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Abstract

To what extent can the bootstrap be applied to conditional mean models —
such as regression or time series models — when the volatility of the innovations
is random and possibly non-stationary? In fact, the volatility of many economic
and financial time series displays persistent changes and possible non-stationarity.
However, the theory of the bootstrap for such models has focused on deterministic
changes of the unconditional variance and little is known about the performance
and the validity of the bootstrap when the volatility is driven by a non-stationary
stochastic process. This includes near-integrated exogenous volatility processes
as well as near-integrated GARCH processes, where the conditional variance has a
diffusion limit; a further important example is the case where volatility exhibits in-
frequent jumps. This paper fills this gap in the literature by developing conditions
for bootstrap validity in time series and regression models with non-stationary,
stochastic volatility. We show that in such cases the distribution of bootstrap
statistics (conditional on the data) is random in the limit. Consequently, the
conventional approaches to proofs of bootstrap consistency, based on the notion
of weak convergence in probability of the bootstrap statistic, fail to deliver the
required validity results. Instead, we use the concept of ‘weak convergence in dis-
tribution’ to develop and establish novel conditions for validity of the wild boot-
strap, conditional on the volatility process. We apply our results to several testing
problems in the presence of non-stationary stochastic volatility, including testing
in a location model, testing for structural change using CUSUM-type functionals,
and testing for a unit root in autoregressive models. Importantly, we show that
sufficient conditions for conditional wild bootstrap validity include the absence of
statistical leverage effects, i.e., correlation between the error process and its future
conditional variance. The results of the paper are illustrated using Monte Carlo
simulations, which indicate that a wild bootstrap approach leads to size control
even in small samples.
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1 Introduction

In this paper we consider bootstrap and asymptotic inference on the conditional mean
in econometric time series models when the (conditional) volatility is allowed to show a
large degree of persistence due to possible permanent and stochastic changes, reflecting
the well established fact that volatility in many economic and financial time series
displays high persistence, and non-covariance stationarity.

Earlier references in macroeconomics include Kim and Nelson (1999) and McConnell
and Perez-Quiroz (2000), who find evidence of an (unanticipated) structural change
in the volatility of US GDP growth rates. Evidence of changes in the unconditional
volatility appear in many key time series, such as aggregate consumption and income,
in interest rate data and in nominal and real price variables; see Sensier and van Dijk
(2004). Evidence on changes in the long-run component of volatility in stock and
currency markets are initially reported in Loretan and Phillips (1994) and Hansen
(1995), who show that when stochastic volatility [SV] models are taken to the data,
the largest autoregressive root in the SV process is so close to one that the assumption
of stationary volatility seems to be at odds with the data. Similarly, it is a well-
known stylized fact that GARCH models fit to stock market returns display parameter
estimates which reflect high persistence as they (nearly) violate covariance stationarity
conditions (often referred to as “near-integrated GARCH”), and that such parameters
are smaller when a slowly-varying long run component is accounted for in the model,
see Engle and Rangel (2008). Harvey et al. (2016) list a number of empirical studies
that have found strong evidence of structural breaks in the unconditional variance of
asset returns, with break dates driven by major financial and macroeconomic crises.
Such (possibly random) volatility shifts are known to affect the asymptotic properties
of estimators of the parameters of models for the conditional mean; see Cavaliere and
Taylor (2007), Xu and Phillips (2008) and, for multivariate models, Cavaliere et al.
(2010a,b) and Boswijk et al. (2016).

In the framework of a conditional mean, or a general (stationary, or non-stationary)
regression type model, the wild bootstrap is an important tool to deliver consistent es-
timation of the asymptotic distributions of test statistics or parameter estimators. The
wild bootstrap allows in particular to track changes in the quadratic variation of an
econometric model by simply mimicking the (unknown) volatility dynamics through
the squared model residuals, see Gonçalves and Kilian (2004, 2007) for applications to
stationary time series models and Cavaliere et al. (2010a,b) for non-stationary multi-
variate models.

Consider the simple case where the volatility, say σt, can be approximated by a non-
stochastic element of the space D [0, 1] of càdlàg functions on [0, 1], such that σt = σ(t/n)
(t = 1, . . . , n, n denoting the sample size) with σ ∈ D [0, 1]. Simple special cases are
a single volatility break at time bnτc (with b·c denoting the (floor) integer value), for
some τ ∈ (0, 1), as given by (with IA(·) denoting the indicator function of the set A)

σ(u) := σA + (σB − σA)I[τ ,1](u),

or the case of trending volatility,

σ(u) := σA + (σB − σA)uδ,
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where δ > 0. A classic wild bootstrap, based on the resampling scheme ε∗t = ε̂tw
∗
t ,

where the ε̂t’s are the estimated residuals from the regression model, and the w∗t ’s are
i.i.d. (0, 1) bootstrap shocks, independent of the original sample, is in general able to
track the volatility path (in terms of quadratic variation) of the original data, as loosely
speaking under standard assumptions,

n−1
bnuc∑
t=1

(ε∗t )
2 = n−1

bnuc∑
t=1

ε̂2t (w
∗
t )

2 = n−1
bnuc∑
t=1

ε2t + op(1) =

∫ u

0
σ(u)2du+ op(1).

Existing theory of the bootstrap mainly focuses on such deterministic changes of the
unconditional variance and little is known about the performance and the validity1 of
the bootstrap when the volatility is driven by a high-persistent, or (second order) non-
stationary stochastic process. This includes leading key cases such as near-integrated
exogenous volatility processes (as analyzed by Hansen, 1995), as well as near-integrated
GARCH processes, where the conditional variance has a diffusion limit (Nelson, 1990).

This paper fills this gap in the literature by developing conditions for bootstrap
validity and consistency of the associated bootstrap tests in regression and time se-
ries models with persistent stochastic volatility. That is, we replace the deterministic
volatility assumption by allowing that volatility is the realization of a (non-stationary)
stochastic process σt; specifically, we derive results under the general assumption that,
for the càdlàg version of the volatility, it holds that

σb·nc+1
w→ σ(·), (1)

where σ is some random element in D [0, 1].
The analysis of the bootstrap under a weak convergence assumption like (1) is not

straightforward. As we show in the paper, a key fact under non-stationary stochastic
volatility is that the distribution of bootstrap statistics (conditional on the data), rather
than converging to the unconditional distribution of the statistic of interest, converges
weakly to a random limit. By this we mean that the distribution function of the
bootstrap statistic (conditional on the data) is stochastic not only for finite sample size
n, but also in the limit as n→∞. Consequently, the conventional approach, based on
the notion of weak convergence in probability of the bootstrap statistic to the limiting
distribution of the original statistic (which is obviously non-stochastic), fails to deliver
the required result of validity of the bootstrap. This problem is not new in the bootstrap
literature, as it appears in various areas of application of the bootstrap; for example, in
models with infinite variance innovations (Knight, 1989) and in autoregressive models
with unit roots (Basawa et al., 1991; Cavaliere et al., 2015).

Specifically, in this paper we analyze the wild bootstrap under (non-stationary)
stochastic volatility by adopting a new approach to assess bootstrap validity under
random limit bootstrap measures. Thus, rather than focusing on the usual weak con-
vergence in probability of the bootstrap conditional distribution, we make use of the
concept of weak convergence in distribution (see Cavaliere and Georgiev, 2019, for a
general introduction) to develop novel conditions for validity of the wild bootstrap,

1Throughout the paper, with ‘validity’ of the bootstrap we mean that the associated bootstrap tests
control size asymptotically. With ‘consistency’ of the bootstrap test we mean that the (bootstrap) test
rejects with probability tending to one under the alternative.
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conditional on the volatility process. This allows us to establish that, although the
presence of a random limiting distribution for the bootstrap statistic makes the boot-
strap unable to estimate the unconditional distribution of the statistic of interest, the
bootstrap can still deliver hypothesis tests with the desired size. In particular, we do
this by establishing that the high-level conditions for bootstrap validity in Cavaliere
and Georgiev (2019) can be shown to hold for a large class of models with stochastic
volatility, including the aforementioned near-integrated GARCH model and the non-
stationary stochastic volatility model. We do so by showing new weak convergence
results conditional on volatility paths.

To illustrate our new approach and its applicability, we apply our results to three
leading testing problems in the presence of non-stationary stochastic volatility, including
testing a hypothesis on the location of a time series, testing for a unit root and testing
for stability of the conditional mean using CUSUM-type statistics. These illustrative
examples can easily be extended to cover more general cases, such as cointegration
(as in Cavaliere et al., 2010a, Cavaliere et al., 2015 and Boswijk et al., 2016) with
multivariate stochastic volatility, or multivariate stability tests (see Perron, 2006 and
Casini and Perron, 2019). Importantly, for all examples we show that conditions for
conditional wild bootstrap validity include the absence of statistical leverage effects, i.e.
correlation between the error process and its future conditional variance. The results
of the paper are illustrated using Monte Carlo simulations, which indicate that under
the conditions developed in our paper, the wild bootstrap leads to excellent size control
even in small samples.

Structure of the paper

The structure of the paper is the following. In Section 2 we introduce the reference
data generating process and our main assumptions, in particular on the volatility. Here
we also introduce three examples which are used throughout the paper to illustrate the
main results. We also derive the reference limit distribution for non-bootstrap statistics
under non-stationary volatility. In Section 3 we introduce the main (wild) bootstrap
algorithm. We show that when volatility is non-stationary, the bootstrap fails to mimic
the asymptotic distribution of the corresponding statistics, and hence it is not valid in
the usual sense. In Section 4 we discuss the wild bootstrap and prove, under proper
assumptions, validity conditionally on the volatility path, as well as consistency of the
bootstrap tests under the alternative. We first introduce in Section 4.1 the concept
of weak convergence in distribution and discuss how to prove validity of the bootstrap
in the presence of random limit bootstrap distributions, as it happens here under non-
stationary volatility. Then in Section 4.2 we provide our main results under the required
additional conditions on the original data. In Section 4.3 we apply our results about
validity of the bootstrap in our three applications. Finally, in Section 4.4 we discuss
consistency of the bootstrap tests under the alternative hypothesis. Results from a
Monte Carlo study on the finite sample behavior of the bootstrap tests are reported in
Section 5. Section 6 concludes. All proofs are reported in the Appendix A.

4



Notation

The following (standard) notation is used throughout. With x := y (y =: x) we mean
that x is defined by y (y defined by x). For any q ∈ R (R denoting the set of real
numbers), bqc denotes the integer part of q. With Xn

w→ X we mean that Xn con-

verges weakly to X. Also,
d
= denotes equality in distribution. We use P ∗, E∗ and V ∗

respectively to denote probability, expectation and variance, conditional on the origi-

nal sample. With
w∗
→p we denote weak convergence in probability; that is, X∗n

w∗
→p X

means that, as the sample size n diverges, the cumulative distribution function [cdf]
G∗n of Xn, conditional on the original data, converges in probability to the cdf G of
X, at all continuity points of G. For a given sequence X∗n computed from the boot-

strap data, X∗n − X = o∗p(1), in probability, or X∗n
p∗→p X, means that for any ε > 0,

P ∗(||X∗n − X|| > ε)
p→ 0, as n → ∞. Similarly, X∗n = O∗p(1), in probability, means

that, for every ε > 0, there exists a constant M > 0 such that, for all large n,
P (P ∗(||X∗n|| > M) < ε) is arbitrarily close to one. The Skorokhod spaces of càdlàg
functions [0, 1] → Rm×n and [0, 1] → Rn are denoted by Dm×n[0, 1] and Dn[0, 1], re-
spectively; for the latter, when n = 1 the subscript is suppressed. The Skorokhod space
of càdlàg functions R→ R is denoted by D(R).

