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1 Introduction

The exponential function ex is one of the most important functions in math-
ematics. Its history goes back to the brothers Jacob and Johann Bernoulli
in the late 17th century, while the matrix exponential eX was not introduced
until the late 19th century by Sylvester, Laguerre, and Peano.

The matrix exponential plays an important role in the solution of systems
of ordinary differential equations (Bellman, 1970), multivariate Ornstein-
Uhlenbeck processes (Bergstrom, 1984 and Section 8 below), and continuous-
time Markov chains defined over a discrete state space (Cerdà-Alabern, 2013).
The matrix exponential is also used in modelling positive definiteness (Linton,
1993; Kawakatsu, 2006) and orthogonality (Section 9 below), as eX is positive
definite when X is symmetric and orthogonal when X is skew-symmetric.

The derivative of ex is the function itself, but this is no longer true for
the matrix exponential (unless the matrix is diagonal). We can obtain the
derivative (Jacobian) directly from the power series, or as a block of the
exponential in an augmented matrix, or as an integral. We shall review these
three approaches, but they all involve either infinite sums or integrals, and
the numerical methods required for computing the Jacobian are not trivial
(Chen and Zadrozny, 2001; Tsai and Chan, 2003; Fung, 2004).

The purpose of this paper is to provide a closed-form expression which is
easy to compute, is applicable to both defective and nondefective real matri-
ces, and has no restrictions on the number of parameters that characterize X .

We have organized the paper as follows. In Section 2 we discuss and
review the matrix exponential function. Three expressions for its Jacobian
(Propositions 1–3) are presented in Section 3 together with some background
and history. Our main result is Theorem 1 in Section 4. In Sections 5 and 6 we
apply the theorem to defective and nondefective matrices and discuss struc-
tural restrictions such as symmetry and skew-symmetry. In Section 7 we de-
rive the Hessian matrix (Proposition 4). Two applications in macroeconomet-
rics demonstrate the usefulness of our results: a continuous-time multivariate
Ornstein-Uhlenbeck process for stock variables observed at equidistant points
in time (Section 8) and a structural vector autoregression with non-Gaussian
shocks (Section 9). In both cases, we explain how to use our main result to
obtain the loglikelihood scores and information matrix in closed form. Sec-
tion 10 concludes. There are two appendices. Appendix A provides proofs
of the four propositions and Appendix B provides the proof of the theorem
in three lemmas. As a byproduct of the proof, Lemma 2 presents an al-
ternative expression for the characteristic (and moment-generating) function
of the beta distribution, which is valid for integer values of its two shape
parameters.
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2 The exponential function

Let A be a real matrix of order n×n. The exponential function, denoted by
exp(A) or eA, is defined as

eA =

∞∑

k=0

Ak

k!
= In +

∞∑

k=0

Ak+1

(k + 1)!
, (1)

and it exists for all A because the norm of a finite-dimensional matrix is finite
so that the infinite sum converges absolutely. We mention two well-known
properties. First, we have

e(A+B)t = eAteBt for all t ⇐⇒ A and B commute,

so that eA+B = eAeB when A and B commute, but not in general. Second,
as a special case, we have eA(s+t) = eAseAt, and hence, upon setting s = −t,

e−AteAt = In,

so that eAt is nonsingular and its inverse is e−At.
Let us introduce the n× n ‘shift’ matrix

En =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0




,

which is nilpotent of index n, that is En
n = 0, and has various other prop-

erties of interest; see Abadir and Magnus (2005, Section 7.5). The Jordan
decomposition theorem states that there exists a nonsingular matrix T such
that T−1AT = J , where

J = diag(J1, . . . , Jm), Ji = λiIni
+ Eni

. (2)

The matrix J thus contains m Jordan blocks Ji, where the λ’s need not be
distinct and n1 + · · ·+ nm = n. Since In and En commute, we have

exp(Ji) = exp(λiIni
) exp(Eni

) = eλi

ni−1∑

k=0

1

k!
Ek

ni
(3)

and
eA = TeJT−1, eJ = diag(eJ1, . . . , eJm). (4)
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3 First differential

We are interested in the derivative of F (X) = exp(X). The simplest case is
X(t) = At, where t is a scalar and A is a matrix of constants. Then,

deAt = AeAt dt = eAtAdt, (5)

as can be verified directly from the definition.
The general case is less trivial. Without making any assumptions about

the structure of X , the differential of Xk+1 is

dXk+1 = (dX)Xk +X(dX)Xk−1 + · · ·+Xk(dX),

and hence the differential of F is

dF =

∞∑

k=0

dXk+1

(k + 1)!
=

∞∑

k=0

Ck+1

(k + 1)!
, Ck+1 =

k∑

j=0

Xj(dX)Xk−j;

see Magnus and Neudecker (2019, Miscellaneous Exercise 8.9, p. 188). To
obtain the Jacobian we vectorize F and X . This gives

d vecF =

∞∑

k=0

1

(k + 1)!
vecCk+1 =

∞∑

k=0

∇k+1(X)

(k + 1)!
d vecX.

Thus, we have proved the following result.

