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Sequential bankruptcy problems

A. Estévez-Fernández1 J.M. Giménez Gómez2 M.J. Solís Baltodano2
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Abstract

In this paper, we analyze sequential bankruptcy problems, which generalize bankruptcy

problems. They contain the problems of sharing water in a transboundary river and of allo-

cating expedition rewards in projects. We provide three mechanisms for generalizing rules

for bankruptcy problems to rules for sequential bankruptcy problems: the upwards, the

downwards, and the two-steps mechanisms. Further, we characterize the upwards con-

strained equal awards, the upwards constrained equal losses, and the upwards propor-

tional rules on the basis of upwards composition and upwards path independence. More-

over, we compare the three mechanisms based on inheritance of well-established properties

for bankruptcy rules to the setting of sequential bankruptcy rules.

Keywords: Sequential bankruptcy, upwards mechanism, downwards mechanism, two-

steps mechanism, constrained equal awards rule, constrained equal losses rule, proportional

rule

1 Introduction

Bankruptcy problems are one of the simplest, yet most interesting, economic problems. In a

bankruptcy problem, there is a group of agents with rightful claims over a scarce estate. The

question is how to “fairly” share the estate among the agents. There is an extensive literature

on bankruptcy problems from a game theoretical perspective (cf. O’Neill 1982, Aumann and

Maschler 1985, Curiel et al. 1987, as seminal papers) as well as from an axiomatic perspective

(cf. Moulin 1987, Dagan 1996, Moulin 2000, Herrero and Villar 2001). For a survey on bank-

ruptcy literature we refer to Thomson (2003; 2015).

Bankruptcy problems have been applied in a variety of economic situations like in shar-

ing the emission of CO2 (Duro Moreno et al. 2018), passepartout problems (Estévez-Fernández

et al. 2012), museum pass problems (Casas-Mendez et al. 2011; 2014, Bergantiños and Moreno-

Ternero 2015; 2016) and in two-sided matching problems (Estévez-Fernández et al. 2016). Re-

cently, Ansink and Weikard (2012) analyses the problem of sharing water in a transboundary

river in the framework of bankruptcy problems where the agents are linearly ordered. This

linear order is given by the position in the river and the natural flow of its water. Moreover,
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at each location along the river, there is exactly one agent and the total water inflow at each

location restricts the maximum amount of water an agent can get. Allowing more than one

agent at each location enriches the problem since allows the representation of its different uses,

e.g. human consumption, crop irrigation, electricity, industry, etc. By allowing to differentiate

amongst water uses, it is possible to take priorities of claimants during drought times (Moulin

2000, Thomson 2003).

Estévez-Fernández et al. (2007), and Estévez-Fernández (2012) in a more general setting,

analyze allocation of delay costs and expedition rewards in projects within a game theoreti-

cal framework. In many projects, specially when developing high technology, there is a race

against the clock and high incentives are given in order to finish the project before the planned

time. For a project to be expedited, the activities need to coordinate and cooperate for this aim.

Estévez-Fernández et al. (2007) and Estévez-Fernández (2012) model the allocation of revenues

from expedited projects using a bankruptcy approach where the agents have a linear order

based on the minimum slack of all the “paths” in which they are involved. Besides, the slack

of the paths also restrict the maximum amount the activities in a path can obtain from the total

reward.

In this paper, we introduce sequential bankruptcy problems, which form a theoretical frame-

work that supports the works of Ansink and Weikard (2012), Estévez-Fernández et al. (2007),

and Estévez-Fernández (2012). In a sequential bankruptcy problem, there is an ordered par-

tition of the set of agents, 〈N1, . . . , Nr〉, and r estates, E1, . . . , Er, such that the members in N1

claim on E1, the members in N2 claim on E1 and E2, and so forth. Moreover, each estate El is not

high enough to satisfy the total claim of the members in Nl , . . . , Nr. Relating it back to the work

of Ansink and Weikard (2012), the problem of sharing water in a transboundary river can be

modeled as a sequential bankruptcy problem where |Nl | = 1 for each l ∈ {1, . . . , r}. Regarding

the work of Estévez-Fernández (2012), the allocation of revenues from expedited projects can

be modeled as a sequential bankruptcy problem where: (i) there are as many elements in the

partition of agents as groups of paths with same slack that are involved in the project expedi-

tion and (ii) the total estate over which a group can claim is the contribution of the group to the

total reward of the expedition.

We introduce three mechanisms for generalizing rules for bankruptcy problems to rules

for sequential bankruptcy problems: the upwards, the downwards, and the two-steps mech-

anisms. These names are inspired in the literature of sharing water in a river. Given a bank-

ruptcy rule f , the upwards mechanism generates a sequential bankruptcy rule by starting to

share the estate “downstream” and, subsequently, moving upwards while updating the claims

at each stage of the procedure. The downwards mechanism generalizes the mechanism in

Ansink and Weikard (2012). Given a bankruptcy rule f , the downwards mechanism generates

a sequential bankruptcy rule by starting to share the estate “upstream” while considering the

total claim of the “downstream” groups and, subsequently, moving downwards while updat-

ing the downwards estate at each stage of the procedure. Finally, the two-steps mechanism is

related to the two-step procedure for bankruptcy problems with a priori unions in Borm et al.
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(2005). Given a bankruptcy rule f , the two-steps mechanism generates a sequential bankruptcy

rule by, in a “first step” applying the rule to the bankruptcy problem with r agents where the

estate is the sum of all estates and the claim of agent l is the total claim of the members of Nl

truncated with respect to the sum of the estates El , . . . , Er; and in a “second step”, applying the

rule to divide the allocation of each group N1, . . . , Nr among their members.

Next to describing the three mechanisms above, we focus on the upwards mechanism,

which is the most novel one. We focus on three of the most used rules for bankruptcy problems:

the proportional, the constrained equal awards, and the constrained equal losses rules. Inspired

in Dagan (1996) and Herrero and Villar (2001), we characterize the upwards constrained equal

awards rule by means of upwards composition, the upwards constrained equal losses rule by

means of upwards path independency, and the upwards proportional rule is characterize using

upwards self-duality and upwards composition, as well as upwards self-duality and upwards

path independency.

To conclude, we focus on differences among the three mechanisms based on inheritance of

well-established properties for bankruptcy rules to the setting of sequential bankruptcy rules.

In particular, we see that equal treatment of equals, composition, and path independence are

not inherited in the class of sequential bankruptcy problems by the downwards and two-steps

mechanisms according to our generalizations. Besides,we show that invariance under claims

truncation and minimal rights first are inherited in the class of sequential bankruptcy problems

by the downwards and the two-steps mechanisms according to our generalizations.

The remainder of the paper is organized as follows. Section 2 surveys bankruptcy problems

and introduces sequential bankruptcy problems. In Section 3, we introduce the upwards mech-

anism and provide characterizations for the upwards constrained equal awards, the upwards

constrained equal losses, and the upwards proportional rules. To conclude, in Section 4, we

introduce the downwards and the two-steps mechanisms.

2 Preliminaries

In this section, we give a brief survey of existing concepts in the literature of bankruptcy pro-

blems and introduce sequential bankruptcy problems.

First, we present notation that will be used throughout the article. For x ∈ R, x+ =

max{0, x}. Let N be a finite set. We denote by 0 ∈ R
N the vector with all zeros. For x ∈ R

N

and S ⊆ N, xS ∈ R
S denotes the projection of x in R

S and x(S) = ∑
i∈S

xi.

In a bankruptcy problem, a finite group of agents have a rightful claim over a scarce estate.

Formally, a bankruptcy problem is described by a tuple (N, E, c) where N is the set of agents,

E ∈ R+ is the estate, and c ∈ R
N
+ is the vector of claims, with ci the claim of i ∈ N on E, that

satisfies c(N) ≥ E. Let BN denote the set of bankruptcy problems with set of agents N. For

notational easiness, a bankruptcy problem is denoted (E, c) ∈ BN .

For (E, c) ∈ BN , the aggregate loss of a bankruptcy problem is the difference between the

total claim and the estate, that is, L(E, c) = c(N) − E. If no confusion is to be expected, we
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write L instead of L(E, c). For a claimant i ∈ N, the minimal right of i is the amount of estate

available, if any, once all other claimants have received their full claim. Another interpretation

of the minimal right of i is that player i is going to pay the aggregate loss. The minimal right of

i is, then, the part of the claim that is left, if any, after subtracting the aggregate loss:

mi(E, c) = (E − c(N \ {i}))+ = (ci − L)+.

If no confusion is to be expected, we write mi instead of mi(E, c). It is well established that

∑
i∈N

mi ≤ E (cf. O’Neill 1982, Curiel et al. 1987).

A bankruptcy rule is a function f that assigns to each bankruptcy problem (E, c) ∈ B
N a

vector f (E, c) ∈ R
N satisfying

0 ≤ f (E, c) ≤ c and ∑
i∈N

fi(E, c) = E.

