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Abstract. We analyze a dynamic multi-pollutant problem where abatement costs

of several pollutants are not separable. The pollutants can be either technological

substitutes or complements. Environmental damage is induced by the stock of accu-

mulated pollution. We find that optimal emission paths are qualitatively different for

substitutes and complements. We derive general properties governing optimal emis-

sion paths and present numerical examples to illustrate our main results. In particular

we find that optimal emission paths need not be monotonic, even for highly symmet-

ric pollutants. Finally, we describe a comparatively simple method to implement the

optimal path without explicitly knowing its shape.
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1. Introduction

The environmental policy literature usually concentrates on regulation of a single

pollutant or assumes that different pollutants can be treated separately. Many pro-

duction processes, however, are not only accompanied by the emissions of more than

one pollutant, but modern abatement technologies also allow for joint abatement of

several pollutants. An example is the catalytic converter for cars which jointly reduces

SO2, CO, and NOX . In this case we refer to pollutants which can be abated jointly as

complements.

Other technologies reduce certain pollutants at the cost of increasing the output of

at least one other pollutant. As an example particulate matter and SO2 emitted from

power plants are abated by using considerable amounts of energy which in turn leads

to an increase of CO2-emissions. Thus SO2- and CO2-emissions can be considered

as substitutes. A further example of substitutable pollutants is waste treatment where

combustion, on the one hand, and deposition of waste, on the other, cause either carbon

dioxide or methane emissions, respectively.

Emissions can also be considered as complements or substitutes if the inputs that

cause these emissions in the production process are complements or substitutes in the

usual sense. Since the choice of the input mix has to be done simultaneously, it is clear

that also abatement decisions can in general not be made separately for each pollutant.

This paper studies the dynamic properties of optimal joint abatement paths and the

corresponding policy rules when pollutants accumulate and when the social damage is

caused by the several stocks of pollution. We show that, even if pollutants are sym-

metric with respect to both, their abatement costs and the damage they cause, optimal

abatement paths will look different for substitutes and complements. Besides present-

ing some instructive numerical examples of optimal abatement paths for complements

and substitutes, we derive general properties of the optimal emission/abatement paths.

In particular we show for the case of two pollutants that optimal steady state emis-

sions of the less harmful pollutant rise with the degree of substitutability while this

effect is ambiguous for the more harmful pollutant. We also show that the optimal

paths need not be monotonic, a property which does not emerge in the case of a single

accumulating pollutant.

Finally, we discuss policy rules which determine how to deal with several interacting

pollutants. We suggest to regulate a multi-pollutant problem by issuing tradeable

permits since those can be implemented in a relatively simple way. For n pollutants,

the set of all optimal abatement paths – each path being generated by an n−vector

of initial pollution stocks – can be considered as an n-dimensional manifold in a 2n-

dimensional space. Instead of calculating this rather complex optimal path, it suffices
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for the regulator to have at hand a table of numbers representing a hyperplane which

contains the optimal emission path. In the case of two pollutants, the table tells the

regulator how to pick the optimal pair of permit quantities given any pair of pollution

stocks. If the permit markets are competitive, market prices for permits reveal the

optimal marginal social cost of pollution. In principle, a corresponding table can also

be created if the regulator prefers to charge emission taxes.

To date, only few authors have treated multi-pollution problems. In a static frame-

work Cansier and Cansier (1999), Endres (1985) and Repetto (1987) examine the case

of several pollutants by employing the concept of iso-cost and iso-damage curves. In a

dynamic context, multiple pollutant aspects have been studied above all for the green-

house problem. In his world model, Nordhaus (2000) accounts for different greenhouse

gases (GHGs), however, he limits the optimal choice of emissions to carbon diox-

ide (CO2). Michaelis (1996) minimizes additively separable abatement cost of several

GHGs under a given CO2 budget. Manne and Richels (2000) combine different model

components, among those both economic and climate submodels, in order to form an

intertemporal general equilibrium model to assess multi-gas- and CO2-only scenarios.

They find that a multi-gas strategy benefits all developed regions except the economies

in transition. Reilly et al. (1999) study multi-gas abatement strategies in a framework

of an integrated global systems model. Furthermore, Böhringer et al. (forthcoming)

investigate the efficiency gains from “what-flexibility” with respect to the emissions

of carbon dioxide and methane within the frame of an integrated computable general

equilibrium assessment. Burniaux (2000) focuses on the empirical determination of

abatement cost by estimating the costs to reach the Kyoto targets under different flex-

ibility regimes. He finds that restricting attention to CO2 only introduces an upward

bias of cost estimations. Moslener and Requate (2001) characterize first best optimal

emission paths if multiple accumulating pollutants interact with respect to social dam-

age. By contrast to this paper they assume abatement costs to be additively separable.