2 Set-up and preliminaries

In this section we introduce our reference class of model for the conditional mean under
stochastic volatility as well as the (test) statistics of interest. In Section 2.1 we focus
on statistics which can be expressed (at least when the associated null hypothesis holds
true) as functionals of the partial sum of the innovations and of the partial sum of
the squared innovations. To illustrate ideas, we focus on three simple univariate cases
(which can easily be extended to multivariate cases) throughout: (i) testing a hypothesis
on the mean in a simple location model; (ii) CUSUM testing for parameter constancy
in a location model; (iii) testing for an autoregressive unit root in an AR(1) model.
The main assumption on the volatility — which, inter alia, allows for non-stationary
stochastic volatility or near-integrated GARCH dynamics — is discussed next in Section
2.2. Under the assumptions in Sections 2.1 and 2.2, the asymptotic (null) distributions
can be derived. We do this in Section 2.3, where we show that the limiting distribution
can be expressed in terms of a continuous martingale and its quadratic variation process.
The implications of these results on bootstrap inference and hypothesis testing are the
focus of the main Sections 3 and 4.

2.1 Model and hypotheses of interest

We are concerned with inference and hypothesis testing on the regression parameters
of a heteroskedastic time series regression model in a triangular array form:

yn,t = β′xn,t + εn,t, t = 1, . . . , n; n = 1, 2, . . . (2)

where εn,t is a martingale difference sequence (mds) relative to a suitable filtration Fn,t,
with conditional variance σ2n,t = E(ε2n,t|Fn,t−1). To simplify notation, unless strictly
required we simply write (2) as yt = β′xt + εt, with σ2t := E(ε2t |Ft−1).
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Inference focuses on test statistics, which we assume can be expressed (at least under
the null hypothesis) as functionals of the partial sum processes

(Mn(u), Un(u)) :=

(
n−1/2

∑bnuc

t=1
εt, n

−1
∑bnuc

t=1
ε2t

)
, u ∈ [0, 1]. (3)

as is the case for many testing problems, see also the discussion below.
Defining Fn(u) := Fbnuc, the mds assumption implies that {Mn(u),Fn(u)}u∈[0,1] is

a martingale for all n, and Un(u) is its quadratic variation process, i.e.,

Un(u) := [Mn](u) =

bnuc∑
t=1

(
Mn

(
t

n

)
−Mn

(
t− 1

n

))2

, u ∈ [0, 1]. (4)

Throughout it will also be useful to define the predictable quadratic variation or angle
bracket process (see Jacod and Shiryaev, 2003):

Vn(u) := 〈Mn〉(u) = n−1
∑bnuc

t=1
σ2t , u ∈ [0, 1], (5)

with the defining property that
{
M2
n(u)− 〈Mn〉(u),Fn(u)

}
u∈[0,1] is a martingale.

The following three testing problems are discussed in the paper. These are all special
cases of (2) where the statistic of interest is indeed a functional of (Mn(·), Un(·)).

Example 1 (testing in a location model). Consider the location model yt =
θ + εt, which is trivially obtained from (2) by setting β = θ and xt = 1. The true
location parameter is denoted by θ0. Suppose that interest is in testing the simple null
hypothesis θ = θ̄. Then, one can consider the test statistic Sn :=

√
n(yn − θ̄), where

yn = n−1
∑n

t=1 yt, or, alternatively, its studentized version Tn :=
√
n(yn − θ̄)/sn, with

s2n = n−1
∑n

t=1(yt − ȳn)2. It is not difficult to see that, under the null hypothesis, it
holds that Sn and Tn can be expressed in terms of Mn and Un as

Sn =
√
n(yn − θ̄) = Mn(1), Tn =

√
n

(yn − θ̄)
sn

=
Mn(1)√

Un(1)− n−1Mn(1)2
.

If sn is constructed with the null imposed, i.e. s2n = n−1
∑n

t=1(yt−θ̄)2, then Tn simplifies
to

Tn =
Mn(1)√
Un(1)

,

provided the null hypothesis holds true.

Example 2 (CUSUM test in a location model). Consider the time-varying
location model yt = θt + εt, and suppose that interest is in testing the null hypothesis
of a constant location parameter, i.e. H0 : θt = θ1, t = 2, . . . , n. A standard CUSUM
test can be constructed by considering the statistic (see e.g. Deng and Perron, 2008,
and the references therein)

CSn :=
1

n1/2
max
t=1,...,n

∣∣∣∣∣
t∑
i=1

(yi − ȳn)

∣∣∣∣∣ ,
6



or its studentized version,

CTn :=
1

snn1/2
max
t=1,...,n

∣∣∣∣∣
t∑
i=1

(yi − ȳn)

∣∣∣∣∣ ,
which, as in Example 1, reduce to

CSn = sup
u∈[0,1]

|Mn(u)− uMn(1)|, CTn =
supu∈[0,1] |Mn(u)− uMn(1)|√

Un(1)− n−1M2
n(1)

under H0.

Example 3 (Testing for a unit root) Consider the first-order autoregression yt =
(1 + θ)yt−1 + εt, with y0 = 0 (which again follows from (2) by setting β = 1 + θ and
xt = yt−1). A test of the unit root hypothesis θ = 0 can be based on the Dickey-
Fuller ‘coefficient’ statistic Rn := nθ̂n, where θ̂n =

∑n
t=1 yt−1∆yt/

∑n
t=1 y

2
t−1 is the

least-squares estimator from the regression of ∆yt on yt−1. Under the null hypothesis,
θ̂n =

∑n
t=1 εt(

∑t−1
i=1 εi)/

∑n
t=1(

∑t−1
i=1 εi)

2 and the test statistic may be expressed as

Rn =

∫ 1
0 Mn(u)dMn(u)∫ 1

0 M
2
n(u)du

=
1
2

(
M2
n(1)− Un(1)

)∫ 1
0 M

2
n(u)du

.

If the test is based on the Dickey-Fuller ‘ratio’ statistic Wn := θ̂n(sn/(
∑n

t=1 y
2
t−1))

−1/2,

where s2n := n−1
∑n

t=1(∆yt − θ̂yt−1)2, then

Wn =

∫ 1
0 Mn(u)dMn(u)√∫ 1

0 M
2
n(u)du

1√
Un(1)− n−1(

∫ 1
0 Mn(u)dMn(u))2/

∫ 1
0 M

2
n(u)du

under the null hypothesis. �

Some remarks are in order.

Remark 2.1 Although for fixed n, Un(·) can be determined from Mn(·) as seen in (4),
it does not define a continuous function h : D [0, 1]→ D [0, 1]. Therefore, limit results for
Un(·) cannot be obtained from weak convergence of Mn(·) together with the continuous
mapping theorem [CMT]. Joint weak convergence of (Mn(·), Un(·)) is required to obtain
the asymptotic null distribution of the statistics Tn, CTn, Rn and Wn. This is related
to the well-known fact that weak convergence of

∫ 1
0 MndMn to the stochastic integral∫ 1

0 MdM does not follow from Mn(·) w→ M(·) and the CMT; see e.g. Chan and Wei
(1988).

Remark 2.2 The above examples involve single-parameter models. In more general
testing situations, such as testing for a unit root in higher-order autoregressive models,
the statistic of interest may be written as a functional of (Mn(·), Un(·)) plus an asymp-
totically negligible term. The theory developed in this paper can be extended to cover
such cases. �
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2.2 Non-stationary stochastic volatility

We now introduce our basic hypotheses on the dynamic behavior of the conditional
volatility σ2t of the shocks εt. More specifically, we will allow volatility to be a per-
sistent stochastic process, with a stochastic volatility weak limit, as formulated in the
next two assumptions. These are in the spirit of the seminal paper by Hansen (1995),
who considers conditional variances driven by nearly-integrated autoregressive shocks,
although we do not constrain the behavior of the conditional variance to be of the
autoregressive type.

Assumption 1 In (2), we have εt = σtzt, where zt is an martingale difference sequence
relative to Ft = σ({zi}ti=1 , {σi}

t+1
i=1), satisfying E(z2t |Ft−1) = 1.

Define now the D [0, 1] version of the partial sum of the zt’s as Bz,n(u) := n−1/2
∑bnuc

t=1 zt,
u ∈ [0, 1], and the D [0, 1] version of σt as:

σn(u) := σbnuc+1, for u ∈ [0, 1), (6)

with σn(1) := σn.

Assumption 2 As n → ∞, (σn(·), Bz,n(·)) w→ (σ(·), Bz(·)), where σ(·) is a stochastic
process in D [0, 1] satisfying infu∈[0,1] σ(u) > 0 a.s., and Bz(·) is a standard Brownian
motion on [0, 1].

While the convergence of the partial sum Bz,n(·) is standard, the requirement on σn(·)
is not. More specifically, this assumption requires the conditional variance process σt to
be persistent enough such that its behavior can be approximated by an element of the
space of càdlàg functions D [0, 1]. Some examples of processes satisfying Assumptions
1 and 2 are presented next. These will be analyzed in detail throughout the paper; for
additional cases and discussions see e.g. Cavaliere and Taylor (2009).

Example V.1 (Stochastic volatility) Let σ2t be generated by

log σ2t = φn log σ2t−1 + (1− φn) log σ̄2 + n−1/2ηt−1, t = 1, 2, . . .

where σ20 = σ̄2 for some σ̄ > 0, where φn = e−κ/n for some κ ≥ 0, and where ηt ∼
i.i.d. N(0, σ2η), independent of zt ∼ i.i.d. N(0, 1). Then

σ2n(·) = σ̄2 exp

n−1/2 bn·c∑
t=1

φbn·c−tn ηt−1

 w→ σ̄2 exp

(
σηe
−κ·
∫ ·
0
eκudBη(u)

)
=: σ2(·),

independently of and hence jointly with Bz,n(·) w→ Bz(·); where (Bη, Bz) is a bivariate
standard Brownian motion.

Example V.2 (Near-integrated GARCH) Consider the case where σ2t is gener-
ated by the standard GARCH recursion

σ2t = ωn + αnε
2
t−1 + βnσ

2
t−1 = ωn + αnσ

2
t−1z

2
t−1 + βnσ

2
t−1, t = 1, 2, . . .

8



where σ20 = σ̄2 for some σ̄ > 0, where αn + βn = 1 − n−1κ for some κ ≥ 0, where
ωn = n−1σ̄2κ and αn = (2n)−1/2ση for some ση > 0, and where zt ∼ i.i.d. N(0, 1).

Then it follows from Nelson (1990) that (σn(·), Bz,n(·)) w→ (σ(·), Bz(·)), where

dσ2(u) = κ(σ2(u)− σ̄2)du+ σησ
2(u)dBη(u), u ∈ [0, 1],

with σ2(0) = σ̄2, and where (Bη, Bz) is a bivariate standard Brownian motion. �

Remark 2.3 In both examples, the process generating σ2t depends on the sample size
n, so that

{
σ2nt
}
1≤t≤n;n≥1 is actually a triangular array. We will not make this explicit

in the notation in this section.

