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Abstract

Macroeconomic forecasting in recessions is not easy due to the inherent asymmetry of

business cycle phases and the increased uncertainty about the future path of the teetering

economy. I propose a mixed-frequency threshold vector autoregressive model with common

stochastic volatility in mean (MF-T-CSVM-VAR) that enables to condition on the current

state of the business cycle and to account for time-varying macroeconomic uncertainty in

form of common stochastic volatility in a mixed-frequency setting. A real-time forecasting

experiment highlights the advantage of including the threshold feature for the asymmetry as

well as the common stochastic volatility in mean in MF-VARs of di�erent size for US GDP,

in�ation and unemployment. The novel mixed-frequency threshold model delivers better

forecasts for short-term point and density forecasts with respect to GDP and unemployment�

particularly evident for nowcasts during recessions. In fact, it delivers a better nowcast than

the US Survey of Professional Forecasters for the sharp drop in GDP during the Great

Recession in 2008Q4.
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1 Introduction

Central banks, government agencies and the private sector turn to economic forecasts to gauge

the current economic situation and future economic outlook. Having access to precise forecasts

is crucial as a basis of decision-making. Making the right decision is particularly important in an

uncertain and deteriorating economic environment, i.e. during the onset of a recession. Though,

forecasts made at the beginning of recessions tend to err. Dovern and Jannsen (2017) uncover

large systematic negative forecast errors made by professional forecasters for GDP growth during

recessions. Chauvet and Potter (2013) reveal that forecasting GDP growth is generally more

di�cult in recessions than in expansions. In this paper I consider two potential reasons for these

failures: First, insu�cient good use of information about the current state of the business cycle in

real-time. Second, missing information about early business cycle indicators at a higher frequency

than the variable to be predicted. The main contribution of this paper is to combine those two

features into one novel model. Therefore, I set up a mixed-frequency threshold VAR with common

stochastic volatility in mean (MF-T-CSVM-VAR) that simultaneously identi�es the current state

of the business cycle in real-time and incorporates data with di�erent frequencies.

Besides the signi�cant bene�ts of mixed-frequency (MF) models that bear in mind frequency

mismatches for forecasting, i.e. monthly indicators and quarterly GDP (see, i.e., Schorfheide and

Song, 2015), a successful forecasting model needs to account for three well-documented business

cycle characteristics. First, the business cylce can be characterized by the asymmetric dynamics

in expansions and recessions. I model this asymmetry using the threshold feature by means

of two distinct regimes within the VAR framework (T-VAR). This nonlinear VAR framework

takes into account the nature of state dependent shock transmissions (see, i.e, Auerbach and

Gorodnichenko, 2012; Caggiano et al., 2014; Mumtaz and Surico, 2015; Tenreyro and Thwaites,

2016). Second, business cycles can be characterized by co-movements among a broad range

of di�erent macroeconomic variables. Hence, I include a comprehensive business cycle index

composed of a large data set as a predictor and threshold variable to identify the business cycle

regimes in the T-VAR. And third, the business cycle often shares an increase (decrease) in

macroeconomic uncertainty during recessions (expansions) as shown by, among others, Jurado

et al. (2015). Clark (2011) and Clark and Ravazzolo (2015) point out the importance of time-

varying volatilities for precise forecasts to account for changing uncertainty. On that account, I

apply the concept of common stochastic volatility (CSV) as in Carriero et al. (2016) to account

for the change in macroeconomic uncertainty over time. I add common stochastic volatility in

the mean equation (CSVM) of the VAR as uncertainty can endogenously impact macroeconomic

variables (see, i.e., Bloom, 2014; Carriero et al., 2018) and hence, can be bene�cial for forecasting.

I stress the importance of considering these features of the business cycle for small and

medium-scale MF-VARs in a real-time forecasting experiment on US GDP, in�ation (CPI) and

unemployment rate (UR). Overall, the nonlinear small-scale MF-T-VAR and MF-T-CSVM-VAR

outperform their linear competitors on average across all variables and horizons. The best results

are with regard to GDP and unemployment during recessions. The largest gains in relative

forecast accuracy are during the steepest contraction in 2008Q4 during the Great Recession

in which the MF-T-VAR even outperforms the GDP nowcast from the Survey of Professional
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Forecasters (SPF). The medium-scale MF-CSVM-VAR performs best for forecast horizons two to

four quarters ahead in which case it is quite competitive vis-á-vis the SPF for GDP. Accouting for

macroeconomic uncertainty in form of CSVM generally contributes the most to density forecasts

for all models and speci�cally to UR forecasts during recessions for small-scale models.

The novel fully-�edged MF-T-CSVM-VAR is based upon three extensions to the VAR which

makes it �exible by switching on and o� each feature as required. First is the MF-VAR in state-

space form as in Schorfheide and Song (2015) to cope with unobserved low-frequency variables

in mixed-frequency data.1 Second is the T-VAR based on the Bayesian estimation algorithm

proposed by Chen and Lee (1995). And third is the CSV based on Carriero et al. (2016) which

additionally enters the mean equation as in Mumtaz and Theodoridis (2018). I utilize a Gibbs

sampler to draw from each conditional posterior. Since VARs can su�er quite quickly from over-

parameterization and over�tting, I apply shrinkage in form of a Minnesota Prior �rst proposed

by Litterman (1986). I implement a �exible adaptive inverse-Gamma hyperprior on the overall

and cross-variable shrinkage parameters. In case of regime dependent parameters, this prior

setup allows for distinct shrinkage across regimes.