The three more relevant bankruptcy rules in the literature are the proportional rule, the con-

strained equal awards rule, and the constrained equal losses rule. The proportional rule, Prop,

allocates the estate among the agents proportionally to their claims: For every (E, c) ∈ BN ,

Prop(E, c) = E
c(N)c. The constrained equal awards rule, CEA, allocates the estate as equal

as possible among the agents, considering that they do not get more than their claims: For

every (E, c) ∈ BN , CEA(E, c) = (min{ci, α})i∈N with α ∈ R such that ∑
i∈N

min{ci, α} = E.

The constrained equal losses rule, CEL, allocates the losses as equal as possible among the

agents, considering that they do not get a negative amount: For every (E, c) ∈ BN , CEL(E, c) =

((ci − β)+)i∈N with β ∈ R such that ∑
i∈N

(ci − β)+ = E. For a survey on more bankruptcy rules

and their properties, we refer to Thomson (2003; 2015).

Before defining sequential bankruptcy problems, we give two introductory examples. Am-

bec and Sprumont (2002) initiated a mainstream of literature on sharing the water of an inter-

national river among the agents located along the river. Ansink and Weikard (2012) further

analyses this problem in the framework of bankruptcy problems where the agents are linearly

ordered. They propose a mechanism that transforms bankruptcy rules into rules for sharing

water in a river. One feature of the problem in Ansink and Weikard (2012) is that in each river

location, there is exactly one agent. We now consider that at each location, there may be more

than one agent. For instance, in one specific location, one agent might represent the water

needed for human consumption, another might represent the water needed for crop irrigation,

and another one might represent the water needed for industry. By allowing more than one

agent at each river location, we can also take priorities of claimants into account: under water

shortage, human consumption may have priority over water needed for industry. For more on

bankruptcy problems with priorities, see Moulin (2000) and Thomson (2003).

Example 2.1. Consider a river with three locations, 1, 2, 3, along the river. We may assume that location

1 is the location that is most upstream, location 2 is the location that is halfway, and location 3 is the
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most downstream one. In location 1 there is a total inflow of E1 = 6 units and there are two claimants,

A and B, with claims cA = 2 and cB = 3; in location 2 there is a total inflow of E2 = 5 units and there

are three claimants, C, D, and E, with claims cC = 1, cD = 2, and cE = 3; and in location 3 there is a

total inflow of E3 = 3 units and there is one claimant, F, with claim cF = 5.

Here, the agents at location 1 have rights over the inflow of 6 units; the agents at location 2 have

rights over the total inflow at locations 1 and 2 of 6 + 5 = 11 units; and the agent at location 3 has

rights over the total inflow of the river: 6 + 5 + 3 = 14 units.

E1 = 6

{A,B}
cA = 2, cB = 3

E2 = 5

{C,D,E}
cC = 1, cD = 2, cE = 3

E3 = 3

{F}
cF = 5

Figure 1: Sharing the water in a river in Example 2.1.

In this specific situation, agents A and B have an inflow that totally satisfies their claims and let 1

unit of water go downstream. The agents C, D, and E have a total of 5 + 1 units of water inflow, in

order to satisfy their demands. Agent F has a claim of 5 and an insufficient inflow of 3 units to satisfy

his claim. Therefore, agents A, B, C, D and E may not be able to fulfill all their claims. ✸

Estévez-Fernández et al. (2007), and Estévez-Fernández (2012) in a more general setting,

analyze allocation of delay costs and expedition rewards in projects within a game theoretical

framework. A project consists of a set of activities that are interconnected and need to be carried

out during a period of time in order to achieve a particular aim. Examples of projects are the

construction of a building, the organization of a congress, or the development of the hyperloop.

A planned project specifies its activities, their interconnections, and the planned time to carry

out each activity. This allows us to have a planned duration of the project. In many projects,

specially when developing high technology, there is a race against the clock and high incentives

are given in order to finish the project before the planned time. For a project to be expedited,

the activities need to coordinate and cooperate for this aim as the following example illustrates.

Example 2.2. Consider a project with six activities which interconnections are given in Figure 2.

Activity Predecessors

A

B A

C

D

E D

F D, E

A B

C

D

E

F

Figure 2: Activities interconnections and project representation in Example 2.2.

5



The planned time of the activities are p(A) = 5, p(B) = 7, p(C) = 10, p(D) = 4, p(E) = 2 and

p(F) = 3. Hence, the planned time of the project is

max{p(A) + p(B), p(C), p(D) + p(E) + p(F)} = max{5 + 7, 10, 4 + 2 + 3} = 12.

The manager wants the project to be expedited. For this, he is willing to pay a reward of e 1000 per unit

of expedition. To expedite the whole project, activities in path A-B need to be expedited. If only activities

in A-B are expedited and C, D, E, F act according to plan, the project can have a maximum expedition

of 2 units of time. If C coordinates with A and B to expedite the project, while D, E, and F act according

to plan, they could increase the total expedition by at most one extra unit of time. To further expedite the

project, A, B and C also need the cooperation of activities in the path D-E-F. Let the realization times of

the project be those given on Table 1.

Activity
Planned

time
Realization

time
Expedition

A 5 2 3

B 7 3 4

C 10 7 3

D 4 3 1

E 2 1 1

F 3 2 1

Path

A-B 12 5

C 10 7

D-E-F 9 6

Table 1: Planned and realization times of the activities and the paths in Example 2.2.

In this situation, A claims e 3000, B claims e 4000, C claims e 3000, and D, E, and F claim e 1000

each. Here, A and B are needed to bring the total expedition of the project (12 − 7 = 5), and have rights

over the total reward of e 5000. Activity C contributes to the expedition of 10 − 7 = 3 units of time

and has rights over e 3000 of the total reward. Activities D, E, and F contribute to the expedition of

9 − 7 = 2 units of time and have rights over e 2000 of the total reward. ✸

We now introduce sequential bankruptcy problems. Let N be a finite set of claimants and

let 〈N1, . . . , Nr〉 be an ordered partition of N. A sequential bankruptcy problem is a tuple

(〈N1, . . . , Nr〉, (E1, . . . , Er), c) where E1, . . . , Er ∈ R+ are the estates to be shared among the

claimants such that the members of N1 claim over E1, the members of N2 claim over E1 + E2,

and, in general, the members of Nl claim over
l

∑
λ=1

Eλ for l ∈ {1, . . . , r}; and c ∈ R
N
+ is the

vector of claims satisfying c(N) ≥
r

∑
λ=1

Eλ. Similar to Ansink and Weikard (2012), we impose

the following assumption to guarantee meaningfulness of sequential bankruptcy problems.
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Assumption:
r

∑
λ=l

c(Nλ) ≥
r

∑
λ=l

Eλ for all l ∈ {1, . . . , r}.

Let BN1,...,Nr denote the set of bankruptcy problems with set of agents N =
r
⋃

λ=1
Nλ and

ordered partition 〈N1, . . . , Nr〉. For notational easiness, a sequential bankruptcy problem is

denoted (E, c) ∈ BN1,...,Nr , where E = (E1, . . . , Er). Moreover, for k ∈ {1, . . . , r}, let

Ek = (0, . . . , 0, Ek, 0, . . . , 0) and Ek = (0, . . . , 0, Ek, . . . , Er).

For (E, c) ∈ BN1,...,Nr , the aggregate loss for the members of Nk is defined by Lk(E, c) =

c(Nk)− Ek. Unlike in bankruptcy problems, Lk(E, c) may be negative. If no confusion is to be

expected, we write Lk instead of Lk(E, c). Our assumption can now be restated as

r

∑
λ=l

Lλ ≥ 0 for all l ∈ {1, . . . , r}.

Example 2.3. The problem of sharing water in a river in Example 2.1 can be seen as a sequential

bankruptcy problem where N = {A, B, C, D, E, F}, N1 = {A, B}, N2 = {C, D, E}, and N3 = {F};

E1 = 6, E2 = 5, and E3 = 3; and c = (2, 3, 1, 2, 3, 5).

The expedition project problem in Example 2.2 can be seen as a sequential bankruptcy problem where

N = {A, B, C, D, E, F}, N1 = {D, E, F}, N2 = {C}, and N3 = {A, B}; E1 = 2000, E2 = 1000, and

E3 = 2000; and c = (3000, 4000, 3000, 1000, 1000, 1000). ✸

A sequential bankruptcy rule or rule is a function f that assigns to each sequential bank-

ruptcy problem (E, c) ∈ BN1,...,Nr a vector f (E, c) ∈ R
N satisfying

0 ≤ f (E, c) ≤ c, (1)

l

∑
λ=1

∑
i∈Nλ

fi(E, c) ≤
l

∑
λ=1

Eλ for each l = 1, . . . , r − 1, and (2)

r

∑
λ=1

∑
i∈Nλ

fi(E, c) =
r

∑
λ=1

Eλ. (3)

For k ∈ {1, . . . , r} and E1 = . . . = Ek = 0, conditions (1) and (2) imply xNl
= 0Nl

for each

l ∈ {1, . . . , k}.