Different dynamic and physical properties of the pollutants are considered and found

to influence both the behavior of optimal emissions and their shadow prices over time.

The paper is organized as follows. In the next section we outline the model. Section

3 characterizes optimal emission/abatement paths and possible policy rules followed

by numerical simulations of optimal paths. Section 4 briefly discusses decentralized

policy. In Section 5 we present our conclusions.

2. The Model

We consider a model where economic activity causes several pollutants. We denote by

Ei the flow of emissions and by Si the accumulated stock of pollutant i, respectively.
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We assume that the damage depends on the stocks of the pollutants, whereas the

abatement costs are a function of the flow of emissions. The pollutants accumulate

according to the following equations of motion

Ṡi = Ei − βiSi, (2.1)

where 0 < βi < 1 is the (constant) decay rate of pollutant i = 1, . . . , n.

We rule out interaction on the damage side by assuming that the environmental

damage function is additively separable, i.e. D(S1, ..., Sn) =
∑

Di(Si). In other words,

the damage caused by an additional ton of pollutant i is not influenced by any other

pollutant.

By contrast, the abatement costs C(E1, ..., En) depend on the whole vector of emis-

sions. Restricting to the case of two pollutants we assume Ci := ∂C
∂Ei

< 0, where

Ej ≤ Emax
j for j = 1, 2, and Cii := ∂2C

(∂Ei)2
> 0. Moreover, C is twice continuously dif-

ferentiable and strictly convex, implying C11C22 − [C12]
2 > 0. The sign of C12(= C21)

may go either way in general. The two pollutants are called substitutes if C12 > 0 and

complements if C12 < 0, respectively.1

The social planner minimizes the discounted sum (the integral) of social cost arising

over time:

min
E1(t),E2(t)

∫ ∞

0

[C(E1, E2) + D1(S1) + D2(E2)]e
−rtdt (2.2)

subject to the equation of motion of the accumulating stocks (2.1) for i = 1, 2, where

r as usual is the social discount rate. The current value Hamiltonian is then given by

H = C(E1, E2) + D1(S1) + D2(S2) + λ1(E1 − β1S1) + λ2(E2 − β2S2) (2.3)

where λi are the costate variables. From the first-order conditions

∂H

∂Ei

= C ′
i(Ei, Ej) + λi = 0 (2.4)

−∂H

∂Si

= λ̇i − λir. (2.5)

1This notion can be motivated as follows. Let us denote by λi is the shadow price of abatement of

pollutant i under any kind of regulation. Then, given Ej , the firm sets −Ci(Ei, Ej) = λi (*). If Ej

is relaxed, we see by implicitly differentiating (*) that ∂Ei/∂Ej = −Cij/Cii is positive for Cij < 0

(complements) and negative for Cij > 0 (substitutes) as intuition would suggest.
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and by eliminating the time derivative of the costate variable (λ̇) the maximum prin-

ciple leads to the corresponding Ramsey conditions. They read

Ė1 =
C22(D

′
1 + C1(β1 + r)) − C12(D

′
2 + C2(β2 + r))

C11C22 − [C12]2
, (2.6)

Ė2 =
C11(D

′
2 + C2(β2 + r)) − C21(D

′
1 + C1(β1 + r))

C11C22 − [C12]2
.

Together with the dynamic constraints (2.1) these Ramsey conditions (2.6) form a

system of four differential equations. To calculate the optimal paths explicitly, we

additionally need the initial conditions (i.e., initial stocks) and the transversality con-

ditions (i.e., limT→∞ λi(T ) = 0) to rule out diverging paths. Note, that for additively

separable costs, i.e. Cij = 0 for i 6= j, we obtain the case of two separate single

pollutants, and (2.6) turns into the standard textbook case.

The goal of this analysis is to highlight the different behavior of the optimal emission

paths and of the shadow prices of pollution (which correspond to the optimal emission

taxes in a first-best scenario) for the cases where emissions are either complements

or substitutes. For our purposes it suffices to take an easy specification for both the

damage and the cost functions which allows us to characterize pollutants as comple-

ments or substitutes but which keeps the system linear. Hence, we assume a quadratic

damage function, such that

Di(Si) = (αiSi)
2 (2.7)

for i = 1, 2 where αi indicates the harmfulness of pollutant = i. Abatement costs are

taken bi-quadratic:

C(E1, E2) =
η1

2
(Ē1 − E1)

2 +
η2

2
(Ē2 − E2)

2 + ω(Ē1 − E1)(Ē2 − E2) (2.8)

for Ei < Emax
i . Here Ēi present the laisser-faire emission levels of the two pollutants.2

The parameters ηi describe the marginal abatement cost (disregarding the other pollu-

tant). The parameter ω is crucial and determines whether the pollutants are substitutes

(ω > 0) or complements (ω < 0). To assure ∂C
∂Ei

< 0 we assume |ω| < ηi for i = 1, 2.