Remark 2.4 The main difference between the examples is that in Example V.1, the
volatility shocks {ηt}t≥1 are independent of {zt}t≥1, whereas in Example V.2, the vari-
ance is driven by ηt = (z2t −1)/

√
2, which is fully determined by (although uncorrelated

with) zt. In both examples, however, the limiting volatility process σ is independent of
the Brownian motion Bz generated by {zt}t≥1. If we think of εt as the deviation of a fi-
nancial return from its conditional expectation, and σt as its conditional volatility, then
this rules out so-called leverage effects, i.e., asymmetric effects of positive and negative
return shocks εt on future volatility σt+h, h > 0. Although the results given in this
section also apply to processes with leverage, we will assume (asymptotic) independence
in order to establish bootstrap validity.

Remark 2.5 In Example V.1, the log-volatility follows a near-integrated first-order
autoregression, converging weakly to an Ornstein-Uhlenbeck [OU] process. Similarly, in
Hansen (1995) σt satisfies Assumption 2 with σ(·) a (possibly nonlinear) transformation
of an OU process (or Brownian motion). Cases where the volatility is allowed to jump
at a countable number of times (while being constant between these jump times) are
also allowed by our assumption. For instance, let σt = exp(ω0 +ω1Jt), Jt :=

∑t
i=1 δiηi,

J0 = 0 a.s., where for all t, δt is a Bernoulli random variable which equals one if and only
if a volatility jump occurs at time t. If the ηt’s (which denote the random jump sizes)
are i.i.d., independent of δt’s, and if P (δt = 1) = λn−1, then (see e.g. Georgiev, 2008)

Jn(·) := Jbn·c converges weakly to the compound Poisson process Cλ(·) :=
∑N(·)

i=1 ηi,
where N(·) is a Poisson process in D [0, 1] with intensity parameter λ. As expected,
the limiting volatility process is σ(·) = exp (ω0 + ω1Cλ(·)), a piecewise constant process
with number of discontinuities given by N(1). �

2.3 Standard asymptotics under non-stationary stochastic
volatility

Assumptions 1 and 2 allow to analyze the asymptotic behavior of the functional (Mn, Un),
as is done in the following Lemma.

Lemma 1 Under Assumptions 1 and 2, we have as n→∞,

(Mn(·), Un(·)) w→ (M(·), V (·)) :=

(∫ ·
0
σ(u)dBz(u),

∫ ·
0
σ2(u)du

)
, (7)
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with V (·) = 〈M〉 (·). Furthermore,

sup
u∈[0,1]

|Un(u)− Vn(u)| p→ 0. (8)

The implications for the testing problems in Section 2.1 are given next.

Example 1 (cont’d). Consider the location model of Example 1. A straightforward
application of Lemma 1 along with the CMT yields that, under H0, Sn = Mn(1)

w→
M(1), which corresponds to the mixed normal distribution N(0,

∫ 1
0 σ

2(u)du) and hence
is non-pivotal. For Tn it holds that

Tn =
Mn(1)√
Un(1)

+ op(1)
w→ M(1)√

V (1)
=

∫ 1
0 σ(u)dBz(u)√∫ 1

0 σ
2(u)du

. (9)

Notice that the limit distribution in (9) is non-pivotal in cases where σ(·) and Bz(·)
are not stochastically independent. In contrast, should independence hold, then (9)
corresponds to a standard Gaussian distribution.

Example 2 (cont’d). For the CUSUM test statistics of Example 2 it holds that, again
by Lemma 1 and the CMT, that under H0

CSn = sup
u∈[0,1]

|Mn(u)− uMn(1)| w→ sup
u∈[0,1]

|M(u)− uM(1)|,

CTn =
supu∈[0,1] |Mn(u)− uMn(1)|√

Un(1)− n−1M2
n(1)

w→
supu∈[0,1] |M(u)− uM(1)|√

V (1)
.

Both statistics have a non-pivotal asymptotic null distribution, even in cases where the
limit stochastic volatility process and the limit Brownian motions are stochastically
independent.

Example 3 (cont’d). Finally, as shown in Cavaliere and Taylor (2009), for the unit
root testing problem the presence of non-stationary volatility renders the null distri-
bution of the Dickey-Fuller coefficient and t-statistics non-pivotal. More specifically,
under the unit root null hypothesis it holds that

Rn =
1
2

(
M2
n(1)− Un(1)

)∫ 1
0 M

2
n(u)du

w→
1
2(M(1)2 − V (1))∫ 1

0 M
2(u)du

=

∫ 1
0 M(u)dM(u)∫ 1
0 M

2(u)du
,

and

Wn =

∫ 1
0 Mn(u)dMn(u)√∫ 1

0 M
2
n(u)du

1√
Un(1) + op(1)

w→
∫ 1
0 M(u)dM(u)√
V (1)

∫ 1
0 M

2(u)du

as the sample size diverges. �
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3 Bootstrap under non-stationary stochastic
volatility

Consider the standardized sample mean statistic Sn for the location model, see Example
1. Lemma 1 implies that under the null hypothesis Sn

w→ M(1) =
∫ 1
0 σdBz, see (7).

The distribution of M(1) depends on the volatility process σ(·), implying that critical
values cannot be tabulated without providing a complete specification of this process.
When the Brownian motion Bz and the limit volatility process σ are independent, then
in the location model of Example 1 this problem can be avoided by considering the
studentized test statistic Tn, which has a standard normal limit distribution under the
null. However, in other testing problems (such as those in Examples 2 and 3) it is
generally not possible to find such asymptotically pivotal statistics.

This motivates the development of bootstrap tests. Following much of the literature
(e.g. Cavaliere and Taylor, 2008, 2009), we consider the wild bootstrap, which replicates
the volatility patterns in the original data. Let w∗t be an i.i.d. sequence with mean zero
and variance2 1, independent of {σt, zt}t≥1, and define the bootstrap shocks as

ε∗t = εtw
∗
t , t = 1, 2, . . . , n.

Accordingly, we can define the bootstrap partial sum and the bootstrap partial sum of
squares,

(M∗n(·), U∗n(·)) =

(
n−1/2

∑bn·c

t=1
ε∗t , n

−1
∑bn·c

t=1
(ε∗t )

2

)
.

These processes are the bootstrap analogs of the processes Mn and Un of Section 2.
Notice that this implementation of the bootstrap assumes that εt is observed under the
null hypothesis, which is the case in Examples 1 and 3 (location and unit root test). In
more general testing problems, including Example 2 (CUSUM test), εt will be replaced
by some residuals ε̂t (either restricted by the null hypothesis or unrestricted).

3.1 Failure of classic bootstrap validity

Classic validity of the bootstrap (usually denoted as ‘bootstrap consistency’) is usually
understood as the convergence in probability (or almost surely) of the conditional (on
the original data) cdf of the bootstrap statistic to the limit cdf of the original statistic.
We show here that, in the presence of stochastic volatility as in the previous section,
in general classic validity of the bootstrap fails. This is essentially because the con-
ditional cdf of the bootstrap statistic remains random in the limit. In this section
we discuss this fact and its implications on bootstrap inference using, as the reference
bootstrap algorithm, a wild bootstrap scheme as is typically applied when the data are
heteroskedastic.

Focusing again on the location statistic Sn, its bootstrap counterpart is S∗n =
n−1/2

∑n
t=1 ε

∗
t = M∗n(1) where M∗n is as previously defined. Define P ∗ as the boot-

strap measure conditional on the original data, Dn. The bootstrap (conditional) cdf
is

F ∗n(x) := P ∗(S∗n ≤ x) = P (S∗n ≤ x|Dn).

2Further conditions on the moments of w∗
t may be required in some specific applications.

11



The classical condition for bootstrap validity is that, as n → ∞, S∗n
w∗
→p S :=

M(1). If the limit cdf F (x) := P (S ≤ x) is continuous, then this weak convergence in
probability corresponds to the property

sup
x∈R
|F ∗n(x)− F (x)| p→ 0, (10)

where F denotes the cdf of the asymptotic distribution of Sn:

F (x) := P (N(0, V (1)) ≤ x) =

∫
Φ(V (1)−1/2x)dP (V (1)),

where Φ(·) is the standard normal cdf. Because F (x) is the marginal cdf of S = M(1),
under independence of the processes Bz and σ it corresponds to the cdf of the mixed
normal random variable S = V (1)1/2Z, where Z ∼ N(0, 1), independent of V (1).

However, under Assumption 2, condition (10) fails to hold, which is seen as follows.
Choosing w∗t ∼ i.i.d. N(0, 1) for convenience, it is seen that

S∗n|Dn ∼ N(0, Un(1))|Un(1). (11)

This follows because, conditional on the original data,

S∗n = n−1/2
∑n

t=1 εtw
∗
t ∼ N(0, n−1

∑n
t=1 ε

2
t ) ∼ N(0, Un(1)).

In terms of the conditional distribution F ∗n of S∗n given the data Dn, (11) corresponds
to

F ∗n(x) := P ∗(S∗n ≤ x) = P (N(0, Un(1)) ≤ x|Un(1))

= P (N(0, 1) ≤ Un(1)−1/2x|Un(1)) = Φ(Un(1)−1/2x).

Letting n → ∞, the limit distribution of the bootstrap statistic given the data follows
from Lemma 1 and the CMT. Specifically, we have that

F ∗n(x)
w→ Φ(V (1)−1/2x) (12)

for all x ∈ R; eq. (12) implies that the limit distribution of the bootstrap cdf is in
fact random. That is, not only the bootstrap cdf F ∗n converges weakly rather than in
probability, but also the limiting cdf is random, as it depends on the random variable
V (1). Therefore, there is no reason to expect that the difference between the random
function F ∗n and the non-random function F converges in probability to 0, as required
for standard bootstrap consistency to apply.

The fact that the conditional cdf F ∗n converges weakly (in D(R)), rather than in
probability, to a random cdf, we label ‘weak convergence in distribution’, and denote
as ‘

w→w’. More specifically, for sequences of random variables (Zn, Yn) and (Z, Y ) (pos-
sibly defined on different probability spaces), the notation Zn|Yn

w→w Z|Y , when the
conditional distribution of Z|Y is diffuse (non-atomic), means that

Fn(·|Yn) := P (Zn ≤ ·|Yn)
w→ P (Z ≤ ·|Y ) =: F (·|Y ).

A more general definition of Zn|Yn
w→w Z|Y , applicable to the case where (Zn, Yn)

and (Z, Y ) are random elements of a metric space SZ × SY (and hence to stochastic
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processes), is that E(g(Zn)|Yn)
w→ E(g(Z)|Y ) for all bounded continuous functions

g : SZ → R, see Cavaliere and Georgiev (2019) and the references therein.
When Zn represents a bootstrap statistic and the conditioning set Yn is the original

data Dn, we use the notation ‘
w∗
→w’. Hence, eq. (12) corresponds to the weak convergence

in distribution
S∗n

w∗
→w N(0, V (1))|V (1).

Unless V (1) is non-random (which is not the case under stochastic volatility as consid-
ered here), this convergence shows that the limit bootstrap measure is indeed a random
measure. Hence, the bootstrap cannot be valid in the usual sense of weak convergence
in probability of F ∗n to F .

3.2 Examples (continued)

The result in Section 3.1 applies to the other examples considered, except for the asymp-
totically pivotal statistic Tn.

