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Abstract

We propose a dynamic clustering model for studying time-varying group structures in multi-

variate panel data. The model is dynamic in three ways: First, the cluster means and covariance

matrices are time-varying to track gradual changes in cluster characteristics over time. Sec-

ond, the units of interest can transition between clusters over time based on a Hidden Markov

model (HMM). Finally, the HMM’s transition matrix can depend on lagged cluster distances as

well as economic covariates. Monte Carlo experiments suggest that the units can be classified

reliably in a variety of settings. An empirical study of 299 European banks between 2008Q1

and 2018Q2 suggests that banks have become less diverse over time in key characteristics. On

average, approximately 3% of banks transition each quarter. Transitions across clusters are

related to cluster dissimilarity and differences in bank profitability.
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1 Introduction

This paper proposes a novel dynamic location-scale mixture model for studying time-varying

group structures in multivariate panel data. The model is dynamic in multiple ways: First, the

cluster means and covariance matrices are time-varying to track gradual changes in group (clus-

ter) characteristics over time. Second, the units of interest can transition between groups based

on a Hidden Markov model (HMM). Finally, the HMM’s transition probabilities are time-varying

as well. They can depend on lagged cluster distances and, potentially, additional economic co-

variates. Our modeling framework is useful for allocating a potentially large number of units

into a much smaller number of approximately homogeneous groups in fairly complicated dynamic

settings, while keeping track of overall trends, group membership probabilities, and group tran-

sitions. If appropriate, the baseline model can be extended to accommodate in-active states and

non-Markovian transition behavior.

All time-varying location and scale parameters of our dynamic mixture model are driven by

the score of the local (time t) objective function; see e.g. Creal et al. (2013) and Harvey (2013). In

this approach, the time-varying parameters are perfectly predictable one step ahead. This makes

the model observation-driven in the terminology of Cox (1981). In addition, the log-likelihood is

known in closed form, facilitating parameter estimation via standard methods. Intuitive filtering

recursions are available for all time-varying parameters and cluster membership probabilities.

Extensive Monte Carlo experiments suggest that our model is able to accurately classify the

units of interest into their respective true clusters at each time, as well as to simultaneously recover

all time-varying location and scale parameters, despite the presence of cluster transitions. In our

simulations, the cluster classification is perfect for sufficiently large distances between the time-

varying cluster means. As the time-varying cluster means move closer together and cluster transi-

tions become more frequent, the share of correct classifications decreases, but generally remains

high. Importantly, if cluster transitions are present but ignored, parameter estimates are biased and

classification results can be poor. This calls into question the assumption of time-invariant cluster

assignments (see, e.g., Lucas et al., 2019) when studying the group structure in multivariate panel
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data sets with a non-negligible time dimension.

We apply our modeling framework to a multivariate panel of accounting data for N = 299

European banks between 2008Q1 and 2018Q2, i.e. over T = 42 quarters, considering D = 12

bank-level variables for J = 6 groups of similar banks. We thus track bank data through the 2008–

2009 global financial crisis, the 2010–2012 euro area sovereign debt crisis, as well as the relatively

calmer post-crises period between 2013 and 2018. Our sample, overall, is characterized by a

significant increase in post-crisis financial regulation, the introduction of centralized supervision

in some countries, increasing competition from FinTech and BigTech firms, as well as declining

and ultimately negative monetary policy interest rates. All these developments have put significant

pressure on banks’ business models.

We identify J = 6 business model groups (clusters). Specifically, we distinguish A) market-

oriented universal banks, B) international diversified lenders, C) fee-focused retail lenders, D)

international corporate lenders, E) domestic diversified lenders, and F) domestic retail lenders.

The similarities and differences between these groups are discussed in detail in Section 4.3.

We focus on three main empirical results. First, we study whether banks have become less

diverse over time. A decrease in financial sector diversity could be problematic from a financial

stability perspective. For example, the probability and severity of so-called ‘fire sales’ could in-

crease if large numbers of banks adopt similar business strategies. We find that our bank business

model groups have become less diverse over time in key characteristics such as size, leverage, the

share of trading activities, and funding choices.

Second, we study which business model groups have become more or less popular over time.

In this regard, our cluster location estimates and bank transitions point in the same direction: since

the start of our sample, European banks i) have relied increasingly on fee income to lean against

impaired profitability from e.g. low interest rates and increased competition, ii) have become less

reliant on market funding, and iii) have lent increasingly to retail clients rather than corporate

clients.

Third, we study whether bank business model transitions can be explained by differences in
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cluster-specific point-in-time profitability measures. We find this to be the case. Differences in

cluster-specific return-on-equity are a significant predictor of business model transitions. Banks

are more likely to move away from low-profitability groups and into high-profitability groups. Vice

versa, banks from high-profitability groups are less likely to transition into low-profitability groups.

To the extent that low bank profitability is caused by low monetary policy rates for some groups

of banks (Brunnermeier and Koby, 2019; Heider et al., 2019), this finding suggests that monetary

policy can have long-lasting effects on banking sector structure via business model transitions.

From a methodological point of view, our paper contributes to the literature on clustering of

time series data. This literature can be divided into four strands. Static clustering of time series

refers to a setting with fixed cluster classification, i.e., each time series is allocated to one cluster

over the entire sample period. Dynamic clustering, by contrast, allows for changes in the clus-

ter assignments over time. Each approach can be further split into whether the cluster-specific

parameters are constant (static) or time-varying (dynamic).

Wang et al. (2013) is an example of static clustering with static parameters. They cluster time

series into different groups of autoregressive processes, where the autoregressive parameters are

constant within each cluster and cluster assignments are fixed over time.

Frühwirth-Schnatter and Kaufmann (2008) use static clustering with elements of both static and

dynamic parameters. First, they cluster time series into different groups of regression models with

static parameters. Later, they generalize this to static clustering into groups of different HMMs,

each switching between two regression models. The HMM can be regarded as a specific form of

dynamic parameters for the underlying regression model. Their method is used in Hamilton and

Owyang (2012) to differentiate between business cycle dynamics among groups of U.S. states.

Also Smyth (1996) clusters time series into groups characterized by different HMMs.

Creal et al. (2014) is an example of dynamic clustering with static parameters. They develop

a model for credit ratings based on market data. Their main objective is to classify firms into

different rating categories over time. They therefore allow for transitions across clusters (dynamic

clustering), while the parameters in their underlying mixture model are kept constant.
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Finally, Catania (2019) is an example of dynamic clustering with dynamic parameters. He

proposes a score-driven dynamic mixture model, which relies on score-driven updates of almost

all parameters, allowing for time-varying parameters and changing cluster assignments and time-

varying cluster assignment probabilities. Due to the high flexibility of the model, a large number

of observations is required over time. The application in Catania (2019) to conditional asset return

distributions typically satisfies this requirement.

Our approach falls in the category of dynamic clustering methods with dynamic parameters.

We use dynamic clustering as banks are found to switch their business model infrequently over

longer periods of time; see e.g. Ayadi and Groen (2015) and ECB (2016). Also, in contrast to

the application used by for instance Catania (2019), our banking data are observed over only a

moderate number of time points T , while the number of units N and the number of firm character-

istics D are high. Given present but infrequent transitions, the properties of bank business models

are unlikely to be constant throughout the periods of market turbulence and shifts in bank regula-

tions in our sample. We therefore require the cluster components to be characterized by dynamic

parameters.

Our paper also contributes to the literature on identifying bank business models. Ayadi and

Groen (2015), Roengpitya et al. (2017), and Farne and Vouldis (2017) also use cluster analysis

to identify bank business models. Conditional on the identified clusters, the authors discuss bank

profitability trends over time, study banking sector risks and their mitigation, and consider changes

in banks’ business models in response to new regulation. Our statistical approach is different in

that our clusters are not identified based on single (static) cross-sections of year-end data (Farne

and Vouldis, 2017) or bottom-up agglomerative clustering with fixed business model characteris-

tics and a non-chronological time dimension (Ayadi and Groen, 2015; Roengpitya et al., 2017).

Instead, we consider a panel framework which allows us to pool information over time while also

allowing for a rich set of dynamics.

We proceed as follows. Section 2 presents our score-driven dynamic clustering model. Section

3 discusses the outcomes of a variety of Monte Carlo simulation experiments. Section 4 applies the
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model to European financial institutions. Section 5 concludes. A Web Appendix provides further

technical and empirical results.

2 Score-driven dynamic clustering

2.1 Hidden Markov Model

We study the dynamic clustering of multivariate panel data yit ∈ RD×1, where yit is a vector

containing characteristics d = 1, . . . , D for unit i = 1, . . . , N at time t = 1, . . . , T . Each unit

belongs to one cluster j at each time point t, for j = 1, . . . , J clusters. Unit i’s cluster membership

at time t is described by the latent process cit, where cit = j if unit i belongs to cluster j at time t.