Proposition 1. The Jacobian of the exponential function F (X) = exp(X)
is given by

∇(X) =
∂ vecF

∂(vecX)′
=

∞∑

k=0

∇k+1(X)

(k + 1)!
,

where

∇k+1(X) =
k∑

j=0

(
(X ′)k−j ⊗Xj

)
.

The Jacobian can also be obtained as the appropriate submatrix of an
augmented matrix, following ideas in Van Loan (1978, pp. 395–396). Since

(
A C
0 B

)k+1

=

(
Ak+1 Γk+1

0 Bk+1

)
, Γk+1 =

k∑

j=0

AjCBk−j,

we obtain

exp

(
A C
0 B

)
=

(
eA Γ
0 eB

)
, Γ =

∞∑

k=0

Γk+1

(k + 1)!
, (6)

which holds for any square matrices A, B, and C of the same order.
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Proposition 2. We have

exp

(
X dX
0 X

)
=

(
eX deX

0 eX

)

and

exp

(
X ′ ⊗ In In ⊗ In

0 In ⊗X

)
=

(
(eX)′ ⊗ In ∇(X)

0 In ⊗ eX

)
.

The two results are obtained by appropriate choices of A, B, and C in (6).
For the first equation we choose A = B = X and C = dX , and use fact that

Γ =
∞∑

k=0

Ck+1

(k + 1)!
= deX ;

see Mathias (1996, Theorem 2.1). The result holds, in fact, much more gen-
erally; see Naifeld and Havel (1995). For the second equation we choose
A = X ′ ⊗ In, B = In ⊗X , and C = In ⊗ In; see Chen and Zadrozny (2001,
Eq. 2.6). The second equation provides the Jacobian as the appropriate sub-
matrix of the augmented exponential. In contrast, the first equation provides
matrices of partial derivatives. Letting X = X(t), the partial derivatives of
exp(X(t)) can thus be found from

exp

(
X ∂X(t)/∂ti
0 X

)
=

(
eX ∂eX(t)/∂ti
0 eX

)
. (7)

The somewhat trivial result (5) has a direct consequence which is rather
less trivial. Differentiating F (t) = e(A+B)t − eAt gives

dF (t) = (A +B)e(A+B)t dt− AeAt dt = AF (t) dt+Be(A+B)t dt,

and hence

d
(
e−AtF (t)

)
= −Ae−AtF (t) dt+ e−At dF (t) = e−AtBe(A+B)t dt.

This leads to

e(A+B)t − eAt =

∫ t

0

eA(t−s)Be(A+B)s ds, (8)

and hence to our third representation.

5



Proposition 3. We have

∇(X) =
∂ vecF

∂(vecX)′
= (In ⊗ eX)

∫ 1

0

(eXs)′ ⊗ e−Xs ds

= (In ⊗ eX)

∫ 1

0

e(X
′
⊗In−In⊗X)s ds

= (In ⊗ eX)

∞∑

k=0

1

(k + 1)!
(X ′ ⊗ In − In ⊗X)k.

The first equality has been known for a long time, at least since Karplus
and Schwinger (1948); see also Snider (1964), Wilcox (1967), and Bellman
(1970, p. 175). The third equality provides a link with the corresponding
formula for Lie algebras; see Tuynman (1995) and Hall (2015, Theorem 5.4),
among others.

4 Main result

Propositions 1–3 provide expressions for the Jacobian of F (X) = eX , but
their computation involves integrals or infinite sums. We now formulate the
Jacobian in a more transparent form which is easy to compute and does not
involve infinite sums or integrals. This is our main result.

Theorem 1. Let X = TJT−1 be expressed in Jordan form. The Jacobian
of the exponential function F (X) = exp(X) is

∇(X) =
∂ vecF

∂(vecX)′
= S∆S−1,

where
S = (T ′)−1 ⊗ T, ∆ = diag(∆11,∆12, . . . ,∆mm),

and

∆uv =
nu−1∑

t=0

nv−1∑

s=0

θts(E
′

nu
)t ⊗Es

nv
.

The coefficients θts take the form

θts =





eλv

(s+ t+ 1)!
(λu = λv),

eλv

(s+ t+ 1)!

t∑

i=0

αi(s, t)Rs+i+1 (λu 6= λv),

6



where

αi(s, t) = (−1)i
(
s+ i

i

)(
s+ t+ 1

t− i

)
, Rn+1(w) =

ew −
∑n

j=0w
j/j!

wn+1/(n+ 1)!
,

and w = λu − λv. The αi are the coefficients of a (Gauss) hypergeometric
function and satisfy

∑t
i=0 αi = 1.

Remark 1. When w approaches zero, then Rn+1 approaches one, which can
be seen by writing Rn+1 as

Rn+1(w) = 1 +
w

(n + 2)
+

w2

(n + 2)(n+ 3)
+ · · · .

So the derivative is continuous at w = 0. This representation also shows that
Rn+1(w) = M(1, n + 2, w) where M denotes Kummer’s confluent hyperge-
ometric function, and relates Rn+1 to the incomplete gamma function (see
also Lemma 1 in Appendix B).