One way to discern among several division rules is by looking to their properties. We now

pay attention to generalizing basic properties for bankruptcy rules to properties for sequential

bankruptcy rules. We first consider invariance under claims truncation (see Curiel, Maschler

and Tijs 1987). The question we first need to address is what is our reference point for trunca-

tion. It is clear that claimants can never get more than the “total estate” over which they are

claiming.
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A rule f satisfies invariance under claims truncation if for each (E, c) ∈ BN1,...,Nr ,

f (E, c) = f (E, c E)

where c E
i = min

{

ci,
k

∑
λ=1

Eλ

}

for all i ∈ Nk and all k ∈ {1, . . . , r}.

A rule f satisfies weak invariance under claims truncation if for each k ∈ {1, . . . , r} and

each (Ek, c) ∈ BN1,...,Nr ,

f (Ek, c) = f (Ek, cEk)

where cEk

i = min {ci, Ek} for all i ∈
r
⋃

λ=k
Nλ and cEk

i = 0 for all i ∈
k−1
⋃

λ=1
Nλ. It readily follows that

invariance under claims truncation implies weak invariance under claims truncation.

Next, we consider equal treatment of equals (cf. Thomson 2003). First, we need to decide

when two claimants are considered equal. For a start, they need to have equal claims. Besides,

they also need to hold their claim over the same amount of “total estate”. A rule f satisfies

equal treatment of equals if for each (E, c) ∈ BN1,...,Nr , each k, l ∈ {1, . . . , r} with
k

∑
λ=1

Eλ =

l

∑
λ=1

Eλ, and each i ∈ Nk and j ∈ Nl with ci = cj,

fi(E, c) = f j(E, c).

Therefore, if i ∈ Nk and j ∈ Nl , with k < l, are equals, then, ci = cj and Ek+1 = . . . = El = 0.

To conclude, we generalize minimal rights first (cf. Thomson 2003). The minimal right of

claimant i ∈ Nk is the part of the estate left, if any, after all other claimants have been fully

compensated. For this, we first need to define the additional estate that is available to Nk from

the upstream claimants. Let (E, c) ∈ BN1,...,Nr and let AE0 = 0. For l = 1,

AE1 = (AE0 + E1 − c(N1))+ = (AE0 − L1)+

is the part of the estate E1 that the members of N1 are not claiming and is the additional estate

for N2. Then, the members of N2 can guarantee a claim over E2 + AE1. For l ∈ {2, . . . , r − 1},

AEl = (AEl−1 + El − c(Nl))+ = (AEl−1 − Ll)+

is the additional estate for Nl+1 and the members of Nl+1 can guarantee a claim over El+1 + AEl.

By the assumption on sequential bankruptcy problems, AEl −
r

∑
λ=l+1

Lλ ≤ 0 for l ∈ {1, . . . , r − 1}.

The minimal right of i ∈ Nk, k ∈ {1, . . . , r}, is defined by

mi(E, c) =

(

AEk−1 + Ek − c(Nk \ {i}) +
r

∑
λ=k+1

(Eλ − c(Nλ))

)

+

=

(

AEk−1 + ci −
r

∑
λ=k

Lλ

)

+

.
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We denote m(E, c) = (mi(E, c))i∈N . If no confusion is to be expected, we write mi instead of

mi(E, c) and m instead of m(E, c).

A rule f satisfies minimal rights first if for each (E, c) ∈ BN1,...,Nr ,

f (E, c) = m + f

(

Ē1 − ∑
i∈N1

mi, . . . , Ēr − ∑
i∈Nr

mi, c − m

)

with Ēl = min{c(Nl), AEl−1 + El} for l ∈ {1, . . . , r}.

Easily, m(Ē1, . . . , Ēr, c) = m(E, c). Therefore, minimal rights first is very restrictive since

it implies f (E, c) = f (Ē1, . . . , Ēr, c) for every (E, c) ∈ BN1,...,Nr . We weaken the property as

follows. A rule f satisfies weak minimal rights first if for each k ∈ {1, . . . , r} and each (Ek, c) ∈

BN1,...,Nr,

f (Ek, c) = m + f

(

0, . . . , 0, Ek −
r

∑
λ=k

∑
i∈Nλ

mi, 0, . . . , 0, c − m

)

.

Readily, minimal rights first implies weak minimal rights first.

The following result provides an expression of the minimal right of the claimants based

on their claim and the aggregate loss on the different sets of claimants. The proof follows

straightforwardly from the definition of minimal right and is, therefore, omitted.

Proposition 2.4. Let (E, c) ∈ BN1,...,Nr .

(i) AEk−1 −
r

∑
µ=k

Lλ = max
1≤λ≤k

{

−
r

∑
µ=λ

Lµ

}

≤ 0 for every k ∈ {2, . . . , r}.

(ii) For i ∈ Nk, mi(E, c) = max
1≤λ≤k

{(

ci −
r

∑
µ=λ

Lµ

)

+

}

.

3 Upwards mechanism for sequential bankruptcy problems

In this section, we introduce the upwards mechanism for sequential bankruptcy problems. It

generalizes rules for bankruptcy problems to rules for sequential bankruptcy problems. The

name of upwards mechanism is inspired by the connection of sequential bankruptcy problems

and problems of sharing water in a river: The mechanism starts allocating the estates from

downstream and moves upwards by updating the claims at each stage. We start this section by

reconsidering Example 2.1.

Example 3.1. Reconsider the problem of sharing water in a river in Example 2.1 (see Figure 1).

As pointed out in Example 2.3, it can be interpreted as a sequential bankruptcy problem with

N = {A, B, C, D, E, F}, N1 = {A, B}, N2 = {C, D, E}, and N3 = {F}; E1 = 6, E2 = 5, and E3 = 3;

and c = (2, 3, 1, 2, 3, 5).

To allocate the available water among the claimants, we will use the constrained equal awards rule.

First, recall that the water inflow E3 can only be shared among the claimants in N3 as water only flows

9



downstream. We can apply the constrained equal awards rule to (E3, (0N1
, 0N2

, cN3
)) ∈ BN :

x3 = CEA(3, (0, 0, 0, 0, 0, 5)) = (0, 0, 0, 0, 0, 3).

Second, the water inflow E2 can only be shared among the claimants in N2 and N3 as water only flows

downstream. Since in our first step agent F has already got 3 units of water, we need to update his claim

to 5 − 3 = 2. We can now apply the constrained equal awards rule to (5, (0, 0, 1, 2, 3, 2)) ∈ BN :

x2 = CEA(5, (0, 0, 1, 2, 3, 2)) =

(

0, 0, 1, 1
1

3
, 1

1

3
, 1

1

3

)

.

Third and last, the water inflow E1 can be shared among all the claimants. Since in our second step

agents C, D, E and F have already got water, we need to update their claims: for C we have 1 − 1 = 0,

for D we have 2 − 11
3 = 2

3 , for E we have 3 − 11
3 = 12

3 , and for F we have 2 − 11
3 = 2

3 . We can now

apply the constrained equal awards rule to (6, (2, 3, 0, 2
3 , 12

3 , 2
3)) ∈ BN :

x1 = CEA

(

6,

(

2, 3, 0,
2

3
, 1

2

3
,

2

3

))

=

(

1
5

9
, 1

5

9
, 0,

2

3
, 1

5

9
,

2

3

)

.

The upwards mechanism applied to the constrained equal awards rule leads to the allocation:

x3 + x2 + x1 =

(

1
5

9
, 1

5

9
, 1, 2, 2

8

9
, 5

)

. ✸

To formally describe the upwards mechanism, we need to introduce new notation. Let

(E, c) ∈ BN1,...,Nr . For l ∈ {1, . . . , r}, let

cl = (0N1
, . . . , 0Nl−1

, cNl
, . . . , cNr).

Given a bankruptcy rule f , the upwards mechanism generates a rule for sequential bank-

ruptcy problems, f Up, that assigns to each (E, c) ∈ BN1,...,Nr , a vector f Up(E, c) ∈ R
N defined

by

f Up(E, c) =
r

∑
l=1

xl

where xr = f (Er, cr) and, for l = r − 1, . . . , 1, xl is recursively defined by

xl = f

(

El, cl −
r

∑
λ=l+1

xλ

)

.

Our assumption on sequential bankruptcy problems and the boundedness constraints of bank-

ruptcy rules ensure that all the problems above are bankruptcy problems.

Following the idea behind the upwards mechanism, a rule f is an upwards sequential

bankruptcy rule or upwards rule if for every (E, c) ∈ BN1,...,Nr , xr+1 = 0 and xk recursively

10



(〈N1, . . . , Nr〉, E, c)

BP1 =

(

N,E1, (cN1
, . . . , cNr−2

, cNr−1
, cNr

)−
r
∑

λ=2

xλ

)

f(BP1) = x1

f(BPr−1) = xr−1

BPr−1 = (N,Er−1, (0N1
, . . . , 0Nr−2

, cNr−1
, cNr

)− xr)

f(BPr) = xr

BPr = (N,Er , (0N1
, . . . , 0Nr−2

, 0Nr−1
, cNr

))

fUp(〈N1, . . . , Nr〉, E, c) =
r
∑

λ=1

xλ

Figure 3: Summary of the upwards mechanism.

defined by

xk = f

(

Ek, ck −
r+1

∑
λ=k+1

xλ

)

for k = r, r − 1, . . . , 2, 1, imply

f (E, c) =
r

∑
λ=1

xλ.