We model the multivariate data yit by the location-scale mixture model

yit = µcit,t + εit, εit
i.i.d.∼ fε (0,Σcit,t, νcit) , (1)

where µcit,t is a D× 1 vector of cluster-specific means, and εit is a sequence of independently and

identically distributed (i.i.d.) D × 1 vectors of disturbance terms characterized by a zero mean, a

time-varying and cluster-specificD×D covariance (or scale) matrix Σcit,t, and possibly additional

parameters νcit . If fε is a multivariate Student’s t density, then νcit is the degrees of freedom

parameter for unit i at time t. This encompasses the special case of the normal distribution, for

which we can set ν−1
cit

= 0. Skewed distributions are also easily accommodated in this framework,

but are not considered in this paper.

We model the transitions from one cluster to the next by a Hidden Markov Model (HMM); see

e.g. Goldfeld and Quandt (1973) and Bhar and Hamori (2004). The dynamics of the HMM are

characterized by the latent (hidden) states cit that are driven by an underlying Markov chain. The

Markov property implies that the next state depends only on the current state, i.e.

P {ci,t+1 = j|cit, ci,t−1, . . . , ci0} = P {ci,t+1 = j|cit} .
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We introduce the short-hand notation πjk,t := P {ci,t+1 = k|ct = j}, where πjk,t denotes the pos-

sibly time-varying probability of transiting from state j to state k at time t.

The J × J HMM transition matrix Πt contains all transition probabilities πjk,t for j, k =

1, . . . , J . We require the rows of Πt to sum to one, i.e.,
∑J

k=1 πjk,t = 1 for all j = 1, . . . , J . We

assume the transition probabilities πjk,t vary over time as a function of the time-varying distance

between the clusters at time t− 1. In particular, we could specify the transition matrix as

Πt = Πt (Dt−1) , (2)

where Dt is a J × J matrix with elements djk,t, where djk,t denotes the distance between cluster

j and cluster k at time t. For example, it is often natural to assume that a unit’s transition from

one cluster to another is less likely when the clusters are further apart. Conversely, transitions

between nearby (neighboring) clusters may be more likely. The off-diagonal elements of Πt are

then decreasing in djk,t. If two or more clusters are temporarily close and overlapping at time

t − 1, then specification (2) may not work well. In such cases (2) can be adapted to, for example,

Πt = Πt

(
D̄t−1

)
, where D̄t−1 = H−1

∑H
h=1Dt−h, and where H is a positive integer to be chosen

ex-ante. Alternatively, lagged distances can be taken into account as

Πt = Πt

(
D̃t−1

)
, D̃t−1 = λDt−1 + (1− λ)D̃t−2, (2’)

where 0 < λ ≤ 1 is a smoothing parameter to be estimated or chosen ex-ante.

To avoid an undue increase in the number of parameters, we parsimoniously model the transi-

tion probabilities as

πjk,t =
exp

(
−γd̃jk,t−1

)
ΣJ
q=1exp

(
−γd̃jq,t−1

) for j, k = 1, . . . , J, (3)

where the scalar parameter γ indicates the rate of decay of the transition probabilities in terms of

the cluster distances, and d̃jk,t−1 is an element of D̃t−1. The numerator in (3) is equal to one if
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j = k, regardless of γ. A higher value for γ leads to lower values of exp
(
−γd̃jk,t−1

)
for j 6= k,

and therefore to lower transition probabilities and to fewer implied transitions. Vice versa, a lower

value for γ leads to higher transition probabilities. Finally, the multinomial specification in (3)

ensures that the rows of Πt sum to one by construction.

To measure cluster proximity we adopt the Mahalanobis distance metric

djk,t =

√
(µjt − µkt)′Σ−1

t (µjt − µkt), (4)

where Σt = J−1
∑J

j=1 Σjt is the average scaling matrix across the different clusters. As a result,

cluster distances are invariant to adopting a different scaling of input variables. Variables that are

less correlated with the others receive more “weight” in the distance metric. The Euclidian distance

is a special case of (4) and is obtained by setting Σt = ID.

2.2 Time-varying conditional cluster probabilities

In this section we derive a filtering equation for the conditional probability τij,t|t := P[cit =

j|Ft;θ], where τij,t|t denotes the probability that unit i belongs to cluster j at time t given the

information set Ft = {yt, yt−1, . . . , y1} containing the observations up to time t. The vector θ

contains the static parameters of the model that need to be estimated.

We start by considering the log-likelihood contribution of observation yit,

`it = log f (yit|Ft−1;θ) = log

(
J∑
j=1

τij,t|t−1f (yit|cit = j,Ft−1;θ)

)
(5)

where f (yit|cit = j,Ft−1;θ) is the density of yit in cluster j, and τij,t|t−1 := P[cit = j|Ft−1;θ]

is the conditional probability that unit i belongs to cluster j at time t given Ft−1. By the Markov

property the predicted conditional state probability τij,t|t−1 only depends on the previous state and
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on elements of the transition matrix Πt. We use this property to update the cluster probabilities as

τij,t+1|t = P[ci,t+1 = j|Ft;θ] =
J∑
k=1

πkj,tP[cit = k|Ft;θ] =
J∑
k=1

τik,t|tπkj,t. (6)

Using a standard Bayes argument, the filtered cluster probabilities are determined by

τij,t|t = P[cit = j|Ft;θ] =
τij,t|t−1f(yit|cit = j,Ft−1;θ)

f(yit|Ft−1;θ)

=
τij,t|t−1f(yit|cit = j,Ft−1;θ)

τi1,t|t−1f(yit|cit = 1,Ft−1;θ) + . . .+ τiJ,t|t−1f(yit|cit = J,Ft−1;θ)
.

(7)

The filtered cluster probabilities thus update the predicted cluster probabilities τij,t|t−1 by using the

time t observation yit and its likelihood of coming from the cluster j density f(yit|cit = j,Ft−1;θ),

normalized by the unconditional data density f(yit|Ft−1;θ). This is intuitive: if τij,t|t−1 f(yit|cit =

j,Ft−1;θ) is high compared to τik,t|t−1 f(yit|cit = k,Ft−1;θ) for k 6= j, then yit is more likely to

come from cluster j, and the filtered cluster probability τij,t|t increases accordingly. Otherwise the

filtered cluster probability is adjusted downward. We can use the filtered cluster probabilities τij,t|t

or their predicted counterparts τij,t|t−1 to assign each observation i at time t to a specific cluster

j. For example, we may assign unit i to the cluster j∗ for which the filtered cluster probability is

maximal, i.e., j∗ = arg maxj τij,t|t.

2.3 Time-varying cluster-specific parameters

2.3.1 Time-varying means

Time-variation in location and scale parameters is modeled following the score-driven approach as

introduced by Creal et al. (2013) and Harvey (2013). We impose further parsimony by using the

exponentially weighted score-driven dynamics of Lucas and Zhang (2016). For the time-varying

means, we specify

µj,t+1 = µjt +A1Sµjt,t ·∇µjt,t, (8)
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where the diagonal matrix A1 = A1(θ) depends on the vector of unknown static parameters θ,

Sµjt,t is a scaling matrix, and the score ∇µjt,t is the first derivative of the log-density of yit with

respect to µjt. In our case, the score is given by

∇µjt,t =
∂`t
∂µjt

=
∂
[
ΣN
i=1 log (f (yit|Ft−1;θ))

]
∂µjt

=
N∑
i=1

∂

∂µjt
log

(
J∑
j=1

τij,t|t−1f (yit|cit = j,Ft−1;θ)

)

=
N∑
i=1

τij,t|t ·
∂

∂µjt
log f (yit|cit = j,Ft−1;θ) =

N∑
i=1

τij,t|t ·∇(j)
µjt,t, (9)

where ∇(j)
µjt,t = ∂ log f (yit|cit = j,Ft−1;θ) /∂µjt is the score of mixture component j. As a

closed form expression for the conditional Fisher information matrix of µjt is not available, we

use an approximation to account for the curvature of the score, namely

Sµjt,t =

(
N∑
i=1

τij,t|t · E
[
∇(j)

µjt,t

(
∇(j)

µjt,t

)′ ∣∣∣∣ cit = j

])−1

(10)

Our scaling matrix thus takes the weighted average of the conditional Fisher information matrices

of each of the regimes j, weighted by their filtered posterior probability τij,t|t of observation yit

coming from regime j.

As a concrete example, consider the case of a mixture of normal distributions. In that case we

have

∇(j)
µjt,t = Σ−1

jt (yit − µjt), Sµjt,t =

(
N∑
i=1

τij,ttΣ
−1
jt

)−1

, (11)

µj,t+1 = µjt +A1

∑N
i=1 τij,t|t · (yit − µjt)∑N

i=1 τij,t|t
. (12)

A detailed derivation of (12) is provided in Web Appendix A.1. The transition equation (12) is

highly intuitive: the cluster means are updated by the prediction errors for that cluster, accounting

for the posterior probabilities that the observation was drawn from that same cluster. For example,
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if the posterior probability τij,t|t indicates that observation yit comes from cluster j with negligible

probability, then the update of µjt is unresponsive to yit − µjt.