Remark 2. We can compute Rn+1 either from its definition, or from the power
series under Remark 1 (when w is close to zero), or from the recursion

Rn+1 =
(n+ 1)(Rn − 1)

w
, R1 =

ew − 1

w
.

Remark 3. In the definition of S = (T ′)−1⊗T , we require the ordinary trans-
pose and not the complex conjugate. The rule vecABC = (C ′ ⊗ A) vecB
also holds for complex matrices and should not be replaced by vecABC =
(C∗ ⊗ A) vecB. This is because the rule reflects a rearrangement of the
elements rather than a matrix product.

Remark 4. There are m Jordan blocks J1, . . . , Jm, and we have to consider
each pair (Ju, Jv). To illustrate, we present the case where both Ju and Jv

have dimension 2 (nu = nv = 2) assuming that w = λu − λv 6= 0. This gives

∆uv =




θ00 θ01 0 0
0 θ00 0 0
θ10 θ11 θ00 θ01
0 θ10 0 θ00




and

θ00 = eλvR1(w), θ01 = eλvR2(w)/2,

θ10 = eλv (2R1(w)−R2(w)) /2, θ11 = eλv (3R2(w)− 2R3(w)) /6.
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Remark 5. Some concepts in matrix algebra (rank, dimension of a Jordan
block) are integer-valued and therefore discontinuous. Since our theorem
involves the Jordan decomposition, one may wonder whether the decompo-
sition affects the continuity and differentiability of the exponential function,
and whether the Jacobian is continuous at singularities where the compo-
sition of Jordan blocks changes. A simple example suffices to justify our
procedure. Let Aǫ be a 2× 2 matrix, which can be diagonalized when ǫ 6= 0
but not when ǫ = 0. Specifically we have, for ǫ 6= 0,

Aǫ =

(
ǫ 0
1 0

)
= TǫJǫT

−1
ǫ =

(
0 ǫ
1 1

)(
0 0
0 ǫ

)(
−1/ǫ 1
1/ǫ 0

)
,

whose exponential is given by

eAǫ = Tǫe
JǫT−1

ǫ =

(
0 ǫ
1 1

)(
1 0
0 eǫ

)(
−1/ǫ 1
1/ǫ 0

)
=

(
eǫ 0

(eǫ − 1)/ǫ 1

)
.

For ǫ = 0 the matrix A0 cannot be diagonalized and its Jordan decomposition
is

A0 =

(
0 0
1 0

)
= T0J0T

−1
0 =

(
0 1
1 0

)(
0 1
0 0

)(
0 1
1 0

)

with exponential

eA0 = T0e
J0T−1

0 =

(
0 1
1 0

)(
1 1
0 1

)(
0 1
1 0

)
=

(
1 0
1 1

)
.

We see that Tǫ does not converge to T0, that Jǫ does not converge to J0, and
that eJǫ does not converge to eJ0 . However, eAǫ does converge to eA0 , and
d exp(Aǫ) does converge to d exp(A0), which can be verified using Theorem 1.

To see what happens, define

Sǫ = (T ′

ǫ)
−1 ⊗ Tǫ, S−1

ǫ = T ′

ǫ ⊗ T−1
ǫ ,

so that
Sǫ

(
eJ

′

ǫ(1−s) ⊗ eJǫs
)
S−1
ǫ = eA

′

ǫ(1−s) ⊗ eAǫs. (9)

Although Sǫ and S−1
ǫ have a singularity at ǫ = 0, the left-hand side of (9)

is regular near ǫ = 0 because the right-hand side is regular. If we integrate
it from 0 to 1 we obtain d exp(Aǫ) (Proposition 3), which is therefore also
regular near ǫ = 0. Then taking the limit for ǫ → 0 and interchanging limit
and integral we see that d exp(Aǫ) converges to d exp(A0).

The function exp is infinitely many times differentiable because each ele-
ment is a power series in n2 variables. The matrices Tǫ, Jǫ, e

Jǫ, and Sǫ have
a singularity at ǫ = 0, but the singularity in the left-hand side of (9) is re-
movable, so that there are no discontinuities in the Jacobian and Theorem 1
is valid in the neighborhood of singularities.
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5 Defective and nondefective matrices

An n × n matrix is defective if and only if it does not have n linearly inde-
pendent eigenvectors, and is therefore not diagonalizable. A defective matrix
always has fewer than n distinct eigenvalues. A real n× n matrix is normal
if and only if X ′X = XX ′. A normal matrix is necessarily nondefective
because it is diagonalizable. But a nonnormal matrix can be either defective
or nondefective, as can be seen from the matrices

A =

(
1 1
0 1

)
, B =

(
1 1
0 2

)
.

Neither A nor B is normal, but A is defective while B is not.
For nondefective (and in particular normal) matrices we have the follow-

ing corollary to Theorem 1.

Corollary 1. In the special case where X is nondefective, there exists a
nonsingular matrix T such that T−1XT = Λ, where Λ = diag(λ1, . . . , λn).
The Jacobian of the exponential function F (X) = exp(X) is then

∇(X) =
∂ vecF

∂(vecX)′
= S∆S−1,

where
S = (T ′)−1 ⊗ T, ∆ = diag(δ11, δ12, . . . , δnn),

and

δij =





eλi (λi = λj),

eλi − eλj

λi − λj

(λi 6= λj).