This paper adds to the literature on nonlinear forecast models in real-time with a particu-

lar focus on mixed-frequency, the state of the business cycle, macroeconomic uncertainty and

threshold VARs.2 Alessandri and Mumtaz (2017) reveal a good forecasting performance of a T-

VAR with �nancial condition regimes during the Financial Crisis 2008-2009. Reif (2020) shows

improved forecasts with a T-VAR that includes a macroeconomic uncertainty index and condi-

tions on periods of high and low uncertainty. Furthermore, Segnon et al. (2018) illustrate the

importance of uncertainty on forecasting US GNP growth whereas Pierdzioch and Gupta (2019)

highlight the predictive power of uncertainty on forecasting US recessions. In terms of informa-

tive content of the state of the business cycle, Chauvet and Potter (2013) and Carstensen et al.

(2020) report an improved forecasting performance for AR models in recessions for horizons up

to 2 quarters ahead that incorporate a business cycle factor and recession probabilities as pre-

dictors for US and German GDP, respectively. With regard to mixed-frequency and business

cycle regimes, Bessec and Bouabdallah (2015) and Barsoum and Stankiewicz (2015) use uni-

variate Markov-Switching models to account for the business cycle pattern in a mixed-frequency

approach. They show that these models can accurately date the business cycle and forecast US

GDP growth. Carriero et al. (2015b) reveal the bene�ts of stochastic volatility for forecasting

in a mixed-frequency setup. Most closely related to my study in terms of nonlinear multivariate

mixed-frequency models is the paper by Foroni et al. (2015).3 They apply a Markov-Switching

mixed-frequency bi-variate VAR for improved GDP forecasts. Yet, none of the contributions so

far combine all of these bene�cial features into one comprehensive model.

The remainder of the paper is structured as follows: Section 2 depicts the competing models

and explains the estimation methodology. Section 3 provides a description of the data set and

outlines the forecast setup. Section 4 presents the empirical results and Section 5 concludes.

1Foroni and Marcellino (2013) o�er a detailed survey on di�erent mixed-frequency methods.
2D'Agostino et al. (2013), Barnett et al. (2014), Ferrara et al. (2015) and Aastveit et al. (2017), among others,

provide comprehensive comparisons of di�erent non-linear against linear models following the Great Recession.
3Götz and Hauzenberger (2018) and Heinrich and Reif (2020) combine mixed-frequency and time-varying

parameter VARs, though this does not isolate the impact of the current state of the business cycle on forecasting.
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2 Models

All models are estimated with Bayesian methods and can be written in state space form. The

�rst subsection introduces the mixed-frequency (MF) block as the measurement equation which

is necessary for all models. Subsequently, I present the di�erent transition equations depending

on the respective model. I start with the baseline MF-VAR followed by the common stochastic

volatility in mean (CSVM). Finally, I extend the MF-VAR to the threshold VAR (MF-T-VAR)

with and without CSVM. Thereafter, I describe the estimation algorithm and prior speci�cations.

2.1 Mixed-Frequency

The mixed-frequency block closely follows Schorfheide and Song (2015). Let yt denote an n× 1

vector of observable variables at monthly frequency t which is linked to the latent state vector

zt via the transformation matrix Rt:

yt = Rtzt (1)

where the vector of variables is decomposed into yt = [y′q,t, y
′
m,t]
′ with nq quarterly and nm

monthly variables. This vector contains missing values due to missing intra-quarterly values for

yq,t. Thus, a vector for one quarter is [yt yt−1 yt−2]
′ = [[y′q,t, y

′
m,t]
′ [NaN ′, y′m,t−1]

′ [NaN ′, y′m,t−2]
′]′

with missing values in month t − 1 and t − 2 of each quarter. The state vector includes p lags

for the VAR. Hence, zt = [z′q,t, z
′
m,t]
′ is an n(p + 1) × 1 vector where zq,t = [ỹ′q,t, . . . , ỹ

′
q,t−p]

′ is

the unobserved quarterly variable at monthly frequency. zm,t = [y′m,t, . . . , y
′
m,t−p]

′ is the vector

of observed monthly variables.

The transformation from quarterly to monthly frequency is done according to a geometric

mean of quarterly variables in levels Yq,t as in Mariano and Murasawa (2003):

Yq,t = (Ỹq,tỸq,t−1Ỹq,t−2)
1/3 (2)

∆3 ln(Yq,t) = yq,t = (1/3 ỹq,t + 2/3 ỹq,t−1 + ỹq,t−2 + 2/3 ỹq,t−3 + 1/3 ỹq,t−4). (3)

where the lower case denotes growth rates. Rt is a time-varying transformation matrix:

Rt =
[
R1,t R2,t

]′
(4)

R1,t =
[
1/3 ∗ Inq 0nq×n−1 2/3 ∗ Inq 0nq×n−1 Inq 0nq×n−1 2/3 ∗ Inq 0nq×n−1 . . .

