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Hands on the wheel, eyes on the phone:
the effect of smart phone usage on road

safety∗

Devi Brands † ‡ Joris Klingen † ‡ Francis Ostermeijer † ‡

April 22, 2020

We provide novel evidence on the effect of smart phone use on road accidents. We

exploit variation in phone usage fees in the Netherlands following a change in European

Union (EU) roaming regulations implemented in 2017. The growth rate of mobile

data roaming increased substantially after the change, which allows us to estimate

a difference-in-differences model where non-Dutch drivers from the EU are treated,

while Dutch drivers serve as control group. Our results suggest that around 10% of

vehicles involved in accidents can be explained by the use of smart phones, and that

these accidents mainly happen on urban roads.

Keywords: road safety, accident risk, smart phones, urban roads

JEL Codes: I12, I18, K32, K42, R41

1. Introduction

Traffic accidents are an important loss to society. In the European Union (EU) for

example, about 25,000 road users lost their lives due to traffic accidents in 2018. For

every death on European roads, there are an additional 50 injuries of which 8 are severe
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Niels Bos, Jiska Klein, Dan Graham, Csaba Pogonyi, Laila Ait Bihi Ouali, Niek Mouter, Hendrik Wolff
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Budapest (hEART), Toulouse (SBCA), and Jakarta (Universitas Indonesia). We also would like to
thank Rijkswaterstaat Netherlands for granting us access to the data. Email addresses: Joris Klingen
(corresponding author), j.j.klingen@vu.nl; Devi Brands, d.k.brands@vu.nl; Francis Ostermeijer,
francis.ostermeijer@vu.nl
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1

j.j.klingen@vu.nl
d.k.brands@vu.nl
francis.ostermeijer@vu.nl


and 4 cause permanent disability (European Commission, 2019b). Next to this physical

harm, accidents also cause psychological suffering to those directly involved and to friends

and relatives of the victims. Traffic accidents also lead to monetary losses due to damages

to private and public property, and are a major cause of traffic congestion. The total

costs of traffic accidents in the EU are estimated to be about e280 billion, or 2% of

GDP, which makes it the most important external cost of transportation (European

Commission, 2019a). Similar numbers can be found for the United States and other

countries (Blincoe et al., 2015).

These high costs explain the vast body of scientific literature on traffic accidents that

exists today, including important contributions from the field of economics on related

topics such as the risk of drunk driving (Levitt and Porter, 2001a), the size of the accident

externality caused by one typical additional driver (Edlin and Karaca-Mandic, 2006),

and the effect of mandatory seatbelt laws on traffic fatalities (Cohen and Einav, 2003).1

The substantial costs of accidents also provide governments with a strong rationale to

prioritise safety in road design, and in traffic and vehicle related regulation. Safety

concerns in this respect largely shape policy decisions on aspects such as speed limits,

road geometry, obligatory usage of seatbelts, and factors that affect the ability of road

users to maintain attention on the driving task. This includes prohibiting the use of

alcohol and cell phones by drivers. Figure 1 indicates that stricter safety regulations over

the past two decades have had a promising impact on the number of road fatalities in the

EU. However, progress in terms of reductions in road fatalities, as compared to the EU

policy target formulated by the European Commission, began to diverge and stagnate in

2013, even after accounting for vehicle kilometres travelled.2

Despite regulations that forbid car drivers from using mobile phones while driving,

effective regulation has proved to be difficult, and technological progress in recent years

1Other notable contributions include: Levitt and Porter (2001b), Adams and Cotti (2008), Jacobsen
(2011), and DeAngelo and Hansen (2014).

2Data on vehicle kilometres travelled for all EU countries does not span back until 2000, so we plot
fatality rates per million passenger km for four major EU countries in Figure A1 of Appendix A, which
shows a similar trend.
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Figure 1: Road fatalities in the EU and 2020 policy target (European Commission, 2019b)

has transformed cell phones into omnipresent devices that can be seen as a major cause

of distraction in traffic. Smart phones stand out as a major culprit, as they have en-

abled various novel distractions, including sending and receiving messages via numerous

applications, news updates, video calling, and receiving notifications from social media

platforms. In experimental settings, this has been shown to cause visual, cognitive, and

physical distractions which result in longer reaction times, less awareness, and various

other deficiencies which restrict full control of the vehicle (Zhao et al., 2013, Young et al.,

2014, Haque and Washington, 2015).

Findings from the lab are generally corroborated by observational studies in natu-

ralistic settings and crash-based studies (see e.g. Dingus et al., 2016, Redelmeier and

Tibshirani, 1997, and McEvoy et al., 2005). However, various studies using field data

fail to conclusively prove this relation.3 In the first large scale field study of its kind,

Bhargava and Pathania (2013) estimate the effect of mobile calls on accidents using a

discontinuity in the price scheme at 9pm between 2002 and 2005. They find a 7.2 per-

cent increase in call likelihood after the price drop but no corresponding increase in the

number of accidents at the 9pm threshold. Further research on the effect of state wide

mobile phone bans in the US indicates that the effects are short lived, if detectable at all

(Abouk and Adams, 2013; Burger et al., 2014).

3Drivers may also be able to navigate streets more easily using navigation applications, hence the
effect of phone use on traffic accidents is not per se negative.
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The most recent studies that focus on smart phones find more conclusive negative

safety effects. Hersh et al. (2019b) exploit temporal variation in 3G coverage in California

between 2001 and 2013 to study the effect of gaining access to mobile data on vehicle

accidents. After controlling for vehicle kilometres travelled and road segment fixed effects,

the authors find that crash rates increase by 1.1 percentage points when roads receive

3G coverage. Furthermore, Faccio and McConnell (2019) find that locations with a lot of

activity of Pokémon Go (a popular video game app on the smart phone at the time) faced

more vehicle accidents after the introduction of the game, suggesting that 136 of the total

2850 nation wide crashes (approximately 5%) in the five months after the introduction

of the game could be attributed to it.

Although numerous studies have investigated the link between phone use and ac-

cidents, a substantial research gap prevails.4 Most existing estimates are dated, while

mobile phone use has dramatically changed since the turn of the century in terms of

adoption, exposure and capabilities.5 For example, in the much cited study by Re-

delmeier and Tibshirani (1997), only 18% of drivers owned mobile phones which had

limited capabilities, while in more recent studies, Bhargava and Pathania (2013) only

focus on mobile calling and Hersh et al. (2019b) end their study in 2013. Furthermore,

studies that do address the interaction between modern smart phones, with data usage,

and accidents, either focus on very specific non-generalisable phone-use (Pokémon Go

in Faccio and McConnell, 2019), or only focus on highways (Hersh et al., 2019b). In

addition, most studies do not account for unobserved factors that may be correlated to

both phone use and accident likelihood, such as risk preferences at the individual level

and demand factors at the aggregate level. Finally, as sample sizes were often small in

experimental and crash-based studies, generalisation to aggregate effects is often prob-

lematic. Therefore, an important and ongoing research question is to what extent does

mobile phone use while driving affect the number and likelihood of traffic accidents.

4See e.g. reviews by WHO (2011), Oviedo-Trespalacios et al., 2016, and Lipovac et al. (2017).
5Mobile phone subscriptions per capita have been above one in the world since 2016 (World Bank,

2019) and in 2018 smart phone penetration was above 70% in many developed nations (Newzoo, 2018).
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We propose a novel approach based on field data and a natural experiment induced

by a change in EU roaming regulations. The specific policy, imposed in June 2017,

mandated mobile phone operators to abolish all roaming surcharges for EU customers

travelling outside their home country network within the EU. The policy, dubbed Roam

Like at Home (RLAH), implied that people travelling abroad within the EU now face

their home fee, which is substantially lower than pre-policy charges. As a consequence,

growth in roaming cellular traffic increased sharply after the policy. Mobile data use

while roaming grew by over 200 percentage points, whereas local usage was not affected

by the policy and faced stable growth rates.6 We hypothesize that, as of June 2017, EU

citizens driving abroad are more likely to be distracted by their phone, while nothing

changed for local usage.

We use micro data on all police reported road accidents in the Netherlands from

2014 until 2018. We then use vehicle registration information to classify which (foreign)

drivers are plausibly treated by the RLAH policy. The causal effect of phone use on road

accidents is then estimated using a difference-in-differences (DiD) approach, where we

use the RLAH policy as treatment, and local users as control group. This allows us to

overcome endogeneity issues from earlier studies due to measurement error in phone use

and omitted variables. Our key identification assumption is that in the absence of the

policy, the number of vehicle accidents by roaming users should follow similar trends to

local drivers, for which we provide evidence in our parallel trends plot.