As a second example, consider a mixture of Student’s t distributions. In that case (9) remains

unchanged, while

∇(j)
µjt,t = wij,t ·Σ−1

jt (yit − µjt) , (13)

where the weight wij,t = (1+ν−1
j D)

/(
1 + ν−1

j (yit − µjt)′Σ−1
jt (yit − µjt)

)
provides the model

with a robustness feature: observations yit that are outlying given the fat-tailed nature of the Stu-

dent’s t density receive a reduced impact on the location and volatility dynamics by means of a

lower value for wij,t.

Combining (13) with the approximate scaling function in (11) yields the transition equation

µj,t+1 = µjt +A1

∑N
i=1 τij,t|t · wij,t · (yit − µjt)∑N

i=1 τij,t|t
. (14)

The Gaussian transition equation (12) is a special case of (14) for ν−1 → 0 and wij,t → 1.

2.3.2 Time-varying covariance matrices

Following the exponentially weighted score-driven dynamics of Lucas and Zhang (2016), the tran-

sition equation for the time-varying covariance matrices Σjt is given by

vec(Σj,t+1) = vec(Σjt) +A2 SΣjt,t ·∇Σjt,t, (15)

where matrix A2 = A2(θ) depends on parameters to be estimated, SΣjt,t is a scaling matrix, and

∇Σjt,t is the score. The score dynamics are determined in the same way as for the time-varying
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cluster means. The score is given by

∇Σjt,t = 1
2

∂`t
∂vec(Σjt)

= 1
2

∂
∑N

i=1 log f (yit|Ft−1;θ)

∂vec(Σjt)

= 1
2

N∑
i=1

τij,t|t ·
∂ log f (yit|cit = j,Ft−1;θ)

∂vec(Σjt)
= 1

2

N∑
i=1

τij,t|t ·∇(j)
Σjt,t

, (16)

where ∇(j)
Σjt,t

= ∂ log f (yit|cit = j,Ft−1;θ)/∂vec(Σjt). For the scaling matrix, we can take the

analogous expression as in (10) and consider

SΣjt,t =

(
N∑
i=1

τij,t|t · E
[
∇(j)

Σjt,t
(∇(j)

Σjt,t
)′
∣∣∣ cit = j,Ft−1;θ

])−1

=

(
N∑
i=1

τij,t|t · E
[
−∂∇(j)

Σjt,t
/∂vec(Σjt)

′
∣∣∣ cit = j,Ft−1;θ

])−1

. (17)

For example, for a Gaussian mixture of normals, we obtain

∇(j)
Σjt,t

= 1
2

vec

(
N∑
i=1

τij,t|t ·Σ−1
jt ((yit − µjt)(yit − µjt)′ −Σjt) Σ−1

jt

)

= 1
2

N∑
i=1

τij,t|t ·
(
Σ−1
jt ⊗Σ−1

jt

)
vec ((yit − µjt)(yit − µjt)′ −Σjt) , (18)

SΣjt,t =

(
1
2

N∑
i=1

τij,t|t ·Σ−1
jt ⊗Σ−1

jt

)−1

, (19)

vec(Σj,t+1) = vec(Σjt) +A2

∑N
i=1 τij,t|t · vec ((yit − µjt)(yit − µjt)′ −Σjt)∑N

i=1 τij,t|t
. (20)

Unvectorizing (20), we obtain the covariance matrix transition equation

Σj,t+1 = Σjt +A2

∑N
i=1 τij,t|t

[
(yit − µjt) (yit − µjt)′ −Σjt

]∑N
i=1 τij,t|t

. (21)

Web Appendix A.2 provides a step-by-step derivation of (21). Again, the transition equation is

highly intuitive: the components of the covariance matrix are updated by the difference between the

outer product of the prediction errors and the current covariance matrix for that cluster, weighted
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by the filtered probabilities that the observation was drawn from that same cluster.

For a mixture of Student’s t distributions, (16) remains unchanged, while the cluster-specific

score is now given by

∇(j)
Σjt,t

= 1
2

N∑
i=1

τij,t|t ·
(
Σ−1
jt ⊗Σ−1

jt

)
vec (wij,t(yit − µjt)(yit − µjt)′ −Σjt) , (22)

where wij,t is defined below (13). Pre-multiplying the score by the approximate scaling matrix

(19) yields the transition equation

Σj,t+1 = Σjt +A2

∑N
i=1 τij,t|t

[
wij,t (yit − µjt) (yit − µjt)′ −Σjt

]∑N
i=1 τij,t|t

, (23)

where the Gaussian case (21) is again a special case of (23) for ν−1 → 0.

2.3.3 Initialization of the time-varying parameters

The cluster probabilities τij,1|1, the cluster means µj1, and the cluster covariance matrices Σj1 need

to be initialized to start the filtering recursions. We can initialize by any cross-sectional clustering

algorithm, such as k-means (Hartigan and Wong (1979)), intelligent k-means (de Amorim and

Hennig (2015)), or hierarchical agglomerative clustering (Ward Jr (1963)). For this purpose we

use data of t = 1 only, yi1 for i = 1, . . . , N . Any such algorithm allocates our N observations in

D dimensions to J clusters such that e.g. the within-cluster sum of squares is minimized. Alter-

natively, static clustering with time-varying parameters could be applied to all data t = 1, . . . , T

(e.g. Lucas et al. (2019)).

The initial clustering algorithm provides the cluster probabilities τij,1|1. In the case of k-means,

or variants thereof, these probabilities are one for the assigned cluster, and zero for the remaining

clusters. Based on these initial cluster assignments, the initial cluster means µj1 equal the sample

average of yi1 for units i = 1, . . . , N for which τ kij,1|1 equals 1. The initialized covariance matrices

Σj1 are similarly determined as the empirical covariance of observations yi1 for units i assigned to

cluster j. If τij,1|1 ∈ (0, 1) for all i and j then probability-weighted averages over i are appropriate.
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The initial τij,1|1 can be replaced by the filtered τij,1|1 from (7) once a first estimate of parameters

θ is available. Alternatively, τij,4|4 could be used for quarterly data. Parameters θ can subsequently

be re-estimated conditional on τij,1|1, µj1
(
τij,1|1

)
, and Σj1

(
τi,1|1

)
to minimize the impact from the

initialization procedure.

2.4 Extensions

2.4.1 Non-Markovian transitions

In some settings, economic reasoning suggests that cluster membership is persistent over time. For

example, we may expect banks’ business model choices to be highly persistent. Once a bank opts

for a different business model, it is extremely unlikely to revert back to the old business model

the next period. This economic reasoning, however, is not explicitly enforced in the current model

set-up. Particularly if two clusters are close at any particular moment in time, the probability of

switching from business model (cluster) 1 to 2 can be large. Due to the symmetry, the probability

of switching back from 2 to 1 is then large as well.

In order to better accommodate the persistence of business model choices, we can introduce

asymmetry in the model: once a bank has changed business model, it becomes ‘inactive’ for a

number of periods, meaning that it is not at risk of leaving its current state. Such behavior results

in non-Markovian transitions, as the probability of transiting from one business model to the next

no longer only depends on the current business model, but also on the fact whether or not there

was a business model change over the most recent periods.

The advantage of this new set-up is that it can be accommodated without increasing the number

of parameters. Let P denote the number of periods that a firm is not at risk of changing business

model after a business model change. We introduce new states citp for p = 1, . . . , P , where cit,0

is our old state cit in which the bank is at risk for transiting from state i to state j. We now model

such a transition as a change from state i = (i, 0) to state (j, P ). For p > 0, only transitions occur

from state (j, p) to state (j, p− 1). For instance, if P = 2, and J = 2, we would get the extended
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transition probability matrix (from row j to column k)

To state (j, p):

From state (i, p): (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)



π11,t 0 0 0 0 π12,t

1 0 0 0 0 0

0 1 0 0 0 0

0 0 π21,t π22,t 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

It is clear that the number of parameters is the same as in the benchmark model. The intuition for

the above transition matrix is as follows. If a bank starts with business model 1, it can migrate to

state (1, p = 0) with probability π11,t, and to state (2, p = 2) with probability π12,t. If it migrates

to state (2, p = 2), the next period it migrates to state (2, p = 1) with probability 1, and the period

after that to state (2, p = 0). Only in state (2, p = 0), the bank is at risk of a business model

migration again, namely with probability π21,t. With the remaining probability π22,t, its business

model remains unchanged. If a change hits with probability π21,t, a migration to state (1, p = 2)

takes place. Then it takes 2 periods to land via state (1, p = 1) into state (1, p = 0) again, where the

whole process can start anew. As J and P can be chosen by the modeler, this set-up can flexibly

accommodate transition-free periods after an initial business model change and prevent erratic,

short-lived business model changes.

2.4.2 Explanatory covariates

Cluster transition dynamics can be related to explanatory covariates above and beyond what is

implied by lagged cluster distances. Fortunately, the transition probabilities (3) can be extended

to include contemporaneous or lagged variables as additional conditioning variables. For exam-

ple, banks from low profitability clusters could have a higher incentive to leave that cluster. Vice
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versa, banks from high profitability clusters could try to remain there, and not migrate to a lower-

profitability cluster; see e.g. Ayadi and Groen (2015) and Roengpitya et al. (2017). Using addi-

tional conditioning variables allows us to incorporate and test for such effects. Let xjk,t be a vector

of observed covariates, and β a vector of unknown coefficients that need to be estimated. The

transition probabilities can then be modeled as

πjk,t =
exp

(
−γd̃jk,t−1 + β′xjk,t

)
ΣJ
q=1exp

(
−γd̃jq,t−1 + β′xjq,t

) for j, k = 1, . . . , J, (3’)

where γ and d̃jk,t−1 are defined below (3) and rows continue to add up to one.