That is, if f is an upwards rule, it is the same to directly apply f to (E, c), or to apply the rule to

(Er, cr) and, after updating the claims, work all the way up to (E − E2, d1), where d1 represents

the updated claims. Clearly, the upwards mechanism generates upwards rules.

The following result states that the properties of invariance under claims truncation, equal

treatment of equals, and minimal rights first in the class of bankruptcy problems are inher-

ited in the class of sequential bankruptcy problems by the upwards mechanism. The proof is

postponed to the appendix.

Proposition 3.2. Let f be a bankruptcy rule.

(i) If f satisfies invariance under claims truncation, then, f Up satisfies invariance under claims trun-

cation.

(ii) If f satisfies invariance under claims truncation, then, f Up satisfies weak invariance under claims

truncation.

(iii) If f satisfies equal treatment of equals, then, f Up satisfies equal treatment of equals.

(iv) If f satisfies minimal rights first, then, f Up satisfies weak minimal rights first.

Next, we turn our attention to the properties of duality (cf. Aumann and Maschler 1985),

11



composition (cf. Young 1988), and path independence (cf. Moulin 1987)1. For this, we need to

introduce new notation. Let (E, c) ∈ BN1,...,Nr . For l ∈ {1, . . . , r}, let

F
l,(E,c)
λ =











r

∑
µ=l

Lµ if λ = l

0 otherwise.

By assumption, F
l,(E,c)
l ≥ 0 and (F

l,(E,c)
1 , . . . , F

l,(E,c)
r , c) ∈ BN1,...,Nr for all l ∈ {1, . . . , r}. If no

confusion is to be expected, we write Fl
λ instead of F

l,(E,c)
λ . Let Fl = (Fl

1, . . . , Fl
r ). The sequential

bankruptcy problem (Fl , c) represents the problem of sharing the sum of the aggregate loss in

groups Nl , . . . , Nr among their members.

The rule f UpD is the upwards dual rule of f if for each (E, c) ∈ BN1,...,Nr ,

f UpD(E, c) = c − f
(

F1, c − (c2 − x2)
)

where cr+1 = xr+1 = 0 and for k = r, r − 1, . . . , 1,

xk = f
(

Fk, ck − (ck+1 − xk+1)
)

.

The rule f is upwards self-dual if f = f UpD.

Remark 3.1. Let f UpD be the upwards dual rule of f and let (E, c) ∈ BN1,...,Nr with E1 = . . . =

Ek−1 = 0 and Ek > 0 for some k ∈ {2, . . . , r}. Using that f UpD(E, c) = ∑
r
l=1(c

l − xl − (cl+1 −

xl+1)), it readily follows that

f UpD(E, c) = ck − xk.

The following result establishes the one-to-one relation between an upwards rule and its

dual. Besides, it shows that given two dual bankruptcy rules, the corresponding upwards

rules obtained with the upwards mechanism are also upwards dual. The proof is postponed to

the appendix.

Lemma 3.3.

(i) Let f be an upwards rule and let f UpD be its upwards dual rule. Then, f UpD is also an upwards

rule and f is the upwards dual rule of f UpD.

(ii) Let f and g be two dual bankruptcy rules. Then, f Up and gUp are upwards dual.

A rule f satisfies upwards composition if for each (E, c) ∈ BN1,...,Nr , each k ∈ {1, . . . , r}, and

each E′
k ∈ R+ with E′

k ≤ Ek, xk = f (E′
k + Ek+1, ck) implies

f (E, c) = f (E − E′
k − Ek+1, c − xk) + f (E′

k + Ek+1, ck).

Lemma 3.4. Any rule satisfying upwards composition is an upwards rule.

1We follow here the nomenclature in Herrero and Villar (2001).
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Proof. Let f satisfy upwards composition and let (E, c) ∈ BN1,...,Nr . Let E′
r = Er and xr =

f (Er, cr). By upwards composition,

f (E, c) = f (E − Er, c − xr) + f (Er, cr).

Let E′
k = Ek and xk = f

(

Ek, ck −
r

∑
λ=k+1

xλ

)

for k = r − 1, . . . , 1. Reiteratively applying upwards

composition, we get

f (E, c) =
r

∑
λ=1

xl. ✷

The following result states that composition in the class of bankruptcy problems is inher-

ited in the class of sequential bankruptcy problems by the upwards mechanism. The proof is

postponed to the appendix.

Proposition 3.5. Let f be a bankruptcy rule satisfying composition, then, f Up satisfies upwards com-

position.

Theorem 3.6. The upwards constrained equal awards rule is the only rule satisfying equal treatment

of equals, weak invariance under claims truncation, and upwards composition.

Proof. It is well established that the constrained equal awards rule for bankruptcy problems

satisfies equal treatment of equals, invariance under claims truncation, and composition. By

Propositions 3.2 and 3.5, the upwards constrained equal awards rule satisfies equal treatment

of equals, weak invariance under claims truncation, and upwards composition as well. We

now prove uniqueness. Let f be a rule satisfying equal treatment of equals, weak invariance

under claims truncation, and upwards composition. By Lemma 3.4, f is an upwards rule. Next,

we show f = CEAUp. Let (E, c) ∈ BN1,...,Nr . By upwards composition, xr = f (Er, cr) implies

f (E, c) = f (E − Er, c − xr) + f (Er, cr).

Following the same lines as in Dagan (1996), it is readily seen that equal treatment of equals,

weak invariance under claims truncation, and upwards composition imply f (Er, cr) = CEAUp(Er, cr)

and

f (E, c) = f (E − Er, c − xr) + CEAUp(Er, cr)

with xr = CEAUp(Er, c). Recursively, following the same lines as above, for k ∈ {1, . . . , r − 1},

xr = f (Er , cr) = CEAUp(Er, cr) and xl = f

(

El, cl −
r

∑
λ=l+1

xλ

)

= CEAUp

(

El, cl −
r

∑
λ=l+1

xλ

)

for

l ∈ {k, . . . , r − 1}, imply

f (E, c) = f

(

E − Ek, c −
r

∑
µ=λ+1

xµ

)

+
r

∑
λ=k

f

(

Eλ, cλ −
r

∑
µ=λ+1

xµ

)

= f

(

E − Ek, c −
r

∑
µ=λ+1

xµ

)

+
r

∑
λ=k

CEAUp

(

Eλ, cλ −
r

∑
µ=λ+1

xµ

)

13



Therefore, for k = 1,

f (E, c) =
r

∑
λ=1

CEAUp

(

Eλ, cλ −
r

∑
µ=λ+1

xµ

)

= CEAUp(E, c). ✷

As an immediate consequence of Proposition 3.2 and Theorem 3.6, we have

Corollary 3.7. The upwards constrained equal awards rule is the only rule satisfying equal treatment

of equals, invariance under claims truncation, and upwards composition.

A rule f satisfies upwards path independence if for each (E, c) ∈ BN1,...,Nr , each

k ∈ {1, . . . , r}, and each E′
k ∈ R+ with E′

k ≤ Ek, dk = f (Ek, ck), xk+1 = f (Ek+1, ck+1), and

x′k = f (E′
k, dk − xk+1), imply

f (E − Ek + E′
k, c) = f (E − Ek − Ek+1, c − x′k − xk+1) + f (E′

k, dk − xk+1)

+ f (Ek+1, ck+1).

Following the same lines as Lemma 3.4, one can see that path independence implies being

an upwards rule. The proof is, therefore, omitted.

Lemma 3.8. Any rule satisfying upwards path independence is an upwards rule.

Following Herrero and Villar (2001), two properties P and PUpD are upwards dual when

a rule f satisfies P if, and only if, its upwards dual rule f UpD satisfies PUpD. A property P is

upwards self-dual when a rule f satisfies P if, and only if, its upwards dual rule f UpD satisfies

P as well.

The proof of the following result follows the same lines as the proof of Theorem 0 in Herrero

and Villar (2001). It is, therefore, omitted.

Theorem 3.9 (Herrero and Villar, 2001). Let a rule f be characterized by a set of independent prop-

erties P1, . . . ,Ps. Let P
UpD
1 , . . . ,P

UpD
s be the dual properties of P1, . . . ,Ps, respectively. Then, the

upwards dual rule f UpD is characterized by P
UpD
1 , . . . ,P

UpD
s and these properties are also independent.

The following result states that upwards composition and upwards path independence are

upwards dual properties, and weak minimal rights first and weak invariance under claims

truncation are upwards dual properties as well. The proof of these results follow the same

lines as their counterparts in the framework of bankruptcy problems and is, therefore, omitted.

Lemma 3.10.

(i) Upwards composition and upwards path independence are upwards dual.

(ii) Weak minimal rights first and weak invariance under claims truncation are upwards dual.

(iii) Equal treatment of equals is upwards self-dual.