Our findings imply that the increase in phone use due to the policy causes the number

of accidents to increase by around 10%. Under plausible assumptions, this implies a crash

risk odds ratio of around 3.8. Under the assumption that this mechanism also carries

over to local drivers and holds for other EU countries, our results then imply that each

year as many as 2,500 road fatalities in the EU can be attributed to phone use. This

suggests that about one third of the gap between the EU target and the observed number

of fatalities shown in Figure 1 could be reduced by successfully banning mobile phone

6Growth rates have been calculated using information from the International Roaming BEREC Bench-
mark Data Reports (for roaming) and the Dutch Authority for Consumers and Markets (for locals).
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use of drivers.

This study contributes to the existing literature in five ways. First, our results provide

a causal estimate of phone use on road safety based on a novel method. Second, because

our identifying variation comes from a very recent policy intervention, our estimates take

into account modern distractions of smart phones, and particularly changes in mobile

data use. Third, because our analysis is based on revealed and non-experimental field

data of all registered accidents in the Netherlands, we are able to estimate an aggregate

effect. This is especially relevant given the urgency of road safety issues, and the rapid

growth in cellular traffic. Fourth, with our approach we can estimate how smart phone

distractions affect accidents for different severity levels and on different road types. We

show that phone distractions increase accident risk predominantly on local urban roads,

which highlights that studies focusing solely on highways underestimate the total effect.

In addition, our results indicate that both light accidents as well as fatal accidents increase

due to smart phone use. Fifth, we introduce an identification strategy that is directly

applicable to all other countries in the European Union, allowing for convenient cross

validation of our results using data from other countries in future research.

The rest of this paper is structured as follows. Section 2 describes the policy context,

Section 3 explains the methods employed, and Section 4 presents the data we use. Section

5 discusses our results, robustness checks, and implications. Finally, Section 6 concludes.

2. The Roam Like at Home Policy

On 27 October 2015, the European Parliament adopted regulation No. 2015/2120 which

prescribed that all roaming surcharges should be abolished within the EU.7 Following a

decade of EU roaming regulations which aimed to gradually reduce roaming fees within

the EEA, the Roam Like at Home (RLAH) policy meant that, effective 15 June 2017,

telecommunication network providers were required to abolish all roaming surcharges in

7Roaming refers to mobile phones connecting to a cellular network abroad. In the absence of regula-
tion, mobile network operators generally charge additional fees for using this service.
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addition to domestic retail prices for EU roaming customers.

The policy dramatically reduced the costs of phone use abroad, both compared to the

gradual reductions prior to RLAH and compared to the pre-RLAH prices. For example,

leading mobile operators such as Vodafone Germany, offered daily roaming packages such

as EasyTravel in early May of 2017 providing “phone calls, texting and surfing abroad

[within the EU] just like at home” for a price of e2.99 per day. This equates to around

e90 per month and is over four times more than standard domestic packages offering

calls, texts and data at the time (Vodafone, 2017).8 The special Eurobarameter (2018)

survey, carried out one year after RLAH, suggests that awareness of RLAH was already

high with 62% of Europeans that travelled in the previous 12 months being aware that

roaming charges had been eliminated, and only 19% of travellers claiming to never use

mobile data (down from 42%). Nevertheless, around 50% of the respondents still claim

to restrictively use mobile data while abroad, suggesting that EU roaming users still use

their mobile phones comparatively less than locals.

To evaluate the effect of RLAH, we collect data on mobile phone usage of roaming

users in the EU from the International Roaming BEREC Benchmark Data Reports and

local usage from the Dutch Authority for Consumers and Markets (ACM).9 Figure 2 plots

the average monthly data traffic in MB’s per roaming user for each quarter between 2012

and 2018, with the shaded region representing when RLAH was active.10 It indicates

that since RLAH was introduced, roaming usage appears to catch up with developments

in local cellular data traffic.11 It also shows that cellular roaming traffic exhibits a strong

8Regulated wholesale data rates were capped at e0.05 per MB or e50 per GB, so using data outside
of a data bundle may have been restrictively expensive.

9BEREC only includes information on the number of active roaming users, referred to as roaming
subscribers in the BEREC reports, since the second quarter of 2016. BEREC considers a subscriber to
be a roaming subscriber if roaming services were active at least once in the concerned period. In order
to calculate the average monthly usage before this period, we predict the number of subscribers using a
log-linear model with a time trend and quarter dummies. Using total data usage gives almost identical
results (available from BEREC upon request). We document this in Appendix A.1.

10Note that the second quarter of 2017 already contains 15 days during which the policy was active,
namely the second half of June. Furthermore anticipating RLAH, several large network providers dropped
roaming chargers earlier in the year, such as Vodaphone UK in April (CNET, 2017).

11The average trip duration for European tourists outside their country of residence is about 8.4 nights
in 2017 (Eurostat, 2019), which explains why roaming usage is about four times lower than local usage
after the policy.
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Figure 2: Average monthly data traffic per quarter.

upward growth trend for both groups and demonstrates a high degree of seasonal variation

for roaming users. This is not surprising as technological advancements (e.g. introduction

of 4G-network) and the increased adoption of smart phones has resulted in higher speeds,

lower prices, and more demand, while tourism, and therefore roaming usage, tends to be

seasonal. It is therefore useful, when comparing the annual growth rates of cellular traffic,

to compare each quarter with the same quarter in the previous year.

Figure 3 illustrates that the RLAH policy resulted in a very large increase in the

growth rate of phone use of roaming users one year after the policy, while having no

discernible effect on locals. Table A4 in Appendix A documents the average annual growth

rate before and after the policy for roaming users as compared to locals. It indicates a

substantial increase in the growth rate of roaming data usage by 200 percentage points,

while texts and calls also increased by around 20 to 80 percentage points, relative to

locals. This further demonstrates that the policy had large effects on the overall phone

use of roaming users, while especially effecting data usage.

3. Empirical methods

Our aim is to estimate the causal effect of phone usage on traffic accidents. Because data

on phone use of drivers is privacy sensitive and not made available for research purposes,

we use the implementation of the RLAH policy as a source of exogenous variation. We

8
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Figure 3: Annual growth rates in cellular data traffic per quarter.

hypothesise that a substantial reduction in phone usage fees induces more phone use while

driving, which in turn leads to an increase in accidents due to driver distraction. We

analyse the Dutch context and exploit identifying variation from a sharp drop in mobile

phone charges following the EU RLAH policy, introduced on June 15, 2017. Unique for

this price change, and essential for our identification strategy, is that fees for domestic

phone use (i.e. within the home country) are not affected by the policy. This allows us

to define a control group, in our case drivers with a Dutch phone subscription, and a

treatment group, drivers with a phone subscription from any other EU country. As a

consequence, we can employ a difference-in-differences (DiD) approach to estimate the

effect of the policy-induced increase in phone use on road safety. Below, we first introduce

the general statistical model, and subsequently discuss how we deal with the statistical

challenges that arise in our setting.

3.1. Statistical model

We use a standard DiD approach, where we estimate how the RLAH policy affects the

number of vehicles involved in road accidents. We define Vit as the number of vehicles

involved in accidents for each country-group in each province, indexed by i, at time t.12

12Because we essentially have a count model, our temporal and spatial resolutions are arbitrary. We
aim for the most fine-grained resolution to maximally use variation over time and space. We are in this
respect constrained by the resolution of the essential control variables. We aggregate at the province-
month level because this is the most fine grained resolution for which we can control for country-specific
VKT.
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We consider the general following model:

log(Vit) = βTit + γHit + δWit + φi + κt + εit, (1)

where log denotes the natural logarithm. The treatment effect, denoted by Tit, is a

dummy equal to one after the policy was introduced for vehicles from roaming countries.

We proxy for traffic intensity using vector Hit, which contains separate control variables,

in logs, for the number of hotel nights of locals and roaming users, and a dummy in case

we observe a zero.13 Further, vector Wit contains weather controls, that we include to

improve the efficiency of the estimator.14

Finally, we include panel and time fixed effects. Time invariant characteristics of

drivers and the area in which they drive, such as the road network, attractiveness to

tourists, and number of car users, are captured by a country-group province fixed effect,

φi, which represents the panel element in our analysis. We also control for any unobserved

time trends affecting all drivers, for instance due to road maintenance or infrastructure

improvements, by including a time fixed effect, κt, for each year-month.

We note that using a cell phone was rather costly for roaming users before the policy.

It might therefore be useful to assume that before the policy roaming drivers did not

use their phone at all while driving. However, if roaming users did use their phones

while driving prior to new roaming regulations, we still accurately estimate the effect of

the price drop, but underestimate the total effect of phone use. Our estimates should

therefore be considered as a lower bound of the total effect of phone distractions on road

accidents.