1/3 ∗ Inq 0nq×n−1 0nq×(p−4)n

]
(5)

R2,t =
[
0n−nq×1 In−nq 0n−nq×pn

]
. (6)

The time variation in Rt follows Durbin and Koopman (2001) to deal with missing observa-

tions in yt. If a variable is not observed at time t, the respective row in equation (1) is deleted

and thus skipped in the respective estimation step of the Kalman �lter.
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2.2 Mixed-Frequency VAR

Conditional on the latent ỹq,t, the n × 1 vector ỹt = [ỹ′q,t, y
′
m,t]
′ is modeled as a standard VAR

with p lags, constant parameters and homoscedasticity:

ỹt = A0 +

p∑
l=1

Alỹt−l + ut ut ∼ N (0,Ω) (7)

where A0 is an n × 1 vector of intercepts, Al is n × n matrix of coe�cients for l = 1, . . . , p

and ut denotes the n×1 error vector with a constant variance-covariance matrix Ω. The VAR(p)

can be rewritten as a VAR(1) and completes the state space model with equation (1) for the

MF-VAR:

zt = C +Azt−1 + υt υt ∼ N (0,Ξ) (8)

where zt = [ỹ′t, . . . , ỹ
′
t−p]

′. C and A contain A0 and A1, . . . Ap, respectively, in the �rst n rows

for the VAR dynamics. Ξ contains Ω in the �rst n rows for the variance-covariance matrix.

2.3 Common Stochastic Volatility in Mean

Common Stochastic Volatility (CSV) is based on Carriero et al. (2016). They exploit the �nding

that stochastic volatilities of di�erent variables often share a comparable pattern and thus, a

single volatility factor is su�cient to capture the bulk of time variation in volatility. I extract

a common factor ft with loadings all restricted to one by decomposing the variance-covariance

matrix of the error vector ut ∼ N (0, ftΣ) from equation (7). The matrix Σ captures the di�erence

in scaling among the variables and ft accounts for the time-variation resulting in a time-varying

variance-covariance matrix Ωt = ftΣ.

This concept can be further enhanced by implementing CSV in the mean equation of the

VAR (CSVM) :

ỹt = A0 +

p∑
l=1

Alỹt−l + bht−1 + Σ1/2f
1/2
t εt εt ∼ N (0, I) (9)

where ht−1 = ln(ft−1) is the log volatility and Σ1/2 is a lower triangular matrix such that

V ar(ut|ft) = (Σ1/2f
1/2
t )(Σ1/2f

1/2
t )′ = ftΣ = Ωt. ht follows a random walk law of motion:

ht = ht−1 + ςt ςt ∼ N (0, φ) (10)

which is, on the one hand, a parsimonious speci�cation and on the other hand, as shown by

Clark and Ravazzolo (2015), comparable in forecast accuracy to other speci�cations.

2.4 Mixed-frequency Threshold VAR

The mixed-frequency Threshold VAR (MF-T-VAR) separates the linear VAR into di�erent

regimes, which in my case are expansions and recessions. The regimes are identi�ed by a thresh-

old variable y∗t−d in form of a monthly business cycle index from the observed monthly vector
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ym,t, the delay parameter d and the respective threshold value r such that the VAR dynamics

are modeled as follows:

ỹt = A0,St +

p∑
l=1

Al,St ỹt−l + Σ
1/2
St
εt εt ∼ N (0, I) (11)

with St =

1 if y∗t−d ≤ r

2 otherwise.
(12)

This model allows for di�erent VAR coe�cients A0,St , . . . , Ap,St and variance-covariance ma-

trix V ar(ut) = Σ
1/2
St

(Σ
1/2
St

)′ = ΩSt across regimes.

Furthermore, I extend the MF-T-VAR with common stochastic volatility in mean (MF-T-

CSVM-VAR) such that equation (11) changes to:

ỹt = A0,St +

p∑
l=1

Al,St ỹt−l + bStht−1 + Σ
1/2
St
f
1/2
t εt εt ∼ N (0, I) (13)

and hence, V ar(ut|ft) = (Σ
1/2
St
f
1/2
t )(Σ

1/2
St
f
1/2
t )′ = ftΣSt = Ωt,St . On the one hand, the matrix

ΣSt allows for di�erent scalings across the regimes. On the other hand, the factor ft grants time

variation within the regime and permits feedback through the mean equation. Again, the law of

motion for ht follows a random walk as in equation (10).

Together with the measurement equation (1), the MF-T-CSVM-VAR(p) can be written down

as a MF-T-CSVM-VAR(1) in state space form:

zt = CSt +AStzt−1 +BStht−1 + υt υt ∼ N (0,Ξt,St). (14)

where zt = [ỹ′t, . . . , ỹ
′
t−p]

′. CSt and ASt contain A0,St and A1,St , . . . Ap,St , respectively, in the

�rst n rows for the VAR dynamics. BSt contains bSt in the �rst n rows for the CSVM part. Ξt,St

contains Ωt,St in the �rst n rows for the time-varying variance-covariance matrix. A detailed

description of the state space form of the MF-T-CSVM-VAR is in Appendix A.