Proof: In the special case of nondefective X , all Jordan block are of di-
mension one. The only relevant coefficient is then θ00 which takes the form
θ00 = δij , since α0(0, 0) = 1, R1(w) = (ew − 1)/w, and w = λi − λj.

The special case of symmetry was solved by Linton (1995) and McCrorie
(1995), but the extension to general nondefective matrices does not seem to
have been recorded.

The corollary provides the derivative of exp(X) when X is nondefective
at the point X0 where the derivative is taken, but possibly defective in a
neighborhood of X0 so that perturbations are unrestricted. But when X is
structurally nondefective, that is nondefective at X0 and in a neighborhood
of X0, then we have to take this constraint into account. The next section
deals with this case.
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6 Restrictions on X

When X = X(t) where t is a vector of fewer than n2 parameters, then X
is structurally restricted, and this restriction has to be taken into account.
Since

d vecX =
∂ vecX(t)

∂t′
dt,

the chain rule gives

∂ vec exp(X)

∂t′
= ∇(X)

∂ vecX(t)

∂t′
, ∇(X) =

∂ vec exp(X)

∂(vecX)′
.

Let us consider two restrictions that are of particular importance: symme-
try and skew-symmetry. Both restrictions are linear so that the matrix
∂ vecX(t)/∂t′ does not depend on t.

When X is structurally symmetric, that is, when X ′ = X at X0 and in a
neighborhood of X0, then we need to employ the duplication matrix Dn and
the vech() operator with the property that

Dn vech(X) = vecX

for every symmetric X ; see Magnus (1988, Chapter 4). The derivative of
exp(X) is then given by

∂ vec exp(X)

∂(vech(X))′
= ∇(X)Dn. (10)

Similarly, when X is structurally skew-symmetric, that is, when X ′ = −X
at X0 and in a neighborhood of X0, then we need to employ the matrix D̃n

and the ṽ() operator with the property that

D̃nṽ(X) = vecX

for every skew-symmetric X ; see Magnus (1988, Chapter 6). The derivative
is now

∂ vec exp(X)

∂(ṽ(X))′
= ∇(X)D̃n. (11)

Symmetric and skew-symmetric matrices are both normal, that is, they sat-
isfy the restrictions X ′X = XX ′. This implies that the perturbations are
also restricted because

(dX)′X +X ′(dX)− (dX)X ′ −X(dX)′ = 0,
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so that
(In2 +Kn)(In ⊗X ′ −X ⊗ In)d vecX = 0, (12)

where Kn is the n2×n2 commutation matrix such that Kn vecA = vecA′ for
any n× n matrix A; see Magnus (1988, Chapter 3). This restriction applies
to all structurally normal matrices. In the case of symmetry the derivative
satisfies the restriction because, for any symmetric X ,

(In2 +Kn)(In ⊗X ′ −X ⊗ In)Dn = 0.

Similarly, in the case of skew-symmetry we have, for any skew-symmetric X ,

(In2 +Kn)(In ⊗X ′ −X ⊗ In)D̃n = 0.

7 Second differential

Although less elegant, it is also possible to obtain higher-order derivatives
of the exponential matrix function. For the case of a single parameter this
was discussed in Mathias (1996, Theorem 4), and for the symmetric case by
Baba (2003). Let’s consider the general case for the second-order derivative.

Proposition 4. The Hessian of the st-th element of the exponential function
F (X) = exp(X) is given by

Hst =
∂2Fst

(∂ vecX)(∂ vecX)′
=

∞∑

k=0

KnQ
(s,t)
k+2 + (Q

(s,t)
k+2)

′Kn

(k + 2)!
,

where Kn is the commutation matrix,

Q
(s,t)
k+2 =

∑

h+i+j=k

(XjEtsX
h)′ ⊗X i,

and Ets denotes the n × n matrix with one in the ts-th position and zeros
elsewhere.

In the case of symmetry, skew-symmetry or another linear structure re-
striction, we need to adjust the Hessian matrix. For example, when X is
structurally symmetric, the Hessian matrices with respect to vech(X) be-
come D′

nHstDn.
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8 Discretized Ornstein-Uhlenbeck process

Consider a multivariate version of the Ornstein-Uhlenbeck stochastic process
characterized by the following system of linear stochastic differential equa-
tions with constant coefficients:

dy(t) = Ax(t) dt + Σ1/2 dW (t), (13)

where W (t) is a continuous-time Wiener process such that E dW (t) = 0 and
E dW (t) dW ′(t) = In dt, and the real part of each eigenvalue of A is negative
to guarantee stationarity of the process.