Note, that w.l.o.g. the marginal abatement costs for pollutant 1 are linear in E1 but

shifted upwards or downwards by a higher level of E2. The direction is determined by

the sign of ω (upwards for substitutes, downwards for complements). The size of the

shift is determined by the absolute value of ω and by the current emission level E2 of

the other pollutant.

For our purposes it would be ideal to vary the substitutability in the cost function

without changing the marginal abatement costs. But since substitutability relates to

2For the usual assumptions (C′ < 0, C′′ > 0) it is sufficient to set Emax
1

= Ē1 − | ω
η1

|Ē2 and

Emax
2

= Ē2 − | ω
η2

|Ē1.
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a curvature property it cannot be altered without changing the first derivative as well.

A variation of the substitutability in our model will therefore always induce two effects

on the emissions Ei:

(1) A level-effect, changing the overall emissions level due to the overall change in

marginal abatement costs.

(2) A substitution-effect,changing the allocation of emissions between the two pol-

lutants.

Accordingly, changing ω will shift the steady state in a twofold way.

3. Optimal Policy for Compliments and Substitutes

Since the system of differential equations to b analised is linear, the general solution

can be written in terms of the steady state (E∗
1 , E

∗
2 , S

∗
1 , S

∗
2) and a linear combination

of the four eigenvectors (~va, . . . , ~vd):










E∗
1(t)

E∗
2(t)

S∗
1(t)

S∗
2(t)











=











E∗
1

E∗
2

S∗
1

S∗
2











+ ca~vae
λat + cb~vbe

λbt + cc~vce
λct + cd~vde

λdt. (3.1)

Here λa, . . . , λd are the eingenvalues corresponding to the the eigenvectors ~va, . . . , ~vd

with the same index. The coefficients ca, . . . , cd have to be determined by using the

transversality condition, i.e. restricting to solutions which satisfy the initial conditions

and converge towards the steady state. As it is usual for these differential equations

(and as we will see later from equation (5.15) in Appendix A), two of the eigenvalues

have a negative sign and two have a positive sign. W.l.o.g., let λc > 0 and λd > 0.

Hence, the corresponding coefficients (cc, cd) have to be zero, otherwise these terms in

equation (3.1) would diverge. Optimal motion towards the steady state can therefore

be represented as3:










E∗
1(t)

E∗
2(t)

S∗
1(t)

S∗
2(t)











=











E∗
1

E∗
2

S∗
1

S∗
2











+ ca~vae
λat + cb~vbe

λbt, (3.2)

where λa,b < 0. The two coefficients ca,b have to be chosen such that the equation

matches the initial pollutant stocks at t = 0.

One can furthermore see from (3.2) that all optimal paths are located in a plane which

is spanned by the two eigenvectors ~va and ~vb. This form also shows that it is possible to

3For further details on the role of eigenvalues and eigenvectors in optimal control see Chiang (1992)

or Feichtinger and Hartl (1986).
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represent the optimal paths as phase-space trajectories moving simultaneously along

~va and ~vb with speeds λa and λb, respectively.

3.1. Simulation Results for Complements and Substitutes. Before deriving

some general properties of the optimal emission paths, we present some numerical

simulations. Since the system is autonomous, we can display the properties of the

optimal paths by a phase space diagram. For each numerical simulation in our anal-

ysis we will have to choose specific parameter values. Therefore, it is helpful to first

consider the following special case:

Figure 1. Substitutes (ω = 1): Optimal paths for a numerical example

(η = 2; β = 0.1; α = 1; r = 0.06) in Ei−Si-phase diagrams. Initial stocks

are chosen to be 2% (S1) and 7% (S2), respectively, above the steady

state.

Example 3.1. (1) The cost function is symmetric, i.e.

η1 = η2 = η and Ē1 = Ē2 = Ē. (3.3)

(2) The two pollutants have identical decay rates, i.e.

β1 = β2 = β. (3.4)

(3) The two pollutants are equally harmful, i.e. the damage functions are identical

α1 = α2 = α. (3.5)

Note, that these three conditions define a two-pollutant-problem where the pollutants

are identical, but distinguishable. We are free yet to choose ω, which defines whether

the pollutants are complements or substitutes.
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For all our numerical simulations we will assume that (3.3) - (3.5) hold and we will

set η = 2, β = 0.1, α = 1, and r = 0.06. Figure (1) illustrates the optimal paths of the

example for the case of substitutes (ω = 1) whereas figure (2) displays those for comple-

ments (ω = −1). In both scenarios initial stocks are chosen approximately two percent

above the steady state level S∗
1 for pollutant 1, and seven percent above the steady state

level S∗
2 for pollutant 2. The bold lines with an arrow show the phase-space trajectories

towards the steady state. The dashed lines mark the (projections of the) eigenvectors

where the long-dashed line corresponds to the small (slow) stable eigenvector while the

short-dashed line corresponds to the larger (fast) stable eigenvector. Correspondingly,

the trajectories show that in the neighborhood of the steady state the fast movement

is basically completed and the trajectory is governed by the direction of the slow eigen-

vector. Obviously there are striking qualitative differences between optimal emissions

over time in the two cases displayed in the Figures 1 and 2. These differences must be

driven by the complementarity and substitutability properties, respectively, since the

two pollutants are identical in all other aspects.