13We obtain hotel nights per province per country of origin from Statistics Netherlands (2019a), which
is measured in thousands. In case of a zero, which we only observe for roaming countries, we set the
value to one (so that the log is zero) and use a dummy to control for these cases separately.

14These include for each province and month the average temperature, average rainfall, and number
of days with temperatures below 0 °C.
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3.2. Measurement error

Measurement error poses a statistical challenge in our setting, because we do not directly

observe within-vehicle phone use, nor the type of phone subscription drivers have. Below,

we identify three implications of this challenge, and discuss how we deal with them.

First, for multi-vehicle accidents, we cannot identify which driver caused the accident,

if any at all. This means that we have measurement error in the dependent variable, which

makes our estimates potentially imprecise, albeit still unbiased if the measurement error

is random. We address this issue by focussing on vehicles rather than accidents, because

multi-vehicle accidents might include both treated and control-group drivers. In addition,

we also perform a robustness check where we consider a subsample with single-vehicle

accidents (e.g. a car crashing into a tree). This approach rules out measurement error of

this sort, but comes at the cost of having less statistical power, as only a small fraction

of the accidents in the data are single-vehicle accidents (17.58%). As it is a priori not

possible to decide which is the preferred approach, we report results for both estimation

strategies.15

Second, some drivers of vehicles that are registered abroad might still have a Dutch

phone subscription. For instance, drivers that live in bordering regions in Belgium or

Germany and often work in the Netherlands. These drivers will be erroneously classified

as treated, and will bias our estimates downwards.16 To address this issue, we will

run a robustness check where we exclude all border provinces, as it is likely that this

measurement problem is most pronounced in those regions.

Third, some roaming users may not respond at all to price changes if they do not have

to pay the mobile phone charges themselves. One can think of unlimited subscriptions

paid by drivers’ employers or having a Dutch subscription while living just across the

15Another related issue which is solved by taking single-vehicle accidents is that roaming accidents
may result in more multi-vehicle accidents. This would violate the SUTVA, but it is unlikely to be
problematic in this setting due to the size of the control group; around 95% of vehicles in our accidents
sample are part of the control group.

16Additionally, some roaming users might be driving a Dutch car, for instance a rental car, and will
hence be erroneously designated as untreated. This may lead to a small downward bias, however due to
the large number of accidents in the control group (local users) it is unlikely to have a substantial effect.
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border. This insensitivity to the price would also result in a downward bias of the

estimate. We address this concern in two ways. Firstly, we re-estimate our main model

on a sub-sample where we exclude trucks and vans, assuming that drivers of these vehicles

are most likely to have such arrangements with their employer, and secondly, on a sub-

sample without bordering countries or typical labour migration countries.

3.3. Trends in vehicle kilometres travelled

A potential confounding factor is vehicle kilometres travelled (VKT) by roaming drivers.

For instance, because countries and provinces vary in their popularity as a holiday des-

tination over time (Taylor and Ortiz, 2009), there may be more roaming accidents due

to increased tourism rather than due to increased phone distractions. Another potential

reason for temporal variation in VKT by roaming drivers could come from changes in

trade and business trips as a result of ongoing globalization. Because these trends affect

treated drivers (e.g. tourists) but not local drivers, it poses a potential threat to our

identification strategy and may lead to overstating the effect of phone distraction on road

safety.

Ideally, one would want to directly control for VKT to avoid any bias from traffic

intensity. However this information is only available at an annual level, aggregated into

Dutch and non-Dutch VKT.17 We show that the number of hotel nights per country of

origin is a good proxy for both tourism and business related traffic (see section 4.2.3

for an extensive discussion on the quality of this proxy). This implies that, if the rela-

tion between traffic and hotel nights is stable over time, controlling for hotel nights will

absorb a bias that stems from VKT trends of roaming drivers.18 Nevertheless, we also

perform two additional robustness checks. Firstly, we include a roaming specific linear

time trend which captures nationwide trends in accidents of roaming users. This is how-

17For non-Dutch vehicles, Statistics Netherlands only provides imputed annual figures of VKT for the
whole country. For all traffic combined, there are intensity measures available at the province-month
level. These will be used to validate our VKT proxy (hotel nights).

18This is a reasonable assumption over a five year period but may not hold in the long run (e.g. if
cheap flights and high-speed trains make cars a less attractive mode).
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ever potentially a bad control as it also picks up part of the treatment effect. Secondly,

we re-estimate our models using only two years of observations between July 2016 and

July 2018 (i.e. one year pre and one year post policy), for which it is implausible that

there are major trends in tourism transport modes conditional on hotel nights.

3.4. Standard errors

In our setting, the number of observations depends on an arbitrary temporal and spatial

resolution and hence we aggregate vehicle data to province-month observations to align

the resolution with our control variables. However, if accidents are serially positively

correlated, ordinary least squares (OLS) standard errors may be too small (Bertrand

et al., 2004). To address this issue, we cluster our standard errors at the time invariant

level of a province and country-group, which leaves us with 12 × 6 = 72 clusters (12

provinces and 6 country groups). In addition, we run a robustness check where we ignore

all time series variation and aggregate our data into two periods, pre and post policy.

This rules out any autocorrelation in error terms and the outcome highlights that our

results and standard errors are hardly affected by serial correlation.

4. Data and context

4.1. Road safety data

We observe police reported accidents in the Netherlands as published by the Dutch Min-

istry of Infrastructure and Water Management (specifically ‘Rijkswaterstaat’). The maps

in Figure 4 plot the locations and annual counts of vehicles involved in accidents per

province. The maps highlight that accidents are spread across the country, but more

concentrated around urban areas and highways.

Our data contains characteristics of road accidents and of the parties involved.19

For each accident, we observe accident circumstances, such as day of the week, time of

19We use the full dataset available to researchers as we require privacy sensitive information on vehicle
registration nationality. A publicly available version of the data is available on data.overheid.nl, but
does not contain all party characteristics.
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(a) Accident locations. (b) Vehicles in accidents per year per province.

Figure 4: Maps of the Netherlands with accident locations and counts per province.

the day, road type, weather conditions, and road surface conditions. Furthermore, the

dataset contains vehicle related characteristics, such as vehicle type, vehicle manoeuvre

just before the crash, sex and age of the driver, and the country in which the vehicle is

registered.20 Finally, party related variables are also reported and provide information

such as age and sex of involved parties, casualty severity and whether the casualty was a

driver, passenger, cyclist, or pedestrian.

We directly observe the vehicles’ country of registration. Drivers of cars registered in

EU countries, but outside of the Netherlands are likely to reside in those EU countries.

Therefore, vehicle registration is a good proxy of whether the driver incurs roaming costs

(before RLAH) or uses the local network instead.21 To abstract from long term trends,

20For our particular application we cannot use most of these characteristics as they are often missing
for non-local cars. This is because these data stem from the car registry in the Netherlands, which is
not connected to databases from other countries. The data does not contain information on whether a
car is rented or leased.

21Dutch law requires that any vehicle staying in the Netherlands for more than six months must obtain
a Dutch licence plate. Note that, due to our difference-in-difference method, misclassification can pose a
problem for the efficiency of our estimator, but will not bias our estimates under the plausible assumption
that misclassification is not correlated to the roaming regulation.
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Figure 5: Number vehicles involved in accidents per month by severity.

we use data for the years 2014 until 2018, which contains 0.76 million vehicles involved

in 0.44 million accidents. Most accidents have more than one vehicle involved (78%),

therefore we use information at the party level to avoid measurement error which may be

present at the accident level, as police reports do not indicate which party was at fault.

We discuss this issue and how we deal with it in more detail in Section 3.2.

4.1.1. Trends in road safety

Figure 5 shows that there appears to be an increase in the number of vehicles involved

in accidents over all levels of severity. Over the period of study, our data shows that

the annual number of deadly accidents increased by around 20%, while the number of

accidents involving injury and material damage increased by about 50%, with most of

the change between 2014 and 2016. In an average month there are around 74 vehicles

involved in deadly accidents, 2,381 vehicle accidents involving injury and 10,280 vehicle

accidents involving material damage.

4.1.2. Grouping roaming drivers

We combine observations in our sample into six country groups for our main analysis.

The aim of this grouping is to strike a balance between, on the one hand, optimally

controlling for unobserved heterogeneity per country of origin (by means of group fixed
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effects), and on the other hand, preserving statistical power by avoiding zero counts

(which are omitted due to the log transformation of the dependent variable, see Section

3 for a discussion).

