and

another sampler with variance equal to �ve times that of the EIS sampler (obtained by setting

a0 = 5/â).

In order to interpret the results for MH-EIS and EIS-1 one needs to account for the fact that

low degrees of freedom student t densities are signi�cantly tighter around their mode than a N(0, 1)-

density � in order to compensate for fatter tails. Therefore, an EIS sampler approximating ϕ will

have smaller variance (â > 1) which will result in greater downward bias when used to evaluate∫
x2ϕ(x, ν)dx in the numerator. Accordingly, decreasing the degrees of freedom ν (fatting the tails)

increases rapidly the downward bias of MH-EIS and EIS-1 estimates of Ef (x2). Under EIS-2 a

di�erent sampler is used for that numerator which explains the signi�cantly lower biases in row 6 of

Table 2 (see also the top line in Figure 2).

Note that, in sharp contrast with the previous example, the thin-tail issue matters greatly here as

indicated by rapidly exploding values of ΓS for low degrees of freedom. Figure 2 con�rms our �ndings

and indicates that the bias in Ef (x2) estimates under EIS-MH and EIS-1 does not decrease much

for ν = 2.5 as sample size S increases up to 50,000. The occasional signi�cant jumps are the results

of CRN outlier draws a�ecting the integral of x2ϕ. In contrast, the EIS estimate of the integral

of ϕ remains extremely robust against outliers due to the use of CRNs, as explained in section 3.

This is illustrated by the results for EIS estimation of I =
∫
ϕ(x, ν)dx reported in Table 3, where

we arti�cially insert a single very large outlier (x = 6 corresponding to a p-value of 9.8e�10) in the

�rst set of 1,000 N(0, 1) draws. The exact value of I equals 1.2360. Note the minimal impact of that

outlier, except for an increase from 0.017 to 0.027 in the MC standard deviation of Ī. This is due to

the fact that EIS adjusts each â to the particular set of CRNs being used. The third row of Table

3 indicates that if we prevent such adjustments by keeping â �xed, then Ī exhibits the traditional

erratic behavior under outlier(s).
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These two (classical) univariate examples have highlighted several key �ndings: (i) MH is subject

to the same caveat as (E)IS relative to the thin-tail problem; (ii) Maximally e�cient EIS estimation of

positive moments obtains when numerator and denominator are treated separately (under a common

set of CRNs) � note that EIS estimation of the integrals of ϕ and g · ϕ (for g > 0) only require

minimal program changes; (iii) The reliance upon a single set of CRNs from the �xed point search

for â to the �nal estimation of Ig is a critical component of EIS robustness against outliers and

(iv) the ΓS statistic de�ned in Equation (21) e�ectively discriminates between situations where the

unboundedness of ω(x) is inconsequential (example 5.1) from those where it is critical (example 5.2).

6 Two Higher-dimensional Examples

We now consider two higher-dimensional full-�edged applications illustrating how EIS and MH can

be combined together for greater numerical e�ciency.

6.1 Bayesian Analysis of a Stochastic Volatility Model

SV models have received considerable attention in �nancial econometrics as speci�cations accounting

for the dynamic behavior of the volatility of �nancial returns (see Ghysels et al., 1996 or Shephard,

2004). The standard univariate SV model has the form

yt = βeλt/2ut, λt = δλt−1 + νvt, t : 1 → T, (37)

where yt is the asset return observed in period t, λt is the unobservable log volatility of yt, and

(ut, vt) are i.i.d.N(0,1) variables which are mutually independent. The parameters to be estimated

are θ = (β, δ, ν)′ with the usual stationarity condition that |δ| < 1.