Figure 2. Complements (ω = −1): Optimal paths for a numerical

example (η = 2; β = 0.1; α = 1; r = 0.06) in Ei − Si-phase diagrams.

Initial stocks are chosen to be 2% (S1) and 7% (S2), respectively, above

the steady state.

For substitutes (figure 1) we see that initially there will be a higher level of abatement

for the pollutant for which the original stock is higher (S2) than for the other pollutant.

As can be seen from the diagram for pollutant 1, this is done at the expense of initially

higher emissions E1 of pollutant 1. This reflects the substitutability. As the larger stock

S2 shrinks, abatement of this pollutant will slightly be relaxed while abatement of the
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other pollutant will be increased. Eventually emissions of both pollutants converge

from below toward the steady state on very similar paths.

For complements (figure 2) we observe a different behavior: The emission paths of

both pollutants start with relatively sharp abatement which will then be relaxed fairly

quickly. In the long run the emissions E1 converge towards the steady state from above

while E2 converges from below.

Note, that although in both cases the initial stocks of pollutant 1 and pollutant 2

are chosen by 2% and 7% above the steady state levels, respectively, emissions E1 of

pollutant 1 undershoot the steady state level for substitutes and overshoot that level

for complements.

Figure 3. Optimal path, eigenvectors and optimal policy plane for

substitutes (ω = 1). The scenarios are identical to those shown in the

previous figures. The axes Ei, S1, S2 indicate the deviation from the

steady state.

Since the two-dimensional phase diagrams hide the impact of the second pollutant,

it is useful to draw three-dimensional diagrams, plotting emissions against both stocks.

We know from equation (3.1) that all optimal paths are located in a plane which is

spanned by the eigenvectors ~va and ~vb. This plane - showing optimal emissions Ei -

will be called the optimal policy plane for pollutant i. For each pair of stocks S1 and

S2 the planes in (a) and (b) show the optimal emissions E1 and E2, respectively. It is

important to notice that this does not only hold for the initial stocks but for the whole

optimal path: For a given pair of initial stocks the optimal path is fully described by

(i) the planes (in (a), (b) of figures 3 and 4) and (ii) by the dynamic constraints (for

the motion on the planes). Note, that not every path one can draw on a policy plane is

physically feasible, i.e. compatible with the dynamic constraints, but every physically
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feasible path that lies on the plane is optimal. This will be helpful later on for the

implementation of the optimal path.

Figure 4. Optimal path, eigenvectors and optimal policy plane for

complements (ω = −1). The scenarios are identical to those shown in

the previous figures. The axes Ei, S1, S2 indicate the deviation from the

steady state.

Figures 3 (substitutes) and 4 (complements) display our scenarios from figures 1 and

2 in such a way. The axes do not explicitly show the values of Ei and Si but rather

their deviation from the steady state (Ei − E∗
i , Si − S∗

i ). In addition to the steady

state (black dot), the optimal path (black line with arrow) and the eigenvectors (black

dotted straight lines), which we know already from the previous figures 1 and 2, figures

3 and 4 also display the planes spanned by the eigenvectors ~va and ~vb of equation (3.2).

As we know, this is the plane that contains all the optimal paths (including the one

that is drawn). Each optimal path is generated by a particular pair of initial conditions

(S1(0), S2(0)). The three-dimensional plots also display the the optimal paths from our

previous example.4

3.2. Qualitative differences of optimal paths for complements and substi-

tutes. To derive some qualitative differences between optimal paths for complements

and substitutes we now abstract from the specific paths and directly examine the policy

planes and eigenvectors instead. In figure 5 we display the planes for both complements

(grey) and substitutes (white) in one diagram for the emissions of pollutant 1 (figure

5 (a)) and pollutant 2 (figure 5 (b)).5 These diagrams illustrate the difference between

4Note, that, e.g., figure 1 (a) is a projection of figure 3 (a) into the E1 − S1 plane.
5The stead state shifts with ω, but in this representation (deviation from steady state) the steady

states for substitutes and complements coincide.
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optimal policy for complements and substitutes. The planes are tilted in different

directions intersecting along one steady state stock.