2.5 Parameter estimation

Observation-driven multivariate time series models such as the score-driven model introduced

above are attractive because the log-likelihood is known in closed form. Parameter estimates can

therefore be obtained in a standard way by numerically maximizing the likelihood function. For a

given set of observations y1, . . . , yT , the vector of unknown parameters θ = {vec(A1)′, vec(A2)′,

ν1, . . . , νJ , γ, β
′}′ can be estimated by maximizing the log-likelihood function with respect to θ,

that is

L (θ|FT ) =
T∑
t=1

N∑
i=1

`it, (24)

where the log-likelihood contribution `it is defined in (5). The evaluation of `it is easily incorpo-

rated in the filtering process for the latent states.

The maximization of (24) can in principle be carried out by any convenient numerical optimiza-

tion method. In practice, however, mixture time series models such as ours can imply irregularly

shaped log-likelihood surfaces. In such cases standard numerical optimizers are at risk to converge

to a local, rather than the global, maximum. More robust optimization methods such as simulated

annealing (see, e.g., Goffe et al., 1994) can then have an advantage over repeatedly re-running
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standard gradient-based methods.

3 Simulation study

3.1 Simulation design

In this section we investigate the ability of our score-driven dynamic clustering model to simulta-

neously i) correctly classify the units of interest to distinct clusters, and ii) recover the true time-

varying transition probabilities that govern cluster transitions. In all cases, we pay particular atten-

tion to the sensitivity of the estimation approach and the filtering algorithm to the (dis)similarity

of the clusters, the intensity at which transitions take place, and the number of units per cluster.

In Section 3.3, we compare the performance of our method to the hierarchical clustering approach

that is frequently used in the empirical finance literature on bank business models, see Roengpitya

et al. (2014), Roengpitya et al. (2017), Ayadi et al. (2014), and Ayadi and Groen (2015).

We simulate from a mixture of dynamic bivariate normal densities. Specifically, we generate

two clusters located around two distinct, time-varying cluster means. These time-varying means

move along two non-overlapping circles. Our baseline setting is visualized in Figure 1. At each

time t and for each of the two clusters, the units are generated using the mean as given in Figure 1,

and a unit covariance matrix. Between time points, units can switch cluster using the HMM struc-

ture of the model. Key inputs into our simulations are the transition intensity parameter γ in (3),

the distance between the two circle centers, and the sample sizes T and N .

We consider two choices for the transition parameter γ ∈ {0.3, 0.5}, and two choices of un-

conditional cluster distance ∈ {10, 12}. The circle radius is five in all cases, so that the two time-

varying means have a tangency point in the case of the smaller distance, which makes cluster iden-

tification harder. The sample sizes are chosen to resemble typical sample sizes in studies of banking

data. We thus keep the number of time points small to moderate, considering T ∈ {20, 40}, and

set the number of cross-sectional units equal to N ∈ {100, 300}. The number of clusters is fixed at

J = 2 throughout, which is also imposed during estimation. Finally, in order to prevent too many
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Figure 1: Illustration of DGP: two clusters with time-varying means
We simulate bivariate data D = 2 from two clusters J = 2. The two time-varying means move in circles that
are generated by sinusoid functions. Blue dots indicate the clusters’ unconditional means (circle centers). Green
dots indicate the evolution of time-varying cluster means over time. The time-varying cluster means evolve either
clockwise, keeping the cluster data equidistant in expectation, or one circle moves clockwise and the other one counter-
clockwise, implying time-variation in cluster distance and transition probabilities. Radius (Rad.) refers to the radius
of the true mean circles and is a measure of the signal-to-noise ratio of the time-variation in means relative to the
variance of the error terms. Distance (Dist.) is the distance between circle centers and measures the distinctiveness of
the two clusters in expectation.

Figure 2 DGP with two simulated circles. In the DGP, data is generated in two

dimensions as sinusoid functions. This leads to either two clockwise rotating circles, or one

clockwise and one counter-clockwise rotating circle. Rad. refers to the radius of the circles

in the DGP. Dist. stands for the distance between the circle centers in the DGP. The green

dots are the cluster means in the DGP, the blue dots are the circle centers.

rotate counter-clockwise and keep the other one clockwise. Here, the starting point on the

�rst circle is mirrored to the second circle. Again look at Figure 2 to see that this leads to a

varying distance in one dimension and a constant distance in the other dimension, namely

zero. The cluster transition probability matrix Πt is no longer constant in the DGP. The

distance between the cluster will vary between the distance between the circle centers ±
two times the radius, resulting in a time-varying transition probability matrix.

4.2 Simulation results

As mentioned in Section 4.1, we start by validating our model with a simple simulation

setting. In our DGP, we simulate two circles that are both moving in clockwise direction.

As in all our simulation settings, the two circles have the same circle radius, so the distance

between the means is constant in the DGP. Furthermore we assume a static variance-

covariance matrix. The results are given in Table 1.

We start by investigating the estimates of the true gamma, γ0. For low values of the

13

switches, especially at the tangency point, we set the distance smoothing parameter λ in (2’) to 0.1

for all simulations. In Section 3.3, we investigate the robustness of our method towards different

choices of λ during estimation.

The time-varying cluster means evolve either clockwise, or one cluster moves clockwise and

the other counter-clockwise. In the former case, the data drawn from the different clusters are

equidistant in expectation. In the latter case, the transition probabilities πjk,t are time-varying as

they depend on distances between cluster means at t− 1; see (3).

We are particularly interested in two issues. First, the lower γ, and the lower the distance between

the two clusters, the more cluster transitions occur and the more informative the data are about such

transitions. We expect that more frequent transitions should increase the precision with which γ

can be estimated. At the same time, however, it makes it harder for the model to correctly classify

each unit. Second, the circle distances become particularly interesting when one circle rotates

clockwise and the other one counter-clockwise. The distances then determine how close and how
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Table 1: Simulation outcomes I
Mean parameter estimates (av. γ̂), average percentage of correct classification (%C), and average mean squared errors
(MSEs) for time-varying cluster means. Left panel (const. transition matrix): The time-varying cluster means evolve
clockwise from the same initial position relative to their respective circle center. The simulated cluster data are thus
equidistant in expectation, implying time-invariant transition probabilities. Right panel (tv. transition matrix): One
time-varying cluster mean evolves clockwise and the other one counter-clockwise. The cluster distance thus varies
over time, also implying time-varying transition probabilities across clusters.
Considered sample sizes are N = 100, 300 and T = 20, 40. The transition intensity parameter γ determines the
frequency of transitions; lower values of γ imply a higher number of transitions in expectation. Distance (dist.) is the
distance between circle centers and measures the distinctiveness of clusters. The circle radius equals 5 in all cases.

const. transition matrix tv. transition matrix
γ = 0.3 γ = 0.5 γ = 0.3 γ = 0.5

N/2 T dist av. γ̂ %C MSE av. γ̂ %C MSE av. γ̂ %C MSE av. γ̂ %C MSE
50 20 12 0.295 1.000 0.543 1.861 1.000 0.542 0.266 0.977 0.535 4.023 0.989 0.537
50 40 12 0.295 1.000 0.194 0.495 1.000 0.193 0.271 0.969 0.192 0.445 0.983 0.191
150 20 12 0.298 1.000 0.466 0.502 1.000 0.467 0.271 0.981 0.459 1.294 0.991 0.461
150 40 12 0.300 1.000 0.144 0.503 1.000 0.145 0.280 0.971 0.141 0.463 0.985 0.142
50 20 10 0.294 1.000 0.542 0.493 1.000 0.542 0.282 0.866 2.353 0.589 0.953 0.898
50 40 10 0.295 1.000 0.194 0.492 1.000 0.193 0.435 0.823 3.943 0.431 0.864 2.615
150 20 10 0.298 1.000 0.466 0.498 1.000 0.467 0.292 0.898 0.476 0.476 0.962 0.464
150 40 10 0.300 1.000 0.144 0.502 1.000 0.145 0.331 0.839 1.869 0.458 0.897 0.147

far the cluster means can come together and move apart from each other. Time-varying cluster

distance implies time-variation in the transition probabilities. This time-variation could have an

effect on both γ and classification accuracy.

3.2 Simulation results

Using the score-driven model set-up and estimation methodology from Section 2, we classify the

data points and estimate the model parameters from the simulated data. The static parameters to

be estimated include the switching intensity parameter γ, the distinct entries of the covariance ma-

trices, and the diagonal elements of the smoothing matrix A1, which, for simplicity, we assume to

be equal across dimensions and clusters, i.e. A1 = a1ID. Initial cluster parameters and allocations

are obtained from k-means clustering; see Section 2.3.3 and Web Appendix B for details.