The first group contains vehicles with a Dutch registration and are our control group

(95.12% of sample). Second and third, are the two adjacent countries, with 1.76% of

German vehicles and 1.04% of Belgian vehicles, respectively. The fourth group con-

tains other western European countries which account for 0.42% of vehicles in accidents.

Drivers from these countries often visit the Netherlands as tourists.22 The fifth group

contains Romanian, Polish, and Bulgarian vehicles (1.32%) which are relatively common

on Dutch roads due to joint economic activity and labour migration. More than for other

cases, drivers from these labour migration countries may have a Dutch phone subscrip-

tion and thus might not be treated by the RLAH policy. Therefore, it is important to

include a separate fixed effect for vehicles from these countries. It also allows us to run

a robustness check where we exclude vehicles from these countries which highlights that

vehicles from these countries do not drive our overall results (see Section 5.3.1). The

sixth group contains all remaining EU countries (0.33%).

4.2. Descriptive statistics

4.2.1. Vehicles involved in accidents

Around 5% of vehicles involved in accidents are from roaming users, 46% of drivers are

female and the average age is 42 years old. Of the total number of accidents, 0.58% are

deadly, 18.7% result in injury, and 80.72% cause material damage only.23

Local and roaming drivers involved in accidents are roughly comparable, but roaming

users tend to be younger, male, and drive more on fast roads than local drivers.24 In

terms of the damage reported, the share of material damage is relatively large for roaming

22These are: France, Great-Britain, Denmark, Spain, Austria, Portugal, Luxembourg, Sweden, Italy,
Ireland, Norway, and Finland.

23Table A1 in Appendix A presents the descriptive statistics for vehicles involved in accidents.
24Table A2 in Appendix A provides more detailed descriptives of vehicles involved in accidents by

group.
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Table 1: Descriptive statistics for province-month data

Statistic N Mean St. Dev. Min Max

Panel A: Locals

Vehicles in accidents 720 953.11 757.40 84 3,297
log(Vehicles in accidents) 720 6.52 0.86 4.43 8.10
No trucks 720 189.13 133.80 26 564
Single vehicle accidents (SV) 720 742.60 590.43 72 2,503
Hotel Nights (× 1000) 720 148.99 118.92 11 565

Panel B: Roamers

Vehicles in accidents 3,600 9.78 13.41 0 92
log(Vehicles in accidents) 3,032 1.79 1.19 0.00 4.52
No trucks 3,600 1.68 2.53 0 20
Single vehicle accidents (SV) 3,600 6.16 9.54 0 71
Hotel Nights (× 1000) 3,600 22.21 72.31 0 707

vehicles. This may be a reporting bias, as language barriers can make it more likely for

the police to be called in these situations with only material damage, whereas locals may

more easily settle without police present. Importantly, dissimilarities between local and

roaming drivers do not threaten our identification of the average treatment effect on the

treated (ATET) under the plausible assumption that the RLAH policy does not induce

sorting that considerably affects the composition of the group of roaming drivers.25 These

dissimilarities become more relevant when generalizing estimated effects to the untreated

population. We discuss the assumptions required to attribute the estimated effect to all

drivers in Section 5.4.

4.2.2. Distribution of accidents

Our dependent variable is the number of vehicles involved in accidents, aggregated by

province, month and country group. Table 1 presents descriptive statistics for various

subsets. Naturally, the mean of the count of vehicles involved in accidents is in levels

much larger for locals than for roaming users. In logs, however, the figures are more

25Figure A3 in Appendix A shows that the age distribution of roaming users does not change consid-
erably after the policy was implemented. We note, however, that even if we find a policy-induced sorting
in the distribution of drivers in accidents, this does not necessarily bias our estimates, as it may be a
result of the policy e.g. younger drivers may be more likely to use their phone and therefore be more
represented in accidents, while the distribution of age groups in kilometres travelled may be the same.
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comparable and the standard deviation is in the same ballpark. This means that after

controlling for the different mean levels —as we do by including country fixed effects—the

treated and control group appear to have very similar support.

Figure 6 shows histograms of the dependent variable after log transformation and after

demeaning for fixed effects. Panels (a)–(c) indicate that these empirical distributions are

left-skewed, as to be expected from count data. Similarly, panels (d)–(f) show that

after taking logs of these counts, distributions still seem to be slightly skewed to the

left. However, if we demean by our panel and time fixed effects, as in panels (g)–(i),

distributions seem quite symmetric, albeit with a larger variance for roaming compared

to local users. This is non-problematic, however, when using standard errors that are

robust to heteroskedasticity.

4.2.3. Hotel nights data as proxy for traffic intensity

An important concern with our approach may be that country specific trends in traffic

intensity, or vehicle kilometres travelled (VKT), might drive our results. For example, an

increase in tourism over time may result in relatively more VKT by roaming users and

therefore increase the likelihood of a roaming accident after the introduction of RLAH. We

do not observe VKT for each drivers’ country at the required level of temporal (monthly)

and spatial (province) disaggregation. Instead, we use overnight stays in hotels, obtained

from Statistics Netherlands (2019a), to proxy for changes in tourism and thereby monthly

traffic intensity. For each province, we observe the number of overnight stays per month,

disaggregated into guests’ country of origin. We assess the quality of this proxy in two

ways.

First, we observe country wide VKT at the annual level for locals and non-locals.

Figure 7 shows annual growth rates of hotel nights and VKT for local and roaming

(non-local) drivers. The figure highlights that over the course of the five years prior to

the treatment, VKT by roaming drivers grew more compared to local VKT. However,

a similar, yet even stronger trend is visible for hotel nights. Even when we exclude the
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Figure 6: Histograms of vehicles per month per province.

province containing Amsterdam, an obvious hot spot of growth in hotel nights, we see

a similar pattern. This suggests that we can capture trends in VKT with hotel nights,

albeit potentially overestimating changes in VKT.

Second, we analyse how traffic intensity and the number of vehicles involved in acci-

dents are related to hotel nights for Dutch drivers, for which we observe traffic intensities

on highways at the province-month level (Statistics Netherlands, 2019b). Table A5 in

Appendix A shows that, after controlling for time and panel (in this case simply province)

fixed effects, there is no statistically significant effect of hotel nights for Dutch nationals

with respect to traffic intensity, or number of vehicles involved in accidents. Importantly

however, we do find a statistically significant and robust effect for the case of roaming

drivers and the number of vehicles involved in accidents. This suggests that hotel nights
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Figure 8: Graphical representation of common trends in aggregated province-month data.

are a good proxy for country specific changes in VKT from tourism and business related

trips. Furthermore, the R2 in column (2) is 0.99, which indicates that almost all of the

variation in the traffic intensity can be explained by our fixed effects, suggesting that

group specific changes in traffic intensity are unlikely to effect our estimates.26

5. Results

5.1. Parallel trends

We first examine overall trends of local vehicles (control group) and roaming vehicles

(treated group) involved in accidents. Figure 8a shows that nationwide accident counts

for these groups follow similar trends. The figure also highlights that these measures are

26Note that we find a borderline significant (significant only at the 10% level) negative estimate for
hotel nights of locals in column (8). This might be an indication that drivers who are staying in a hotel,
are driving more safely because they are unfamiliar with the area. This would be in line with findings in
observational studies. Another possible explanation could come from region specific holidays that vary
in timing between years for given regions, and between regions for given years.
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Figure 9: Treatment effect per month for full sample (top) and single-vehicles (bottom).

quite noisy and that no clear jump is observable around the policy introduction in 2017.

For a more rigorous analysis of a common trend, in Figure 9 we plot estimates of a

monthly treatment effect, while including all controls and fixed effects as in our preferred

specification in (1). Here, the coefficients are estimated using an indicator for whether

the province-month count of vehicle accidents are for roaming users, interacted with year-

month dummies.27 The results in Figure 9 indicate that no clear pre-trend exists and that

local drivers are a suitable control group for roaming drivers, conditional on controls and

fixed effects. Furthermore, after the policy, there is a clear positive impact on accidents as

indicated by the increased proportion of positive and statistically significant estimates.28

This pattern is even more pronounced in the bottom panel of the plot where we focus

specifically on single-vehicle accidents.

27Specifically, the figure plots the βτ coefficients from estimating:

log(Vit) =

60∑
τ=−41

βτRi,t−τ + γ log(Hit) + φi + κt + εit, (2)

where Ri,t−τ is an indicator variable for whether the vehicle count is for roaming users or not, interacted
with a year-month dummy, and βτ is the effect of the policy for each year-month t. To be able to include
the seasonality fixed effect κt in this setting, we omit the treated×year-month dummies for the first
full year; otherwise perfect multicollinearity emerges. The error bars represent robust 95% confidence
intervals for each monthly point estimate.