The following result is a direct consequence of Lemma 3.3 (ii), Theorems 3.6 and 3.9, and

Lemma 3.10.
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Theorem 3.11. The upwards constrained equal losses rule is the only rule satisfying equal treatment of

equals, weak minimal rights first, and upwards path independence.

To conclude this section, we characterize the upwards proportional rule. For this, we need

to introduce one last property. Let f be a rule. Let c ∈ R
N1∪...∪Nr . For k ∈ {1, . . . , r}, let

pk,c
f :

[

0,
r

∑
l=k

c(Nl)

]

→ R
N be defined by pk,c

f (Ek) = f (Ek, c). We say that f is weak continuous

if for each c ∈ R
N1∪...∪Nr and each k ∈ {1, . . . , r}, pk,c

f is continuous.

As remarked in Herrero and Villar (2001), Young’s characterization of the proportional rule

uses continuity. However, only continuity with respect to the estate is needed. In our case, we

only need the requirement of weak continuity, which follows from both upwards composition

and upwards path independence. The proof of the following result follows the same lines as

the proof of Theorem 3.6 and is, therefore, omitted.

Theorem 3.12.

(i) The upwards proportional rule is the only rule satisfying upwards composition and upwards self-

duality.

(ii) The upwards proportional rule is the only rule satisfying upwards path independence and upwards

self-duality.

4 Downwards and two-steps mechanisms

Here, we introduce the downwards and two-steps mechanisms to generalize bankruptcy rules

to sequential bankruptcy rules. The downwards mechanism was introduced in Ansink and

Weikard (2012) for the special case with |N1| = . . . = |Nr | = 1. The two-steps mechanism is

related to the two-step procedure for bankruptcy problems with a priori unions in Borm et al.

(2005). Before giving the formal description, we outline them by means of an example.

Example 4.1. Reconsider the problem of sharing water in a river in Example 2.1 (see Figure 1). As

pointed out in Example 2.3, we can model this problem as a sequential bankruptcy problem with N =

{A, B, C, D, E, F}, N1 = {A, B}, N2 = {C, D, E}, and N3 = {F}; E1 = 6, E2 = 5, and E3 = 3; and

c = (2, 3, 1, 2, 3, 5).

To allocate the available water among the claimants, we will use the constrained equal awards rule.

We start explaining the downwards mechanism. First, recall that the water inflow E1 can be shared

among all the claimants since water flows downstream. Therefore, agents in N2 and N3 claim cC + cD +

cE + cF − E2 − E3 = L2 + L3 = 3. We can apply the constrained equal awards rule to (E1, (cN1
, 3))

and set x1 = CEA(6, (2, 3, 3)) = (2, 2, 2). Second, the water inflow E2 + 2 can be shared among

the claimants in N2 and N3 since water flows downstream. Therefore, the agent in N3 claims cF −

E3 = L3 = 2. We can now apply the constrained equal awards rule to (E2 + 2, (cN2
, 2)) and set

x2 = CEA(7, (1, 2, 3, 2)) = (1, 2, 2, 2). Third and last, the water inflow E3 + 2 can be used only by

the claimant in N3. Then, x3 = CEA(3 + 2, (5)) = (5). The downwards mechanism applied to the

constrained equal awards rule leads to the allocation (2, 2, 1, 2, 2, 5).
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Next, we use the two-steps mechanism. First, we associate a bankruptcy problem where the agents

are the groups: {1, 2, 3}, the estate is the total estate: E = E1 + E2 + E3 = 14; and the claim

of group l ∈ {1, 2, 3} is its total claim truncated to the total estate over which they claim: dl =

min

{

c(Nl),
l

∑
λ=1

Eλ

}

. Then, d = (5, 6, 5). We set x = CEA(14, (5, 6, 5)) =
(

42
3 , 42

3 , 42
3

)

. Sec-

ond, we apply the constrained equal awards rule to share each group’s allocation among its members.

The two-steps mechanism applied to the constrained equal awards rule leads to the allocation:

((

4
2

3
, (2, 3)

)

, CEA

(

4
2

3
, (1, 2, 3)

)

, CEA

(

4
2

3
, (5)

))

=

(

2, 2
2

3
, 1, 1

5

6
, 1

5

6
, 4

2

3

)

.
✸

Next, we formally describe both mechanisms. We start with the downwards mechanism.

For this, given (E, c) ∈ BN1,...,Nr and l ∈ {1, . . . , r − 1}, we denote by il+1 the fictitious claimant

that represents the members in Nl+1 ∪ . . . ∪ Nr with claim ∑
r
λ=l+1 Lλ over El .

Given a bankruptcy rule f , the downwards mechanism generates a rule for sequential

bankruptcy problems, f D, that assigns to each (E, c) ∈ BN1,...,Nr , a vector f D(E, c) ∈ R
N de-

fined by

f D(E, c) = (x1
N1

, . . . , xr
Nr
)

where x0 = 0, for l = 1, . . . , r − 1, xl is recursively defined by

xl = f

(

El + xl−1
il

,

(

cNl
,

r

∑
λ=l+1

Lλ

))

,

and xr = f

(

Er + xr−1
ir

, cNr

)

.

To conclude, we describe the two-steps mechanism. Given a bankruptcy rule f , the two-

steps mechanism generates a rule for sequential bankruptcy problems, f 2s, that assigns to each

(E, c) ∈ BN1,...,Nr , a vector f 2s(E, c) ∈ R
N defined by

f 2s(E, c) = ( f (x1, cN1
), . . . , f (xr , cNr))

where

x = f

(

r

∑
λ=1

Eλ, (d1, . . . , dr)

)

,

with dl = min

{

c(Nl),
l

∑
λ=1

Eλ

}

for l ∈ {1, . . . , r}.

Our assumption on sequential bankruptcy problems and the boundedness condition on

bankruptcy rules ensure that all the problems in the description of both mechanisms are bank-

ruptcy problems.

Composition and path independence are not inherited in the class of sequential bankruptcy

problems by the downwards and two-steps mechanisms in the form of upwards composition

and upwards path independence since they do not generate upwards rules. Moreover, equal
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fD(〈N1, . . . , Nr〉, E, c) = (x1

N1
, . . . , xr

Nr

)

BP1 =

(

N1 ∪ {i2}, E1,

(

cN1
,

r
∑

λ=2

Lλ

))

f(BP1) = x1

BP2 =

(

N2 ∪ {i3}, E2 + x1

i2
,

(

cN2
,

r
∑

λ=3

Lλ

))

f(BP2) = x2

BPr = (Nr, Er + xr−1

ir
, cNr

) f(BPr) = xr

(〈N1, . . . , Nr〉, E, c)

Downwards mechanism.

(〈N1, . . . , Nr〉, E, c)

y = f

(

{1, . . . , r},
r
∑

λ=1

Eλ,

(

min{c(N1), E1}, . . . ,min{c(Nr),
r
∑

λ=1

Eλ}

))

x1 = f (N1, y1, cN1
) . . . . . . xr = f (Nr, yr, cNr

)

f2s(〈N1, . . . , Nr〉, E, c) = (x1, x2, . . . , xr)

Two-steps mechanism.

Figure 4: Summary of the two mechanisms.

treatment of equals need not be inherited in the class of sequential bankruptcy problems by the

downwards and two-steps mechanisms, as the following example illustrates.

Example 4.2. Let (〈N1, N2, N3〉, (E1, E2, E3), c) be the sequential bankruptcy problem with N1 = {1},

N2 = {2, 3}, and N3 = {4, 5}, E1 = 0, E2 = 9, and E3 = 0, c = (1, 3, 4, 1, 3). We consider the

constrained equal awards rule, which satisfies equal treatment of equals. In our sequential bankruptcy

problem, agents 2 and 5 are “equal”. However, CEAD and CEA2s do not assign them the same amount

since CEAD(E, c) = (0, 3, 3, 1, 2) and CEA2s(E, c) =
(

0, 21
2 , 21

2 , 1, 3
)

. Therefore, neither CEAD, nor

CEA2s satisfy equal treatment of equals. ✸

To conclude, it turns out that the properties of invariance under claims truncation and min-

imal rights first in the class of bankruptcy problems are inherited in the class of sequential

bankruptcy problems by the downwards and the two-steps mechanisms. The proof is post-

poned to the appendix.

Proposition 4.3. Let f be a bankruptcy rule.

(i) If f satisfies invariance under claims truncation, then, f D and f 2s satisfy invariance under claims

truncation.

(ii) If f satisfies invariance under claims truncation, then, f D and f 2s satisfy weak invariance under

claims truncation.

(iii) If f satisfies minimal rights first, then, f D and f 2s satisfy weak minimal rights first.
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A Appendix

Proof of Proposition 3.1.