Figure 5. Three-dimensional policy rules for pollutants which are

substitutes (ω = 1) or complements (ω = −1) shown in one diagram for

each pollutant.

We are now ready to derive some general properties of the actual optimal paths by

analyzing the planes and eigenvectors for complements and substitutes. In figure 5

we notice that the intersection line of the optimal emission planes for complements

and substitutes in the emissions E1-diagram is located at S2 = 0. The two planes are

mirror-images of each other. Correspondingly, the intersection line in the emissions

E2-diagram is located at S1 = 0. In the appendix we show that this property also

holds without the restrictions (3.3) to (3.5). This observation already characterizes an

important difference between optimal emissions in case of substitutes and complements:

(1) If S2 lies above the steady state, then E1 should always be chosen higher for

substitutes than it would be chosen if those pollutants were complements, re-

gardless of S1:

S2(t) > S∗
2 → E1(S1, S2, ω = 1) > E1(S1, S2, ω = −1) (3.6)

(2) If S2 lies below the steady state, then E1 should always be chosen lower for

substitutes than it would be chosen if those pollutants were complements, re-

gardless of S1:

S2(t) < S∗
2 → E1(S1, S2, ω = 1) < E1(S1, S2, ω = −1) (3.7)

The corresponding rule also holds for E2 and S1. The larger the difference between the

stocks and their steady state values, the larger the difference between optimal emissions
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if those are complements or substitutes, respectively, with respect to the abatement

cost function.

To focus on the issue of complementarity and substitutability we will restrict the

analytical studies to the case of symmetric abatement costs and decay rates. We will

allow, however, for different harmfulness of the pollutants, by assuming (3.3) and (3.4)

but not (3.5). Thus the values for αi may be different. W.l.o.g. the second pollutant

is more harmful than the first (α1 = 1, α2 ≥ 1).

The steady state obviously depends on ω. However, enhancing ω (which also in-

creases the overall abatement cost) does not necessarily increase the optimal steady

state levels of both pollutants:

Proposition 3.2. Let (3.3) and (3.4) hold and assume (w.l.o.g.) α2 ≥ α1 = 1. Then the

following holds:

(1) If ω rises, both the optimal steady state emissions and the steady state pollution

stock rise for the less harmful pollutant, i.e.,
dS∗

1

dω
> 0 and

dE∗

1

dω
> 0.

(2) For the more harmful pollutant the corresponding effects are ambiguous, i.e.,
dS∗

2

dω

>

<
0 and

dE∗

2

dω

>

<
0 .

The proofs of all propositions can be found in the appendix. Referring to the ter-

minology introduced in section 2 (overlap of a level-effect and a substitution-effect)

proposition 3.2 can be interpreted as follows: For the less harmful pollutant the level-

and substitution-effect go into the same direction. For the more harmful pollutant

these effects are counteracting. Here, it is in general not possible to determine which

effect is dominating.6 Furthermore, one can show that the optimal paths need not to

approach the steady state monotonically:

Proposition 3.3. Under assumptions (3.3) and (3.4) there exist initial stocks of pollution

such that optimal emission paths do not behave monotonically.

This result contrasts with earlier findings on additively separable abatement costs

and interaction of the pollutants in the damage function, where in case of identical

decay rates all optimal emission paths behave monotonically over time (Moslener and

Requate (2001)). Further analysis of both the eigenvalues and the eigenvectors leads

to the following result:

Proposition 3.4. Let (3.3) and (3.4) hold. Further, let λs = min[|λa|, |λb|] denote

the “slow” eigenvalue. Then for the corresponding eigenvector (~vs = (Es
1, E

s
2, S

s
1, S

s
2)),

satisfying equation (3.2) we obtain the following property concerning its components:

6In fact, for most parameter values optimal stationary emissions will rise with ω. However, they

might fall, if the pollutants are very close substitutes (ω ≈ η) and if the pollutant is comparatively

more harmful than the other one (i.e. α2 >> α1).
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(1) For ω > 0, sign(Es
1) = sign(Es

2), i.e., for substitutes either both emissions

converge from above or both emissions converge from below towards the steady

state.

(2) For ω < 0, sign(Es
1) 6= sign(Es

2), i.e., for complements optimal emissions of one

pollutant converge from above, while optimal emissions of the other pollutant

converge from below towards the steady state.

The idea of the proof of propositions 3.3 and 3.4, given in the appendix, is to show

that in the representation of the optimal paths, given by equation 3.2, the E1- and E2-

components of the “fast” eigenvector have opposite signs for substitutes and identical

signs for complements. By contrast, the eigenvectors of the “slow” eigenvector have

identical (opposite) signs.