2.5 Prior Speci�cation and Estimation

I estimate all VARs with an independent Normal-inverse-Wishart prior and impose Minnesota

shrinkage on the VAR coe�cients. This prior setup is more �exible compared to the dependent

Normal-inverse-Wishart prior since the independence allows for cross-variable shrinkage in the

variance component of the Normal prior amplifying forecast accuracy (see Carriero et al., 2015a).

The prior mean on the �rst lag is 0 (0.9) if the respective variable is non-persistent (persistent)

since all variables are transformed to be stationary (see Karlsson, 2013, for variations on the

Minnesota prior). The prior variance for row j and column i of the coe�cient matrix of lag l is

set as follows:
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V ar(Aj,il ) =



λ1
l2

if i = j
λ1λ2σ2

jj

l2σ2
ii

if i 6= j

λ1λ3σ2
jj

l2σ2
ii

if i 6= j ∧ j = y∗

1000 if l = 0

(15)

where σii is the residual standard error of an AR(p) for variable i. The amount of shrinkage

is determined by the vector of hyperparameters Λ = [λ1, λ2, λ3]
′. λ1 governs the overall and

λ2 the cross-variable shrinkage. Hence, it is assumed that lags on other variables contain less

information compared to own lags if λ2 < 1. Though, since the main concept of this paper is

build around the importance of the business cycle, I apriori assume a stronger in�uence from

the business cycle variables, namely the monthly BC index y∗ and the log of the volatility factor

ht. Hence, I add λ3 as an extra shrinkage parameter (denoted as BC shrinkage hereafter).4 I

facilitate regime-dependent shrinkage for the T-VARs to examine whether shrinkage is di�erent

in recessions and expansions, thus Λ is di�erent across regimes ΛSt for St = 1, 2. The vector of

shrinkage parameters is estimated using an inverse-Gamma hyperprior:5

p(λi) ∼ IG(α, βi) i = 1, 2, 3

with shape α = 0.1 and scale βi = 0.044 for i = 1, 2 and scale βi =
√

0.044 for i = 3 chosen

such that it is weakly informative and has a mode of 0.04 for i = 1, 2, which is in line with

common values used for US data, and a mode of 0.2 which assigns apriori less shrinkage for the

business cycle variables.6

The prior scale matrix for the inverse-Wishart is diagonal where the diagonal elements are

the residual variances of ARs(p). The degrees of freedom are set to a minimum n+2 to resemble

a rather loose prior. I follow Carriero et al. (2016) for the CSV by using an inverse-Gamma

prior for the variance φ with mean 0.01 and scale 4. The stochastic volatility factor ft has a

Normal prior with mean 1 and variance 0.5. I �x f0 = 1 for identi�cation. I assume a uniform

prior for the delay parameter d ∼ U(1, p) as well as for the threshold parameter r ∼ U(y∗q , y
∗
1−q),

where q = 0.10 denotes the quantile of the threshold variable to avoid identi�cation of outlier

regimes instead of business cycle regimes. Further details on prior and initial values are given in

Appendix B.

I estimate the fully-�edged MF-T-CSVM-VAR with a Metropolis-within-Gibbs sampler. All

the remainder models can be estimated by simply turning o� the respective step within the

4A comparison between the standard cross-variable shrinkage λ3 == λ2 and the BC shrinkage λ3 6= λ2 with
respect to their point forecast accuracy is in Appendix E.

5The concept of the Normal-inverse-Gamma mixture prior follows the idea of Geweke (1993) who shows that
if α = β, this is equivalent to a Student-t prior (see also Korobilis, 2013).

6See, e.g., Alessandri and Mumtaz (2017) for a T-VAR with overall shrinkage λ1 and Carriero et al. (2015a)
for the same value for cross-variable shrinkage λ2. The mode of λ3 is 5 times larger than the mode of λ1 and λ2

due to the importance of the monthly BC index for estimating the latent monthly GDP. The value approximately
resembles the strong correlation between the BC index and GDP at quarterly frequency. This correlation is,
depending on the data vintage, between 4 and 5.5 times larger than the second highest correlation for GDP.
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sampler. The conditional MF part is estimated along the lines of Schorfheide and Song (2015)

with a Kalman �lter. The conditional T-VAR is based on Chen and Lee (1995). Hence, r is

drawn with a random walk Metropolis-Hastings. The prior for λi is natural conjugate for the

conditional posterior distribution and thus, follows an inverse-Gamma distribution. The draws

for the stochastic volatility are carried out with the algorithm of Jacquier et al. (2002).7 The

MCMC sampler has 30000 draws. The �rst 25000 are burn-in draws while the last 5000 draws

are for inference. The lag length is set to p = 6 as in Schorfheide and Song (2015). A detailed

description of the sampler is in Appendix C.