(i) Let (E, c) ∈ BN1,...,Nr . Since f satisfies invariance under claims truncation,

xr = f (Er, cr) = f

(

Er,

(

min

{

cr
i ,

r

∑
λ=1

Eλ

})

i∈N

)

= f
(

Er, (c
E)r
)

= yr

Applying again invariance under claims truncation,

xr−1 = f (Er−1, cr−1 − xr)

= f

(

Er−1,

((

min

{

cr−1
i − xr

i ,
r−1

∑
λ=1

Eλ

})

i∈N\Nr

,

(

min

{

cr−1
i − xr

i ,
r

∑
λ=1

Eλ

})

i∈Nr

))

= f

(

Er−1,

((

min

{

cr−1
i ,

r−1

∑
λ=1

Eλ+xr
i

})

i∈N\Nr

,

(

min

{

cr−1
i ,

r

∑
λ=1

Eλ+xr
i

})

i∈Nr

)

−xr

)

= f

(

Er−1,

((

min

{

cr−1
i ,

r−1

∑
λ=1

Eλ

})

i∈N\Nr

,

(

min

{

cr−1
i ,

r

∑
λ=1

Eλ

})

i∈Nr

)

− xr

)

= f

(

Er−1,

(

c E

)r−1

− yr

)

= yr−1

where the fourth equality is a direct consequence of independence under claims truncation

since Er−1 ≤
r

∑
λ=1

Eλ ≤
r

∑
λ=1

Eλ + xr
i and the fifth equality follows since for each i ∈ N \

(Nr−1 ∪ Nr), cr−1
i = 0 = min

{

cr−1
i ,

r−1

∑
λ=1

Eλ

}

= (cE
i )

r−1. Reiteratively applying invariance un-

der claims truncation of f , we get xl = f

(

El, cl −
r

∑
λ=l+1

xλ

)

= f

(

El, (c
E)l −

r

∑
λ=l+1

yλ

)

= yl for

l ∈ {1, . . . , r − 2} and

f Up(E, c) =
r

∑
λ=1

xl =
r

∑
λ=1

yl = f Up(E, cE).

(ii) By (i), f Up satisfies invariance under claims truncation and, therefore, weak invariance un-

der claims truncation.

(iii) Let (E, c) ∈ BN1,...,Nr and k, l ∈ {1, . . . , r}, k ≤ l, with
k

∑
λ=1

Eλ =
l

∑
λ=1

Eλ, and let i ∈ Nk and

j ∈ Nl with ci = cj. Obviously, Ek+1 = . . . = El = 0. Let f Up(E, c) = ∑
r
l=1 xl with xl , l = 1, . . . , r

as in the description of the upwards mechanism. Then, xλ
i = xλ

j = 0 for λ = k + 1, . . . , r + 1.

Therefore,

ci −
r+1

∑
λ=k+1

xλ
i = ci = cj = cj −

r+1

∑
λ=k+1

xλ
j

and, applying equal treatment of equals,

xk
i = fi

(

Ek, ck −
r+1

∑
λ=k+1

xλ

)

= f j

(

Ek, ck −
r+1

∑
λ=k+1

xλ

)

= xk
j .
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Reiteratively applying equal treatment of equals of f , we get xl
i = xl

j for l ∈ {1, . . . , r} and

f
Up
i (E, c) =

r

∑
λ=1

xl
i =

r

∑
λ=1

xl
j = f

Up
j (E, c).

(iv) Let k ∈ {1, . . . , r} and let (Ek, c) ∈ BN1,...,Nr . Then, by Proposition 2.1 and the assumption

on sequential bankruptcy problems, mi = 0 for i ∈ Nl , l ∈ {1, . . . , k − 1}. Moreover, for i ∈ Nl ,

l ∈ {k, . . . , r},

mi = max
1≤λ≤l

{(

ci −
r

∑
µ=λ

Lµ

)

+

}

= max

{

max
1≤λ≤k

{(

ci −

( r

∑
µ=λ

c(Nµ)− Ek

))

+

}

, max
k+1≤λ≤l

{(

ci −
r

∑
µ=λ

c(Nµ)

)

+

}}

=

(

ci −

( r

∑
µ=k

c(Nµ)− Ek

))

+

where the last equality is a direct consequence of c ∈ R
N
+. Therefore, m = m(Ek, ck) and,

applying minimal rights first to f ,

f Up(Ek, c) = f (Ek, ck) = m(Ek, ck) + f

(

Ek −∑
i∈N

mi(Ek, ck), ck − m(Ek, ck)

)

= m + f Up

(

0, . . . , 0, Ek −
r

∑
λ=k

∑
i∈Nλ

mi, 0, . . . , 0, c − m

)

. ✷

Proof of Lemma 3.3.

(i) First, we show that f UpD is an upwards rule. Let (E, c) ∈ BN1,...,Nr .

f UpD(E, c) = c − f
(

F1, c − (c2 − x2)
)

with xl, l = 1, . . . , r, as in the definition of upwards duality. Let yr+1 = 0 and for l = r, r −

1, . . . , 2, 1, let yl be recursively defined by

yl = f UpD

(

El, cl −
r+1

∑
λ=l+1

yλ

)

.

We show by induction that cl − xl =
r

∑
λ=l

yλ for every l = r, r − 1, . . . , 1. For l = r, and using

Remark 3.2,

yr = f UpD(Er, cr) = cr − f (Lr, cr) = cr − f (Fr, cr) = cr − xr.
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Assume now that cl+1 − xl+1 =
r

∑
λ=l+1

yλ for some l ∈ {1, . . . , r − 1}. Then,

r

∑
λ=l

yλ = f UpD

(

El , cl −
r

∑
λ=l+1

yλ

)

+
r

∑
λ=l+1

yλ

= cl −
r

∑
λ=l+1

yλ − f

(

Fl, cl −
r

∑
λ=l+1

yλ

)

+
r

∑
λ=l+1

yλ

= cl − f

(

Fl, cl −
r

∑
λ=l+1

yλ

)

= cl − f

(

Fl, cl − (cl+1 − xl+1)

)

= cl − xl

where the second equality follows since f UpD is the upwards dual rule of f and by Remark 3.2.

Then,
r

∑
λ=1

yλ = c1 − x1 = c1 − f
(

F1, c1 − (c2 − x2)
)

= f UpD(E, c).

Second, we show that f is the upwards dual rule of f UpD. Let f (E, c) =
r

∑
λ=1

ȳλ with ȳl , l =

1, . . . , r, as in the definition of upwards rule. Let cr+1 = x̄r+1 = 0 and x̄l = f UpD
(

Fl, cl − (cl+1 − x̄l+1)
)

for l = r, r − 1, . . . , 1. We show by induction that cl − x̄l =
r

∑
λ=l

ȳλ for every l = r, r − 1, . . . , 1.

For l = r, and using Remark 3.2,

cr − x̄r = cr − f UpD(Fr, cr) = cr − (cr − f (E, cr)) = f (Er, cr) = ȳr .

Assume now that cl+1 − x̄l+1 =
r

∑
λ=l+1

ȳλ for some l ∈ {1, . . . , r − 1}. Then,

cl − x̄l = cl − f UpD

(

Fl , cl − (cl+1 − x̄l+1)

)

= cl −

(

cl − (cl+1− x̄l+1)− f

(

El, cl−(cl+1− x̄l+1)

))

= cl+1 − x̄l+1 + f

(

El, cl − (cl+1 − x̄l+1)

)

=
r

∑
λ=l+1

ȳλ + f

(

El, cl −
r

∑
λ=l+1

ȳλ

)

=
r

∑
λ=l

ȳλ

where the second equality follows since f UpD is the upwards dual rule of f and by Remark 3.2.

Then,

c − f UpD
(

F1, c − (c2 − x̄2)
)

= c − x̄1 =
r

∑
λ=1

ȳλ = f (E, c).
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(ii) Since f Up and gUp are upwards rules, it suffices to show that gUp is the upwards dual rule of

f Up by (i). Let (E, c) ∈ BN1,...,Nr. Let gUp(E, c) =
r

∑
λ=1

xλ with xl, l = 1, . . . , r, as in the definition

of upwards rule. Moreover, for l = r, r − 1, . . . , 1, let yl = f

(

r

∑
λ=l

Lλ, cl − (cl+1 − yl+1)

)

as in

the definition of upwards dual rule. We show by induction that for l = r, r − 1, . . . , 1, xl =

cl − yl − (cl+1 − yl+1) and
r+1

∑
λ=l

xl = cl − yl . For l = r,

xr = g(Er, cr) = cr − f (Lr, cr) = cr − yr = cr − yr − (cr+1 − yr+1)

and xr = xr + xr+1 = cr − yr. Assume now that xl+1 = cl − yl − (cl+1 − yl+1) and
r+1

∑
λ=l+1

xl =

cl+1 − yl+1 for some l ∈ {1, . . . , r − 1}. Then,

xl = g

(

El, cl −
r+1

∑
λ=l+1

xλ

)

= g(El , cl − (cl+1 − yl+1))

= cl − (cl+1 − yl+1)− f

(

r

∑
λ=l

Lλ, cl − (cl+1 − yl+1)

)

= cl − yl − (cl+1 − yl+1)

where the third equality follows since g is the dual rule of f and ∑
i∈N

yl+1
i =

r

∑
λ=l+1

Lλ, and the

fourth equality is a direct consequence of the definition of yl . Then,

r+1

∑
λ=l

xl = cl − yl − (cl+1 − yl+1) +
r+1

∑
λ=l+1

xl

= cl − yl − (cl+1 − yl+1) + cl+1 − yl+1 = cl − yl .