2844% of the coefficients are positive and statistically significant post-policy as compared to only 10%
pre-policy.
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Table 2: Main regression results

log(# Vehicles in Accidents)

(1) (2) (3) (4) (5)

Treatment effect 0.124∗∗∗ 0.125∗∗∗ 0.176∗∗∗ 0.089∗∗∗ 0.094∗∗∗

(0.034) (0.035) (0.025) (0.030) (0.031)
Roamer × trend 0.003∗∗

(0.001)
log(Hotel nights roamers) 0.298∗∗∗

(0.076)
log(Hotel nights locals) -0.089

(0.063)
Temperature 0.057∗∗∗ -0.005∗ -0.005∗ -0.004∗

(0.016) (0.003) (0.003) (0.002)
Rain 0.061 -0.001 -0.001 0.003

(0.061) (0.012) (0.012) (0.013)
# Frost days 0.157∗∗∗ 0.025∗ 0.025∗ 0.019

(0.040) (0.013) (0.013) (0.012)
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes
Clusters 72 72 72 72 72
Local vehicles 686k 686k 686k 686k 686k
Roaming vehicles 35k 35k 35k 35k 35k
Observations 3,688 3,688 3,688 3,688 3,688
R2 0.729 0.748 0.965 0.965 0.967

Notes: Column (1) is a basic DiD regression which includes a dummy for roaming user, policy and

the interaction between roaming user and policy (denoted treatment effect). Robust standard errors

in parentheses are clustered at the province and country-group level. Hotel nights are split into two

orthogonal variables for local and roaming users. A dummy is included when hotel nights were inflated

(only for roaming users). ∗∗∗, ∗∗, ∗ indicate significance at 1%, 5%, and 10%.

5.2. Estimation results

Table 2 shows the estimation results with incremental levels of controls and fixed ef-

fects. Column (1) shows that with only the minimal DiD controls, we find a statistically

significant effect of over 12%.29 Column (2) shows that overall time trends (captured

by year×month fixed effects), and weather controls hardly change the estimated treat-

ment effect. In column (3) we add panel fixed effects, where our panel identifier is a

province-country group. This increases the point estimates and lowers the standard er-

rors, indicating that these fixed effects improve the efficiency of the estimator and suggests

29Here we run the most simple DiD regression, which includes a dummy for the RLAH policy, a dummy
for whether the country group consists of roaming users, and the treatment effect is the interaction
between these two dummy variables.
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that accident counts are heterogeneous across provinces and country-groups. Column (4)

shows that the estimated treatment effect declines significantly when we add a linear

roaming-specific monthly time trend. This is potentially a bad control that can also

pickup part of the treatment effect, but the results here imply that any major nationwide

trends in accidents of roaming users only partially affect the results.

Our preferred specification is the one used in column (5), in which we include controls

for hotel nights as a proxy for traffic intensity. We find a point estimate of 0.094 with

a standard error of 0.031. This implies that the policy-induced increase in phone use

leads to an increase in the number of vehicles involved in accidents of 9.91%, with a 95%

confidence interval of 3% − 17%. The point estimate declines as compared to (3) and

the hotel nights elasticity of roaming users has the expected sign. It indicates that a 1%

increase in hotel nights for roaming users is associated with an increase of around 0.3%

in the number of vehicles involved in accidents. The hotel nights effect is insignificant

for locals, conditional on our set of fixed effects. This makes sense as traffic intensity for

roaming users is likely to follow seasonal tourist trends while most local traffic is generated

by work commutes and other daily activities. Importantly, fixed effects already absorb

overall trends in VKT, heterogeneity across provinces, and heterogeneity across vehicle

countries. Therefore, statistical significance of the hotel nights elasticity, and the fact

that the point estimate of the treatment effect is smaller when we include hotel nights,

highlights that we indeed capture country specific long term trends in VKT.

5.3. Robustness checks

In this section we perform a vast range of robustness checks. Tables with results are

available in Appendix B.

5.3.1. Measurement error

One type of measurement error arises because we do not accurately observe which vehicle

potentially caused the accident. Table B1 in Appendix B shows estimation results using

different subsets of accident types and vehicle involvement. Columns (1–2) show that
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focusing on different types of accidents yields very similar results. Excluding trucks and

focusing on single-vehicle accidents leads to very similar or only slightly stronger point

estimates. Focusing on single vehicle accidents may suggest we reduce measurement

error slightly, but again the point estimates are not statistically different from the main

estimate.

As discussed before, our analysis may suffer from measurement error in the treatment

assignment, for instance by having a Dutch phone subscription while still driving a non-

Dutch car or vice versa. It is likely that measurement error is most pronounced in

bordering provinces and for drivers with a close connection to The Netherlands. This can

either be due to proximity (like bordering regions or countries) or due to strong economic

links (e.g. labour migration). If we exclude bordering countries, we find somewhat larger

effects while if we remove bordering provinces or drivers from labour migration countries,

we find only slightly smaller effects.30 These results indicate that our results do not suffer

from a severe downward bias from measurement error.

5.3.2. Accounting for VKT trends

So far, we have assumed that country-of-origin specific trends in VKT are well-captured

by our hotel nights proxy. Results from Section 4 suggest that this is a plausible assump-

tion. Nevertheless, to further rule out any issue with long-term trends in non-local road

traffic as a potential confounder, in columns (1–2) of Table B2, we restrict our sample to

one year before and one year after the policy (i.e. from June 2016 to July 2018). This

approach yields an estimate of 6.8% for all vehicles and 14% for single-vehicle accidents

which are very comparable to our main results. This highlights that long term trends in

VKT cannot explain the observed increase in vehicles involved in accidents.

30Excluding border provinces also mitigates potential concerns that border provinces face more VKT
due to the policy, e.g. if people are more likely to go shopping across the border because phone us-
age is cheaper. Such an endogenous response might induce sorting and thereby poses a threat to our
identification strategy.
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5.3.3. Accounting for auto-correlation in error structure

In our main analysis, we use the number of vehicles involved in accidents per province

per month as observational unit. If there is strong serial correlation, then OLS standard

errors may be incorrect, even when clustering at a time-invariant level as we do (Bertrand

et al., 2004). To deal with this issue in the most conservative way, we re-estimate our main

models on data aggregated to pre and post-policy averages.31 Columns (3–4) in Table

B2 show that the statistical significance is only slightly lower as compared to our main

analysis (the t-statistic = 2.1 as compared to 3.1 in our preferred specification). This

provides strong evidence that serial correlation does not pose a threat to our statistical

inference.

5.3.4. Weighting

Our aim is to approximately recover the phone-use effect per driver, rather than at a

province level. This suggests that we should use sample weights for VKT at the individual

level.32 Because these data are not available on the vehicle accident level, we test the

robustness of our results to four weighting schemes that are closely related to VKT.33

As regions differ in the total number of roaming drivers involved in accidents, this also

allows to assign higher weights to provinces that tend to have relatively more roaming

drivers and therefore may be more informative. Table B3 shows that our main results

hardly change if we use weights based on 1) roaming accident numbers, 2) total accident

numbers, 3) traffic intensity, and 4) hotel nights. This suggests that our fixed effects and

log-level specification already sufficiently account for differences in VKT between regions.

31After aggregating, the data represents the log number of vehicles, hotel nights, and weather condi-
tions, by country group and province, for an average month in the pre and post data.

32Note however that weighting might lead to erroneously small standard errors when there is clustering
in the disturbances (Solon et al., 2015). Therefore, as the latter is likely to be the case in our setting,
we are cautious with weights and report the more conservative estimates (without weighting) as main
results.

33Note that for accident numbers we use the time invariant pre-policy number of roaming and total
accidents.
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5.3.5. Accounting for zero counts

In our main analyses we use a log-linear specification, which performs well with a sufficient

number of accidents. However, during some months, for some country-groups, we observe

few or even zero vehicles in accidents (14.02% pre and 4.95% post policy). These cases

are naturally excluded from our log-linear regressions. However, they might be less likely

to occur after the policy due to policy-induced phone distractions. As a consequence,

our estimations might suffer from a slight downward bias by excluding more zero counts

before than after the RLAH policy introduction for treated vehicles. To test if such a bias

exists, we re-estimate our main specification as in (1) using a Poisson pseudo-maximum

likelihood count model. Table B4 presents the results from this re-estimation, which

allows us to include all province-month observations.34 The coefficients are remarkably

similar and in column (5), our preferred specification with hotel nights, the results indicate

that the policy caused 9.4% more accidents and is statistically significant at the 1% level.35

5.3.6. Heterogeneous effects

In addition to the average treatment effect that we estimate in our main analysis, we test

for measurable heterogeneity in the effect of phone use, for various subgroups of drivers

and road characteristics.