2.6 Now- and Forecasting Density

The predictive densities are simulated within the MCMC sampler. Let T denote the size of the

respective real-time data vintage. Since real-time data contains ragged edges due to publication

lags, the Kalman �lter �lls in missing values at the end of each vintage up to T . I apply iterated

multistep forecasts ỹT+hm for the remaining monthly forecast horizons hm = 1, . . . , 12, which are

drawn at iteration s of the MCMC sampler for the MF-T-CSVM-VAR from:

p(ỹ
(s)
T+hm

|ỹ(s)1:T+hm−1, θ
(s)
ST+hm

)

∼ N (C
(s)
ST+hm

+A
(s)
ST+hm

ỹ
(s)
(T+hm−p:T+hm−1) + b

(s)
1,ST+hm

h
(s)
T+hm−1,Ω

(s)
T+hm,ST+hm

) (16)

where ỹ1:T = [ỹ1, . . . , ỹT ]′ and θ contains all remaining parameters of the model. For both

T-VARs, the �rst forecast is conditional on the state St at time T and evolves according to

equation (12) with respect to the threshold value r(s). I draw a sequence of f
(s)
T+hm

common

volatility factors for hm = 1, . . . , 12 according to the random walk law of motion as in equation

(10) to forecast the time varying volatilities Ω
(s)
T+hm,ST+hm

= f
(s)
T+hm

Σ
(s)
ST+hm

.

3 Data and Forecast Setup

3.1 Data Setup

The data set includes US real-time data covering March 1967 until December 2017 from the

Archival FRED database and the FRED-MD monthly database provided by McCracken and

Ng (2016). The historical vintages start in February 2001 up to December 2017. This provides

a total of 203 vintages including the 2001 and 2008/09 recession for the real-time forecasting

experiment. The target variables to be forecasted are Real Gross Domestic Product (GDP), the

Unemployment Rate (UR) and the Consumer Price Index (CPI).

I distinguish between two variable sets with respect to size�a small-scale and a medium-scale

set. Since GDP is in quarterly frequency, the small-scale set requires a monthly business cycle

index to accurately estimate the intra-quarterly values of GDP. Here I distinguish between two

indices. As a benchmark index, I choose Industrial Production (IP) as it is generally considered

7This algorithm draws ft date by date for t = 1, . . . , T instead of in one block as in Kim et al. (1998). Hence,
it can accommodate the stochastic volatility in mean.
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to be good predictor for GDP (see, i.e., Foroni et al., 2015; Brave and Butters, 2010). Since the

business cycle is characterized by co-movements among a broad range of di�erent macroeconomic

variables, I utilize the Chicago Fed National Activity Index (CFNAI) as a more comprehensive

business cycle index. The index is based on the �rst principle component from a data set

containing 85 monthly macroeconomic variables. I choose this index for three reasons. First,

the index allows for accurately classifying the economy into recessions and expansions (see, i.e.,

Berge and Jorda, 2011; Brave, 2009) and hence, can be used as a threshold variable in equation

(12). Second, it is good for nowcasting GDP (see Brave and Butters, 2014). And third, it starts

quite early in March 1967, is in monthly frequency and the real-time data vintages are publicly

available since February 2001. As the index neither cover interest rates nor stock market data,

I additionally include in both small-scale sets the yield spread (YS), measured as the di�erence

between the 10-year and the 3-month treasury bill rate, and the S&P 500 index. Both variables

are good predictors for the business cycle (see, i.e., Chauvet and Potter, 2005; Liu and Moench,

2016) as well as for the target variables (see, i.e., Estrella and Mishkin, 1997; Estrella, 2005;

Evgenidis et al., 2020). Hence, the two small-scale sets include GDP, CPI, UR, YS, S&P 500

and IP or CFNAI as a business cycle index.

The medium scale set is based on the evidence in the literature that medium-scale VARs

in many cases outperform small-scale VARs (see, i.e., Ba«bura et al., 2010; Koop, 2013). Car-

riero et al. (2019) shown that large-scale VARs in many cases do not outperform medium-scale

VARs with 13-14 hand-picked variables. Hence, I append the small-scale set with two important

variables from each of the four categories of the CFNAI�namely, 1) production and income, 2)

labour market, 3) personal consumption and housing and 4) sales, orders and inventories�in ex-

change for the CFNAI.8 This provides me with 13 variables for the medium-scale set and allows

to analyse whether the CFNAI index alone or the individual variables are crucial for precise fore-

casts. These variables are Industrial Production, Capacity Utilization, Average Weekly Hours,

All Employees-Total Nonfarm, Housing Starts, Real Personal Consumption Expenditures, Real

Manufacturing and Trade Sales and New Orders Durable Goods. This variable set is quite stan-

dard for medium-scale VARs for US data and is similar to data sets of other US studies (see,

i.e., Schorfheide and Song, 2015; Carriero et al., 2016, 2019).

All variables are transformed to be stationary. The CFNAI is taken as a real-time three

month moving average to �lter out some of the volatility since it is shown to better re�ect the

business cycle. Table 1 provides a quick overview about the included variables in each set. A

full list of all variables with the respective transformation and source is in Appendix F.