Example 1 (cont’d). Consider the location model example and assume that the
bootstrap data are generated as y∗t = ε∗t , with ε∗t as defined above. The bootstrap test
statistics are S∗n :=

√
nε̄∗n and T ∗n :=

√
nε̄∗n/s

∗
n, s∗n = (n−1

∑n
t=1(ε

∗
t − ε̄∗n)2)1/2. Using

the argument discussed above, we have that S∗n
w∗
→w M∗(1)|V (1), where M∗(u) :=∫ u

0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochastically independent of σ

and Bz, and V (1) :=
∫ 1
0 σ(u)2du. The distribution of M∗(1)|V (1) corresponds to the

normal distribution N(0, V (1))|V (1). In contrast, for T ∗n it holds that

T ∗n
w∗
→w

M∗(1)√
V (1)

∣∣∣∣∣V (1),

which corresponds to a N(0, 1) random variable, as M∗(1)|V (1)
d
= N(0, V (1))|V (1).

Since weak convergence of a conditional distribution to a non-random cdf corresponds

to weak convergence in probability, in this special case T ∗n
w∗
→p N(0, 1).

Two facts are worth stressing. First, in the above representations of the limit con-
ditional distribution of the bootstrap statistic, σ and B∗z are independent, even if the
original processes σ and Bz are not. This result stems from the assumption that the
wild bootstrap shocks w∗t are independent of the original data. Second, if σ and Bz

are stochastically independent, then M∗(1)|V (1)
d
= M(1)|V (1). This distributional

equality is crucial to determine validity of the bootstrap.

Example 2 (cont’d). For the bootstrap CUSUM statistics, suppose that the boot-
strap data are generated as ε∗t = ε̂tw

∗
t where ε̂t := yt − ȳn, such that when the null

hypothesis is true ε̂t = εt − ε̄n. The bootstrap statistics are defined as

CS∗n = sup
u∈[0,1]

|M∗n(u)− uM∗n(1)|, CT ∗n =
supu∈[0,1] |M∗n(u)− uM∗n(1)|√

U∗n(1)− n−1M∗n(1)2
,
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with M∗n(u) := n−1/2
∑bn·c

t=1 ε
∗
t as above and U∗n(1) := n−1

∑n
t=1(ε

∗
t )

2. Under the null
hypothesis,

n−1/2
bn·c∑
t=1

ε∗t = n−1/2
bn·c∑
t=1

ε̂tw
∗
t = n−1/2

bn·c∑
t=1

εtw
∗
t +Op(n

−1/2),

and it holds that

CS∗n
w∗
→w sup

u∈[0,1]
|M∗(u)− uM∗(1)|

∣∣∣∣∣σ,
CTn

w∗
→w

supu∈[0,1] |M∗(u)− uM∗(1)|√
V (1)

∣∣∣∣∣σ,
where again M∗(u) :=

∫ u
0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochasti-

cally independent of σ and Bz, and V (1) :=
∫ 1
0 σ(u)2du. Both bootstrap statistics have

a random non-pivotal asymptotic null distribution.

Example 3 (cont’d). Finally, consider the unit root example. To avoid the problems
described in Basawa et al. (1991), the bootstrap data are generated with the unit root
imposed, i.e. y∗t = y∗t−1+ε∗t , with y∗0 = 0 and ε∗t := (∆yt)w

∗
t ; see e.g. Cavaliere and Taylor

(2008). Under the null, clearly ε∗t := εtw
∗
t . As discussed earlier for the non-bootstrap

case, we have that

R∗n =
1
2

(
M∗2n (1)− U∗n(1)

)∫ 1
0 M

∗2
n (u)du

, (13)

and, up to a negligible term,

W ∗n =
1
2

(
M∗2n (1)− U∗n(1)

)√
U∗n(1)

∫ 1
0 M

∗2
n (u)du

.

In this case it holds that

R∗n
w∗
→w

∫ 1
0 M

∗(u)dM∗(u)∫ 1
0 M

∗2(u)du

∣∣∣∣∣σ, W ∗n
w∗
→w

∫ 1
0 M

∗(u)dM∗(u)√
V (1)

∫ 1
0 M

∗2(u)du

∣∣∣∣∣∣σ, (14)

where M∗(u) :=
∫ u
0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochastically

independent of σ and Bz, and V (u) :=
∫ u
0 σ(s)2ds. The asymptotic distributions in

(14) are random, except in the special case where σ is non-stochastic. �

Cavaliere and Georgiev (2019) provide a number of other examples where the boot-
strap validity condition (10) fails for any non-random cdf F , and develop an alternative
criterion for conditional bootstrap validity. We will apply this concept to the present
situation and extend it to the analysis of consistency of the bootstrap tests in the next
section.
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4 Validity of the bootstrap

Despite the fact that under non-stationary stochastic volatility the bootstrap is unable
to consistently estimate the limiting distribution of the original statistic, it can still be
valid, in the sense that it delivers control over type one error probabilities as n diverges.
This can be seen by focusing on the bootstrap p-value. Taking the statistic Sn and
associated bootstrap analog S∗n to illustrate, the bootstrap p-value is defined as

p∗n := P (S∗n ≤ Sn|Dn) = F ∗n(x)|x=Sn ,

where F ∗n(·) is the cdf of S∗n, conditional on the data (this definition of the p-value
assumes a left-tailed test, which will be assumed below unless indicated otherwise). As
in Cavaliere and Georgiev (2019), we say that the bootstrap based on Sn, S

∗
n is valid

(conditionally on the volatility process σn := {σt}nt=1) if p∗n is asymptotically U(0, 1)
distributed conditionally on σn, i.e.

P (p∗n ≤ q|σn)
p→ q, q ∈ (0, 1). (15)

If this is the case, even if (as shown in the previous section) the limiting conditional dis-
tribution of S∗n is random, the bootstrap test can still be correctly sized in large samples.
Moreover, proofs of validity in the form of (15) also imply that, unconditionally,

P (p∗n ≤ q)→ q, q ∈ (0, 1).

In the next subsections we discuss a set of sufficient conditions for (15) to hold. These
are new in the literature on bootstrapping conditional mean models when the volatility
can be stochastic. First, in Section 4.1 we provide our strategy to assess bootstrap
validity. Our main results are given in Section 4.2. Application to our examples are
provided in Section 4.3. Finally, the behavior under the alternative is analyzed and
applied to our examples in Section 4.4.

4.1 Weak convergence in distribution and bootstrap validity

In this section, we summarize the approach developed by Cavaliere and Georgiev (2019),
applied here to establish conditional bootstrap validity in the presence of non-stationary
stochastic volatility.

Specifically, we consider a statistic τn which is a function of the data Dn, which
in our general set-up may be represented by (Mn, Un); that is, τn = τ(Mn, Un). Its
bootstrap equivalent is τ∗n = τ(M∗n, U

∗
n), and we let τ = τ(M,V ), with (M,V ) denoting

the weak limit of (Mn, Un), see Section 2.3. With σn ∈ D [0, 1] the volatility process
defined in (6) and σ ∈ D [0, 1] its weak limit in Assumption 2, it follows by Cavaliere
and Georgiev (2019, Corollary 3.2) that if the condition

(τn|σn, τ∗n|Dn)
w→w (τ |σ, τ |σ) (16)

is satisfied3, with the random cdf of τ |σ being sample-path continuous, then

sup
x∈R
|P (τn ≤ x|σn)− P (τ∗n ≤ x|Dn)| p→ 0.

3By (16), we mean that (E(g(τn)|σn), E(h(τn)|Dn))
w→ (E(g(τ)|σ), E(h(τ)|σ)) jointly for all

bounded continuous g, h : R→ R.
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This means that the bootstrap consistently estimates the distribution of the original
statistic conditional on the volatility process, which in turn implies that the bootstrap
is conditionally valid, i.e.,

P (p∗n ≤ q|σn)
p→ q

for all q ∈ (0, 1), where p∗n = P (τ∗n ≤ τn|Dn) is the bootstrap p-value. The key condition
to verify is therefore the one given in (16), along with continuity of the limiting (random)
cdf.

Because τn = τ(Mn, Un) with (Mn, Un) ∈ D2[0, 1], proving (16) involves proving
conditional functional limit theorems. It is known, see Goggin (1994) and Crimaldi
and Pratelli (2005), that joint weak convergence of e.g. ((Mn, Un) , σn) is not sufficient
for conditional weak convergence. For example, Goggin (1994) shows that a sufficient
condition is that (Mn, Un) is independent of σn, or that a change of measure can be found
(with weakly convergent Radon-Nikodym derivative) under which this independence
holds. These conditions do not seem to be directly applicable to the present case. In
contrast, our approach to proving (16) involves Skorokhod’s representation theorem,
and in particular the version of Kallenberg (1997), see Corollary A.1 in Appendix A.
This allows us to obtain limit results “as if” the conditioning element σn(·) converges
almost surely to σ(·). By restricting the dependence between (Mn, Un) and σn, we may
then fix a realization of the volatility process and prove an unconditional functional
limit theorem for each realization (except on a set with measure zero).

4.2 Main results

Recall that the main assumption used to derive the limiting distribution of the original
statistic and the limiting (conditional) distribution of the bootstrap statistic is that the
errors form a mds with respect to the past information set. This condition, however,
is not sufficient for conditional bootstrap validity, unless the volatility is deterministic
or stationary. In the presence of non-stationary stochastic volatility, further conditions
are required. A sufficient set of conditions is provided in the following assumption.

Assumption 3 Define Gnt := σ
(
{zi}ti=1 , {σi}

n
i=1

)
and hence Gn0 := σ ({σi}ni=1), and

define ψ2
nt := E(z2t |Gn,t−1) and vnt := zt/ψnt. Then:

(a) for all n, {vnt}nt=1 is independent of Gn0, and {ψnt}nt=1 is Gn0-measurable.

(b) {zt,Gnt}1≤t≤n,n≥1 is a martingale difference array (mda), satisfying for all ε > 0:

n−1
n∑
t=1

E
(
z2t I{|zt|>√nε}|Gn0

)
p→ 0. (17)

A few remarks are in order.

Remark 4.1 If {zt}t≥1 is independent of {σt}t≥1, as in Example V.1, then Assumption
3 is trivially satisfied with ψnt = 1 and vnt = zt (the Lindeberg condition (17) is
implicitly assumed in Assumption 2, to guarantee Bz,n

w→ Bz). The dependence allowed
by the assumption is needed to cover situations such as the GARCH process in Example
V.2, where for all t < n,

z2t =
σ2t+1 − ωn − βnσ2t

αnσ2t
,

16



which is known given {σt}nt=1, such that ψnt = |zt| and hence vnt = zt/ |zt| = sgn(zt),
which because of symmetry of the Gaussian distribution will indeed be independent of
|zt| and hence {σt}nt=1.

Remark 4.2 The mda assumption E(zt|Gn,t−1) = 0 rules out leverage effects, such as
implied by non-zero correlation between zt and the volatility shocks ηt in the stochastic
volatility model of Example V.1. It may be possible to weaken this assumption for
the results to follow, and allow for dependencies for finite n, as long as they vanish
asymptotically (such that σ and Bz are independent). In the latter case it would be
guaranteed that at least the unconditional validity property P (p∗n ≤ q)→ q for q ∈ (0, 1)
holds for the bootstrap, by Theorem 3.1 of Cavaliere and Georgiev (2019).

Remark 4.3 Part (a) of Assumption 3 implies that we may recover

Mn(·) = n−1/2
bn·c∑
t=1

σtψntvnt, Un(·) = n−1
bn·c∑
t=1

σ2tψ
2
ntv

2
nt,

and Vn(·) from the two independent sequences {σt}nt=1 and {vnt}nt=1. This independence
facilitates the analysis of conditional distributions, as will be evident from the proof of
Theorem 1. We conjecture that the asymptotic results which follow also hold when part
(a) is replaced by (a’) for all n, {ψnt}nt=1 is Gn0-measurable. �

The main result in this section is given in Theorem 1 and Corollary 1 below.