We first test whether the effect size varies by age group. Table B5 in Appendix B

suggests that our main effect predominantly applies to drivers in the age group between

30 and 50. We find statistically insignificant effects for age groups below 30 and above

50. However, as the 95% confidence intervals overlap, we cannot conclusively determine

that the effects are statistically different, which might be due to less precision. Lab based

studies also tend to be inconclusive on the performance differences of distracted driving

across age groups. Oviedo-Trespalacios et al. (2016) synthesize the most recent literature,

and find that although “older drivers tend to engage less in a secondary task like using

34This means we have 4,248 province-month observations as compared to 3,688 in column (5) of Table
2.

35Column (4) of this specification indicates that it indeed appears that the roamer specific time trend
is a bad control, as could be expected.
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mobile phones while driving [...], the performance of younger drivers, who are inclined to

use a mobile phone while driving, has been reported to be less affected by mobile phone

tasks than older drivers” (p. 369). It is therefore not surprising that many studies report

a negligible effect of age differences.

We also investigate the treatment effect on different road types. Phone distractions

may disproportionately impact the likelihood of causing an accident in more challenging

road conditions, such as in urban areas and on local roads where drivers often share

the road with other vehicles and modes (e.g. pedestrians and cyclists). To test this

hypothesis, we split the sample into three road types based on the speed limit. To assure

sufficient statistical power, we define the following three road classes with roughly equal

numbers of accidents: below 50 km/h, between 50 km/h and 100 km/h, and above 100

km/h. These groups roughly represent local roads in urban areas, local roads in rural

areas, and highways. Similarly, we test whether our estimates are different for vehicles

involved in more severe accidents (fatal or injury) versus accidents with only material

damage. Results of these estimations are presented in Table 3.

Columns (1–3) indicate that most of the estimated effect comes from local roads, and

we do not find evidence of a reduction in road safety on highways. This suggests that

phone distractions are either more risky on local roads (e.g. due to crossings and traffic

lights), or that drivers use their phone less frequently on highways (e.g. because it is

perceived as more dangerous).36

Finally, columns (4–5) indicate that the main result holds, regardless of accident sever-

ity, suggesting that mobile phone distractions play an important role in accidents with

varying degrees of severity. Our results do not support the hypotheses that phone dis-

tractions predominantly increase accidents with material damage, for instance, if people

mostly use phones in low-speed, low-risk, situations like traffic jams.

36We cannot fully isolate the effect of phone usage from that of increased car navigation, but the fact
that we find only an effect on urban roads may indicate that car navigation does not increase safety in
urbanized areas.
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Table 3: Estimation results using subsamples of road types and severity).

log(# Vehicles in Accidents)

< 50km/h 50km/h - 100km/h >100km/h Fatal/Injury Material

(1) (2) (3) (4) (5)

Treatment effect 0.098∗∗ 0.050 -0.065 0.115∗∗ 0.083∗∗

(0.038) (0.040) (0.049) (0.054) (0.033)
log(Hotel nights roamers) 0.178∗∗∗ 0.260∗∗∗ 0.220∗∗∗ 0.130∗∗ 0.294∗∗∗

(0.058) (0.078) (0.045) (0.051) (0.075)
log(Hotel nights locals) -0.031 0.004 -0.125 0.214∗∗∗ -0.144∗∗

(0.054) (0.065) (0.116) (0.077) (0.067)
Weather controls Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes
Clusters 72 72 72 70 72
Local vehicles 368k 135k 101k 133k 554k
Roaming vehicles 14k 8k 9k 3k 32k
Observations 3,083 2,796 2,818 2,136 3,636
R2 0.964 0.955 0.934 0.961 0.965

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.

5.4. Implications

Our robustness checks indicate that the effect of phone use generally falls within the 95%

confidence interval 3%− 17% of our main estimate. Furthermore, 9.91% is likely to be a

conservative estimate of the total effect of phone use because we only estimate the effect

induced by the price drop, while roaming users where likely to use their phones, albeit

infrequently, prior to the policy. In this section we calculate the total number of accidents

and the relative risk of phone use implied by our main estimate.

5.4.1. Total number of accidents caused by phone use

To calculate the number of accidents associated with phone use, we compare the observed

number with a counter-factual situation where all drivers face phone usage fees equal to

the pre-policy roaming charges. In other words, we consider how many accidents could be

avoided if all drivers faced higher phone usage costs and thereby used their phones less.37

37This could be enforced, for example, by imposing more stringent regulation that increases the costs
of being caught using a mobile phone while driving.

28



Importantly, the RLAH policy abolished additional roaming surcharges, such that after

the policy, roaming and local users face the same phone use costs and accident risk.38

Our results are applicable to all road users under the assumption that the mechanism

identified for roaming users carries over to all drivers. In other words, the average treat-

ment effect for roaming users (ATET) should be representative of the average treatment

effect (ATE) for all road users. Extrapolating the ATET to the ATE therefore requires

the key assumption that the treatment and control group are sufficiently comparable.

Based on observable driver characteristics, roaming users tend to be younger and

drive on faster roads than local drivers (see discussion in Section 4.2). Nevertheless, our

analysis on heterogeneous effects across age groups suggests that differences in driver age

leads to similar results, while highways tend to be safer than local roads with respect to

the accident risk of phone distractions (see Table A3 in Appendix A). Therefore, based

on observable characteristics, our ATET may in fact underestimate the ATE because

roaming users are more likely to drive on highways.

One remaining concern might be that unobservable driver characteristics, such as

familiarity with roads and other infrastructure makes roaming and local drivers not com-

parable. For instance, if driving on unfamiliar roads increases accidents risk, then this

may be further exacerbated by phone distraction. However, Intini et al. (2018) find no

clear evidence for increased accident risk due to unfamiliarity with the road network.

On the contrary, they find that familiarity is associated with increased accident risk.

More research is required to understand the interaction between driver distractions and

road familiarity, but at this stage there seems to be no clear indication that our ATET

overestimates the ATE due to road familiarity.

In sum, it seems plausible that our estimated ATET is roughly similar to the ATE.

Our results then imply that phone use causes 13,563 additional accidents annually in

38In other words, the RLAH policy caused roaming drivers to ‘catch up’ with local drivers’ smart
phone usage and the distractions and associated accident risk. There may still be variations across
mobile phone plans and across countries, but these no longer depend on roaming or local use. In
addition, these differences are most likely fairly constant over time in the short run and are more related
to local demand and supply conditions than to the RLAH policy.

29



the Netherlands, of which about 2,536 result in injury and 79 are fatal. Furthermore, if

the ATE is applicable to other EU countries, this would imply that around 2,500 road

fatalities in the EU in 2018 may be attributable to phone use.39 As shown in Figure 1,

the gap between the EU 2020 target and actual fatalities was 28% (7,044 cases). Our

results then suggest that around one third of this gap could be closed by successfully

banning mobile phone use qhile driving.

5.4.2. External effect

We do a back-of-the-envelope calculation to calculate the external effect based on average

accident characteristics. Let us assume that in each accident just one driver was poten-

tially causing the accident due to phone distraction. Then, out of 764k drivers involved

in accidents in our data, 334.89k (43.8%) of them were involved in a crash without con-

tributing to the cause of the accident themselves. If we focus on local roads—where we

find the strongest effect of distraction—we find a similar figure of 43.9%.

We use these figures to calculate a simple external effect of phone use, expressed

in terms of vehicles involved in accidents. Starting with our main estimate of a 9.91%

increase in vehicles involved in accidents due to phone distractions, we calculate that

in all accidents, on average about 4.1% of vehicles were affected due to distraction of

other drivers. Note that this calculation crucially hinges on the assumption that in each

phone-induced accident only one driver was distracted. This may seem plausible, but

may be violated in rare cases.

5.4.3. Crash risk odds ratio

We follow Bhargava and Pathania (2013) and translate our estimate for the effect of the

change in mobile phone use, due to the RLAH policy, on the number of vehicles involved

in accidents to the crash risk odds ratio (or ‘relative risk’) which allows us to compare

our results to the existing literature. This requires two key parameters, the percentage

of roaming users that are on their phone while driving or the ‘baseline prevalence’, and

39This can be calculated by multiplying our main estimate by the total number of fatal vehicle accidents
in 2018, so 9.91% × 25,058 = 2,470.
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the change in phone use due to the policy, denoted by b and c respectively.

Observational studies, based on roadside surveys, indicate that average phone use in

the car ranges between 1−11% (European Road Safety Observatory, 2015).40 These field

studies do not distinguish between roaming and local drivers, however there is a good

reason to expect that the baseline prevalence is overestimated for roaming users because

roaming was very costly before RLAH. Therefore we consider a range of b ∈ [0.01, 0.10],

in the sensitivity analysis, but note that lower values are more likely.