Classical and Bayesian inference of the SV model are hindered by the fact that it has no closed-form

likelihood. Various (E)IS procedures have been used to perform ML estimation of the SV model (37)

and of numerous univariate and multivariate extensions (see, e.g., Sandmann and Koopman, 1998

and Liesenfeld and Richard, 2003b). Alternatively, MCMC algorithms have been proposed for a

Bayesian analysis, which avoids the need to compute the likelihood (see, e.g, Jacquier et al., 1994

and Chib et al., 2002). Such an MCMC analysis is typically based on simulation of θ and of the

vector of volatilities λ from their joint conditional distribution f(θ, λ|y) using the Gibbs factorization

f(θ|λ, y) and f(λ|θ, y). The simulation of f(λ|θ, y) is most challenging. Most approaches are based

on a `single-move' Gibbs sampling scheme, whereby each element of λ is simulated individually

from its full conditional posterior. For example, Shephard and Pitt (1997) consider an AR-MH
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procedure to simulate λt|λ\t, θ, y element by element. For this purpose, they apply a second-order

(Taylor) expansion around the mean of λt|λ\t, θ to approximate the log kernel of the target density

lnϕt(λt|λ\t, θ, y) = −[(λt − µt)2/σ2
t + λt + y2

t exp(−λt)/β2]/2, where µt = δ(λt+1 + λt−1)/(1 + δ2)

and σ2
t = ν2/(1 + δ2). This yields for each period an auxiliary Gaussian sampler mt which can be

used to produce candidate draws for the AR-MH procedure. The mean and variance of mt are

µ∗t = σ∗
2

t

[
µt

σ2
t

+
1
2

(
y2

t

β2
e−λt(1 + µt)− 1

)]
, σ∗

2

t =
(

1
σ2

t

+
y2

t

2β2
e−λt

)−1

.

However, the typically high persistence in the λt-process creates a problem for the convergence of

such single-move Gibbs sampling MCMC schemes. To improve the speed of convergence, Shephard

and Pitt (1997) suggest a block-sampling technique, that is, a joint simulation of a smaller number

of blocks of consecutive λts.

In view of the numerical e�ciency of EIS and of the fact that the EIS sampler can be generically

be interpreted as a single block�sampler for λ, Liesenfeld and Richard (2005b) propose an MCMC-

EIS Bayesian algorithm combining Gibbs for the parameters given the volatilities and EIS for the

volatilities given the parameters. In particular, the EIS sampler is used as a proposal density for the

AR-MH algorithm to simulate λ as a single block from f(λ|θ, y). The latter is proportional to

ϕ(λ; θ, y) =
T∏

t=1

exp
{
−1

2

[
λt +

y2
t

β2
e−λt +

(λt − δλt−1)2

ν2

]}
. (38)

For any given θ, one can use EIS to construct the following sequential Gaussian sampler approxima-

tion to ϕ(λ; θ, y):

ϕ(λ; θ, y) ' ĉ ·m(λ|y, θ, â(θ)) = ĉ ·
T∏

t=1

mt (λt|λt−1, θ, ât(θ)) , (39)

where ât(θ) = (α̂1t, α̂2t) denotes the GLS coe�cients of λt and λ2
t in the sequential EIS auxiliary

regressions. Furthermore, ln ĉ =
∑T

t=1 γ̂t, where the γ̂ts are the intercepts of the EIS regressions, and

mt is a univariate normal density with kernel

kt(λt; θ, ât(θ)) = exp
{
−1

2

[
(λt − δλt−1)2

ν2
− 2α̂1tλt + α̂2tλ

2
t

]}
, (40)

and with variance σ̂2
t = ν2/(1 + ν2α̂2t) and mean µ̂t = σ̂2

t (δλt−1/ν
2 + α̂1t). While m would be used

as such for an EIS likelihood evaluation (see Liesenfeld and Richard 2003b), for a Bayesian MCMC

analysis one need exact draws from f(λ|θ, y) for which one can use an AR-MH algorithm based upon

the ratio ϕ/(ĉ ·m).
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Table 4 and Figure 3 summarizes results of a Bayesian MCMC analysis of the SV model (37)

using this single-block EIS sampling procedure for λ, and for comparison, those obtained using the

Shephard and Pitt's (1997) single-move Gibbs sampler described above. The model is applied to

the daily exchange rate of the British Pound against the US Dollar from October 1, 1981 to June