Theorem 1 Under Assumptions 1–3, we have as n→∞,

((Mn, Un) (·)|σn, (M∗n, U∗n) (·)|Dn)
w→w ((M,V ) (·)|σ, (M,V ) (·)|σ) .

The key result of Theorem 1 is that the bootstrap processes M∗n and U∗n, condition-
ally on the data, replicate in the limit the distribution of the original processes Mn and
Un, conditionally on the volatility process σn. The implication of Theorem 1 on the
behavior of the bootstrap p-values is provided in the following corollary, which applies
to a statistic τn = τ(Mn, Un) (which, under the null, converges weakly to τ = τ(M,V ))
and its bootstrap equivalent τ∗n = τ(M∗n, U

∗
n).

Corollary 1 Under the conditions of Theorem 1, the bootstrap is valid conditionally
on σn(·), i.e. with p∗n := P ∗(τ∗n ≤ τn),

p∗n|σn
w→w U(0, 1),

provided that the conditional distribution of τ = τ(M,V ) given σ is sample-path con-
tinuous and the function τ is itself continuous.

4.3 Examples revisited

In this section we check whether the conditions for bootstrap validity hold for the
examples. We assume throughout that Assumptions 1 and 2, strengthened by 3, hold.

Example 1 (cont’d). As earlier, the bootstrap statistics are given by S∗n :=
√
nε̄∗n

and T ∗n :=
√
nε̄∗n/s

∗
n. Under the null hypothesis, the original statistics are given by S∗n =
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√
nε̄n and T ∗n =

√
nε̄n/ŝn. The original (bootstrap) statistics obtain as a continuous

transformation of (Mn, Un) (of (M∗n, U
∗
n)). Hence by Theorem 1 and a version of the

CMT (see Cavaliere and Georgiev, 2019, Appendix A) it holds that

(Sn|σn, S∗n|Dn)
w→w (M(1)|σ,M(1)|σ) ,

with M(1) =
∫ 1
0 σ(u)dBz(u). With V (1) =

∫ 1
0 σ(s)2ds, the cdf of M(1)|σ is given by

Φ(uV (1)−1/2), which is sample-path continuous with probability 1. Hence, by Corollary
1, the bootstrap is valid conditionally on the volatility path σ. For the studentized
statistic it holds that

(Tn|σn, T ∗n |Dn)
w→w (Z|σ,Z|σ) , (18)

where Z ∼ N(0, 1), independent of σ; this implies that the bootstrap is conditionally
valid. Notice that the convergence in (18) implies that

sup
x∈R
|P (Tn ≤ x|σn)− P ∗(T ∗n ≤ x)| p→ 0,

which is the classic consistency result for the bootstrap. The same type of result does
not hold for the bootstrap based on Sn, S

∗
n; however, bootstrap conditional validity is

guaranteed by Corollary 1.

Example 2 (cont’d). As for the previous example, since the CUSUM (bootstrap)
statistics are continuous transformations of (Mn, Un) (of (M∗n, U

∗
n)), from Theorem 1 and

the CMT in Cavaliere and Georgiev (2019) we have that, for τS := supu∈[0,1] |M(u) −
uM(1)|

(CSn|σn, CS∗n|Dn)
w→w (τS |σ, τS |σ) ;

similarly, for τT := V (1)−1/2 supu∈[0,1] |M(u)− uM(1)|,

(CTn|σn, CT ∗n |Dn)
w→w (τT |σ, τT |σ) .

Both conditional asymptotic distributions are continuous with probability 1. As dis-
cussed in Andrews (1997), this holds using the results in Lifshits (1982) because the
limiting random distributions corresponds (up to an almost surely strictly positive term)
to the supremum of a Gaussian process with covariance function which is nonsingular al-
most surely. Hence, by Corollary 1 the bootstrap is valid conditionally on the volatility
path σ.

Example 3 (cont’d). Finally, in the unit root example we have that, under the stated
assumption and if the null hypothesis holds, with τR := (

∫ 1
0 M

2(u)du)−1
∫ 1
0 M(u)dM(u),

(Rn|σn, R∗n|Dn)
w→w (τR|σ, τR|σ) .

Similarly, for the t ratio test, with τW := (
∫ 1
0 M

2(u)du)−1/2
∫ 1
0 M(u)dM(u),

(Wn|σn,W ∗n |Dn)
w→w (τW |σ, τW |σ) .

As proved in Lemma A.1 in Appendix A, the limiting conditional cdfs have almost surely
continuous sample paths, and hence by Corollary 1, the bootstrap is valid conditionally
on σ. �
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4.4 Power considerations

We now briefly discuss the behavior of the bootstrap tests under the alternative hy-
pothesis when the stochastic volatility process induces randomness of the limiting dis-
tribution of the bootstrap statistic. As before, consider a left-sided test based on the
statistic τn = τ(Mn, Un) and its bootstrap equivalent τ∗n = τ(M∗n, U

∗
n). Suppose that

under the alternative the original statistic diverges, say to −∞, while the bootstrap
statistic satisfies

τ∗n
w∗
→w τ |σ (19)

for some random element τ . Then, the following lemma holds.

Lemma 2 Suppose that (19) holds and that τn
p→ −∞ as n → ∞. Then, with p∗n :=

P ∗(τ∗n ≤ τn), it holds that p∗n
p→ 0.

Lemma 2 shows that the fact that the limit distribution of the bootstrap statistic
is random and depends on the volatility path does not affect the consistency of the
test. Essentially, weak convergence in distribution of τ∗n given the data implies that the
bootstrap statistic is O∗p(1), in probability. If the original statistic diverges to −∞, it
then holds that the bootstrap test rejects with probability converging to 1.4 We now
apply this result to the three leading examples.

Example 1 (cont’d). Consider the location model example, where the econometrician
is interested in testing the simple null hypothesis θ = θ̄ when θ̄ > θ0, θ0 being the true
parameter value. A wild bootstrap with the null imposed generates bootstrap data as
ε∗t := ε̂tw

∗
t with w∗t i.i.d. N(0, 1) and ε̂t := yt − θ̄ = εt + δ, δ := θ0 − θ̄ < 0. It follows

that, conditionally on the data, M∗n(·) := n−1/2
∑bn·c

t=1 ε
∗
t ∼ N(0, Ûn(·)), where

Ûn(·) := n−1
bn·c∑
t=1

ε̂2t = Un(·) + δ2 +Op(n
−1/2)

w→ V (·) + δ.

Hence, under Assumptions 1 and 2, we have, as n → ∞, that M∗n(·) w∗
→w M̃∗(·)|σ,

where M̃∗(·) :=
∫ ·
0 σ̃(u)dB∗z (u), with σ̃(u) := (σ(u)2 + δ2)1/2. This implies that S∗n

w∗
→w

M̃∗(1)|σ. As Sn → −∞ as n→∞, the conditions of Lemma 2 are satisfied and p∗n
p→ 0.

Consistency of the test based on Tn follows by standard arguments as T ∗n
w∗
→p N(0, 1).

Example 2 (cont’d). For the bootstrap CUSUM statistics, consider the alternative
θt = θ1+g(t/n), where g : [0, 1]→ R is an arbitrary function satisfying 0 <

∫ 1
0 g

2(u)du <
∞, see Ploberger and Krämer (1992). The wild bootstrap partial sum is M∗n(·) :=

n−1/2
∑bn·c

t=1 ε
∗
t ∼ N(0, Ûn(·)), where in this case Ûn(·) := n−1

∑bn·c
t=1 ε̂

2
t = Un(·)+Gn(·)+

Op(n
−1/2), with

Gn(·) := n−1
bn·c∑
t=1

(
g(t/n)− n−1

n∑
t=1

g(t/n)

)2

→
∫ ·
0

(
g(s)−

∫ 1

0
g(r)dr

)2

ds =: G(·).

4Notice that a consistent right-sided test can be obtained by focusing on the bootstrap p-value
p̃∗n := 1− p∗n.
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This implies that

M∗n(·) w
∗
→w M̃

∗(·) :=

∫ ·
0
σ̃(u)dB∗z (u)|σ,

with σ̃(u) := (σ(u)2+g(u)−
∫ 1
0 g(u)du)1/2 and B∗z a standard Brownian motion, stochas-

tically independent of σ. The limiting distribution of the bootstrap statistic CS∗n is then
given by

CS∗n
w∗
→w sup

u∈[0,1]
|M̃∗(u)− uM̃∗(1)|

∣∣∣∣∣σ.
In order to analyze the CT ∗n statistic, notice that its denominator satisfies, in probability,

U∗n(1)− n−1M∗n(1)2 = U∗n(1) +O∗p(n
−1) = Ûn(1) +O∗p(n

−1/2)
w→ V (1) +G(1),

which implies that

CT ∗n
w∗
→w

supu∈[0,1] |M̃∗(u)− uM̃∗(1)|√
V (1) +G(1)

∣∣∣∣∣σ.

As both Sn and Tn diverge under the alternative considered, Lemma 2 applies and for
both tests p∗n

p→ 0.

Example 3 (cont’d). Consider the unit root example with wild bootstrap shocks
generated with the null hypothesis, i.e. ε∗t := (∆yt)w

∗
t . The bootstrap R∗n statistic is

given as in (13) with M∗n(·) := n−1/2
∑bn·c

t=1 (∆yt)w
∗
t and U∗n(·) := n−1/2

∑bn·c
t=1 (∆yt)

2w∗t
2.

Conditionally on the data M∗n is a Gaussian process with independent increments and

variance Ûn(·) := n−1
∑bn·c

t=1 (∆yt)
2. Under the alternative that yt = (1 + θ)yt−1 + εt

with θ ∈ (−2, 0), ∆yt can be written as the linear process with exponentially decaying
coefficients ∆yt =

∑t−1
i=0 ψiεt−i with ψ0 = 0 and ψi = θ(1 + θ)i−1, i = 1, 2, . . .. Hence,

by standard decompositions for squared stationary autoregressions it holds that (the
proof is reported in the Appendix)

Ûn(·) = ψ
2
Un(·) + op(1), ψ

2
:=

∞∑
i=0

ψ2
i , (20)

where the op(1) term is uniform in · ∈ [0, 1], which implies that Ûn(·) w→ ψ
2
V (·).

Hence, M∗n(·) w∗
→w ψ

2
M∗(·)|σ. Finally, using the fact that U∗n(·) = ψ

2
Ûn(·) + o∗p(1), in

probability, where Ûn(·) w→ V (·), it holds that

R∗n
w∗
→w

1
2(ψ

2
M∗2(1)− ψ2

V (1))

ψ
2 ∫ 1

0 M
∗2(u)du

∣∣∣∣∣σ =
1
2(M∗2(1)− V (1))

ψ
2 ∫ 1

0 M
∗2(u)du

∣∣∣∣∣σ.