Table 1 reports our simulation results for the 32 settings we consider. The left panel reports the

results when both time-varying cluster means move clockwise, and the means are thus equidistant

and well-separated at all time points. As a result, the transition probabilities are time-invariant
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(“const. transition matrix”). In this case, the share of correct classifications is perfect (100%) and

the mean tracking performance is not affected by the distance between the circles. Furthermore, the

transition intensity parameter γ is estimated accurately if there is a sufficient number of transitions,

i.e. if γ is small (= 0.3), the sample size is sufficiently large, and the unconditional distance

between clusters is not too big. As expected, larger sample sizes improve the model’s classification

and tracking performance. Increasing the number of time points increases accuracy more than

increasing the number of cross-sectional units.

The right-hand panel of Table 1 shows the results for a more challenging setup, where the clus-

ter means start far apart, but they move towards each other in different directions, one clockwise

and the other counter-clockwise (“tv. transition matrix”). Since the radii equal five, the two cir-

cles with dist= 10 have a tangency point after T/2 time points. If sample sizes are small, both

classification accuracy and the ability of the model to track the time-varying means are affected.

This is most severe when T = 40 and N = 100. However, the average share of correct classifica-

tions never drops below 80%, suggesting that the methodology is still useful in such challenging

settings.

3.3 Robustness and comparison with benchmark clustering method

Our approach allows for a dynamic allocation of units to clusters over time. To verify whether this

leads to an improved cluster assignment compared to a much simpler, static approach, we compare

our previous simulation results to the outcome of a hierarchical clustering method of Ward Jr

(1963). This method is popular in the empirical literature on bank business models, see Roengpitya

et al. (2014), Roengpitya et al. (2017), Ayadi et al. (2014), and Ayadi and Groen (2015), where the

method is applied to multivariate panel data. The hierarchical approach then treats each bank-year

observation as cross-sectional and groups the entire sample, thereby allowing for cluster switches.

Table 2 reports the results. We only consider the case with time-varying transition probabilities,

which has proven to be more challenging, see Section 3.2. Again, we vary the transition intensity

parameter γ as well as the number of time points and cross-sectional units, and the distance be-
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Table 2: Simulation outcomes II
Average percentage of correct classification and average mean squared errors for time-varying cluster means using
three methodologies: (1) HMM with correctly specified distance smoothing parameter λ, (2) HMM with misspecified
distance smoothing parameter λ = 0.25, while the true value is 0.1, and (3) the hierarchical clustering method of
Ward Jr (1963).
One time-varying cluster mean evolves clockwise and the other one counter-clockwise. The cluster distance thus
varies over time, also implying time-varying transition probabilities across clusters.
Considered sample sizes are N = 100, 300 and T = 20, 40. The transition intensity parameter γ determines the
frequency of transitions; lower values of γ imply a higher number of transitions in expectation. Distance (dist.) is the
distance between circle centers and measures the distinctiveness of clusters. The circle radius equals 5 in all cases.

high transition intensity (γ = 0.3) low transition intensity (γ = 0.5)
HMM, λ = 0.1 HMM, λ = 0.25 hierarch. HMM, λ = 0.1 HMM, λ = 0.25 hierarch.

N/2 T dist. %C MSE %C MSE %C MSE %C MSE %C MSE %C MSE
50 20 12 0.977 0.535 0.976 0.535 0.885 0.771 0.989 0.537 0.989 0.537 0.886 0.779
50 40 12 0.969 0.192 0.962 0.192 0.885 0.818 0.983 0.191 0.976 0.191 0.885 0.721

150 20 12 0.981 0.459 0.979 0.459 0.886 0.618 0.991 0.461 0.992 0.461 0.886 0.654
150 40 12 0.971 0.141 0.964 0.142 0.883 0.699 0.985 0.142 0.978 0.141 0.885 0.628
50 20 10 0.866 2.353 0.867 2.228 0.828 1.811 0.953 0.898 0.950 1.024 0.833 1.642
50 40 10 0.823 3.943 0.836 1.578 0.829 1.729 0.864 2.615 0.840 3.161 0.835 1.542

150 20 10 0.898 0.476 0.884 0.834 0.828 1.588 0.962 0.464 0.959 0.583 0.830 1.559
150 40 10 0.839 1.869 0.845 0.310 0.830 1.487 0.897 0.147 0.855 0.702 0.829 1.559

tween unconditional means. We report two sets of results from our method: λ = 0.1 refers to the

case with correctly specified distance smoothing parameter (see equation ((2’))), whereas the other

value, λ = 0.25 is imposed during estimation, while the true DGP has λ = 0.1.

We find that in all settings considered, the HMM method clearly outperforms the hierarchical

clustering method in terms of classification accuracy. Also the time-varying means are also recov-

ered more precisely (smaller MSE), except in one setting with small cluster distance, small T , and

smallN (fifth row in Table 2). The outperformance is robust to a misspecification of the smoothing

parameter λ.

4 Empirical application to bank business models

4.1 Data

Our sample consists of N = 299 European banks. We observe quarterly bank-level accounting

data from SNL Financial between 2008Q1 – 2018Q2, implying T = 42. Banks that underwent

20



distressed mergers, were acquired, or ceased to operate for other reasons during that time, are

excluded from the analysis. We assume that differences in the remaining banks’ business models

can be characterized along six dimensions: size, complexity, risk profile, activities, geographical

reach, and funding. We select a parsimonious set ofD = 12 indicators to cover these six categories.

Table 3 lists the respective indicators.

Our multivariate panel data is unbalanced. Missing values occur routinely because some banks

report at a quarterly frequency, while others report semi-annually. We remove such missing values

by substituting the most recently available observation for that variable.

We consider banks at their highest level of consolidation. In addition, however, we also include

large subsidiaries of bank holding groups in our analysis provided that a complete set of data is

available in the cross-section. Most banks are located in the euro area (55%) and the European

Union (E.U., 73%). European non-E.U. banks are located in Norway (12%), Switzerland (4%),

and other countries (11%).

4.2 Model selection

We chose the number of clusters J based on the analysis of cluster validation criteria and in line

with common choices in the literature. Distance-based cluster validation indices, such as the

Calinski-Harabasz index, Davies-Bouldin index, average silhouette index, and the Hardigan rule

(see e.g. Peel and McLachlan (2000)) point to J = 5 or J = 6. Each of these take an extremum

at these values. In practice, experts consider between four and up to more than ten different bank

business models; see, for example, Ayadi et al. (2014), SSM (2016), and Bankscope (2014, p.

299). The larger the number of groups, however, the harder the results are to interpret. With these

considerations in mind, in line with related literature, and to be conservative, we choose J = 6

clusters for our subsequent empirical analysis.

We proceed with a model based on a mixture of Student’s t distributions. This allows us

to be robust to potential one-off effects and outliers in bank accounting ratios. In addition, we

pool parameters A1, A2, and ν across clusters and variables following a preliminary data analysis.
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Table 3: Indicator variables
Bank-level panel data variables for the empirical analysis. We consider D = 12 indicator variables covering six
different categories. The third column explains which transformation is applied to each indicator before the statistical
analysis.

Category Variable Transformation

Size 1. Total assets ln (Total assets)

2. CET1 capital (leverage) ln
(

Total assets
CET1 capital

)
Complexity 3. Net loans to assets Total loans - loan loss reserves

Total assets

4. Assets held for trading Assets held for trading
Total assets

5. Derivatives held for trading Derivatives held for trading
Total assets

Risk profile 6. Market vs. credit risks Market risk
Credit risk

Activities 7. Share of net interest income Net interest income
Operating revenue

8. Share of net fees & commission income Net fees and commissions
Operating income

9. Share of trading income Trading income
Operating income

10. Retail orientation Retail loans
Retail and corporate loans

Geography 11. Domestic loans ratio Domestic loans
Total loans

Funding 12. Deposits to assets ratio Total deposits
Total assets

Note: Total Assets are all assets owned by the company (SNL key field 131929). Net loans to assets are loans and
finance leases, net of loan-loss reserves, as a percentage of all assets owned by the bank (226933). Assets held for
trading are acquired principally for the purpose of selling in the near term (224997). Derivatives held for trading
are derivatives with positive replacement values not identified as hedging or embedded derivatives (224997). Market
risk and credit risk (248881, 248880) are reported by the company. P&L variables are expressed as percentages
of operating revenue (248959) or operating income (249289). Retail loans are expressed as a percent of retail and
corporate loans (226957). Domestic loans are in percent of total loans by geography (226960). The deposits-to-assets
ratio is computed from the loans-to-deposits ratio (248919) and loans-to-asset ratio (226933). Total deposits comprise
both retail and commercial deposits.
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Table 4: Parameter estimates
Parameter estimates and cluster validation indices for different model specifications. Model M1 allows for time-
varying means and covariance matrices but rules out transitions across groups (γ−1 = 0). Model M2 allows for
Markovian transitions across groups; see (3). Model M3 restricts M2 by ruling out transitory transitions that last less
than five quarters (P = 4 inactive states); see Section 2.4.1. Model M4 allows differences in banks’ profitability
(return on equity) between clusters to influence the Markov chain transition probabilities Πt in addition to lagged
cluster distances; see (3’). Standard errors in parentheses are constructed from the numerical second derivatives of the
log-likelihood function. We also report two cluster validation indices: the Davis-Bouldin index (DBI; the smaller the
better), and the Calinski-Harabasz index (CHI; the larger the better).