As for the increase in phone use due to the policy, Table A4 suggests that RLAH

induced an increase in the annual growth rate of mobile data of around 200 percentage

points, and calls and texts of around 80 and 20 percentage points, respectively. We assume

that aggregate changes in roaming use also apply to drivers visiting the Netherlands and

consider a range of c ∈ [0.5, 2]. It is possible that most of this 200 percentage points

increase comes from watching videos and playing songs, which may not (fully) translate

to an equivalent increase in distractions while driving. This would imply that the lower

values in the specified range for c are more relevant and more applicable to our setting.

Using these parameters, we can calculate a range of possible relative risk factors,

denoted by RR, implied by our preferred estimate, β̂, using the formulation:

β̂[1× (1− b) +RR× b] = RR× bc− bc. (3)

To reflect the uncertainty of these assumptions, Table 4 illustrates how our key pa-

rameters influence the implied RR estimates. It indicates that RR is decreasing in the

baseline prevalence and in the change in phone use due to the policy. In other words, if

the policy had a small impact on phone use and roaming drivers used their phone very

little prior to the policy, our estimate implies larger risks associated with phone use while

driving.

40Based on a naturalistic driving setting between 2012 and 2015, Dingus et al. (2016) observe handheld
cell phone prevalence in the US to be about 6.3%. There is no reason to expect that prevalence is
substantially different in the Netherlands and therefore we expect that the findings in European Road
Safety Observatory (2015) captures a meaningful range for our study.
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That said, we take a conservative estimate for the baseline prevalence of 3% and the

change in phone use due to the policy of 100%. This would imply a relative risk of phone

use of 3.8.41 We consider this to be a conservative estimate as it is unlikely that roaming

drivers used their phones as intensively as local drivers due to the high pre-policy roaming

costs.

Table 4: Sensitivity of implied accident risk.

Baseline prevalence, b

∆ phone use due to RLAH, c 1% 2% 3% 5% 10%
50% 17.10 8.90 6.20 4.00 2.30
80% 11.70 6.30 4.40 3.00 1.90
100% 9.80 5.30 3.80 2.60 1.70
150% 7.00 4.00 2.90 2.10 1.50
200% 5.60 3.30 2.50 1.80 1.40

Notes: This table presents the relative accident risk implied by our baseline estimate from column

(5) in Table 2. The relative risk is calculated by re-arranging equation (3) such that: RR = β̂−β̂b+bc
b(β̂+c)

.

Baseline prevalence reflects the percentage of time roaming drivers spend on the phone while in the car.

An illustration is outlined in the text.

Comparing these estimates to the existing literature suggests that our conservative

estimate of the crash risk associated with modern smart phone usage is similar to earlier

crash-based studies, but are significantly larger than recent field studies.42 This suggests

that the crash risks of phone use are slightly lower in magnitude than those found for

positive levels of blood alcohol.43 As mentioned earlier, previous research focuses mainly

on the effects of calling, or focuses on specific road types and phone use, however modern

smart phones offer substantially more usability and potential for distraction, and our

findings suggest that these effects are more likely to be present on local urban roads. Our

estimates for the change in mobile phone use due to the RLAH policy suggest that we

mainly pick up an effect from using more mobile data (increase in growth rate of about

200 percentage points as compared to local drivers) which may explain why we find larger

41Re-arranging terms, we can find RR = β̂−β̂b+bc
b(β̂+c)

. Plugging in b = 0.03 and c = 1 gives: RR = 3.8.
42Redelmeier and Tibshirani (1997) find a RR of about 4.3, Dingus et al. (2016) find the RR of cell

phone use to be 3.6, and Bhargava and Pathania (2013) do not find any effect. Hersh et al. (2019b) do
not calculate the RR, however their main estimate of 1.1% is far lower than our main estimate of 9.91%.

43Levitt and Porter (2001a) finds a crash risk of 7 and 13 for positive levels of blood alcohol and illegal
levels respectively.
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implied relative risk estimates than some earlier field studies.

6. Conclusion

In this research we provide novel evidence on the effect of cell phone use on car accidents.

We exploit variation in the cell phone usage fees in the Netherlands following the Roam

Like at Home (RLAH) policy introduced by the European Union (EU) in 2017. This

intervention is used as a treatment, and applies to roaming users—non-Dutch drivers

from the EU—which allows us to employ a difference-in-differences approach.

We show that the growth rate of mobile calls, texts, and particularly data usage

increased substantially after the change in roaming regulations, making roaming phone

use more in line with usage in home countries. While we do not directly observe actual

phone use of drivers, the observed increase in usage is likely to (partly) carry over to

phone use while driving. We estimate that increased phone use due to the policy causes

an increase in the number of vehicles involved in accidents of 9.91% (95% confidence

interval 3% − 17%), which is the average treatment effect on the treated (ATET). This

is likely to be an underestimate of the total effect of phone use while driving, as our

estimates capture the effect of an increase in phone use, which was not fully absent

before the policy.

Under the assumption that the identified mechanism carries over to all EU drivers, our

estimate implies that, in 2018, around 2,500 road fatalities in the EU could be attributed

to phone use. Our results then suggest that around one third of the gap between realised

safety improvements on roads and the EU 2020 target can be attributed to mobile phone

use.44

Our findings indicate that the existing literature may underestimate the risks asso-

ciated with modern smart phone usage while driving. Our main result implies a crash

risk odds ratio associated with mobile phone use of around 3.8, which is likely to be a

conservative estimate. All in all, our results suggest that smart phones are making roads

44In 2018, the EU was 28% away from their 2020 target (see Figure 1).
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less safe, and this has important implications for road safety policies.

Our paper provides an estimate of the average effect of smart phone usage on the

number of vehicles involved in traffic accidents, which may conceal considerable differences

between specific groups of drivers. We look into heterogeneous effects by estimating

models for different sub-samples (e.g. for different age groups, or excluding trucks).

Future research could delve into this further, by estimating propensities of specific groups

of drivers to use their phone while driving. Ride hailing drivers, for example, may have a

relatively high propensity to be distracted by their phone, which might be an important

factor in explaining the results of Barrios et al. (2020), who find that ride hailing services

increased the number of traffic accidents in the US. Such evidence could provide valuable

input for related regulation and policies.
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A. Additional descriptives

Table A1: Descriptive statistics: Vehicles in accidents.

Statistic N Mean St. Dev. Min Max

Roaming 764,065 0.046 0.210 0 1
Age 561,136 42.488 15.015 0.000 110.000
Female 764,065 0.455 0.707 0 10
Maximum speed (km) 653,055 63.726 26.823 15.000 130.000
Deadly 764,065 0.006 0.076 0 1
Injury 764,065 0.187 0.390 0 1
Material 764,065 0.807 0.394 0 1

Table A2: Descriptive statistics by group: Vehicles in accidents.

Variable Roaming Local Diff Tstat
Age 40.903 42.566 -1.663 18.998
Female 0.383 0.459 -0.075 21.007
Maximum speed (km) 74.511 63.200 11.312 -62.898
Deadly 0.006 0.006 -0.000 0.503
Injury 0.088 0.192 -0.103 65.301
Material 0.906 0.802 0.104 -63.736
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Figure A1: Fatality rates in road accidents over time in major EU countries and the Netherlands
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Table A3: Relative frequencies of road types by severity

Local roads Major roads Highways

Fatal/injury 14.1 % 4.3 % 2.0 %
Material damage 46.8 % 17.9 % 14.8 %
Total 60.9 % 22.2 % 16.9 %

Table A4: Difference-in-differences in annual growth of phone use.

Annual growth rate (%) ∆ Annual growth rate (p.p.)

Usage User Pre Post Diff DiD

Calls Local 4.29 -2.49 -6.78
Calls Roaming -1.06 71.16 72.21 78.99
Data Local 67.05 83.82 16.76
Data Roaming 68.09 285.89 217.80 201.04
Texts Local -18.24 -1.80 16.45
Texts Roaming -22.01 18.37 40.38 23.93

Notes: Pre-policy refers to the the average annual growth rates of cellular traffic comparing each quar-

ter with the same quarter in the previous year, over three years (Q1 2014 − Q1 2017) prior to the

implementation of RLAH. Post-policy is one year, Q2 2017 − Q1 2018, after RLAH.
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Figure A2: Age of local and roaming users.

A.1. Predicting phone use per subscriber pre-2016

We obtain roaming usage data from the EU Body of European Regulators for Electronic

Communications (BEREC). Their reports include the time series “EEA average consump-

tion per month per total number of roaming subscribers (in GB)” from the second quarter

of 2016 onwards. Therefore, in order to get a better picture of the long term changes in

roaming data usage, we use data on the total “EEA Retail data traffic (millions of GB)”
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Figure A3: Age of roaming users pre and post policy.