Hence, under the alternative the bootstrap replicates the null distribution of the original
statistic conditional on the volatility process and consistency of the bootstrap test
follows from Lemma 2. An identical result holds for the t-ratio test based on Wn. �
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Remark 4.4 While in this section we focused on asymptotic power against fixed alter-
natives, it is possible to extend our analysis to cover power against local alternatives.
To illustrate, consider the test based on Sn for the hypothesis H0 : θ = θ̄ in the location
model yt = θ + εt (Example 1). Under a sequence of local alternatives of the form
Hn : θn = θ̄ + δn with δn = n−1/2c, it is straightforward to show that Sn = c+Mn(1),
which converges weakly to c+M(1) under Assumptions 1–2. For the bootstrap statistic,

the results obtained above with δn → 0 imply S∗n
w∗
→w M(1)∗|V (1)

d
= V (1)1/2Z∗|V (1),

with Z∗ being N(0, 1) (independent of V (1)); hence, the bootstrap distribution under
the local alternative is the same as under the null. Suppose now that Assumption 3
holds; then, by Theorem 1,

(Sn|σn, S∗n|Dn)
w→w (c+M(1)|σ,M(1)|σ) .

Hence the limiting cdf of Sn|σn is given by Fc(x) = Φ((x − c)V (1)−1/2), which is
continuous with probability 1, while the bootstrap cdf F ∗n(x) converges weakly to
F ∗(x) = Φ(xV (1)−1/2). Then, by application of Theorem 3.3 in Cavaliere and Georgiev
(2019) it holds that the power of the bootstrap test at the 100α% nominal level, condi-
tionally on the volatility process, is given by

P (p∗n ≤ α|σn) = P (F ∗n(Sn) ≤ α|σn)
w→ Fc(F

∗−1(α))

= Φ((V (1)1/2Φ−1(α)− c)V (1)−1/2)

= Φ(Φ−1(α)− cV (1)−1/2).

By construction, the local power function depends on c; we observe that it also depends
on V (1), and hence is random in the limit. In more general testing problems, the
conditional local power function will depend on the entire volatility process. In the
next section, we illustrate, by Monte Carlo simulations, the dependence on c as well as
on (the limit of) σn(·). �

5 Numerical results

In this section we analyze finite sample size and power properties of bootstrap tests
under non-stationary stochastic volatility using Monte Carlo simulations. To study
the behavior of the tests from Examples 1–3 under the null hypothesis, we report the
Monte Carlo (empirical) cdfs of bootstrap p-values, both unconditionally over all Monte
Carlo replications and conditionally on specific simulated volatility paths. Following
Cavaliere and Georgiev (2019), we report the results in the form of fan charts of the
conditional cdfs, displayed together with the unconditional cdf and the theoretical cdf
of the U(0, 1) distribution. Similarly, we display conditional power curves of the tests
under local alternatives in fan charts.

In all experiments, we draw observations {εt}nt=1 from the GARCH(1,1) process
from Example V.2, with

ωn = 1− αn − βn = n−1κ, αn = (2n)−1/2ση,

corresponding to a limit process σ2(u) with unit unconditional variance σ̄2, mean-
reversion parameter κ, and volatility-of-volatility parameter ση. We set κ = 5 and
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Figure 1: Monte Carlo conditional cdfs of bootstrap p-values of Tn

ση =
√

10, corresponding to a rather persistent volatility process with a reasonable
amount of short-run variability of the volatility, which we know from earlier simulation
studies to lead to substantial size distortions in tests using standard (constant-volatility)
asymptotic critical values. We expect similar results from stochastic volatility processes
(Example V.1) with the same type of persistence and volatility-of-volatility properties.
We report results for two sample sizes, n ∈ {100, 500}. The standardized errors zt are
drawn from three different distributions, discussed below.

For each distribution and sample size, we first simulate 100 different realizations of
the volatility path {σt}nt=1. For each of these paths, we draw 50, 000 replications from
the conditional distribution of {εt = σtzt}nt=1 given {σt}nt=1. As discussed in Remark 4.1,
this is equivalent to drawing vnt = sgn(zt) conditional on ψnt = |zt| for t = 1, . . . , n− 1,
and drawing zn from its unconditional distribution (independent of {σt}nt=1). For each
choice of the distribution of {zt}nt=1, we can check the conditions of Assumption 3 for
conditional validity of the bootstrap.

The first data-generating process, labelled DGP 1, is defined by zt ∼ N(0, 1). In
that case the conditional distribution of the signs vnt is discrete uniform over {−1, 1},
independent of |zt|. This in turn implies that the mda condition of Assumption 3 is
satisfied (as well as the independence, measurability and Lindeberg conditions), such
that the bootstrap is conditionally valid.

In DGP 2, zt is drawn from the following mixed normal density

f(z) = 1
3φ(z;µ1, σ1) + 2

3φ(z;µ2, σ2), (21)
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Figure 2: Monte Carlo conditional cdfs of bootstrap p-values of CTn

where φ(z;µ, σ) is the pdf of the N(µ, σ2) distribution, and where µ1 = −2a, σ1 =
a, µ2 = a, σ2 = a

√
2, with a =

√
3/11. This distribution was constructed by Meijer

(2000) to be asymmetric but with skewness 0 (and with mean zero and unit variance).
Because vnt = sgn(zt) in this case has a conditional distribution depending on ψnt = |zt|,
with P (vnt = 1|ψnt) = f(ψnt)/(f(ψnt) + f(−ψnt)) 6= 1

2 , it follows that Assumption 3
is violated, and conditional validity of the bootstrap is not guaranteed. On the other
hand, the zero skewness implies that the limit result of Example V.2 still applies, with
Bz independent of Bη and hence σ. As conjectured in Remark 4.2, we may expect
unconditional bootstrap validity in this case.

In DGP 3, zt is drawn from another version of (21), but now with µ1 = −2b, σ1 =
b
√

2, µ2 = b, σ2 = b, with b =
√

3/10. This is a distribution with mean zero, unit
variance and negative skewness, so that Bz and Bη in Example V.2 have a negative
correlation, corresponding to leverage effects. This implies that the wild bootstrap is
invalid in this case, both conditionally and unconditionally.

Figures 1–3 display the results for the behavior of bootstrap p-values (based on 199
bootstrap replications) under the null hypothesis, for the studentized tests based on
Tn, CTn and Wn, respectively. Unreported results for the other three test statistics Sn,
CSn and Rn are very similar to the results for the corresponding studentized tests.

From Figure 1, we observe that when the standardized errors zt are standard normal
(DGP 1, left panels), then the conditional distribution of the bootstrap p-values is very
close to uniform, and appears to be independent of σ for both sample sizes considered.
Thus the theoretical conditional validity of the bootstrap in this case is clearly reflected
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Figure 3: Monte Carlo conditional cdfs of bootstrap p-values of Wn

in finite-sample behavior. When the distribution of zt is asymmetric with zero skewness
(DGP 2, centre panels), then the bootstrap appears to be valid on average (indicated
by the solid line almost coinciding with the U(0, 1) cdf, especially for n = 500), but the
conditional cdfs of bootstrap p-values do depend on the volatility path and deviate from
the uniform cdf, illustrating the conjectured violation of conditional bootstrap validity.
Finally, for DGP 3 (right panels, skewed zt), we observe more extreme dependence of
bootstrap p-values on the volatility path. In this case the bootstrap does not appear to
be valid on average either, as predicted by the dependence between Bz and σ implied
by this DGP, which is not replicated by the wild bootstrap.

Figure 2 displays the results for the studentized CUSUM test based on CTn. For
this test, the finite-sample size distortion (indicated by the difference between the solid
and dashed line) is more pronounced than for the location test, in particular for the
smaller sample size (n = 100). Unreported additional simulations show that these size
distortions are even stronger for the test based on CSn. The results improve when the
sample size increases, and it should be noted that the rejection frequencies at the 5%
significance level are still fairly close to 0.05; the deviations are larger at the centre of
the distribution. For this test, the dependence of the conditional cdf of p-values on σ is
much weaker than for the location test. For DGP 2, we do not observe any deviation
of conditional cdfs from their average; in case of DGP 3, there is a clear violation of
conditional bootstrap validity, but the deviations are less pronounced than for Tn.

The results for the unit root test based on Wn are given in Figure 3. For DGP 1 and
2, the size distortions appear to be negligible for both sample sizes. Similarly to the
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Figure 4: Monte Carlo conditional rejection frequencies of bootstrap tests

CUSUM test, the dependence of bootstrap p-values on the volatility path for DGP 1
and 2 appears to be very weak. On the other hand, for DGP 3 we find this dependence
to be clearly present, illustrating again a violation of conditional bootstrap validity.
On average, the bootstrap appears to be valid even for DGP 3, although theoretically
we would not expect this to be the case because of the dependence between Bz and
σ. Unreported simulations have shown that in case of stronger leverage effects (i.e., a
stronger correlation between Bz and Bη), the unconditional cdf of bootstrap p-values
does differ from the U(0, 1) cdf, as predicted by the theoretical results.

We conclude this section with some local power results of the bootstrap tests, again
conditional on the same realizations of the volatility path as considered for the size of
the tests. As in Remark 4.4, for the location tests we evaluate the rejection frequency
of the test for H0 : θ = 0 against local alternatives θn = −n−1/2c, with c ∈ [0, 8]. For
the CUSUM tests, the local alternative is a break in the mean of the series, at t = n/2,
from θn,t = 0 to θn,t = n−1/2c, with c ∈ [0, 15]. For the unit root tests, we consider
local alternatives θn = −n−1c, with c ∈ [0, 20]. We provide results for the tests based
on the studentized statistics Tn, CTn and Wn, and for the sample size n = 100.

Figure 4 displays the rejection frequencies of the bootstrap tests, based on 10, 000
replications of the test for each volatility path, plotted against c. We observe that the
conditional rejection probabilities under the alternative hypothesis depend on both the
non-centrality parameter c and the volatility process σ, for each test and DGP 1–3.
While the dependence on the volatility is as expected for DGP 2 and 3, we note that for
DGP 1, where the rejections probabilities under the null hypothesis are conditionally
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independent of the volatility process, the power of the tests clearly depends on the
volatility (as discussed in Remark 4.4).

6 Conclusions

In this paper we have analyzed the properties of wild bootstrap inference in time series
models for the conditional mean under non-stationary stochastic volatility. Our results
can be generalized in several directions. First, our applications deal with univariate
time series models and it is naturally of interest to apply our results to multivariate
(time series) models, where volatilities and correlations are time-varying, stochastic and
non-stationary. In particular, in Boswijk et al. (2016) the bootstrap was considered for
multivariate cointegrated vector autoregressions in the presence of stationary volatility,
in combination with possible deterministic changes in the volatility; we conjecture that
our results obtained here also apply to the case of non-stationary multivariate stochastic
volatility. Second, it would be important to understand how to bootstrap conditional
mean time series models in the presence of leverage. Although, as we have shown,
the wild bootstrap is not valid in this context, our theory may be useful for assessing
validity of other bootstrap methods when the volatility displays leverage effect.

A Mathematical Appendix

A.1 Auxiliary results

Throughout, we make use of the following version of Skorokhod’s representation theo-
rem, see A.1.

Theorem A.1 [Kallenberg, 1997, Corollary 5.12] Let f and {fn}n≥1 be measurable
functions from a Borel space S to a Polish space T , and let ξ and {ξn}n≥1 be random

elements in S with fn(ξn)
w→ f(ξ). Then there exist some random elements ξ̃

d
= ξ and

ξ̃n
d
= ξn defined on a common probability space with fn(ξ̃n)

a.s.→ f(ξ).