M1 M2 M3 M4
No Markovian non-Markovian non-Markovian

transitions transitions transitions transitions II

A1 0.894 0.850 0.813 0.967
(0.02) (0.02) (0.03) (0.02)

A2 0.998 0.998 0.993 0.998
(0.01) (0.01) (0.01) (0.01)

ν 6.595 19.518 8.088 14.723
(0.07) (0.06) (0.06) (0.05)

γ - 1.369 1.503 1.313
(0.01) (0.02) (0.02)

β - - - -17.757
(0.17)

P - 0 4 4
DBI 3.14 2.94 2.93 2.92
CHI 11.89 21.08 21.12 21.09
loglik 144,253.2 150,197.1 150,003.1 150,506.9

As a result, we end up with a parsimonious yet highly flexible model with static parameter vector

θ =
(
A1, A2, ν, γ, β

)′ ∈ R5. For the maximization of the likelihood, we used a simulated annealing

method. Figure C.3 in the Web Appendix shows plots of directional slices of the log likelihood

evaluated at the global optimum.

Table 4 reports parameter estimates and the log-likelihood fit for four different specifications of

our dynamic clustering model. Model specifications M1 – M4 use the same initial cluster alloca-

tions, initial cluster mean and covariance matrix parameters, and distance smoothing parameter λ.1

Model M1 allows for time-varying means and covariance matrices, but rules out transitions

1Initial cluster allocations τij,1|1 are obtained using the static clustering approach with time-varying parameters of
Lucas et al. (2019). Replacing τij,1|1 with filtered estimates from a first run, and subsequently re-estimating θ, led to
negligible improvements in log-likelihood fit. Specifications M1 – M4 use the same distance smoothing parameter
λ = 0.25 for quarterly data; see (2’). The log-likelihood surface is fairly flat in λ; we treat it as a tuning parameter for
this reason.
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across groups (γ = 500). Cluster transitions are then treated as joint outliers, leading to a low

degrees-of-freedom parameter of ν ≈ 6.5. Model M2 allows for Markovian transitions across

groups in line with (3). The log-likelihood fit improves considerably as a result. The degrees-of-

freedom parameter becomes less extreme as well.

The nonlinear model M2 may have a tendency, however, to treat one-off accounting windfalls

as short-lived cluster transitions. Such short-lived transitions are hard to interpret economically as

meaningful changes in banks’ business models. Model M3 restricts M2 by ruling out transitory

transitions that last a year or less by requiring P = 4 inactive states; see Section 2.4.1. The

decay parameter γ increases somewhat, indicating fewer (short-lived) transitions. The degrees-

of-freedom parameter ν decreases to accommodate more frequent outlying observations. The

insistence on inactive states is reflected in a noticeable drop in log-likelihood fit.

Finally, Model M4 extends M3 by allowing an additional explanatory variable to influence

the transition probabilities Πt; see Section 2.4.2. We chose xjk,t as the difference in probability-

weighted return on equity (ROE) of banks allocated to clusters j and k at time t. Specifically,

let xjt ≡
∑N

i τ̂ij,t|t · ROEit/
∑N

i τ̂ij,t|t be the filtered ROE for banks in cluster j at time t. Then

xjk,t := xjt − xkt denotes the differences in ROE between clusters j and k. The transition matrix

Πt

(
D̃t−1, γ, β

)
becomes more asymmetric (viz-a-viz Model M3) as a result. The time-varying

parameter paths implied by Models M2 – M4 are visibly different from those implied by Model

M1.

Model specification M4 is strongly preferred in terms of log-likelihood fit, and also does well in

terms of non-parametric cluster validation indices (DBI). We therefore select M4 for the remainder

of our empirical analysis. Using this specification, we combine model parsimony with the ability

to explore a rich set of questions given the data at hand.

4.3 Bank business model groups

This section studies the different bank business models (strategic groups) implied by J = 6 differ-

ent clusters. Specifically, we assign labels to the identified clusters to guide intuition and for ease
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Figure 2: Time-varying cluster medians
Filtered cluster medians for twelve indicator variables; see Table C.1 The cluster medians coincide with the cluster
means unless the variable is transformed; see the last column of Table 3. The cluster mean estimates are based on a
t-mixture model with J = 6 clusters and time-varying cluster means yjt and covariance matrices Σjt. We distinguish
large diversified lenders (black line), market-funded universal banks (red line), fee-focused retail lenders (blue line),
diversified X-border banks (green line), domestic diversified lenders (purple dashed line), and domestic retail lenders
(green dashed line).
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of later reference. These labels are chosen in line with Figure 2 and the identities of the firms in

each cluster. In addition, our labeling is approximately in line with the examples given in SSM

(2016, p.10).

Figure 2 plots the cluster median estimates for each indicator variable and business model

cluster. Web Appendix C.1 presents the filtered cluster-specific time-varying standard deviations

σ̂j,t|t(d) =
(
Σ̂j,t|t(d, d)

) 1
2 for variables d = 1, . . . , D. Business model groups A to F are ordered in

terms of decreasing median bank size (total assets). Specifically, we distinguish

(A) Market-oriented universal banks (8.9% of bank-quarter observations; comprising firms

such as Barclays, Credit Suisse, Deutsche Bank, HSBC Holdings, and Royal Bank of Scot-

land almost all of the time.)

(B) International diversified banks (15.0% of obs.; e.g. Banco Santander, Bank of Ireland,

BBVA, Cooperative Rabobank, Danske Bank, ING Groep, UniCredit.)

(C) Fee-focused retail lenders (7.4% of obs.; e.g. Argenta Bank- en Verzekeringsgroup, all

subsidiaries of Caisse Regionale de Credit Agricole, Credit Lyonnais.)

(D) International corporate lenders (16.6 % of obs.; e.g. Citadele Banka, Hellenic Bank, Lan-

desbank Saar, Millennium Bank, Sberbank Europe.)

(E) Domestic diversified lenders (19.2% of obs.; e.g. ABH Financial, Gazprombank, Spare

Bank 1, Swedbank.)

(F) Domestic retail lenders (32.9% of obs; e.g. Helgeland Sparebank, Newcastle Building So-

ciety, Sparebanken Sør, St. Gallener Kantonalbank.)

Market-oriented universal banks (A: solid black line) comprise large and well-known insti-

tutions. Approximately half of operating revenue tends to come from interest-bearing assets such

as loans and securities holdings. This leaves net fees & commissions as well as trading income as

significant other sources. Market-oriented universal banks are the most leveraged (highest total-

assets-to-CET1-capital ratio) firms at any time between 2008Q1 and 2018Q2. This is the case even
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though leverage decreases strongly for these firms from pre-crisis levels, from approximately 40 to

20; see panel 2 of Figure 2. Market-oriented universal banks hold the largest trading and derivative

books, both in absolute terms and relative to total assets. Naturally, such large banks engage in

significant cross-border activities: approximately 50% of loans are cross-border loans; see panel

11 of Figure 2.

International diversified lenders (B: solid red line) are large institutions that lend significantly

across borders (approximately 30% on average) and approximately equally to retail and corporate

clients. International diversified lenders also serve their corporate customers by trading securities

and derivatives on their behalf, resulting in non-negligible trading and derivatives books. Funding

is obtained from capital markets as well as customer deposits, as indicated by a moderate deposits-

to-assets ratio.

Fee-focused retail lenders (C: solid blue line) achieve most of their income from fees and

commissions despite lending almost exclusively to domestic retail customers. Such fees could

e.g. be servicing fees associated with loans that are ultimately moved off these banks’ balance

sheets. Banks in this group exhibit a high loans-to-assets ratio of approximately 80%, and receive

significant non-deposit funding, e.g. from a parent company. All subsidiaries of Credit Agricole

(Caisse Regionale de Credit Agricole Mutuel) are located in this group.

International corporate lenders (D: solid green line) lend internationally and mainly to cor-

porate clients. On average approximately one in two loans are arranged across borders. Net interest

income accounts for approximately 70% of operating revenue, leaving fee and trading income as

relatively less significant sources.

Domestic diversified lenders (E: dashed pink line) and domestic retail lenders (F: dashed

green line) are relatively numerous and of a small to moderate size. Domestic diversified lenders

and domestic retail lenders have much in common: Both types of banks display low leverage,

suggesting they are well capitalized. Neither group holds significant amounts of securities or

derivatives in trading portfolios. Approximately two-thirds of income comes from interest-bearing

assets, making it the dominant source of income. Domestic diversified lenders differ from domestic
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retail lenders by their lower retail orientation, and their higher trading assets and market risk.