When all the elements of yt are stock variables, Bergstrom (1984) showed
that (13) generates discrete observations which, regardless of the discretiza-
tion interval h ∈ R

+, follow the Var(1) model

yt = eAhyt−h + η
(h)
t (t = h, 2h, . . . ), (14)

where the Gaussian error term η
(h)
t =

∫ t

t−h
eA(t−s)Σ1/2 dW (s) satisfies

E η
(h)
t = 0, E(η

(h)
t )(η

(h)
t )′ =

∫ h

0

eAsΣeA
′s ds,

and
E(η

(h)
t )(η

(h)
t−r)

′ = 0 (r ≥ h).

Let θ denote the vector of underlying structural parameters that characterize
the continuous-time model (13) through the matrices A(θ) and Σ(θ). We can
then exploit the discretized version (14) to estimate θ from a sample of T
discrete equidistant observations on yt. To simplify the expressions we set
h = 1 without loss of generality. Given that the conditional distribution
of the discrete-time innovations is Gaussian, we can efficiently estimate θ
by maximum likelihood under the maintained assumption of identifiability,
which we revisit below. (If W (t) is not Gaussian, the estimation procedure
should be understood as Gaussian pseudo-maximum likelihood.) To do so,
it is convenient to obtain analytical expressions for the derivatives of the
conditional mean and variance functions

µt(θ) = eA(θ)yt−1, Ω(θ) =

∫ 1

0

eA(θ)sΣ(θ)eA(θ)′s ds

with respect to θ.
Regarding µt, we have dµt = (deA)yt−1, and hence

∂µt

∂θ′
= (y′t−1 ⊗ In)∇(A)

∂ vecA

∂θ′
, (15)
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where ∇(A) denotes the derivative of vec eA with respect to vecA given in
Theorem 1.

Regarding Ω, let Fs = eA(θ)sΣ(θ)eA(θ)′s so that

dFs = (deAs)ΣeA
′s + eAs(dΣ)eA

′s + eAsΣ(deA
′s)

and

d vecFs = (eAsΣ⊗ In) d vec e
As + (eAs ⊗ eAs) d vecΣ + (In ⊗ eAsΣ) d vec eA

′s

= (In2 +Kn)(e
AsΣ⊗ In) d vec e

As + (eAs ⊗ eAs) d vecΣ,

where Kn is the commutation matrix. Then,

∂ vech(Ω)

∂(vecA)′
= 2D+

n

(∫ 1

0

s(eAsΣ⊗ In)∇(As) ds

)
(16)

and
∂ vech(Ω)

∂(vech(Σ))′
= D+

n

(∫ 1

0

(eAs ⊗ eAs) ds

)
Dn, (17)

where Dn is the duplication matrix. The derivatives with respect to θ then
follow from the chain rule,

∂ vech(Ω)

∂θ′
=

∂ vech(Ω)

∂(vecA)′
∂ vecA

∂θ′
+

∂ vech(Ω)

∂(vech(Σ))′
∂ vech(Σ)

∂θ′
.

Alternative expressions for the derivatives can be obtained by noting, as in
Phillips (1973), that

Ω =

∫ 1

0

eAsΣeA
′s ds ⇐⇒ eAΣeA

′

− Σ = AΩ + ΩA′, (18)

the so-called discrete-time Lyapunov equation. This gives

(deA)ΣeA
′

+ eA(dΣ)eA
′

+ eAΣ(deA)′ − dΣ

= (dA)Ω + A(dΩ) + (dΩ)A′ + Ω(dA)′,

and upon vectorizing,

(In ⊗A + A⊗ In) d vecΩ = (eA ⊗ eA − In ⊗ In) d vecΣ

+ (In2 +Kn)(e
AΣ⊗ In)d vec e

A − (In2 +Kn)(Ω⊗ In) d vecA.

Taking the symmetry of Ω and Σ into account, we obtain

D+
n (In ⊗A+ A⊗ In)Dnd vech(Ω) = D+

n (e
A ⊗ eA − In ⊗ In)Dnd vech(Σ)

+ 2D+
n (e

AΣ⊗ In)d vec e
A − 2D+

n (Ω⊗ In)d vecA.

13



The matrix In⊗A+A⊗In is nonsingular if and only if A is nonsingular and its
eigenvalues λi satisfy λi+λj 6= 0 for all i 6= j (Magnus, 1988, Theorem 4.12).
This is the case in model (13) because we have assumed that ℜ(λi(A)) < 0
for all i. Then,

∂ vech(Ω)

∂(vecA)′
= 2D+

n (In ⊗ A+ A⊗ In)
−1DnD

+
n (e

AΣ⊗ In)∇(A)

− 2D+
n (In ⊗ A+ A⊗ In)

−1DnD
+
n (Ω⊗ In) (19)

and

∂ vech(Ω)

∂(vech(Σ))′
= D+

n (In ⊗A+ A⊗ In)
−1DnD

+
n (e

A ⊗ eA − In ⊗ In)Dn, (20)

which does not involve any integral.
Given that the mapping between Ω and Σ is bijective when Σ is unre-

stricted, we can estimate the model in terms of A and Ω without loss of
efficiency, which considerably simplifies the calculations, especially if we take
into account that Ω can be concentrated out of the log-likelihood function
(see again Bergstrom, 1984). Given A and Ω, we can solve Σ by writing (18)
as

D+
n (e

A ⊗ eA − In ⊗ In)Dn vech(Σ) = D+
n (In ⊗ A+ A⊗ In)Dn vech(Ω).