28, 1985 (T = 945). (The data set and the prior speci�cation are the same as in Shephard and

Pitt, 1997.) For lnβ, we use a �at prior leading to an inverted chi-squared conditional posterior for

β2. An inverted chi-squared prior with a mean of 0.013 and a variance of 0.007 is used for ν2. The

resulting conditional posterior for ν2 is also an inverted chi-squared distribution. Finally, a Beta

prior is assumed for (δ + 1)/2 with a prior mean for δ of 0.86 and a prior variance of 0.012. The

resulting conditional posterior is non-conjugate and is sampled by an independent MH procedure

based on a Gaussian proposal distribution.

Posterior moments are presented in Table 4 together with numerical MC standard errors which

are computed with the Parzen based spectral estimator used by Shephard and Pitt (1997). For M

draws of a parameter {θ̃i; i : 1 →M} the MC standard error is the square root of

1
M

[
Γ0 +

2LM

LM − 1

LM∑
`=1

K
( `

LM

)
Γ`

]
, where Γ` =

1
M

M∑
i=`+1

(θ̃i − θ̄)(θ̃i−` − θ̄),

withK(·) the Parzen kernel and LM the bandwidth. The results for both MCMC algorithms are based

on 52,000 Gibbs draws of the parameters, where the �rst 2,000 are discarded. The EIS approximation

to f(λ|θ, y) is obtained using for the EIS auxiliary regressions a MC sample size of S = 50 and 3

EIS iterations with an initial sampler for the λts given by the sequence of N(δλt−1, ν
2) densities (at

the corresponding Gibbs draws of the parameters). The starting values of the parameters used for

both MCMC algorithms are β = 1, δ = 0.9, ν = 0.2. The single-move Gibbs sampler is initialized by

setting all λts to zero and then iterating for the starting values of the parameters on the λs for 1000

iterations. For the MCMC-EIS procedure the �rst λ-draw is simulated from the EIS sampler at the

starting values of the parameters.

The results in Table 4 show that the the single block MCMC-EIS algorithm performs notably

better than the single-move MCMC procedure. In particular, the MC standard errors of the MCMC-

EIS estimators are signi�cantly lower than those of the single-move estimators. This improvement

obtained by the single-block EIS sampler is not surprising since the posterior moments for the per-

sistence parameter δ (with a mean close to unity) indicate a slowly mixing volatility process. Using

a single-move sampler for the volatilities, this leads typically to a slowly mixing of the MCMC chains

on the volatility parameters. This interpretation is con�rmed by the autocorrelation function of the
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Gibbs draws of parameters and the convergence diagrams, where the MCMC posterior means for

the parameters are plotted against the Gibbs iteration (see Figure 3). Notice in particular the se-

vere convergence problems of the MCMC posterior mean for β obtained from the single-move Gibbs

sampler. It appears that it has not converged even after 50,000 iterations, while the MCMC-EIS

posterior mean do not need more than 10,000 iterations to reach its convergence level. Finally we

notice, that the acceptance rates of the AR-MH EIS algorithm for the simulation of λ|θ, y turn out to

be 81% (initial AR step) and 80% (subsequent MH step). This re�ects the close EIS approximation

of the kernel of the target density ϕ by ĉ ·m and indicates that ĉ ensures a balanced trade-o� between

too frequent rejection in the initial AR-step from high c values and too frequent repetitions in the

subsequent MH-step due to low c values.

6.2 Bayesian Analysis of a Stationary AR Model

The following last example illustrates the implementation of a fully automated MCMC-EIS algo-

rithm in a situation where EIS alone is not operational for a nonlinear parametrization of interest.

It consists of the Bayesian posterior analysis of a stationary AR process. Bayesian MCMC analysis

of stationary AR processes are found e.g. in Chib and Greenberg (1994,1995). Our analysis di�ers

from theirs in several critical ways. Firstly, it relies on a di�erent (nonlinear) parametrization asso-

ciated with the roots of the AR process, which are typically the key quantities of interest for such

an analysis. Secondly, it makes use of an operational analytical expression for the inverse of the

stationary covariance matrix and, relatedly, all draws belong by construction to the stationary region

of the parameter space (while in Chib and Greenberg, 1995, primary draws are unconstrained and

then accepted or rejected depending upon whether they satisfy or not the stationarity condition).