Put differently, for substitutes where an increase of E1 along the iso-cost line tends

to lower E2 the allocation of emissions between E1 and E2 (say, E2

E1

) is comparatively

more important and happens on a faster time scale (motion along an eigenvector where

the E1 and E2 components have opposite signs) than the aggregate pollution. The

aggregate level of emissions (along the eigenvector where the E1 and E2-components

have identical signs) is comparatively less important and converges towards the steady

state on a slower time scale. Since in the neighborhood of the steady state the motion

of the slow time scale always dominates, E1 and E2 will eventually converge towards

the steady state either both from below or both from above. (In figure 1 (substitutes)

both converge from below.)

For complements, by contrast, where along the iso-cost line a decrease of E1 tends to

lower E2 as well, we would intuitively expect E1 and E2 to behave very similar. This

means that the aggregate level of emissions is more important and should be adjusted

on a faster time scale than the allocation between E1 and E2. As a consequence,

the emissions of one pollutant will eventually converge towards the steady state from

below, while the other will come from above. (See, e.g., figure 2.) The following result

tells us how ω influences this motion:

Proposition 3.5. Let assumptions (3.3) and (3.4) hold. Let λf = max[|λa|, |λb|] denote

the “fast” eigenvalue of (3.2). Then ∂λf

∂|ω|
> 0. Therefore, a rising absolute value of ω

induces the different optimal emissions to move faster in opposite (identical) directions

if the pollutants are substitutes (complements).

A rising absolute value of ω means that the substitutability (or complementarity) is

more pronounced. This implies a stronger (positive or negative) correlation between

the two pollutants. Consequently, this increases the difference in the speed of the

convergence processes described after proposition 3.4.
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3.3. Remarks on the general case. Finally, some heuristic remarks on the general

case without the symmetry restrictions (3.3) to (3.5) are in order: A higher harmfulness

of pollutant i (larger αi) leads to optimal emissions rules for E1 and E2 which are both

steeper in the Si-direction. (The planes in figure (5) would become steeper into the

Si-direction.) This is what one would expect since the stock Si of a more harmful

pollutant should be more important for the optimal emissions. The angle between

the optimal-emission-planes of pollutant j for complements (ω = −1) and substitutes

(ω = 1) is increased if the harmfulness of the other pollutant i rises (i.e., through an

increase of αi). That means a rising αi inflates the difference between the optimal

policy for pollutants being complements or substitutes. An increased ratio βi

βj
will have

a similar effect on the policy rule. It means that pollutant i decays comparatively

slower than pollutant j, therefore being more harmful for the environment. This will

again cause an increased difference between ω = 1 and ω = −1 for the optimal emission

level Ej .

We also refrain from pursuing a detailed analysis of the impact of the cost parame-

ters. Intuitively one would expect that if abatement of, say pollutant 1 is comparatively

costly (i.e. a higher η1, other things equal), the optimal level of E1 will vary less with

S1. In other words, for a pollutant with more costly abatement the influence of the pol-

lutant stock is less strong (other things equal). This again feeds back into the optimal

emissions rule for E2 by making S1 less important and therefore declining the difference

between the optimal value of E2 for complements and substitutes, respectively.

4. Implementation of the optimal policy

The optimal path, which can be non-monotonic, as formally described by (3.2) and

as exemplified in figures 1 through 4 looks comparatively complex. Even if (as in our

model) abatement cost and damage functions are perfectly known and both the steady

state and the optimal emission path could be calculated ex ante, it is not obvious how

such a path could be implemented.

As we have noted above, for each pair of initial stocks of the two pollutants, there is

an optimal path, as displayed in figures 3 and 4. All these optimal paths are located in a

4-dimensional hyperplane. For each single pollutant i = 1, 2 we can draw a hyperplane

in the S1/S2/Ei−space as we have done in figures 3 and 4. These two hyperplanes can

also be considered as functions Fi : S1 × S2 → Ei which assign the optimal emission

level (flow) of pollutant i to each pair of pollution stocks. Note that once we are on

that plane, the Ramsey conditions keep the emission path on the plane whereas the

equations of motion for the pollution stocks (2.1) let the optimal path move along the

plane.
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Thus it is sufficient for the regulator to have at hand a pair of tables which represent

the two hyperplanes Fi and which exactly assign the optimal emission levels to each

pair of pollution stocks observed by the regulator. The regulator can then issue two

quantities of permits which exactly correspond to those optimal emission levels. The

permits can only be used in the same period, i.e. banking and borrowing should

not be allowed in this framework of perfect information.7 If the permit markets are

competitive, the permit price will exactly reveal the optimal shadow price of pollution.

If the regulator prefers a system of emission taxes instead of tradeable permits, similar

tables can be set up for the optimal tax rates. In this way the regulator forces the

emissions on the optimal path while the specific shape is determined by the dynamic

nature of the pollutants.