(available as of 2007) and predict the number of subscribers in earlier periods using a

simple model. The advantage of this approach is that the number of subscribers appears

to follow a rather simple dynamic process and means that we only need to predict the

denominator. We can then also compare the growth in our metric to the total growth

in mobile data use which gives us more confidence that the predictions are as close as

possible to actual figures.

We observe quarterly data on the number of roaming subscribers from the second

quarter of 2016 until the first quarter of 2019. The top panel in Figure A4 indicates that

the number of subscribers appears to follow a somewhat log-linear growth trend with a

strong seasonal pattern which is likely related to summer tourism. We therefore estimate

the number of subscribers using the following regression equation:

log(St) = γTrendt + φq(t) + εt, (4)

where log(St) is the natural logarithm of the number of subscribers, Trendt is a linear

time trend capturing the growth over time, and φq(t) are quarter dummies that capture

seasonal variations. The resulting model has an R2 = 0.92, which suggests that it captures

the vast share of roaming subscriber dynamics. This is further confirmed by the bottom

panel of Figure A4 which compares the actual and predicted number of subscribers and

the resulting calculation of data roaming per subscriber. Finally, Figure A5 compares the
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difference between growth in roaming data per subscriber and the total roaming data use.

While the trends are almost identical, it indicates a larger growth in total data use which

is likely a result of capturing overall trends in growth in subscribers (which is relatively

constant) and may also be a result of the RLAH policy that causes the number of people

actively using roaming while travelling to increase. Overall, it suggests that the predicted

change in data usage is a conservative estimate of the effect of the policy.
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Figure A4: Predicting number of EU roaming subscribers and data consumption
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A.2. Analysis of hotel nights as proxy for vehicle kilometres travelled

Table A5: Regression results for analysing traffic and hotel nights for Dutch drivers.

log(Traffic intensity) log(# Vehicles in accidents)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Hot. loc.) 0.240∗∗ 0.042 0.786∗∗∗ 0.109 0.628∗∗∗ -0.135∗

(0.109) (0.065) (0.117) (0.083) (0.069) (0.075)
log(Hot. roam.) 0.287∗∗∗ 0.318∗∗∗ 0.302∗∗∗ 0.306∗∗∗

(0.086) (0.077) (0.082) (0.079)
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Subsample Loc. Loc. Loc. Loc. Roam. Roam. All All
Within R2 0.232 0.016 0.660 0.023 0.242 0.045 0.806 0.046
Observations 576 576 576 576 3,032 3,752 3,752 3,752
R2 0.232 0.992 0.660 0.990 0.242 0.966 0.806 0.966

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.
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B. Robustness checks and sensitivity analyses

Table B1: Results correcting for sources of measurement error

log(# Vehicles in Accidents)

No trucks SV No border prov. No border countr. No BG/PL/RO

(1) (2) (3) (4) (5)

Treatment effect 0.086∗∗ 0.096∗∗∗ 0.072∗ 0.134∗∗∗ 0.077∗∗

(0.034) (0.033) (0.037) (0.030) (0.034)
log(Hotel roam.) 0.297∗∗∗ 0.147∗∗ 0.424∗∗∗ 0.132∗∗∗ 0.335∗∗∗

(0.093) (0.056) (0.121) (0.037) (0.084)
log(Hotel loc.) -0.117∗ -0.167∗∗∗ 0.087 -0.038 -0.071

(0.061) (0.054) (0.082) (0.072) (0.064)
Weather controls Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes
Clusters 72 72 30 48 60
Local vehicles 535k 136k 356k 686k 686k
Roaming vehicles 22k 6k 12k 15k 26k
Observations 3,303 2,658 1,523 2,458 3,026
R2 0.966 0.962 0.968 0.977 0.972

Notes:Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.
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Table B2: Results using only one year pre/post (1–2), and data aggregated to two periods (3–4).

log(# Vehicles in accidents)

All Single vehicle All Single vehicle

(1) (2) (3) (4)

Treatment effect 0.065∗∗ 0.131∗∗∗ 0.148∗∗ 0.162∗

(0.029) (0.036) (0.070) (0.091)
log(Hotel nights roamers) 0.316∗∗∗ 0.192∗∗∗ 0.114 -0.082

(0.094) (0.064) (0.094) (0.109)
log(Hotel nights locals) 0.036 -0.053 0.148 -0.037

(0.069) (0.078) (0.424) (0.409)
Weather controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Clusters 72 72 72 72
Local vehicles 319k 59k 23k 4k
Roaming vehicles 18k 3k 1k 0k
Observations 1,593 1,162 144 143
R2 0.969 0.962 0.999 0.998

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.

Columns (1–2) are obtained using data from June 2016 until July 2018. Columns (3–4) are obtained

after aggregating the data into two periods, one before the policy and one after. For interpretation

purposes, after aggregation, variables are then rescaled to their initial units (e.g. monthly averages).∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.

Table B3: Regression results using weighted least squares.

log(# Vehicles in Accidents)

(1) (2) (3) (4)

Treatment effect 0.111∗∗∗ 0.128∗∗∗ 0.110∗∗∗ 0.101∗∗∗

(0.030) (0.033) (0.028) (0.037)
log(Hotel nights roamers) 0.196∗∗∗ 0.185∗∗∗ 0.255∗∗∗ 0.256∗∗∗

(0.061) (0.057) (0.059) (0.092)
log(Hotel nights locals) -0.212∗∗∗ -0.173∗ -0.083 -0.221∗

(0.078) (0.094) (0.066) (0.118)
Weather controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Weights Total veh. Roaming veh. Avg traf. intens. Avg hotel nights
Clusters 72 72 72 72
Local vehicles 686k 686k 686k 686k
Roaming vehicles 35k 35k 35k 35k
Observations 3,688 3,688 3,688 3,688
R2 0.970 0.969 0.966 0.968

Notes: Estimated using weighted least squares, with pre-policy total number of (roaming) vehicles as

weights. Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.
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Table B4: Estimation results using Poisson regression.

# Vehicles in Accidents

(1) (2) (3) (4) (5)

Treatment effect 0.186∗∗∗ 0.186∗∗∗ 0.187∗∗∗ 0.0381 0.0899∗∗∗

(0.0234) (0.0210) (0.0223) (0.0262) (0.0298)
Roamer × trend 0.00520∗∗∗

(0.000921)
log(Hotel nights roamers) 0.335∗∗∗

(0.0709)
log(Hotel nights locals) -0.000314

(0.0689)
Temperature 0.0366 -0.00100 -0.00101 -0.00108

(0.0264) (0.000852) (0.000851) (0.000850)
Rain 0.198∗∗ 0.0134∗∗∗ 0.0132∗∗∗ 0.0139∗∗∗

(0.0788) (0.00447) (0.00443) (0.00452)
# Frost days 0.0571 -0.000380 -0.000526 -0.000896

(0.0631) (0.00301) (0.00297) (0.00352)
Time FE No Yes Yes Yes Yes
Panel FE No No Yes Yes Yes
Clusters 72 72 72 72 72
Local vehicles 686 686 686 686 686
Roaming vehicles 35 35 35 35 35
Observations 4,248 4,248 4,248 4,248 4,248

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.

Table B5: Estimation results for subsamples with different age groups.

log(# Vehicles in Accidents)

All Age ≤ 30 30 <Age< 50 Age≥ 50 Age≥ 65 Age unknown

(1) (2) (3) (4) (5) (6)

Treatment effect 0.094∗∗∗ 0.039 0.099∗∗ 0.058 0.055 0.193∗∗

(0.031) (0.038) (0.039) (0.035) (0.051) (0.087)
log(Hotel nights roamers) 0.298∗∗∗ 0.201∗∗∗ 0.200∗∗∗ 0.204∗∗∗ 0.027 0.181∗∗

(0.076) (0.039) (0.050) (0.064) (0.049) (0.072)
log(Hotel nights locals) -0.089 0.058 -0.046 0.016 0.063 -0.238

(0.063) (0.070) (0.080) (0.069) (0.096) (0.166)
Weather controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes Yes
Clusters 72 72 72 72 62 72
Local vehicles 686k 189k 221k 172k 59k 104k
Roaming vehicles 35k 7k 12k 6k 1k 9k
Observations 3,688 2,638 3,072 2,572 1,422 2,822
R2 0.967 0.959 0.954 0.959 0.970 0.924

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.∗∗∗,
∗∗, ∗ indicate significance at 1%, 5%, and 10%.
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