8The importance is measured in terms of factor loadings in the principle component analysis. Furthermore, the
choice is also based on availability in real-time over the time span February 2001 - December 2017. A full list of all
monthly indicators and their loadings can be found here: https://www.chicagofed.org/~/media/publications/
cfnai/background/cfnai-background-pdf.pdf.
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Table 1: Sets of Variables

Small Benchmarkb Small Mediummed

GDP x x x

CPI x x x

Unemployment Rate x x x

Yield Spread x x x

S&P 500 x x x

CFNAI x

Industrial Production x x

Capacity Utilization x

Average Weekly Hours x

Employment x

Housing Starts x

Consumption x

Manufacturing & Trade Sales x

New Orders Durable Goods x

Notes: For the remainder, a model M with a medium variable set is denoted by Mmed and the benchmark model
with Mb. A list of the data with source and transformation can be found in Appendix F.

Combining the data sets with the di�erent models described in Section 2, I analyse a total

of seven models for the forecasting experiment:9

1. MF-VARb: Mixed-frequency VAR (small benchmark)

2. MF-VAR: Mixed-frequency VAR (small)

3. MF-CSVM-VAR: Mixed-frequency VAR with common stochastic volatility in mean (small)

4. MF-T-VAR: Mixed-frequency threshold VAR (small)

5. MF-T-CSVM-VAR: Mixed-frequency threshold VAR with common stochastic volatility in

mean (small)

6. MF-VARmed: Mixed-frequency VAR (medium)

7. MF-CSVM-VARmed: Mixed-frequency VAR with common stochastic volatility in mean

(medium)

3.2 Forecast Setup

I apply an expanding window to the 203 real-time data vintages from February 2001 until Decem-

ber 2017. Since GDP is in quarterly frequency, all forecasts are evaluated at h = 1, . . . , 4 quarters

9Due to the nonlinearity, T-VARs become quite tedious and time-consuming to estimate with increasing scale.
Hence, I do not include medium-scale T-VARs.
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ahead which relates to the quarterly averages of monthly forecast hm = 1, . . . , 12. Monthly GDP

is taken in quarterly growth rates via the transformation matrix Rt in equation (4). Hence, in the

end I obtain quarterly averages of monthly GDP in quarterly growth rates, quarterly averages of

monthly CPI in�ation and quarterly averages of monthly unemployment rates as �nal forecast

values.

The timing and availability of the data is vital since forecasts are made in real-time. I assume

that forecasts are made at the end of each month as the CFNAI is published in the last week of

the month and is crucial for the estimation of the threshold VAR. The forecaster has only the

information at its disposal as in real-time. Thus, the data set includes so called �ragged edges�

due to publication lags and data revisions. Only the yield spread and the S&P 500 are available

without a lag. All other variables have a publication lag according to the ALFRED and Fred

MD real-time data base.

The timing is crucial for h = 1 which constitutes a nowcast as it refers to the quarter in which

the forecast is made. Lets take for example the real-time data vintage 2008M2 for nowcasting

2008Q1. The publication lags at the end of the vintage for January to February 2008 are �lled

with forecasts by the Kalman Filter, while the forecast for March 2008 is simulated by equation

(16) for hm = 1. Thus, the quarterly nowcast h = 1 is an average of January, February and

March, where January and February are from the Kalman Filter and March from forecast hm = 1.

4 Results

This section starts with a brief presentation of the in-sample and out-of-sample results concerning

the regime identi�cation of the MF-T-CSVM-VAR.10 Next, I show in-sample results with respect

to shrinkage and common stochastic volatility. After that, I present the results from the out-

of-sample forecasting experiment. The forecast accuracy is evaluated with respect to point and

density forecasts and conditional on recession and expansion subsamples. Furthermore, I compare

the nowcast accuracy against the Survey of Professional Forecasters with a special focus on the

Great Recession.

4.1 Regimes

The important feature of T-VARs is the ability to separate samples into di�erent regimes in

a data driven manner de�ned by the threshold variable. Figure 1a depicts the Chicago Fed

National Activity Index along with the estimated threshold r and the regime St = 1 for the �nal

data vintage 1967M4-2017M12. The state St = 1 clearly identi�es a recession regime as it closely

matches the NBER recessions. Furthermore, the threshold value of −0.59 is similar to the one

found in Berge and Jorda (2011) with −0.72 and thus con�rms the good ability of the CFNAI

for classifying economic activity into recessions and expansions.

Since the CFNAI includes monthly economic indicators, which are prone to revisions, Figure

1b displays the real-time out-of-sample nowcast results for the regimes together with the time

varying threshold value r over the expanding recursive out-of-sample 2001M2-2017M12. The

10Results for the MF-T-VAR are quantitatively similar and available upon request.
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threshold value is quite stable over time. It starts at roughly -0.7 and remains around that value

in the �rst part of the out-of-sample period. After that, it increased slightly to approximately -0.6

right after the Great Recession in 2009. Overall, the real-time estimates signi�cantly di�er to the

�nal estimates only in three occasions�the beginning and the end of the Great Recession and the

2008M8 vintage. These di�erences are due to revisions. The onset of the Great Recession as well

as the short recovery in 2008M8 have been revised downwards quite heavily at a later vintage.