Obviously establishing such tables in practice will not be as easy if the functional

forms are not second order polynomials. However, since all differentiable functions can

be approximated by a second order Taylor series around the steady state, the curvature

properties are the same and the results remain valid. If one wants to deal with non-

linear costs and damages explicitly (or with stock-dependent decay rates) it is possible

to generalize the notion of the policy plane to the notion of a policy 2-manifold. In this

case it would not be possible to represent the optimal paths in terms of the eigenvectors

but explicit simulations would have to be performed and the hyperplane would turn

into a bent 2-dimensional manifold. However, in the tables this would merely change

the numbers but not the mechanism.

The problem becomes more difficult, of either the cost or the damage function are

explicitly time dependent. This would generate a non-autonomous system of coupled

differential equations which cannot be represented in the phase space, meaning that

the policy planes would no more exist in such a simple form.

5. Conclusions and further research

We have set up a model for several accumulating pollutants where abatement of

different pollutants (causing different externalities) does not happen independently.

For illustrative purposes we have focused on the case of two pollutants for the most

part of the paper. For a given (abatement) technology the pollutants can be either

complements or substitutes. Examples for complements may inter alia be efficiency

improvements, examples for substitutes may be end-of-pipe technologies which cause

other emissions, such as CO2 from energy use.

7Banking and borrowing could be useful in a framework of aggregate uncertainty. See Yates and

Cronshaw (2001), or Phaneuf and Requate (2001).
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For pollutants with symmetric abatement costs and identical decay rates optimal

steady state emissions turned out to rise with the degree of substitutability for the less

harmful pollutant while this effect was ambiguous for the more harmful one. Moreover,

optimal paths for complements and substitutes show different behavior. This remains

valid even when the pollutants and other model variables are highly symmetric.

In general our analysis has shown that environmental policy based on the isolated

analysis of only one pollutant may be qualitatively misleading if other pollutants are

involved.

Appendix: Proofs of the Propositions

Policy planes of complements and substitutes are mirror images. We will

now show that the policy planes of complements and substitutes through the steady

state are mirror images of each other with respect to the corresponding Si-plane. The

eigenvalue problem from equations (2.1) and (2.6) which yields the eigenvalues and

eigenvectors spanning the policy planes reads

Σ(ω) ·











E1

E2

S1

S2











=











λE1

λE2

λS1

λS2











(5.1)

with the Jacobian Σ(ω) depending on ω:

Σ(ω) =











[(β1 + r)η1η2 − (β2 + r)ω2] ωη2((β1 + r) − (β2 + r)) η2 −α2
2ω

ωη1((β2 + r) − (β1 + r)) [(β2 + r)η1η2 − (β1 + r)ω2] −ω α2
2η1

1 0 −β1 0

0 1 0 −β2











. (5.2)

To establish that the eigenvectors are transformed into their mirror images when mov-

ing from ω to −ω we need to show: (E1, E2, S1, S2) solves the eigenvalue equation for

ω if (E1,−E2, S1,−S2) solves it for −ω lst8.

Σ(ω) ·









E1

E2

S1

S2









=









λE1

λE2

λS1

λS2









⇔ Σ(−ω) ·









E1

−E2

S1

−S2









=









λE1

−λE2

λS1

−λS2









(5.3)

8Eigenvectors are invariant with respect to their sign and multiplying by a scalar. It is therefore

equivalent to have the minus-sign at E2 and S2 or at E1 and S1.
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We now investigate what will happen to the Jacobian if ω changes sign: The parameter

ω only occurs in the two upper rows. If it occurs only quadratic, its sign does not

matter. Therefore, the sign only changes (i) in row 1 (column 2 and 4); (ii) in row 2

(columns 1 and 3). The equivalence (5.3) can be confirmed by simple calculation.

Proposition 3.2. Setting E∗
i = S∗

i = 0 the steady-state values turn out to be:

S∗
i =

1

det
· emax(r + β)

[

α2
i + β(r + β)(η − ω)

]

(η − ω) (5.4)

where

det = α2
2 + ηβ(1 + α2

2)(r + β) + β2(r + β)2(η2 + ω2). (5.5)

By assumption a2 ≥ a1 = 1 we show
∂S∗

1

∂ω
> 0 and

∂S∗

2

∂ω
to be ambiguous in sign.

dS∗
1

dω
=

1

det2
· emax(r + β) (5.6)

·
[

α4
2 + α2

2β(r + β)(η + α2
2η − 2ω) + β2(r + β)2(α2

2(η
2 + ω2) − 2ηω)

]

(5.7)

The denominator is clearly positive. Recalling |η| > |ω| we see that the numerator

is positive as well, since η + α2
2η − 2ω ≥ 2η − 2ω > 0, and α2

2(η
2 + ω2) − 2ηω >

η2 − 2ηω + ω2 = (η − ω)2 > 0.

dS∗
2

dω
=

1

det2
· emax(r + β) (5.8)

·
[

α2
2 + β(r + β)(η + α2

2η − 2α2
2ω) + β2(r + β)2(η2 + ω2 − 2α2

2ηω)
]

(5.9)

It is easy to confirm that
∂S∗

2

∂ω
may be positive or negative: Setting ω = 0, we see that

the enumerator is positive. Setting ω ≈ η, we see that α2 can be chosen large enough

to lead to a negative enumerator.