Thirdly, it relies upon an initial EIS approximation to the likelihood function to construct a fully

automated and numericlly e�cient MCMC posterior analysis.

The model under consideration is

φ(L)yt = yt + φ1yt−1 + · · ·+ φpyt−p = εt, εt ∼ i.i.d.N(0, σ2), t : 1 → T, (41)

where φ(L) is a polynomial in the backshift operator L. For ease of presentation and without loss of

generality we set σ2 = 1. It is assumed that φ = (φ1, ..., φp)′ lies in the stationary region Bφ, that

is characterized by roots of φ(L), which lie all outside the unit circle. Following Richard (1977), the

joint stationary density of the initial variables y[p] = (y1, ..., yp)′ can be written as

y[p] ∼ Np(0,H−1
p ), with Hp = SpS

′
p −R′pRp, (42)
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where Sp is a lower triangular band matrix with elements sij = φi−j , (j ≤ i) and Rp an upper

triangular band matrix with elements rij = φp+i−j , (j ≥ i). The likelihood function is given by

`(φ; y) ∝ |Hp|1/2 exp
{
− 1

2
y′[p]Hpy[p]

}
·

[
exp

{
− 1

2

T∑
t=p+1

(yt + φ1yt−1 + · · ·+ φpyt−p)2
}]
. (43)

Assuming a �at prior for φ ∈ Bφ, the posterior of the parameters f(φ|y) has a kernel of the form

ϕ(φ; y) = `(φ; y)IBφ
, where IBφ

is an indicator function of the set Bφ. In order to perform a Bayesian

analysis, Chib and Greenberg (1995) simulate from such a posterior using the MH algorithm with

an auxiliary sampler m, associated with the Gaussian density kernel for the observations yt+p, ..., yT

(the term in brackets of Equation, 43).

However, note that the φ coe�cients are hard to interpret and one would typically have greater

interest in the roots of the process. In order for the transformation from φ into the roots to be

one-to-one, the latter need to be ordered in some appropriate way. An operational solution to this

problem consists of factorizing the polynomial φ(L) into ordered binomials. Focusing for the moment

on the case where the order p is even, say p = 2r, let

φ(L) =
r∏

j=1

ψj(L) =
r∏

j=1

(1 + βjL+ δjL
2), (44)

where the βjs are ordered according to −2 < β1 < · · · < βr < 2. The corresponding stationarity

conditions for ψ = (β1, δ1, ..., βr, δr)′ are given by βj + δj > −1, βj − δj < 1, and δj < 1. It follows,

that simulated draws of the ψ coe�cients will automatically satisfy the stationarity restrictions if

they are constrained in the following sequential way:

- For βj given all other coe�cients

max{βj−1,−(1 + δj)} < βj < min{βj+1, (1 + δj)}, with β0 = −2, βr+1 = 2; (45)

- For δj given all other coe�cients

|βj | − 1 < δj < 1. (46)

Obviously, for r > 1, the φ coe�cients are a nonlinear but trivial transformation of the ψ coe�cients,

e.g., for r = 2 we have

φ1 = β1 + β2, φ2 = δ1 + β1β2 + δ2, φ2 = δ1β2 + δ2β1, φ4 = δ1δ2.

Furthermore, if we partition ψ into ψ′ = (ψτ , ψ
′
\τ ), where ψτ is a single parameter, we note that φ is

a linear function of ψτ given ψ\τ . This conditional linearity together with the iterated restrictions in
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(45) and (46), provide the key to the proposed MCMC-EIS algorithm for a Bayesian analysis of the

pairs (βj , δj). It also allows for a trivial numerical evaluation of the Jacobian ∂φ/∂ψ′, whose τ -th

column is obtained by increasing ψτ by 1 keeping ψ\τ �xed and computing the resulting di�erence

in φ. Accordingly, the proposed MCMC-EIS can be implemented for priors on φ as well as priors on

ψ.