Therefore, for l = 1,

gUp(E, c) =
r+1

∑
λ=1

xλ = c1 − y1 = c − f Up

(

F1, c − c2 + y2

)

. ✷

Proof of Proposition 3.5. Let (E, c) ∈ BN1,...,Nr , k ∈ {1, . . . , r}, and E′
k ∈ R+ with E′

k ≤ Ek. Let

f Up(E, c) = ∑
r
l=1 xl with xl , l = 1, . . . , r as in the description of the upwards mechanism. Let

x̄k = f
(

Ek − E′
k, ck −

r

∑
λ=k+1

xλ − x′k
)

and x′k = f
(

E′
k, ck −

r

∑
λ=k+1

xλ
)

. Since f satisfies composi-

tion,

xk = f

(

Ek − E′
k, ck −

r

∑
λ=k+1

xλ − x′k
)

+ f

(

E′
k, ck −

r

∑
λ=k+1

xλ

)

= x̄k + x′k
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and

x′k +
r

∑
λ=k+1

xλ = f

(

E′
k, ck −

r

∑
λ=k+1

xλ

)

+
r

∑
λ=k+1

xλ = f Up

(

E′
k + Ek+1, ck

)

= x̃k.

Besides, for l ∈ {1, . . . , k − 1},

xl = f

(

El, cl −
r

∑
λ=l+1

xλ

)

= f

(

El, cl −
k−1

∑
λ=l+1

xλ − x̃k − x̄k

)

and
k−1

∑
λ=1

xλ + x̄k = f Up

(

E − E′
k − Ek+1, c − x̃k

)

.

Then,

f Up(E, c) =
k−1

∑
l=1

xl + x̄k + x′k +
r

∑
λ=k+1

xλ

= f Up

(

E − E′
k − Ek+1, c − x̃k

)

+ f Up

(

E′
k + Ek+1, ck

)

. ✷

The following result is used in the proof of Proposition 4.1. It is a direct consequence of the

definition of minimal rights and the proof is, therefore, omitted. For (ii), we refer to O’Neill

(1982), Curiel et al. (1987).

Lemma A.1. Let (Ek, c) ∈ BN1,...,Nr .

(i) mNl
= 0Nl

, l ∈ {1, . . . , k − 1}.

(ii) ∑
λ∈I

m(Nλ) ≤

(

Ek − ∑
λ∈{k...,r}\I

c(Nλ)

)

+

, I ⊆ {k, . . . , r}.

Proof of Proposition 4.1.

(i) Let f be a bankruptcy rule satisfying invariance under claims truncation. Let (E, c) ∈

BN1,...,Nr. We first show that f D satisfies invariance under claims truncation. Let LE
λ = Lλ(E, cE) =

cE(Nλ) − Eλ. By definition of cE, LE
λ ≤ Lλ for each λ ∈ {1, . . . , r}. Besides, let f D(E, cE) =

(x1
N1

, . . . , xr
Nr
) with x1, . . . , xr as in the description of the downstream mechanism and let x0

i1
=

0. For l ∈ {1, . . . , r − 1}, xl
il+1

≤ El + xl−1
il

≤
l

∑
µ=1

Eµ. Moreover,

min

{

El + xl−1
il

, ∑
r
µ=l+1 LE

µ

}

= El + xl−1
il

⇒ min

{

El + xl−1
il

, ∑
r
µ=l+1 Lµ

}

= El + xl−1
il

,
(4a)

min

{

El + xl−1
il

, ∑
r
µ=l+1 LE

µ

}

< El + xl−1
il

⇒ cE
Nl+1

= cNl+1
, . . . , cE

Nr
= cNr .

(4b)

Equation (4a) follows directly from LE
µ ≤ Lµ for each µ ∈ {1, . . . , r}. To show Equation (4b),
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we proceed by contradiction. Suppose that there exist λ ∈ {l + 1, . . . , r} and i ∈ Nλ with ci >
λ

∑
µ=1

Eµ. Then, cE
i =

λ

∑
µ=1

Eµ, the definition of LE
µ , and the assumption on sequencing bankruptcy

problems imply

El + xl−1
il

>
r

∑
µ=l+1

LE
µ =

λ−1

∑
µ=l+1

(cE(Nµ)− Eµ) +
λ−1

∑
µ=1

Eµ + cE(Nλ \ {i}) +
r

∑
µ=λ+1

LE
µ

≥
λ−1

∑
µ=l+1

(cE(Nµ)− Eµ) +
λ−1

∑
µ=1

Eµ + cE(Nλ \ {i}) ≥
l

∑
µ=1

Eµ ≥ El + xl−1
il

which establishes a contradiction.

Then, cE1
N1

∈ R
N1 defined by cE1

i = min{ci, E1} = min{cE
i , E1} for all i ∈ N1 implies

x1 = f

(

E1,

(

cE
N1

,
r

∑
λ=2

LE
λ

))

= f

(

E1,

(

cE1
N1

, min

{

E1,
r

∑
λ=2

LE
λ

}))

= f

(

E1,

(

cN1
,

r

∑
λ=2

Lλ

))

where the second equality follows by invariance under claims truncation, and the last equality

is a direct consequence of invariance under claims truncation and Equations (4a) and (4b).

Then,

f D
N1
(E, cE) = x1

N1
= f D

N1
(E, c).

Following the same reasoning as above, we get f D(E, cE) = f D(E, c).

Next, we show that f 2s satisfies invariance under claims truncation. Let

dE
l = min

{

cE(Nl),
l

∑
λ=1

Eλ

}

= min

{

c(Nl),
l

∑
λ=1

Eλ

}

= dl

for l ∈ {1, . . . , r} and

xE = f

( r

∑
λ=1

Eλ,
(

dE
1 , . . . , dE

r

)

)

= f

( r

∑
λ=1

Eλ, (d1, . . . , dr)

)

= x.

Then, x = xE ≤ dE ≤ d and invariance under claims truncation imply

f
(

xl , cE
Nl

)

= f (xl , cNl
) for l ∈ {1, . . . , r}

and, therefore, f 2s(E, cE) = f 2s(E, c).

(ii) Let f be a bankruptcy rule satisfying invariance under claims truncation. By (i), f D and

f 2s satisfy invariance under claims truncation. As a consequence, f D and f 2s satisfy weak
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invariance under claims truncation.

(iii) Let f be a bankruptcy rule satisfying minimal rights first. Let (Ek, c) ∈ BN1,...,Nr . For

l ∈ {1, . . . , r}, let Ml = m(Nl) and M =
r

∑
l=1

Ml . We first show that f D satisfies weak minimal

rights first. For l ∈ {1, . . . , r − 1}, let N̄l = Nl ∪ {il+1}. By Lemma A.1 (i), M =
r

∑
l=k

Ml.

For l ∈ {1, . . . , k − 1}, f D
Nl
(Ek, c) = f D

Nl
(Ek − M, c − m) = 0Nl

= mNl
implies the result for

N1 ∪ . . . ∪ Nk−1. Next, we show the result for l = k. Let

mk = m

(

Ek,

(

cNk
,

r

∑
λ=k+1

c(Nλ)

))

and

mk,M = m

(

Ek − M,

(

cNk
− mNk

,
r

∑
λ=k+1

(c(Nλ)− Mλ)

))

.

Besides, let Mk = mk(Nk ∪ {ik+1}) and Mk,M = mk,M(Nk ∪ {ik+1}). Then, by definition of

minimal right and Lemma A.1 (ii), mk
i = mk,M

i + mi for i ∈ Nk and mk
ik+1

= mk,M
ik+1

+
r

∑
λ=k+1

Mλ.

Then, Mk = M + Mk,M and

f

(

Ek,

(

cNk
,

r

∑
λ=k+1

c(Nλ)

))

= mk + f

(

Ek − Mk,

(

cNk
,

r

∑
λ=k+1

c(Nλ)

)

− mk

)

= (mNk
,

r

∑
λ=k+1

Mλ) + mk,M

+ f

(

Ek − M − Mk,M,

(

cNk
− mNk

,
r

∑
λ=k+1

(c(Nλ)− Mλ)

)

− mk,M

)

= (mNk
,

r

∑
λ=k+1

Mλ) + f

(

Ek − M,

(

cNk
− mNk

,
r

∑
λ=k+1

(c(Nλ)− Mλ)

))

where the first and third equalities follow by minimal rights first. Then,

f D
Nk
(Ek, c) = mNk

+ f D
Nk
(Ek − M, c − m) and xk

ik+1
= xk,M

ik+1
+

r

∑
λ=k+1

Mλ

with (Ek − c(Nk))+ ≤ xk
ik+1

≤
r

∑
λ=k+1

c(Nλ).