The latter proves the proposition and shows that for good substitutes we tend to

have falling stationary state emissions of the more harmul pollutant when ω rises.

q.e.d.

Proposition 3.3. Recall that the optimal path into the steady state can be described

by motion along different directions (eigenvectors) with different characteristic speeds

(eigenvalues). It is therefore sufficient to show that there exists no eigenvector which

has vanishing components in the Ei-directions, i.e. E1 = E2 = 0. This can be done

indirectly by making use of the eigenvalue-equations. (In principle it is also necessary

to show that the eigenvalues are different, but this can directly be seen from their

expressions which are explicitly displayed in the proof of proposition 3.) The eigenvalue

problem is defined by
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Σ ·











E1

E2

S1

S2











=











λE1

λE2

λS1

λS =2











(5.10)

where

Σ =











[(β1 + r)η1η2 − (β2 + r)ω2] ωη2((β1 + r) − (β2 + r)) η2 −α2
2ω

ωη1((β2 + r) − (β1 + r)) [(β2 + r)η1η2 − (β1 + r)ω2] −ω α2
2η1

1 0 −β1 0

0 1 0 −β2











.(5.11)

Setting E1 = E2 = 0 would yield

λ = −β (5.12)

ηS1 − α2
2ωS2 = 0 (5.13)

−ωS1 + α2
2ηS2 = 0. (5.14)

This implies ω = η which is in contradiction to the assumption of our cost function.

To construct a non-monotonic emission path one just has to choose the initial con-

ditions in such a way that the optimal emission path first moves upwards along the

eigenvector with the “fast” eigenvalue and downwards along the eigenvector with the

“slow” eigenvalue.

q.e.d.

Proposition 3.4. We will show that for complements (ω > 0) the negative eigenvalue

of an eigenvector which has positive E1 and E2-components has a smaller absolute

value than the one that corresponds to the eigenvector with different signs of E1, E2.

All four eigenvalues of the problem (5.1) can be represented as follows:

λa,b,c,d = 1
2

(

r ±

√

(η2−ω2)

(

(r+2β)2(η2−ω2)+2
(

η(1+α2)±
√

(α2−1)2η2+4α2ω2

)

)

η2−ω2

)

. (5.15)

The eigenvectors of the stable branches are the negative ones, meaning that the first

(±) (before the outer squareroot) has to be (−) for the stable branches. Instead of the

indices a and b we will use s and f to indicate the eigenvalues belonging to the slow

and fast motion.

The negative eigenvalues for the symmetric case are therefore:

λf,s = 1
2

(

r −

√

(η2−ω2)

(

(r+2β)2(η2−ω2)+2
(

η(1+α2)±
√

(α2−1)2η2+4α2ω2

)

)

η2−ω2

)

. (5.16)
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with (+) for the fast and (−) for the slow motion. The corresponding eigenvectors

have the components

E1 = 1 (5.17)

E2f,s =
η(1 − α2) ∓

√

η2(α2 − 1)2 + 4α2ω2

2α2ω
(5.18)

where we have chosen E1 and calculated E2 accordingly9. Here (−) represents the

fast and (+) the slow motion. For ω > 0 it follows that E2 < 0 for the fast motion

and E2 > 0 for the slow motion. For ω < 0 the signs are reversed. This proves the

proposition.

q.e.d.

Proposition 3.5. Analyzing the comparative dynamics of |λf | we obtain:

dλf

dω
=

1

B(> 0)
· (−ω)

[

(1 + α4)η2 + 2α2ω2 + (1 + α2)η
√

(α2 − 1)2η2 + 4α2ω2
]

. (5.19)

Where B is a lengthy but clearly positive expression. It is therefore irrelevant for the

sign of
dλf

dω
and we just show it for the sake of completeness:

B = (η2 − ω2)
√

(α2 − 1)2η2 + 4α2ω2 ×
√

(η2 − ω2) ((r + 2β)2(η2 − ω2) + 2(η(1 + α2) +
√

(α2 − 1)2η2 + 4α2ω2)).

For ω > 0 we see
dλf

dω
< 0, and for ω < 0 we can confirm

dλf

dω
> 0. Thus in both cases

an increasing |ω| increases |λf |.
q.e.d.
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