Based on these preliminaries, the MCMC-EIS algorithm consists of the following key steps:

(i) In the �rst step, a Gaussian EIS approximation m(φ|y, a) to the posterior associated with the

likelihood (43) is constructed. This requires an auxiliary GLS regression associated with the

following expression for d(φ, a) as de�ned in Equation (13)

d(φ, a) = ln `(φ; y)− γ − α′φ− φ′Σφ, (47)

where α is a p-dimensional vector and Σ a symmetric p×pmatrix. In the application below with

p = 6, this regression includes 21 regressors plus one intercept. (For signi�cantly higher ps, one

could embed univariate EIS regressions within the MCMC algorithm instead of computing a

single global initial EIS.) In our application we use the prior of φ as initial sampler. Beyond the

sampler itself, this initial EIS step produces two other results which are useful for an e�cient

MCMC implementation. First, its mode can be used as initial value for the subsequent AR-

MH steps, and second, the intercept of the EIS regression can be transformed into an e�cient

calibration constant c for the corresponding AR-MH ratios ϕ/[c ·m].

(ii) In the next step, the AR-MH algorithm is used to sample individually ψτ |ψ\τ , y based on the

Gibbs factorization of ψ. Speci�cally, under a uniform prior on ψ the posterior density of a

single ψτ is given by f(ψτ |ψ\τ , y) ∝ ϕ(φ(ψ); y). The AR-MH sampling density for ψτ |ψ\τ , y

is given by the Gaussian conditional density m(ψτ |ψ\τ , y) associated with the EIS sampler

m(φ|y, a). Note that since φ is a linear function of ψτ given ψ\τ , one only needs to evaluate

m(φ|y, a) for three di�erent values of ψτ (keeping ψ\τ �xed) to retrieve the mean and variance

of m(ψτ |ψ\τ , y). The ψτ draws are truncated conformably with the stationarity and ordering

conditions given by Equations (45) and (46). In order to accelerate draws of the truncated

normals one can usefully rely upon interpolation tables for the c.d.f. and inverse c.d.f of the

standardized normal.

In order to illustrate the performance of the proposed MCMC-EIS algorithm, we �rst reran the

application of Chib and Greenberg (1995) for an AR(2) model based on simulated observations. In
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particular, we simulated T = 100 observations from an AR(2) with φ1 = −1 and φ2 = 0.5. Since

p = 2, the φ and ψ parameters are equivalent and we can benchmark a MCMC-EIS against an EIS

posterior analysis. As in Chib and Greenberg, we use 5,500 MCMC draws of which the �rst 500 are

discarded. Correspondingly, we use 5,000 draws for EIS. Posterior means and standard deviations

are provided in Table 5, together with MC (numerical) standard errors for all relevant estimates. The

latter are based upon 100 i.i.d. replications of the complete algorithm. We also provide the MC means

and standard errors of the ratios ϕ/[c ·m] for MCMC-EIS. The results show that the EIS-step has

e�ciently normalized these ratios. Furthermore, the EIS as well as the MCMC-EIS algorithm lead

to posterior distributions which are centered around the true values of the data generating process.

Since Chib and Greenberg (1995) implicitly use an EIS-type algorithm based upon the quadratic

part of `(φ; y), their numerical accuracy is similar to the ones obtained here for the MCMC-EIS

algorithm, while the computing time for the latter is absolutely competitive. The CPU times for

the entire sampling process using the EIS and MCMC-EIS scheme on a 750 MHz UNIX server are

0.08 and 0.16 seconds, respectively, while Chib and Greenberg report CPU times of 8 minutes for

a pure Accept-Reject algorithm and 2 minutes for the MH on a 50MHz PC. Moreover, preliminary

investigations suggest that the EIS step has signi�cantly improved the convergence properties of the

MCMC algorithm. For example, we reduced the number of MCMC draws by a factor ten (only 550

draws of which the �rst 50 were dicarded) and produced virtually identical estimation results (not

presented here) up to 2 or 3 decimals except for the obvious fact that numerical standard errors

increased approximately by the factor
√

10.