Furthermore, the Great Recession regime prevails 6 month longer out-of-sample compared to

only 2 month longer in-sample. Again, this is evident in data revisions as the index has been

revised upwards at a later stage. In summary, the CFNAI is able to accurately and timely date

the business cycle in-sample and out-of-sample.

Figure 1: Chicago Fed National Activity Index and Threshold Regimes

(a) In-sample

(b) Out-of-sample

Notes: Panel (a) corresponds to the in-sample estimation of the �nal data vintage 1967M4-2017M12. Panel(b)

corresponds to the real-time recursive out-of-sample nowcasts 2001M2-2017M12. Hence, each point t on the x-axis

corresponds to the information set as of period t. The solid and the dashed red line denote the mode and mean of

the posterior densities of the recession regime St = 1 and the threshold value r, respectively. The blue solid line

displays the three-month-moving average of the Chicago Fed National Activity Index. Shaded areas correspond

to the recessions dated by the NBER.
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4.2 In-sample Results

Table 2 displays the posterior mean of the shrinkage parameters. According to equation (15),

a lower value for λi is associated with stronger shrinkage. Four points deserve to be stressed

here. First, the amount of shrinkage increases with model size as in Ba«bura et al. (2010).

Second, there is strong cross-variable shrinkage which is in line with Carriero et al. (2015a).

Third, the shrinkage for the business cycle variables, CFNAI and CSVM, is less than for the

remaining variables. This is a �rst indication of the importance of those variables for accurate

forecasts. And fourth, there is a stronger overall shrinkage and less cross-variable shrinkage in

the recession regime implying that information emerging from other variables can be crucial for

forecasts during recessions where information coming from their own past is more important in

expansions.

Table 2: Shrinkage

MF
MF-

CSVM
MF-T

MF-T-

CSVM
MFmed

MF-

CSVMmed
MFb

Overall, Cross-Variable and BC Shrinkage

λ1
St = 1

St = 2
0.275 0.181

0.131

0.208

0.069

0.162
0.112 0.120 0.096

λ1λ2
St = 1

St = 2
0.005 0.002

0.007

0.003

0.003

0.002
0.003 0.002 0.010

λ1λ3
St = 1

St = 2
0.028 0.016

0.038

0.035

0.016

0.015
- 0.042 -

Notes: λi refers to posterior mean and λiλj to posterior mean of the product. A larger value implies less shrinkage.
Since the medium-scale MFmed and benchmark MFb do neither contain the CFNAI index nor the CSVM, they
do not include any BC shrinkage via λ3. St = 1 identi�es the recession regime.

Figure 2 shows the common stochastic volatility for the �nal vintage for the MF-CSVM-VAR

and the MF-T-CSVM-VAR. Both models show qualitatively similar results. Though, the values

for the MF-T-CSVM-VAR are somewhat smaller during recessions since the model accounts for

the di�erence in scaling across business cycle regimes due to Σ1 6= Σ2 in equation (13). Up to

1987 one can observe a period of high volatility with its peak around the recession 1980-1981. The

prolonged period of low volatility from 1987 until 2007 is referred to as the Great Moderation.

The Great Recession induce another strong increase in volatility around 2008/2009 followed by

a subsequent slow-down to levels similar to the Great Moderation. This supports the �nding of

Clark (2009) that the Great Recession only interrupts the Great Moderation, but does not end

it. Overall, the pattern closely follows the macroeconomic uncertainty index by Jurado et al.

(2015). Hence, the volatility factor corresponds closely to the macroeconomic uncertainty which

spikes upwards in most recessions. This pattern is also well re�ected in the volatility of the

monthly GDP estimates (see Figure 6 in Appendix D).
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Figure 2: Common Stochastic Volatility

Notes: The lines indicate the posterior mean from the common stochastic volatility factor ft as standard devia-

tions. The red solid line and blue dashed line refer to MF-CSVM-VAR and MF-T-CSVM-VAR, respectively, from

the �nal data vintage. Shaded areas correspond to the recessions dated by the NBER. Sample: 1967M4-2017M12.

4.3 Point Forecast Evaluation

The point forecast accuracy is measured as the root-mean-squared error (RMSE):

RMSEMh =

√
1

Tf

∑
t

(
yt+h − ŷMt+h

)2
(17)

relative to the benchmark model:

relative RMSEMh =
RMSEMh
RMSEbh

, (18)

where M denotes the model, b the benchmark model, ŷt+h the posterior mean as the point

forecast, yt+h the actual value and Tf the recursive sample size. I apply a Diebold-Mariano

test with Newey-West standard errors to roughly gauge the statistical signi�cance of the results.

GDP is measured in annualized percentage changes for comparison with the SPF in Section 4.5.

Table 3 displays the relative RMSE for the full out-of-sample period. The best performance on

average across all horizons and variables is obtained for the MF-T-CSVM-VAR with a reduction

of 11% in relative RMSEs. The MF-T-VAR shows the highest relative forecasting accuracy in

terms of nowcasting. In contrast, both medium-scale VARs reveal their strength with increasing

forecasting horizon. The CSVM contributes the most for forecast horizons exceeding the nowcast

h > 1 and for the UR.