Next, we show the result for k + 1. Let mk+1 = m

(

xk
ik+1

,

(

cNk+1
,

r

∑
λ=k+2

c(Nλ)

))

and mk+1,M =

m

(

xk,M
ik+1

,

(

cNk+1
− mNk+1

,
r

∑
λ=k+2

(c(Nλ) − Mλ)

))

. Besides, let Mk+1 = mk+1
i (Nk+1 ∪ {ik+2}) and

Mk+1,M = mk+1,M
i (Nk+1 ∪ {ik+2}). Using xk

ik+1
= xk,M

ik+1
+

r

∑
λ=k+1

Mλ, we have

mk+1
i =

(

ci −

( r

∑
λ=k+1

c(Nλ)− xk
ik+1

))

+

for i ∈ Nk+1,
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mk+1
ik+2

=

(

xk
ik+1

− c(Nk+1)

)

+

;

mk+1,M
i =

(

ci − mi −

( r

∑
λ=k+1

c(Nλ)− xk
ik+1

))

+

for i ∈ Nk+1,

mk+1,M
ik+2

=

(

xk
ik+1

− c(Nk+1)−
r

∑
λ=k+2

Mλ

)

+

.

For i ∈ Nk+1,

mk+1,M
i + mi = max

{

mi, ci −

( r

∑
λ=k+1

c(Nλ)− xk
ik+1

)}

= mk+1
i

where the second equality is a direct consequence of xk
ik+1

≥ (Ek − c(Nk))+ ≥ Ek − c(Nk) and

the definition of mi. Moreover,

mk+1,M
ik+2

+
r

∑
λ=k+2

Mλ = max

{ r

∑
λ=k+2

Mλ, xk
ik+1

− c(Nk+1)

}

= max

{

0, xk
ik+1

− c(Nk+1)

}

= mk+1
ik+2

where the second equality follows since xk
ik+1

≥ (Ek − c(Nk))+ ≥ Ek − c(Nk) and Lemma A.1 (ii).

Then,
r

∑
λ=k+1

Mλ + Mk+1,M = Mk+1. Therefore,

f

(

xk
ik+1

,

(

cNk+1
,

r

∑
λ=k+2

c(Nλ)

))

= mk+1 + f

(

xk
ik+1

− Mk+1,

(

cNk+1
,

r

∑
λ=k+2

c(Nλ)

)

− mk+1

)

= (mNk+1
,

r

∑
λ=k+2

Mλ) + mk+1,M

+ f

(

xk
ik+1

−
r

∑
λ=k+1

Mλ − Mk+1,M,

(

cNk+1
− mNk+1

,
r

∑
λ=k+2

(c(Nλ)− Mλ)

)

− mk+1,M

)

= (mNk+1
,

r

∑
λ=k+2

Mλ) + fNk+1

(

xk
ik+1

−
r

∑
λ=k+1

Mλ,

(

cNk+1
− mNk+1

,
r

∑
λ=k+2

(c(Nλ)− Mλ)

))

where the first and third equalities follow by minimal rights first. Then,

f D
Nk+1

(Ek, c) = mNk+1
+ f D

Nk+1
(Ek − M, c − m) and xk+1

ik+2
= xk+1,M

ik+2
+

r

∑
λ=k+2

Mλ

with

(

Ek −
k+1

∑
λ=k

c(Nλ

)

+

≤ xk
ik+1

≤
r

∑
λ=k+2

c(Nλ).

Following the same reasoning for k + 2, . . . , r, it can be seen that f D satisfies weak minimal

rights first.
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Next, we show that f 2s satisfies weak minimal rights first. Let d, dM ∈ R
{1,...,r} where d and dM

are defined as in the description of the two-steps mechanism for (Ek, c) and (Ek − M, c − m),

respectively. First,

dM = d − (M1, . . . , Mr). (5)

To see this, let l ∈ {1, . . . , k − 1}, then, dM
l = dl = Ml = 0 and dM

l + Ml = 0 = dl . Let

l ∈ {k, . . . , r}. If c(Nl) ≥ Ek, then, Mλ = 0 for all λ 6= l, which implies M = Ml and

dM
l + Ml = min{Ek − M, c(Nl)− Ml}+ Ml = min{Ek, c(Nl)} = dl .

If c(Nl) < Ek, then, Mλ = 0 for λ ∈ {1, . . . , k − 1} and Lemma A.1 (ii) imply M − Ml ≤

(Ek − c(Nl))+ = Ek − c(Nl) and

dM
l + Ml = min{Ek − M + Ml, c(Nl)} = c(Nl) = dl .

Second,

(M1, . . . , Mr) + m(Ek − M, dM) = m(Ek, d) (6)

To see this, by Equation (5) and definition of ml(Ek − M, dM),

Ml + ml(Ek − M, dM) = max

{

Ml, dl −

( r

∑
λ=1

dλ − Ek

)}

.

Let l ∈ {1, . . . , k − 1}. Then, Ml = dl = 0 implies Ml + ml(Ek − M, dM) = 0 = ml(Ek, d). Let

l ∈ {k, . . . , r}. If c(Nλ) ≤ Ek for all λ ∈ {k, . . . , r}, then, dλ = c(Nλ) for all λ ∈ {k, . . . , r} and

Ml + ml(Ek − M, dM) = max

{

Ml, dl −

( r

∑
λ=1

dλ − Ek

)}

= max

{

0, dl −

( r

∑
λ=1

dλ − Ek

)}

= ml(Ek, d)

where the second equality is a direct consequence of dλ = c(Nλ) for all λ ∈ {k, . . . , r} and

Ml ≤

(

Ek −

(

r

∑
λ=k
λ 6=l

c(Nλ)

))

+

by Lemma A.1 (ii). If c(Nl̄) > Ek for some l̄ ∈ {k, . . . , r}, then,

dl̄ = Ek < c(Nl̄), Mλ = 0 for all λ ∈ {1, . . . , r} \ {l̄} and M = Ml̄. Then, for l ∈ {k, . . . , r} \ {l̄},

Ml + ml(Ek − M, dM) = max

{

0, dl −

( r

∑
λ=1

dλ − Ek

)}

= ml(Ek, d).

For l = l̄, if Ml̄ = 0,

Ml̄ + ml̄(Ek − M, dM) = max

{

0, dl̄ −

( r

∑
λ=1

dλ − Ek

)}

= ml̄(Ek, d);
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if Ml̄ > 0, then, by Lemma A.1 (ii), Ek >
r

∑
λ=k
λ 6=l̄

c(Nλ) , which implies dl = c(Nl) for all l ∈

{k, . . . , r} \ {l̄}; then,

Ml̄ + ml̄(Ek − M, dM) = max

{

Ml̄, dl̄ −

( r

∑
λ=1

dλ − Ek

)}

= max

{

Ml̄, Ek −
r

∑
λ=k
λ 6=l̄

c(Nλ)

}

= max

{

0, Ek −
r

∑
λ=k
λ 6=l̄

c(Nλ)

}

= ml̄(Ek, d)

where the third equality is a direct consequence of Lemma A.1 (ii).

Let x = f (Ek, d) and y = f (Ek − M, dM). Then,

x = m(Ek, d) + f

(

Ek −
r

∑
λ=1

mλ(Ek, d), d − m(Ek, d)

)

= (M1, . . . , Mr) + m(Ek − M, dM)

+ f

(

Ek − M−
r

∑
λ=1

mλ(Ek − M, dM), d − (M1, . . . , Mr)− m(Ek − M, dM)

)

= (M1, . . . , Mr) + y

where the first equality follows by minimal rights first, the second equality is a direct conse-

quence of Equation (6), and the third equality follows by minimal rights first and Equation (5).

Next, we show

mNl
+ m(xl − Ml, cNl

− mNl
) = m(xl , cNl

) for all l ∈ {k, . . . , r}. (7)

Let i ∈ Nl , then,

mi + mi(xl − Ml, cNl
− mNl

) = max{mi, ci − (c(Nl)− xl)}

= max{0, ci − (c(Nl)− xl)} = mi(xl , cNl
)

where the second equality is a direct consequence of xl ≥

(

Ek −
r

∑
λ=k
λ 6=l

c(Nl)

)

+

≥ Ek −
r

∑
λ=k
λ 6=l

c(Nl)

and the definition of mi.

For l ∈ {1, . . . , k − 1},

mNl
+ f 2s

Nl
(Ek − M, c − m) = 0Nl

= f 2s
Nl
(Ek, c)
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and, for l ∈ {k, . . . , r},

mNl
+ f 2s

Nl
(Ek − M, c − m) = mNl

+ f (yl , cNl
− mNl

)

= mNl
+ f (xl − Ml, cNl

− mNl
)

= mNl
+ m(xl − Ml , cNl

− mNl
)

+ f

(

xl − Ml − ∑
i∈Nl

mi(xl − Ml, cNl
− mNl

),

cNl
− mNl

− m(xl − Ml, cNl
− mNl

)

)

= m(xl , cNl
) + f

(

xl − ∑
i∈Nl

mi(xl , cNl
), cNl

− m(xl, cNl
)

)

= f (xl , cNl
) = f 2s

Nl
(Ek, c)

where the first and sixth equalities are direct consequence of the definition of f 2s, the second

equality follows because x = (M1, . . . , Mr) + y, the third and fifth equalities follow by minimal

rights first, and the fourth equality is a direct consequence of Equation (7). ✷
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