4.4 Convergence

Figure 2 suggests that banks may have become less diverse over time in important dimensions. A

decrease in financial sector diversity could in principle be problematic from a financial stability

perspective. For example, the probability and severity of fire sales could increase if more and more

banks adopt similar business strategies. Based on between-cluster variation, European banks have

become less diverse in terms of size, leverage, loans-to-assets ratio, share of assets held for trading,

share of derivatives held for trading, and deposits-to-assets ratio. Arguably, the convergence takes

place in such a way (e.g. towards lower size, lower leverage, reduced complexity, and less flighty

market funding) that does not signal an immediate financial stability concern.

4.5 Group transitions and popularity

The HMM part of our dynamic clustering model allows us to study cluster transitions across busi-

ness model groups in detail. The top panel of Figure 3 reports the fraction of firms that are esti-

mated to have transitioned to another cluster at each t between 2008Q2 and 2018Q2. A transition

here refers to a change in the most-likely cluster (Bayes classifier). Transitions are more likely to

take place at year-end. This is intuitive, as some banks report only annually. We do not observe

an obvious time trend in transition intensity. Instead, the transition intensity is above-average

during the Great Financial Crisis (2008), the peak of the euro area sovereign debt crisis (2012),

and in anticipation of centralized SSM banking supervision in the euro area (2014). On average,

approximately 3% of the N = 299 banks transition each quarter.

The bottom left panel of Figure 3 reports the total number of transitions per firm i = 1, . . . , 299.

The bottom right panel of Figure 3 provides a histogram of firms’ transition counts. The total

number of transitions per firm range between 0 and 9. More than half of the banks never transition

(55%). If a certain bank transitions more than a few times, then that bank may be located between

two or more clusters and is hard to classify as a result.
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Figure 3: Timing and histogram of cluster transitions
Top panel: black bars indicate the fraction of firms that are estimated to transition at each time t between 2008Q2 and
2018Q2. The red horizontal line indicates the average transition frequency. Bottom left panel: Number of transitions
per firm i = 1, . . . , 299. Bottom right panel: histogram of cluster transitions. A transition refers to a change in the
most-likely cluster (Bayes classifier).
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The top panel of Figure 4 plots the number of estimated transitions from cluster j (rows) to

k (columns) at any time. Most transitions take place between ‘nearby’ clusters, e.g. between A

and B, B and D, D and E, and E and F. The bottom panel of Figure 4 plots the total number of

banks allocated to each cluster over time. Clusters B and F grow in popularity over time, while the

remaining clusters A, C, D, and E shrink. The observed industry trends are in line with large banks

becoming less reliant on market funding and scaling back trading and market-making activities (A

→ B), domestically-active banks lending relatively more to retail clients rather than to corporate

clients (D → B; D → F; E → F), and banks relying progressively more on more on fee income,

possibly to lean against a lower profitability from increasingly low interest rates (D→ C; D→ F).

These industry trends are in line with Figure 2 and with the discussion in e.g. ECB (2016).
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Figure 4: Cluster transitions and popularity
Top panel: Number of transitions from cluster j (rows) to cluster k (columns) over time. Bottom panel: The number
of banks i allocated to cluster j = 1, . . . , 6 at each time t between 2008Q1 and 2018Q2.
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The cluster transitions underlying Figures 3 – 4 are in part explained by differences in bank

profitability across clusters; see Section 4.2. Web Appendix C.2 discusses the evolution of return
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on equity (ROE) per bank cluster over time, where bank-specific ROEits are weighted by the fil-

tered probability that bank i belongs to cluster j at time t. ROE for European banks is usually

positive and varies between approximately -2% and 12% over time. Banks in cluster D (interna-

tional corporate lenders) are an exception in that their ROE turns negative at onset of the euro area

sovereign debt crisis in mid-2010, and remains negative until the end of the sample, adding to the

move out of D to other business models, as indicated above.

5 Conclusion

We proposed a novel observation-driven model for the dynamic clustering of multivariate panel

data. The cluster means and covariance matrices are time-varying to track gradual changes in

cluster characteristics over time. The model has further flexibility by allowing the units of interest

to transition between clusters. This is accomplished based on a Hidden Markov model (HMM)

with time-varying transition probabilities that are, in turn, related to lagged cluster distances and/or

economic variables.

Our empirical study shows that the model, though complex, is computationally tractable as

well as sufficiently flexible to answer a range of new empirical questions in multivariate panel

data settings. Our results for a sample of 299 European banks between 2008Q1 and 2018Q2

suggest that European banks have become less diverse over time in some key characteristics. In

addition, we find a moderate transition intensity between clusters that is related to differences in

bank profitability, in line with the notion that currently low profitability entices banks to move out

of their current business model and into more profitable, ‘nearby’ business models.
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A Derivation of the scaled scores

A.1 Time-varying mean dynamics

The scaled score for updating the time-varying j-th cluster mean µjt is given by

sµjt,t = Sµjt,t ·∇µjt,t, (A.1)

where Sµjt,t is the scaling matrix and ∇µjt,t is the score of the predictive likelihood at time t. Starting with

the score, and using the fact that τij,t|t−1 does not depend on µj,t due to the transition probability matrix Πt

depending on the lagged cluster distances only as formulated in equations (2) and (6), we have

∇µjt,t =
∂`t
∂µjt

=
∂
∑N

i=1 log f (yit|Ft−1;θ)

∂µjt
,

=
N∑
i=1

∂

∂µjt
log f (yit|Ft−1;θ)

=

N∑
i=1

1

f (yit|Ft−1;θ)
· ∂

∂µjt
f (yit|Ft−1;θ)

=

N∑
i=1

f(yit|cit = j,Ft−1)τij,t|t−1

f (yit|Ft−1;θ)
·

∂
∂µjt

f (yit|Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=

N∑
i=1

τij,t|t ·
∂

∂µjt
f (yit|Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=

N∑
i=1

τij,t|t ·
∂

∂µjt

∑J
j=1 τij,t|t−1f (yit|cit = j,Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=

N∑
i=1

τij,t|t ·
∂

∂µjt

(
τij,t|t−1 · f (yit|cit = j,Ft−1;θ)

)
f(yit|cit = j,Ft−1)τij,t|t−1

=

N∑
i=1

τij,t|t ·
∂

∂µjt
log
(
τij,t|t−1 · f (yit|cit = j,Ft−1;θ)

)
=

N∑
i=1

τij,t|t ·
∂

∂µjt
log f (yit|cit = j,Ft−1;θ)

=
N∑
i=1

τij,t|t ·∇
(j)
µjt,t

.
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In case of a mixture of D-dimensional Student’s t distributions, we have

f (yit|cit = j,Ft−1;θ) =
Γ
(
νj+D

2

)
Γ
(νj

2

)
(πνj)D/2 |Σj |1/2

(
1 +

(yit − µjt)′Σ−1
jt (yit − µjt)
νj

)−(
νj+D

2
)

. (A.2)

Taking derivatives of the log of (A.2), we obtain

∇(j)
µjt,t

= wij,t ·Σ−1
jt (yit − µjt) , (A.3)

where

wij,t = (1 + ν−1
j D)

/(
1 + ν−1

j (yit − µjt)′Σ−1
jt (yit − µjt)

)
. (A.4)

Equation (A.3) contains the unscaled score. We scale the score by the weighted average of the conditional

Fisher information matrices for the Gaussian setting ν−1
j = 0, using the posterior probabilities τij,t|t as

weights; compare Lucas et al. (2019). We obtain

S−1
µjt,t

=
N∑
i=1

τij,t|t ·

−E
∂∇(j)

µjt,t

∂µ′jt

∣∣∣∣∣∣ cit = j,Ft−1;θ


=

N∑
i=1

τij,t|t · E
[
∇(j)
µjt,t

(
∇(j)
µjt,t

)′ ∣∣∣∣ cit = j,Ft−1;θ

]

=

N∑
i=1

τij,t|t · E
[
Σ−1
jt (yit − µjt)(yit − µjt)′Σ−1

jt

∣∣∣ cit = j,Ft−1;θ
]

=
N∑
i=1

τij,t|t ·Σ−1
jt E

[
(yit − µjt)(yit − µjt)′

∣∣ cit = j,Ft−1;θ
]
Σ−1
jt

=
N∑
i=1

τij,t|t ·Σ−1
jt Σjt Σ

−1
jt

=

N∑
i=1

τij,t|t ·Σ−1
jt , (A.5)

where we used the fact that for the Gaussian case wij,t = 1.
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Inserting (A.5) and (A.3) into (A.1) yields the scaled score

sµjt,t = Sµjt,t ·∇µjt,t

=

(
N∑
i=1

τij,t|t ·Σ−1
jt

)−1 N∑
i=1

τij,t|t · wij,t ·Σ−1
jt (yit − µjt)

= ΣjtΣ
−1
jt

(
N∑
i=1

τij,t|t

)−1 N∑
i=1

τij,t|t · wij,t · (yit − µjt)

=

∑N
i=1 τij,t|t · wij,t · (yit − µjt)∑N

i=1 τij,t|t
.

Transition equation (12) now follows directly.