This will guarantee that Σ is symmetric, but not that it is positive (semi)-
definite, unless AΩ + ΩA′ is positive (semi)definite; see also Hansen and
Sargent (1983).

An important advantage of the analytical expressions for the Jacobian of
the exponential in Theorem 1 is that we do not need to compute the exact
discretization of the Ornstein-Uhlenbeck process.

Without any restrictions on the matrices A and Σ, the so-called alias-
ing problem may prevent the global identification of θ from the discretized
continuous time process (14); see e.g. Phillips (1973) or Hansen and Sargent
(1983). Theorem 1 in McCrorie (2003) states that the parameters A and Σ
are identifiable from (14) if the eigenvalues of the matrix

M =

(
−A Σ
0 A′

)

are strictly real and no Jordan block of M belonging to any eigenvalue ap-
pears more than once.

To illustrate this result, let us consider a bivariate example in which y2(t)
does not Granger cause y1(t) at any discrete horizon, and the instantaneous
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variance matrix of the shocks is unrestricted. Proposition 21 in Comte and
Renault (1996) states that this will happen when A is upper triangular,
intuitively because eAh inherits the upper triangularity from A. McCrorie’s
conditions are now satisfied when a11 6= a22, in which case A is diagonalizable,
but also when a11 = a22, in which case it is defective. The strength of
Theorem 1 is that it can be employed to compute the required derivatives in
either case.

9 Rotation matrices and structural vector

autoregressions

Consider the n-variate structural vector autoregressive process

yt = Ayt−1 + Cξt,

where ξt|It−1 ∼ i.i.d.(0, IN) and C is an unrestricted matrix of impact mul-
tipliers. Let ǫt = Cξt denote the reduced-form innovations, so that ǫt|It−1 ∼
i.i.d.(0,Σ) with Σ = CC ′. A Gaussian pseudo-loglikelihood function can
identify Σ but not C, which implies that the structural shocks ξt and their
loadings in C are only identified up to an orthogonal transformation. Specif-
ically, we can use the QR decomposition to relate the matrix C to the
Cholesky decomposition of Σ = ΣLΣ

′

L as C ′ = Q′Σ′

L, where Q is an n × n
orthogonal matrix, which we can model as a function of n(n− 1)/2 free pa-
rameters ω by assuming that |Q| = 1. This assumption involves no loss of
generality because if |Q| = −1 then we can always change the sign of the ith
structural shock and its impact multipliers in the ith column of C as long
as we also modify the shape parameters of the distribution of ξit to alter the
sign of all its nonzero odd moments.

Nevertheless, statistical identification of both the parameters in ω and
the structural shocks in ξ (up to permutations and sign changes) is possible
assuming (i) cross-sectional independence of the n shocks, and (ii) a non-
Gaussian distribution for at least n−1 of them; see Lanne et al. (2017) for a
proof, and Brunnermeier et al. (2019) for a recent example of the increased
popularity of Svar models with non-Gaussian shocks. Thus, if we exploit
the non-Gaussianity of the structural shocks, we can estimate not only the
parameters a = vecA and σL = vech(ΣL), but also ω.

To obtain analytical expressions for the score and the conditional informa-
tion matrix, we require the derivatives of the conditional mean µt = Ayt−1

and the conditional variance Σt = CC ′ = ΣLQQ′Σ′

L, and this raises the
question of how we should model the orthogonal matrix Q.

15



To answer this question, we first note that orthogonal matrices have de-
terminant ±1. The subgroup whose determinant is +1 is called the ‘special’
orthogonal group of rotations. For n = 2 there is only one free parameter
and any orthogonal matrix takes the form of either

A =

(
cosα − sinα
sinα cosα

)
or B =

(
cos β sin β
sin β − cos β

)
.

The matrix A has determinant 1 and is a rotation matrix, while B has
determinant −1 and is a reflection matrix.

For n = 3, there are three free parameters and any rotation matrix is a
product of the Givens matrices

A1 =



1 0 0
0 cosα − sinα
0 sinα cosα


 , A2 =



cos β 0 − sin β
0 1 0

sin β 0 cos β


 ,

and

A3 =



cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 ;

see Golub and Van Loan (2013, Section 5.1.8). For an application of this
approach to multivariate Garch models; see van der Weide (2002).

The order in which we multiply the matrices matters, so A3A2A1 is just
one of six possible rotation matrices that can be constructed from these
matrices. The derivative of the resulting orthogonal matrix with respect to
α, β, and γ can now be easily constructed.

There are, however, two problems with modelling the special orthogonal
group through rotation matrices. The first problem is what navigators call a
‘gimbal lock’. For example, when β = π/2 we can only identify α + γ from
A = A3A2A1, but neither parameter separately. The second problem is that
parameterizing rotation matrices in terms of the angles of n(n− 1)/2 Givens
matrices becomes rather cumbersome when n increases.