Next, for a more stringent test, we repeated the numerical experiment for an AR(p) model with

p = 6, using a pair of complex conjugate roots close to the unit circle (±i
√

0.95), a pair of real

roots (-0.9,0.2) and a double real root (-0.7). The corresponding ordered (βj , δj)-pairs in ψ are given

by (0, 0.95), (0.7,-0.18) and (1.4,0.49). For p > 1, we can no longer o�er an EIS benchmark on

the ψ coe�cients for comparison. The posterior means and standard deviations of ψ together with

MC numerical standard errors and posterior probabilities for complex roots are provided in Table

6. The results are based on 5,500 MCMC draws, where the �rst 500 are discarded. CPU time for

the entire sampling process is 0.7 seconds. The results indicate that the MCMC-EIS algorithm has

accurately produced posterior distributions for the ψ parameters which are centered around the true

parameter values of the data generating process. (Posterior moments of φ are immediate by-products

of the MCMC-EIS analysis of ψ but are not reported here. When compared with the EIS posterior

moments of φ, they were found to be near identical but numerically less e�cient by factor ranging

from 2 to 3. This is hardly surprising since the likelihood is nearly Gaussian in φ and EIS on φ is
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therefore highly e�cient.) Furthermore, a �ve fold reduction in the number of MCMC draws leads

to virtually identical results (not presented here) except for the corresponding
√

5-fold increase in

numerical standard errors. Hence, the results suggest that the convergence of MCMC-EIS is very fast

and requires fewer draws than typically used in the literature. Again it appears that implementation

of an EIS step improved the numerical properties of MCMC, essentially providing (near optimal) fully

automated selection of critical MCMC components (starting values, normalizing constant, e�cient

univariate conditional samplers).

In conclusion of this subsection we brie�y indicate how to handle odd orders of autoregression p.

Direct ordered factorization remains feasible but gets more complicated as the isolated real root needs

to be ordered relative to a random number of other pairs of real roots. This imposes further recursive

constraints within MCMC. We have found it far easier to adopt a `Bayesian' solution whereby one

increases the order by one and speci�es a corresponding prior which keeps the trailing coe�cient in

a region very near to zero.

7 Conclusions

This paper has shown how the E�cient Importance sampling (EIS) can be used to improve the

numerical accuracy of Markov Chain Monte Carlo (MCMC) algorithms based on the Metropolis

Hastings (MH) procedure. (E)IS and MH are two separate techniques which can be used to ana-

lyze econometric models involving integrals without analytical solutions. The MH procedure is a

Markov-Chain method to simulate from a (unknown) distribution by `weighting' draws from an aux-

iliary sampler according to an accept-reject mechanism. EIS is an algorithm for the construction

of importance sampling densities which produce numerically e�cient Monte Carlo (MC) estimates

of integrals, provided that the corresponding MC sampling variance exists. It is based on a Least

Squares approach to obtain a global approximation of the integrand, typically the posterior density

of variables to be integrated out. As such the EIS technique can � beyond its use as a separate MC

integration approch � be employed to systematically construct auxiliary samplers for the MH pro-

cedure which can be expected to have good MC-sampling properties. This approach of embedding

EIS within MCMC is based on the key insight that there is a close relationship between the e�cient

selection of importance sampling densities and the construction of auxiliary sampling densities for

the MH procedure. In both cases the numerical e�ciency critically depends upon the approximation

quality of the sampling densities (w.r.t. the integrand and the target density from which a simulated

sample needs to be generated, respectively). Furthermore, the problem of possibly non-existing vari-
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ance of EIS-MC estimates, leading to a large variation and slow convergence of the estimate, can

also a�ect MH algorithms (in particular the independent MH). In order to reveal such convergence

problems of EIS and MCMC-EIS estimates we propose a useful diagnostic statistic. Beyond the

auxiliary sampler itself, EIS can also provide a fully automated selection of calibrating constants and

starting values, which can also be critical elements of an numerically e�cient implementation of MH

procedures.