A.2 Time-varying covariance matrix dynamics

The scaled score for the time-varying cluster covariance matrix parameters is

sΣjt,t = SΣjt,t ·∇Σjt,t, (A.6)

where SΣjt,t is the scaling matrix and ∇Σjt,t is the score. The score is given by

∇Σjt,t =
∂`t

∂vec(Σjt)
=
∂
[∑N

i=1 ln (f (yit|Ft−1;θ))
]

∂vec(Σjt)
,

where we can take the derivatives with respect to a general matrix Σjt rather than a symmetric matrix. Using

the arguments in Proposition 3 of Opschoor et al. (2018), this gives the same steps for the free elements in

Σjt.

The initial derivations follow the same steps as for the time-varying mean; see Web Appendix A.1.

Leaving these steps out, taking the log of (A.2) and omitting the terms that do not depend on Σjt, we arrive

at

∇Σjt,t =
N∑
i=1

τij,t|t ·

(
− ∂

∂vec(Σjt)
1
2 ln|Σjt| −

∂

∂vec(Σjt)

[(
νj +D

2

)
ln

(
1 +

(yit − µjt)′Σ−1
jt (yit − µjt)
νj

)])
.

Following Abadir and Magnus (2005) for the derivative of the log of the determinant of the covariance
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matrix, and for the derivative of a matrix inside a quadratic form, and using vec(ABC) = (C ′⊗A)vec(B),

we obtain

∇Σjt,t =

N∑
i=1

τij,t|t · vec
(
−1

2

(
Σ−1
jt

)′
+ 1

2

(
Σ−1
jt

)′
wij,t (yit − µjt) (yit − µjt)′

(
Σ−1
jt

)′)

=

N∑
i=1

τij,t|t · vec
(
−1

2

(
Σ′jt
)−1

+ 1
2

(
Σ′jt
)−1

wij,t (yit − µjt) (yit − µjt)′
(
Σ′jt
)−1
)

=
N∑
i=1

τij,t|t · vec
(
−1

2Σ
−1
jt + 1

2Σ
−1
jt wij,t (yit − µjt) (yit − µjt)′Σ−1

jt

)
= 1

2

N∑
i=1

τij,t|t · vec
(
Σ−1
jt

(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)
Σ−1
jt

)
= 1

2 (Σjt ⊗Σjt) ·
N∑
i=1

τij,t|t · vec
(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)
, (A.7)

where the robustness weight wij,t is defined in (A.4)

Next, we derive the scaling matrix, which we take as the weighted average of Fisher information matri-

ces given ν−1
j = 0 for all j. We have

S−1
Σjt,t

=

N∑
i=1

τij,t|t · E
[
∇Σjt,t∇′Σjt,t

∣∣∣ cit = j,Ft−1;θ
]

=

N∑
i=1

τij,t|t ·
(
−E

[
∂∇Σjt,t

∂vec(Σjt)′

∣∣∣∣ cit = j,Ft−1;θ

])

=
N∑
i=1

τij,t|t ·
(
−E

[
∂

∂vec(Σjt)′
1
2vec

(
Σ−1
jt

(
(yit − µjt) (yit − µjt)′ −Σjt

)
Σ−1
jt

) ∣∣∣∣ cit = j,Ft−1;θ

])

= −1
2

N∑
i=1

τij,t|t · E

[
∂

∂vec(Σjt)′
vec
(
Σ−1
jt (yit − µjt) (yit − µjt)′Σ−1

jt −Σ−1
jt

) ∣∣∣∣∣ cit = j,Ft−1;θ

]

= −1
2

N∑
i=1

τij,t|t ·

{
E

[
−
(

I⊗Σ−1
jt (yit − µjt) (yit − µjt)′

)(
Σ−1
jt ⊗Σ−1

jt

) ∣∣∣∣∣ cit = j,Ft−1;θ

]
+

E

[
−
(
Σ−1
jt (yit − µjt) (yit − µjt)′ ⊗ I

)(
Σ−1
jt ⊗Σ−1

jt

) ∣∣∣∣∣ cit = j,Ft−1;θ

]
−

E

[
−
(
Σ−1
jt ⊗Σ−1

jt

) ∣∣∣∣∣ cit = j,Ft−1;θ

] }

= 1
2

N∑
i=1

τij,t|t · E

[(
Σ−1
jt ⊗Σ−1

jt

) ∣∣∣∣∣ cit = j,Ft−1;θ

]
= 1

2

N∑
i=1

τij,t|t ·
(
Σ−1
jt ⊗Σ−1

jt

)
,
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where we used again vec (ABC) = (C ′ ⊗A) vec (B), and ∂vec(A−1)/∂vec(A)′ = −((A′)−1 ⊗ A−1) for

a general matrix A. Pre-multiplying the score by the scaling matrix, we obtain the scaled score

sΣjt,t =

(
1
2

N∑
i=1

τij,t|t ·
(
Σ−1
jt ⊗Σ−1

jt

))−1

×(
1
2 (Σjt ⊗Σjt) ·

N∑
i=1

τij,t|t · vec
(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

))

=

∑N
i=1 τij,t|t · vec

(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)∑N
i=1 τij,t|t

. (A.8)

Now transition equation (21) follows directly.
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B Sketch of k−means algorithm

The cluster probabilities τij,1|1, the cluster means µj1, and the cluster covariance matrices Σj1 need

to be initialized to start the filtering recursions as derived in Section 2 and Web Appendix A. In

principle, we can initialize by any cross-sectional clustering algorithm using data of t = 1 only,

yi1, for i = 1, . . . , N . We initialize by k-means in our simulation study for simplicity; see Hartigan

and Wong (1979). The k-means algorithm allocates N observations in D dimensions to k = J

clusters such that the within-cluster sum of squares is minimized. We sketch the steps below for

completeness and ease of reference.

1. Initialization: initialize random centers for the J clusters in D dimensions.

2. Assignment: assign each observation, for a total of N observations, to the closest cluster

according to Euclidean distance. τij,1|0 =

 1 for minj
√

(yi1 − µj1)′ (yi1 − µj1)

0 else
.

3. Update: recalculate the cluster centers as the average of the observations assigned to that

cluster µj1 =
∑N
i=1 τij,1|0·yi1∑N
i=1 τij,1|0

.

4. Convergence 2: return to step 2, and repeat until convergence of within-cluster sum of

squared errors.

5. Convergence 1: return to step 1, and repeat 10 times for different initial random centers.

Chose the one with minimal within-cluster sum of squared errors.

6. Order the clusters, e.g. in terms of declining averages for the first variable.

7. Calculate initial covariance matrices: estimate covariance matrix from the observations

that were assigned to each cluster. Σj1 =
∑N
i=1 τij,1|0·(yi1−µj1)(yi1−µj1)′∑N

i=1 τij,1|0
.
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C Additional results

C.1 Estimated cluster standard deviations

Figure C.1 plots the filtered component-specific time-varying standard deviations σ̂j,t|t(d) =
(
Σ̂j,t|t(d, d)

) 1
2

for variables d = 1, . . . , 12. The first two variables, log total assets and log leverage, are the most

dispersed across banks within each group A to F. Other variables, such as the share of assets held

for trading, and the share of derivatives held for trading, are the least dispersed, particularly for

banks in groups C to F.

Figure C.1: Time-varying standard deviations
Filtered time-varying standard deviations σ̂j,t|t(d) =

(
Σ̂j,t|t(d, d)

) 1
2 for variables d = 1, . . . , 12. Each panel contains

12 standard deviation estimates over time, corresponding to the variables listed in Table 3. The standard deviation
estimates refer to model specification M4 in Table 4.
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C.2 Bank profitability

The cluster transitions underlying Figures 2 – 4 are in part explained by differences in bank prof-

itability. Figure C.2 below plots the return on equity (ROE) per cluster over time. Bank-specific

observations ROEit are weighted by the conditional probability τij,t|t that bank i belongs to cluster

j; see Section 4.2. ROE is not used as an input variable for the clustering; see Table 3. European

banks’ ROE tend to vary between approximately -2% and 12% over time. Banks assigned to clus-

terD (the “international corporate lenders”) are an exception. Their ROE turns negative at onset of

the euro area sovereign debt crisis in mid-2010, and remains negative until the end of the sample,

adding to the move out of D to other business models.

Figure C.2: Bank profitability
Return on equity (ROE) per cluster. Bank-specific observations ROEits are weighted by the conditional probability
τij,t|t that bank i belongs to cluster j.
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C.3 Likelihood slices

Mixture time series models such as ours can imply incalcitrant log-likelihood surfaces. Robust

optimization methods such as simulated annealing (see, e.g., Goffe et al., 1994) can have an advan-

tage over repeatedly re-running standard gradient-based optimization methods such as MaxBFGS

in such cases. Figure C.3 plots directional slices through the log-likelihood function evaluated at

the global optimum. Several local maxima are visible in which standard gradient-based methods

are at risk of getting stuck.

Figure C.3: Log-likelihood slices
We report directional slices through the log-likelihood function (24) evaluated at the global optimum for θ =(
A1, A2, ν, γ, β

)′ ∈ R5.
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C.4 Filtered cluster probabilities and computer code

Most banks i = 1, . . . , 299 are allocated fairly unequivocally to one cluster j at any time t. A file

containing banks’ filtered membership probabilities τ̂ij,t|t is available from the authors. Computer

code will be made available at https://www.gasmodel.com/code.htm.
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