The next lemma contains a result about the asymptotic continuity of the distribution
function of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A.1 Under Assumptions 1 and 2, let

τ1 :=

∫ 1
0 M(u)dM(u)∫ 1
0 M

2(u)du
, τ2 :=

∫ 1
0 M(u)dM(u)√
V (1)

∫ 1
0 M

2(u)du
.

Then the random cdfs F1(·) := P (τ1 ≤ ·|σ) and F2(·) := P (τ2 ≤ ·|σ) are sample-path
continuous a.s.

Proof of Lemma A.1. We reduce the proof to the following well-known result (Rao
and Swift, 2006, pp. 472–473). Let {X(u)}u∈[0,1] be a Gaussian process with mean zero
and a continuous covariance kernel, let q : [0, 1] → R be a square-integrable function
and let α ∈ R be arbitrary. Then the distribution of

∫ 1
0 (X(u) +αq(u))2du is that of an
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infinite series of independent non-central χ2 random variables and, as a result, it has a
continuous cdf.

The random cdfs F1 and F2 are determined, up to a modification, by the distribution
of (Bz, σ), such that the structure of the probability space on which (Bz, σ) is defined
is irrelevant for the claim of interest. We therefore assume, without loss of generality,
that the independent processes Bz and σ are defined on a product probability space.
Let (Ωσ,Fσ, Pσ) be the factor-space on which σ is defined. Fix A ∈ Fσ with Pσ(A) = 1
such that V (ω, ·) :=

∫ ·
0 σ

2(ω, u)du is well-defined, continuous and 0 < V (ω, 1) < ∞.
Let Γ := {σ(ω) : ω ∈ A} be the set of trajectories for σ when ω ∈ A. For every γ ∈ Γ,
the process Mγ(·) :=

∫ ·
0 γ(u)dBz(u) is a.s. well-defined and

∫ 1
0 M

2
γ (u)du > 0 a.s. The

result in the lemma will follow if the deterministic cdfs P (τγ1 ≤ ·) and P (τγ2 ≤ ·) are
continuous for every γ ∈ Γ:

P (τγ1 = x) = 0, P (τγ2 = x) = 0, ∀x ∈ R, (A.1)

where

τγ1 :=

∫ 1
0 Mγ(u)dMγ(u)∫ 1

0 M
2
γ (u)du

, τγ2 :=

∫ 1
0 Mγ(u)dMγ(u)√
V (1)

∫ 1
0 M

2
γ (u)du

.

In fact, (A.1) implies that F1 and F2 have sample-path continuous modifications, and
moreover, by continuity, F1 and F2 are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed γ ∈ Γ, define the time-changed
‘bridge’ process Xγ by

Xγ(u) := Mγ(u)− Vγ(u)

Vγ(1)
Mγ(1), u ∈ [0, 1].

Then Xγ and Mγ(1) are independent, for they are jointly Gaussian with covariance
function

Cov(Xγ(u),Mγ(1)) = Vγ(u)− Vγ(u)

Vγ(1)
Vγ(1) = 0, u ∈ [0, 1].

In terms of Xγ and Mγ(1), we find

τγ1 =
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 M

2
γ (u)du

=
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

and

τγ2 =
1

2

Mγ(1)2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

,

for qγ(u) := Vγ(u)/Vγ(1). The equality

P (τγi = x) = E [P (τγi = x|Mγ(1))] = 0

will hold for i = 1, 2 and any x ∈ R iff

P (τγi = x|Mγ(1)) = 0 a.s.
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for i = 1, 2 and any x ∈ R. In its turn, using the independence of Xγ(u) and Mγ(1),
the latter will hold if

P

(
1

2

α2 − Vγ(1)∫ 1
0 (Xγ(1) + αqγ(u))2du

= x

)
= 0,

P

1

2

α2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) + αqγ(u))2du

= x

 = 0

holds for all x ∈ R and α 6= ±
√
Vγ(1) (because P (M2

γ (1) = Vγ(1)) = 0), which in its
turn will hold if

P

(∫ 1

0
(Xγ(u) + αqγ(u))2du = x

)
= 0

for any α, x ∈ R. Since Xγ is a zero-mean Gaussian process with a continuous covariance
and qγ is square integrable, the equality in the previous display indeed holds, by Rao
and Swift (2006, pp. 472–473). �

A.2 Proofs

Proof of Lemma 1. We follow the approach of the proof of Lemma 1 and other
intermediate results in Cavaliere and Taylor (2009). First, defining et = z2t − 1,

sup
u∈[0,1]

|Un(u)− Vn(u)| = sup
u∈[0,1]

∣∣∣∣∣∣n−1
bnuc∑
t=1

σ2t et

∣∣∣∣∣∣ p→ 0

by Theorem A.1 of Cavaliere and Taylor (2009), since {et,Ft}t≥1 is an mds by Assump-

tion 1 and σ2bn·c+1 = σ2n(·) w→ σ2(·) by Assumption 2 and the CMT; this proves (8),
because convergence in the sup norm implies convergence in the Skorokhod metric, i.e.,
in D [0, 1]. Next, we apply Theorem 2.1 of Hansen (1992) to

Mn(·) =

∫ ·
0
σn(u)dBz,n(u),

noting that Assumption 1 implies supn≥1 n
−1∑n

t=1E(z2t ) = 1, so that using Assumption
2, we have

(σn(·), Bz,n(·),Mn(·)) w→ (σ(·), Bz(·),M(·)) .

The CMT together with (8) then implies (7), because

∫ u

0
σ2n(s)ds =

1

n

bnuc∑
t=1

σ2t + σ2bnuc+1(u− bnucn
−1), u ∈ [0, 1],

so that Un(·) = Vn(·) + op(1) =
∫ ·
0 σ

2
n(s)ds+ op(1), i.e., Un(·) is a continuous functional

of σn(·) plus an asymptotically negligible term. �

Proof of Theorem 1. The idea of the proof is to construct on a special proba-
bility space random elements distributed like (σn,Mn, Un,M

∗
n, U

∗
n) and such that on
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this probability space the convergence asserted in Theorem 1 holds weakly a.s.; on a
general probability space it will then hold

w→w. Throughout, we use repeatedly the fact
that for independent random elements ξ and η and for a measurable real φ such that
E(|φ(ξ, η)|) < ∞, it holds that E(φ(ξ, η)|η) = E(φ(ξ, s))|s=η , with E(φ(ξ, s)) defining
a function of a non-random s; see Dudley (2004, p. 341).

By Assumption 3, ψnt are Gn0-measurable and hence are measurable functions of
σn(·) that we denote, with a slight abuse of notation, by ψnt(σn(·)). Let

enm(γ) := E
(
v2ntψ

2
nt(γ)I{|vntψnt(γ)|>

√
n/m}

)
,

form ∈ N and a generic non-random γ; then enm(σn(·)) is a version of the conditional ex-

pectation E
(
z2t I{|zt|>√n/m}|σn(·)

)
because {vnt}nt=1 and σn(·) are independent. Define

Bv,n(·) := n−1/2
∑bn·c

t=1 vnt. We apply Theorem A.1 with ξn = (σn, Bv,n), ξ = (σ,Bz),

fn(ξn) = (σn, Qψ,n, Qz,n,Ln, Ln) and f(ξ) = (σ,Q,Q, 0∞, 0∞) ,

where Qψ,n(·) = n−1
∑bn·c

t=1 ψ
2
nt, Qz,n(·) = n−1

∑bn·c
t=1 z

2
t , Ln =

{
n−1

∑n
t=1 enm(σn)

}
m∈N

∈ R∞, Ln =
{
n−1

∑n
t=1 z

2
t I{|zt|>√n/m}

}
m∈N

∈ R∞, Q(u) = u, u ∈ [0, 1], and 0∞ is the

zero sequence in R∞, the Frechet space. The domain of fn and f is the Borel space
D2[0, 1] with the Skorokhod metric and the induced Borel σ-algebra, and the codomain
is the Polish space D3[0, 1]×R∞×R∞ with the product of the Skorokhod and the Frechet

metric. The assumptions imply (Qψ,n, Qz,n)
p→ (Q,Q), because (Qψ,n −Q,Qz,n −Q) is

the partial sum process of n−1(ψ2
nt−1, z2t −1), which is an mda with respect to Ft since

E(ψ2
nt|Ft−1) = E(z2t |Ft−1) = 1 by the tower property; this partial sum converges to the

zero function in probability by the corollary to Theorem 3.3 of Hansen (1992). Noting
that Ln

w→ 0∞ follows from the corresponding result for Ln = E(Ln|Gn0), applying
Markov’s inequality, the assumptions therefore imply fn(ξn)

w→ f(ξ).

Theorem A.1 then implies the existence of ξ̃n = (σ̃n, B̃v,n)
d
= (σn, Bv,n) and ξ̃ =

(σ̃, B̃z)
d
= (σ,Bz), defined on a single probability space and such that(

σ̃n, Q̃ψ,n, Q̃z,n, L̃n, L̃n
)

:= fn(ξ̃n)
a.s.→ f(ξ̃) = (σ̃, Q,Q, 0∞, 0∞) . (A.2)

Finally, we complete the set up by introducing a product extension of the previous

probability space where a sequence {w̃∗t }
d
= {w∗t } and a standard Brownian motion B̃∗z

are defined and are independent of {(σ̃n, B̃v,n)}n≥1 and (σ̃, B̃z).
As B̃v,n and σ̃n are independent (because Bv,n and σn are), it holds for any integrable

random variable h(σ̃n, B̃v,n) that E(h(σ̃n, B̃v,n)|σ̃n) = E(h(γ, B̃v,n))|γ=σ̃n . A similar
equality holds for the independent B̃z and σ̃. Therefore, to prove any convergence of
the form

E
(
hn(σ̃n, B̃v,n)|σ̃n

)
a.s.→ E

(
h(σ̃, B̃z)|σ

)
, (A.3)

it is sufficient to prove that E(hn(γn, B̃v,n)) → E(h(γ, B̃z)) for all deterministic se-
quences {γn}n≥1 in some set Γ ⊂ D∞[0, 1] such that P ({σ̃n}n≥1 ∈ Γ) = 1. We now
choose and fix Γ. Consider all the outcomes ω̃ such that convergence (A.2) holds; the
set of such outcomes ω̃ has probability 1. Define Γ ⊂ D∞[0, 1] as the set of sequences
{σ̃n(·, ω̃)}n≥1 corresponding to such ω̃, then P ({σ̃n}n≥1 ∈ Γ) = 1 as required.
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As noted in Remark 4.3, we may recover (Mn, Un) (and hence the original data
Dn) from (σn, Bv,n) as some measurable transformation, say mn(σn, Bv,n). Define ac-
cordingly (M̃n, Ũn) := mn(σ̃n, B̃v,n) (and analogously D̃n). With z̃nt := ψ̃ntṽnt, where
ψ̃nt = ψnt(σ̃n) and

ṽnt := n1/2
(
B̃v,n(t/n)− B̃v,n((t− 1)/n)

)
,

define also the process B̃z,n(·) := n−1/2
∑bn·c

t=1 z̃nt =: mz,n(σ̃n, B̃v,n), such that

(σ̃n, B̃z,n, M̃n, Ũn)
d
= (σn, Bz,n,Mn, Un).