The potential of this integrated MCMC-EIS approach for the analysis of a broad range of econo-

metric models is illustrated with numerical examples involving univariate as well as multivariate

integration problems. The two `textbook' univariate examples (integration of an inverse Gaussian

and a Student-t) serve to illustrate the close relationship between (E)IS and MH, and the basic

principle of the integrated MCMC-EIS approach.

The two multivariate examples illustrate the full potential of our proposed approach in the con-

text of two important classes of models. In the Stochastic Volatility application, we fully exploit

the comparative advantages of EIS (high-dimensional integration) and MCMC (Bayesian posterior

factorization) to o�er a numerically very e�cient EIS-MH MCMC algorithm. In the Bayesian Au-

toregressive application, we focus our attention of a highly non-linear parametrization of intrinsic

interest for which EIS is not operational but nevertheless are able to exploit EIS for the construction

of an e�cient and original MCMC algorithm.
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Table 1. MC Evaluation of the Mean Under an Inverse Gaussian

Êf (x) δ κ accept. rate ΓS

MH (opt. accept. rate) 1.1530 .6667 1.7320 .713 .9987
(.0111) (.0122)

MH-EIS 1.1537 .3158 3.6182 .904 1.0749
(.0126) (.0089) (.0919) (.0634)

EIS-1 1.1530 .3158 3.6182
(.0107) (.0089) (.0919)

numerator

EIS-2 1.1551 .3876 3.8132
(.0008) (.0071) (.0628)

denominator

.3158 3.6182
(.0089) (.0919)

NOTE: MC estimation of Ef (x) for the inverse Gaussian distribution (30) with θ1 = 1.5 and θ2 = 2 using
a Gamma distribution (31) for simulation. The theoretical value is Ef (x) = 1.155. Simulation sample
size is S = 5, 000 and the number of EIS iterations is 20. The numbers in parentheses are MC standard
deviations based upon 100 repeated estimates.
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Table 2. MC Evaluation of the Variance Under a Standardized Student-t

ν 2.5 4.0 6.0 10.0 150.0

MH-EIS Ê(x2) .4359 .8095 .9201 .9675 .9930
(.1042) (.1101) (.0966) (.0753) (.0453)

â 2.0863 1.1487 1.0392 1.0080 1.0004
(.5234) (.1751) (.0995) (.0523) (.0022)

ΓS 3.4e+4 1.5e+4 4.9e+3 7.1e+2 1.2363
(1.3e+5) (5.9e+4) (1.9e+4) (2.4e+3) (.2710)

accept. rate .813 .879 .918 .952 .997

EIS-1 Ê(x2) .4420 .8119 .9170 .9653 .9929
(.1158) (.1164) (.0898) (.0682) (.0459)

EIS-2 Ê(x2) .8619 .9826 .9961 .9990 .9991
(.0531) (.0149) (.0162) (.0177) (.0195)

NOTE: MC estimation of Ef (x2) for the standardized student-t distribution with kernel (34) and ν
degrees of freedom using a N(0, a−1) distribution (35) for simulation. The theoretical value is Ef (x) = 1.
Simulation sample size is S = 1, 000 and the number of EIS iterations is 100. The numbers in parentheses
are MC standard deviations based upon 100 repeated estimates.
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Table 3. (E)IS MC Evaluation of a Standardized Student-t Integral with an Injected Outlier

â Ī

EIS without injected outlier 2.0863 1.2159
(.5234) (.0173)

EIS with injected outlier 2.0567 1.2141
(.5559) (.0266)

IS with injected outlier and �xed a 2.0567 3.3893
(21.6810)