A second way to model orthogonal matrices is through the Cayley trans-
form given by

Q = (In −H)(In +H)−1, H = (In −Q)(In +Q)−1, (21)

where H is skew-symmetric (Bellman, 1970, p. 92). This gives

dQ = −(dH)(In +H)−1 − (In −H)(In +H)−1(dH)(In +H)−1

= −
1

2
(In +Q)(dH)(In +Q),
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and hence
∂ vecQ

∂(ṽ(H))′
= −

1

2
((In +Q′)⊗ (In +Q)) D̃n. (22)

This approach also has drawbacks because some rotation matrices can only be
obtained by letting some elements of the underlying skew-symmetric matrix
go to infinity. For example, for Q = −I2 and letting

H =

(
0 ω
−ω 0

)

we have

(In −H)(In +H)−1 =
1

1 + ω2

(
1− ω2 −2ω
2ω 1− ω2

)
,

and this only approaches −I2 when ω → ±∞.
The third and arguably most suitable approach to modelling orthogonal-

ity is also based on the connection between orthogonal and skew-symmetric
matrices. This connection results from the fact that Q′Q = In implies that
(dQ)′Q +Q′dQ = 0, and hence that Q′dQ is skew-symmetric. The Lie alge-
bra of an orthogonal matrix group thus consists of skew-symmetric matrices.
Put differently, the matrix exponential of any skew-symmetric matrix is a
(special) orthogonal matrix because H +H ′ = 0 implies that

In = e0 = eH
′+H = (eH)′(eH).

For Q = eH we thus obtain

dQ = deH =
∂ vec eH

∂(vecH)′
d vecH = ∇(H)D̃n dṽ(H),

and hence
∂ vecQ

∂(ṽ(H))′
= ∇(H)D̃n, (23)

where ∇(H) is given in Corollary 1 in closed form.

10 Conclusions

The purpose of this paper was to present a closed-form expression for the
Jacobian of the exponential function, applicable for both diagonalizable and
defective matrices, and to discuss some applications. It may be possible to
obtain a similarly attractive result for the Hessian (instead of Proposition 4),
but this is perhaps a topic for future research.
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We mention two further issues. First, if Y = exp(X), then X = log(Y ) is
the logarithm of Y . Differentiating both sides of X = log(exp(X)), we find

∂ vec log(Y )

∂(vec Y )′
∂ vec exp(X)

∂(vecX)′
= In2 ,

and hence the Jacobian of the logarithm is the inverse of the Jacobian of
the exponential. Some care is, however, required because not all matrices
have a logarithm and those matrices that do have a logarithm may have
more than one (Bellman, 1970, Section 11.20). A necessary condition for a
matrix Y to have a logarithm is that Y is nonsingular. For complex matrices,
this condition is also sufficient, but a real matrix Y has a real logarithm if
and only if it is nonsingular and each Jordan block belonging to a negative
eigenvalue occurs an even number of times.

Second, we have assumed that the matrix X is real, although its eigen-
values and eigenvectors will in general be complex. Our results are, however,
also valid for complex matrices. In particular Proposition 3 and Theorem 1
remain valid without modification. The derivative now becomes the complex
derivative with respect to the complex matrix Z, and exp(Z) and d exp(Z)
are analytic in n2 complex variables.

Appendix A: Proof of the propositions

Proof of Proposition 1: See text.

Proof of Proposition 2: See text.

Proof of Proposition 3: Setting t = 1 in (8) gives

eX+dX − eX =

∫ 1

0

eX(1−s)(dX)e(X+dX)s ds,

so that

deX = eX
∫ 1

0

e−Xs(dX)eXs ds,

using the fact that

(dX)e(X+dX)s = (dX)eXs +O((dX)2).

This gives the first expression. The second expression follows from the fact
that the matrices A = X ′ ⊗ In and B = In ⊗X commute, so that

e(X
′⊗In−In⊗X)s = e(A−B)s = eAse−Bs

=
(
(eXs)′ ⊗ In

) (
In ⊗ e−Xs

)
= (eXs)′ ⊗ e−Xs.
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To prove the third expression we note that
∫ 1

0

e(A−B)s ds =
∞∑

k=0

(A−B)k

k!

∫ 1

0

skds =
∞∑

k=0

(A− B)k

(k + 1)!
.

Proof of Proposition 4: We have

d2X2 = 2(dX)(dX),

d2X3 = 2 ((dX)(dX)X + (dX)X(dX) +X(dX)(dX)) ,

and, in general,

d2Xk+2 = 2
∑

h+i+j=k

Xh(dX)X i(dX)Xj.

Let es and et be elementary n × 1 vectors, that is, es has one in its s-th
position and zeros elsewhere, and et has one in its t-th position and zeros
elsewhere. Then Est = ese

′

t. Now consider the st-th element of d2Xk+2:
(
d2Xk+2

)
st
= 2

∑

h+i+j=k

e′sX
h(dX)X i(dX)Xjet

= 2
∑

h+i+j=k

trXjEtsX
h(dX)X i(dX)

= 2 (d vecX)′KnQ
(s,t)
k+2d vecX,

where we have used the fact that

trA(dX)B(dX) = (d vecX)′Kn(A
′ ⊗ B) d vecX.