We proceed to the convergence of (M̃n, Ũn) conditional on σ̃n and prove that

E
(
g(B̃z,n, M̃n, Ũn)

∣∣∣ σ̃n) a.s.→ E
(
g(B̃z, M̃ , Ṽ )

∣∣∣ σ̃) (A.4)

for continuous bounded real g of matching domain. This convergence is of the form
(A.3) with hn = g ◦ (mz,n,mn). By the discussion in the previous paragraph, (A.4) will
follow from the standard weak convergence of hn(γn, B̃v,n), for all {γn}n≥1 ∈ Γ, that
we establish next. In so doing, for any random element Z = φ(σ̃n, B̃v,n) we write Z(γn)
for φ(γn, B̃v,n).

For {σ̃n}n∈N replaced by a fixed {γn}n≥1 ∈ Γ, z̃nt(γn) = ψnt(γn)ṽnt is an mda
satisfying the conditions of Brown (1971)’s functional central limit theorem. First,
E(ψnt(γn)ṽnt|{ṽni}t−1i=1) = ψnt(γn)E

(
ṽnt|{ṽni}t−1i=1

)
= 0 because the mda property of

ṽnt is inherited from the original probability space as {ṽni}ni=1
d
= {vni}ni=1. Second,

n−1
∑bn·c

t=1 E(ψ2
nt(γn)ṽ2nt

∣∣ {ṽni}t−1i=1) = n−1
∑bn·c

t=1 ψ
2
nt(γn) = Q̃ψ,n(·, γn) → Q(·), where

the first equality is again inherited from the original probability space, and the conver-
gence by the definition of Γ. Third, as L̃n(γn)→ 0∞ again by the choice of Γ, it holds
that n−1

∑n
t=1 enm(γn)→ 0 for all m ∈ N, which is equivalent to

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
n/m}

)
→ 0, m ∈ N,

by the definition of enm and implies the Lindeberg condition in its usual form

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
nε}

)
→ 0

for all ε > 0. Therefore,
B̃z,n (·, γn)

w→ B̃z(·),

in the sense that E(g(B̃z,n(·, γn))) → E(g(B̃z)) for continuous bounded real g with
matching domain. For the same fixed γn, this in turn implies that

M̃n(·, γn) =

∫ ·
0
γn(u)dB̃z,n(u, γn)

w→
∫ ·
0
γ(u)dB̃z(u),

where γ = lim γn exists by the choice of γn. More precisely, by Theorem 2.1 of
Hansen (1995), as supn≥1

∑n
t=1E(z̃2nt(γn)) = supn≥1 Q̃ψ,n(u, γn) < ∞, the previous
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convergence holds jointly with that of B̃z,n, such that E(g(B̃z,n(·, γn), M̃n(·, γn))) →
E(g(B̃z,

∫ ·
0 γdB̃z)) for continuous bounded real g. Furthermore, using

Ũn(·) = n−1
bn·c∑
t=1

σ̃2t ψ̃
2
nt + n−1

bn·c∑
t=1

σ̃2t

(
z̃2nt − ψ̃

2
nt

)

=

∫ ·
0
σ̃2n(u)dQ̃ψ,n(u) + n−1

bn·c∑
t=1

σ̃2t ẽnt,

it follows that Ũn(·, γn)
p→
∫ ·
0 γ

2(u)du by Theorem A.1 of Cavaliere and Taylor (2009),

since z̃2nt(γn)− ψ̃2
nt(γn) is an mda. As convergence in probability to a constant is joint

with any weak convergence of random elements defined on the same probability space,
it follows that

E
[
g(B̃z,n(·, γn), M̃n(·, γn), Ũn(·, γn))

]
→ E

[
g

(
B̃z,

∫ ·
0
γdB̃z,

∫ ·
0
γ2
)]

for continuous bounded real g. Since P (Γ) = 1, (B̃z,
∫ ·
0 γdB̃z,

∫ ·
0 γ

2)|γ=σ̃ = (B̃z, M̃ , Ṽ )

and B̃z is independent of σ̃, we can conclude that (A.4) holds.
We turn to the bootstrap processes. Define

B̃∗z,n(·) := n−1/2
bn·c∑
t=1

z̃ntw̃
∗
t , M̃∗n(·) := n−1/2

bn·c∑
t=1

σ̃tz̃ntw̃
∗
t , Ũ∗n(·) := n−1

bn·c∑
t=1

σ̃2t z̃
2
ntw̃
∗2
t .

Here we show that

E
(
g(B̃∗z,n, M̃

∗
n, Ũ

∗
n)
∣∣∣ σ̃n, B̃v,n) a.s.→ E

(
g(B̃∗z , M̃

∗, Ṽ )
∣∣∣ σ̃)

for continuous bounded real g, where B̃∗z is a standard Brownian motion independent
of (σ̃, B̃z), and M̃∗(·) :=

∫ ·
0 σ̃dB̃

∗
z . Given that {w̃∗t } and (σ̃, B̃z) are independent, as

in the proof of (A.4), we could proceed by fixing {(γn, bn)}n≥1 ∈ ΓB, where ΓB is
an appropriate set with P ((σ̃n, B̃v,n)n≥1 ∈ ΓB) = 1, and then discuss the standard
weak convergence of (B̃∗z,n, M̃

∗
n, Ũ

∗
n) as a transformation of (γn, bn, {w̃∗t }) instead of

(σ̃, B̃z, {w̃∗t }). Since now (σ̃n, B̃v,n) and {w̃∗t } are defined on a product space, we imple-
ment this equivalently by fixing outcomes ω̃ in the component space of (σ̃n, B̃v,n) and
letting the outcome in the component space of {w̃∗t } be the only source of randomness.
In what follows, fix an ω̃ in a probability-one set where convergence (A.2) holds. Then

n−1/2
bn·c∑
t=1

z̃nt(ω̃)w̃∗t
w→ B∗z (·),

because n−1
∑bn·c

t=1 z̃
2
nt(ω̃) = Qz,n(·, ω̃) → Q(·) and Ln(ω̃) → 0∞ by the choice of ω̃,

where

Ln(ω̃) =

{
n−1

∑bn·c

t=1
z̃2nt(ω̃)I(|z̃nt(ω̃)| >

√
n/m)

}
m∈N

.
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It follows that M̃∗n(·, ω̃) = n−1/2
∑bn·c

t=1 σ̃t(ω̃)z̃nt(ω̃)w̃∗t
w→
∫ ·
0 σ̃(ω̃)dB̃∗z . Further,

Ũ∗n(·, ω̃) = n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)w̃∗2t

= Ũn(·) + n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)(w̃∗2t − 1)
p→ Ṽ (·, ω̃),

using Theorem A.1 of Cavaliere and Taylor (2009). Since Ṽ (·, ω̃) is non-random, the
last two convergences are joint:

E
[
g
(
M̃∗n(·, ω̃), Ũ∗n(·, ω̃)

)]
→ E

[
g
(
M̃∗(·, ω̃), Ṽ (·, ω̃)

)∣∣∣ σ̃]
for continuous and bounded real g. This implies, by the product structure of the
probability space and the probability-one set of eligible outcomes ω̃, that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃∗, Ṽ )|σ̃

)
,

and eventually, as (M̃∗, Ṽ , σ̃)
d
= (M̃, Ṽ , σ̃), that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃, Ṽ )|σ̃

)
.

Notice that conditioning on σ̃n, B̃v,n can be replaced by conditioning on D̃n because
(M̃∗n, Ũ

∗
n) is a measurable function of D̃n and {w̃∗t }.

We can conclude from (A.4) and this result that(
E
[
h(M̃n, Ũn)

∣∣∣ σ̃n] , E [g(M̃∗n, Ũ
∗
n)
∣∣∣ D̃n

])
a.s.→
(
E
[
h(M̃, Ṽ )

∣∣∣ σ̃] , E [g(M̃, Ṽ )
∣∣∣ σ̃])

for all continuous and bounded real h, g, whereas on a general probability space

(E [h(Mn, Un)|σn] , E [g(M∗n, U
∗
n)|Dn])

w→ (E [h(M,V )|σ] , E [g(M,V )|σ]) , (A.5)

because (σ̃n, M̃n, Ũn, D̃n, M̃
∗
n, Ũ

∗
n)

d
= (σn,Mn, Un, Dn,M

∗
n, U

∗
n). This is precisely the

definition of the joint
w→w convergence in the theorem. �

Proof of Corollary 1. From (A.5) with h = g, if the random cdf P (g(M,V ) ≤ ·|σ)
a.s. has continuous sample paths, conditional validity of the bootstrap as in Corollary
1 follows from Corollary 3.2 of Cavaliere and Georgiev (2019). �

Proof of Lemma 2. For any K ∈ R, consider the continuous function gK : R→ [0, 1]
defined by gK(x) = I(−∞,K](x) + (K + 1− x)I(K,K+1]. Then I(−∞,K] ≤ gK ≤ I(−∞,K+1]

and the convergence τ∗n
w∗
→w τ |σ implies that

F ∗n(K) ≤ E∗(gK(τ∗n))
w→ E(gK(τ)|σ) ≤ Fτ |σ(K + 1),

where Fτ |σ(K + 1) = P (τ ≤ K + 1|σ). Therefore, for all q ∈ (0, 1),

lim inf
n→∞

P (F ∗n(K) ≤ q) ≥ P (Fτ |σ(K + 1) ≤ q).
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As a result,

lim inf
n→∞

P (F ∗n(τn) ≤ q) ≥ lim inf
n→∞

P (F ∗n(τn) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q)− lim
n→∞

P (τn > K)

≥ P (Fτ |σ(K + 1) ≤ q),

since τn
p→ −∞ means that limn→∞ P (τn > K) = 0 for all K ∈ R. By Markov’s

inequality,
P (Fτ |σ(K + 1) ≤ q) ≥ 1− q−1E(Fτ |σ(K + 1)),

and the proof is completed by letting K → −∞. �

Proof of eq. (20). Notice that

Ûn(·) = n−1
bn·c∑
t=1

(
t−1∑
i=0

ψiεt−i

)2

= n−1
bn·c∑
t=1

t−1∑
i=0

ψ2
i ε

2
t−i + n−1

bn·c∑
t=1

t−1∑
i=0

t−1∑
j=0

ψiψjεt−iεt−j

=: a1n(·) + a2n(·),

with a1n(·) and a2n(·) implicitly defined. First, a2n(·) = op (1) uniformly in · ∈ [0, 1],
similarly to Lemma A.7 in Cavaliere et al. (2010a). Second,

a1n(·) = n−1
bn·c∑
t=1

ε2t

bn·c−t∑
i=0

ψ2
i

 =

( ∞∑
i=0

ψ2
i

)
Un(·) + bn(·),

with

bn(·) := n−1
bn·c∑
t=1

ε2t

 ∞∑
i=bn·c−t+1

ψ2
i

 .

Since the ψi’s are exponentially decaying, there exist constants C and ρ ∈ (0, 1) such
that

∑∞
i=bn·c−t+1 ψ

2
i ≤ Cρbn·c−t+1. Using the facts that maxt=1,...,n σ

2
t = Op(1) by

Assumption 2 and E(z2t ) = 1 by Assumption 1, it holds that

sup
u∈[0,1]

bn(u) ≤ Cn−1 sup
u∈[0,1]

bnuc∑
t=1

σ2t z
2
t ρ
bn·c−t+1

≤ C

(
max
t=1,...,n

σ2t

)(
n−1 max

t=1,...,n
z2t

)
sup
u∈[0,1]

bn·c∑
t=1

ρbn·c−t+1


= Op(1)op(1)

n∑
t=1

ρt = op(1).

Hence, Ûn(·) = (
∑∞

i=0 ψ
2
i )Un(·) + op (1) . �
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