NOTE: (E)IS MC estimation of I =
R

ϕ(x, ν)dx =
p

π(ν − 2)Γ(ν/2)/Γ([ν + 1]/2) for the standardized
student-t distribution with kernel (34) and ν = 2.5 degrees of freedom using a N(0, a−1) distribution
(35) for simulation. The theoretical value of I is 1.2360. Simulation sample size is S = 1, 000 and the
number of EIS iterations is 100. The numbers in parentheses are MC standard deviations based upon
100 repeated estimates. The outlier injected into the draws of the initial N(0, 1) sampler is x = 6.
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Table 4. MCMC Posterior Analysis of the SV Model for
the British Pound/US-Dollar Exchange Rate

EIS Single-move Gibbs

β Mean .654 .691
Stand. Dev. .111 .075
MC S.E. .00590 .01579

δ Mean .981 .982
Stand. Dev. .009 .008
MC S.E. .00027 .00062

ν Mean .144 .143
Stand. Dev. .027 .027
MC S.E. .00113 .002069

NOTE: The estimated model is given by Equation (37). Posterior moments are based on 52,000 Gibbs
iterations (discarding the �rst 2,000 draws). MC standard errors are computed using a Parzen based
spectral estimator with a bandwidth of 5000. The EIS approximation to the full conditional distribution
of λ|θ, y is based on a MC sample size N = 50 (used to run the EIS auxiliary regressions) and three EIS
iterations.
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Table 5. Posterior Analysis of the AR(2) Model for Simulated Data

EIS MCMC-EIS

β1 = φ1 δ1 = φ2 β1 = φ1 δ1 = φ2

True −1.000 .500 −1.000 .500
Mean −.851 .383 −.851 .382
Stand. Dev. .100 .101 .099 .100
MC S.E .0015 .0011 .0020 .0020

MC Mean (S.E.) of ϕ/(c ·m) .999 (.0470)

NOTE: The estimated model is given by Equation (41) with p = 2. The sample size for the simulated
data from that model is T = 100. The posterior moments are based on 5,500 parameter draws (discarding
the �rst 500 draws). The EIS approximation to the likelihood `(φ; y) is based on 4 to 5 EIS iterations.
The MC standard errors are based upon 100 replications of the complete algorithms.
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Table 6. MCMC-EIS Posterior Analysis of the AR(6) Model for Simulated Data

β1 δ1 β2 δ2 β3 δ3

True .000 .950 .700 −.180 1.400 .490
Mean −.004 .932 .841 .081 1.433 .510
Stand. Dev. .040 .031 .204 .143 .188 .166
MC S.E .0008 .0007 .0404 .0111 .0419 .0362
Prob. 1.000 .169 .426

MC Mean (S.E.) of ϕ/(c ·m) 1.037 (1.680)

NOTE: The estimated model is given by Equation (41) with p = 6 and re-parameterized according to
(44). The sample size for the simulated data from that model is T = 100. The posterior moments are
based on 5,500 parameter draws (discarding the �rst 500 draws). The EIS approximation to the likelihood
`(φ; y) is based on 4 to 5 EIS iterations. The MC standard errors are based upon 100 replications of the
complete algorithm.
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Fig. 1. Convergence of MC estimates of Ef (x) where f is an inverse Gaussian distribution with kernel (30)
and θ1 = 1.5 and θ2 = 2. The exact value is 1.155. The �nal estimates for a MC sample size 50,000 are

1.1503 (MH-EIS), 1.1545 (EIS-2), 1.1479 (MH-optimized acceptance rate).
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Fig. 2. Convergence of MC estimates of Ef (x2) where f is a standardized student-t with density kernel (34)
and ν = 2.5. The exact value is 1. The �nal estimates for a MC sample size 50,000 are 0.4520 (MH-EIS),

0.4648 (EIS-1), 0.9095 (EIS-2).
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Fig. 3. Convergence of MCMC posterior means for the SV parameters (left) and autocorrelation functions
of the Gibbs draws of the parameters (right). The solid lines represent the results for the MCMC algorithm
based on the (single-block) EIS sampler for λ and the dashed lines those for the corresponding single-move

Gibbs sampler.
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