Hence, the second differential of the st-th element of F (X) = exp(X) is given
by

d2Fst =
∞∑

k=0

2

(k + 2)!
(d vecX)′KnQ

(s,t)
k+2d vecX,

and the Hessian follows.

Appendix B: Proof of Theorem 1

The proof of the theorem rests on following three lemmas.

Lemma 1. For any integer p ≥ 0 and any w (real or complex), we have

wp+1

∫ 1

0

rpe−wr dr = p!

(
1− e−w

p∑

j=0

wj

j!

)
.

19



Proof: Let ap(w) =
∫ 1

0
rpe−wr dr. Partial integration gives the recursion

wap(w) = pap−1(w)− e−w, a0(w) = (1− e−w)/w,

and the result follows by induction. Note the close relationship with the
(lower) incomplete gamma function

γ(p, w) =

∫ w

0

tp−1e−t dt (ℜ(p) > 0),

where p and w may be complex and the real part of p is positive. In the
special case where p is a positive integer this can also be written as

γ(p, w) = (p− 1)!

(
1− e−w

p−1∑

j=0

wj

j!

)
(p ≥ 1);

see DLMF (2020, Eq. 8.4.7).

Lemma 2. Let x follow a beta distribution

f(x; p, q) =
1

B(p, q)
xp−1(1− x)q−1

where p ≥ 1 and q ≥ 1 are integers and 0 ≤ x ≤ 1. Then, for any w (real or
complex),

E(e−wx) = e−w

q−1∑

i=0

αi(p− 1, q − 1)Rp+i(w),

where αi(s, t) and Rn+1(w) are defined in the theorem.

Proof: Using Lemma 1 we obtain

∫ 1

0

e−wxxp−1(1− x)q−1 dx =

q−1∑

i=0

(−1)i
(
q − 1

i

)∫ 1

0

e−wxxp+i−1 dx

=

q−1∑

i=0

(−1)i
(
q − 1

i

)
w−(p+i)(p+ i− 1)!

(
1− e−w

p+i−1∑

j=0

wj

j!

)

= e−w

q−1∑

i=0

(−1)i
(
q − 1

i

)
Rp+i(w)

p+ i

= B(p, q)e−w

q−1∑

i=0

αi(p− 1, q − 1)Rp+i(w).

Here we note that the moment-generating and characteristic functions of the
beta distribution with integer-valued parameters follow as special cases by
setting w = −t and w = −it, respectively.
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Lemma 3. Let αi(s, t) be as defined in the theorem. Then
∑t

i=0 αi(s, t) = 1.

Proof: The result follows from the Chu-Vandermonde identity (Askey, 1975,
p. 60), but can also be proved by observing that

∫ 1

0

rs(1− r)t dr =
s! t!

(s+ t + 1)!

from the definition of the beta distribution, and also

∫ 1

0

rs(1− r)t dr =

t∑

i=0

(−1)i
(
t

i

)∫ 1

0

rs+i dr =

t∑

i=0

(−1)i

s+ i+ 1

(
t

i

)
.

Hence,

1 =

t∑

i=0

(−1)i

s+ i+ 1

(s+ t + 1)!

s! t!

(
t

i

)
=

t∑

i=0

(−1)i
(
s+ i

i

)(
s+ t + 1

t− i

)
.

Proof of the theorem: Based on the three lemmas we now prove the
theorem. Our starting point is

∇(X) =
∂ vecF

∂(vecX)′
=

∫ 1

0

eX
′r ⊗ eX(1−r) dr =

∫ 1

0

eX
′(1−r) ⊗ eXr dr,

as given in Proposition 3. Let

T−1XT = J = diag(J1, . . . , Jm), Ji = λiIni
+ Eni

be the Jordan decomposition. Then, as in the derivation of (3),

eJvr = eλvr
nv−1∑

s=0

rs

s!
Es

nv

and

eJ
′

u(1−r) = eλu(1−r)

nu−1∑

t=0

(1− r)t

t!
(E ′

nu
)t,

so that

eJ
′

u(1−r) ⊗ eJvr =

nu−1∑

t=0

nv−1∑

s=0

eλu(1−r)(1− r)t

t!

eλvrrs

s!
(E ′

nu
)t ⊗ (Env

)s.
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Hence, the Jacobian is ∇(X) = S∆S−1, where

S = (T ′)−1 ⊗ T, ∆ = diag(∆11,∆12, . . . ,∆mm),

and

∆uv =

nu−1∑

t=0

nv−1∑

s=0

θts(E
′

nu
)t ⊗ (Env

)s

with

θts =

∫ 1

0

eλu(1−r)(1− r)t

t!

eλvrrs

s!
dr

To complete the proof we need to show that this expression for θts equals the
expression for θts in the theorem. Let w = λu − λv. Then, by Lemma 2,

e−λvθts =
ew

s! t!

∫ 1

0

e−wrrs(1− r)t dr =
1

(s+ t+ 1)!

t∑

i=0

αi(s, t)Rs+i+1(w).

This completes the proof.
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