For GDP, we can observe a signi�cant gain in nowcast accuracy with regard to the MF-VAR

and MF-T-VAR by 12%. The MF-CSVM-VARmed reveals the best accuracy with gains up to 15%

for horizons h > 1. In terms of CPI, only models that include CSVM can signi�cantly improve

the benchmark, whereas the relative improvements are rather moderate with maximum 9%. In

contrast, the relative improvements for UR are the largest, though they are rarely signi�cant.
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Of notable mention here is the MF-T-CSVM-VAR with relative gains up to 22%. Again, the

MF-T-VAR shows a strong performance for the nowcast.

Table 3: Relative RMSEs

Model h=1 h=2 h=3 h=4

GDP

MF-VAR 0.88∗∗∗ 0.91∗∗∗ 0.93∗∗∗ 0.98∗∗

MF-CSVM-VAR 0.93 0.90∗∗ 0.90∗∗∗ 0.95∗∗

MF-T-VAR 0.88∗∗∗ 0.92∗∗ 0.91∗∗∗ 0.93∗∗∗

MF-T-CSVM-VAR 0.90∗∗∗ 0.90∗∗ 0.88∗∗∗ 0.92∗∗∗

MF-VARmed 0.90∗ 0.88∗∗ 0.86∗ 0.87∗∗

MF-CSVM-VARmed 0.93 0.87∗∗∗ 0.85∗∗∗ 0.86∗∗∗

MF-VARb 0.50 0.63 0.68 0.67

In�ation

MF-VAR 1.00 1.03 0.99 0.99
MF-CSVM-VAR 0.99 0.97∗∗∗ 0.95∗∗∗ 0.96∗∗∗

MF-T-VAR 0.97 1.01 1.00 0.99
MF-T-CSVM-VAR 0.98 0.96∗ 0.97 0.96∗∗

MF-VARmed 0.99 0.98 0.96 0.94
MF-CSVM-VARmed 0.98∗∗ 0.97∗ 0.94∗∗ 0.91∗∗∗

MF-VARb 0.21 0.29 0.28 0.28

Unemployment Rate

MF-VAR 0.92 0.88 0.89 0.90∗

MF-CSVM-VAR 0.89 0.80∗ 0.79∗ 0.80∗∗

MF-T-VAR 0.84∗ 0.84∗ 0.88∗ 0.90∗

MF-T-CSVM-VAR 0.85 0.78∗ 0.80∗ 0.81∗

MF-VARmed 1.00 1.03 1.07 1.09
MF-CSVM-VARmed 1.00 0.97 0.96 0.96
MF-VARb 0.16 0.39 0.63 0.87

Notes: The relative RMSEs are expressed as ratios relative to the benchmark model. A �gure below unity indicates
that the model outperforms the benchmark. The benchmark is reported in absolute terms in italic �gures (the
last column of each panel). Bold �gures indicate the best performance for the variable and horizon. ∗, ∗∗and
∗∗∗denote signi�cance at the 10%, 5% and 1% level, respectively, according to the Diebold-Mariano test with
Newey-West standard errors. GDP is measured in annualized growth rates. Out-of-sample: 2001M2-2017M12.

Since the paper emphasizes the relationship between the state of the business cycle and

forecasting, it is of particular interest to examine the two regimes, recession and expansion,

separately. Therefore, I divide the sample into two subsamples consistent with the recession and

expansion dates according to the NBER business cycle dating committee. The left and right panel

of Table 4 present the relative RMSE for the recession and expansion subsample, respectively.

For the recessions, the highest precision across all horizons and variables on average is shown

by the MF-T-CSVM-VAR with a reduction of 15% in relative RMSEs which improved by 4%

compared to the full sample. Moreover, two additional results stand out. First, the relative

nowcast precision of the T-VARs increased even more for GDP and UR compared to the full

sample. The MF-T-VAR is best for GDP with a reduction of 15%. The MF-T-CSVM-VAR

reduces the relative RMSE of UR by 38%. Second, gains in forecast accuracy for the CPI are
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again rather moderate and often insigni�cant. However, it is a di�erent story for the expansion

subsample. The MF-CSVM-VAR works well with a drop of 4% in relative RMSE on average

over all variables and horizons. It is also noticeable that every model with CSVM beats its

counterpart without CSVM during expansions with largest gains again for the UR.

Table 4: Relative RMSEs for Recessions and Expansions

NBER Recessions NBER Expansions
Model h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4

GDP

MF-VAR 0.93∗∗ 0.92 0.93∗∗ 0.97∗∗ 0.86∗∗∗ 0.90∗∗∗ 0.93∗∗∗ 0.99
MF-CSVM-VAR 1.05 0.92 0.90∗∗ 0.93∗∗∗ 0.88∗∗∗ 0.89∗∗ 0.91∗∗ 0.97
MF-T-VAR 0.85∗∗∗ 0.94∗∗ 0.93 0.91∗∗ 0.90∗∗ 0.90∗ 0.89∗∗∗ 0.94
MF-T-CSVM-VAR 0.91∗∗ 0.91 0.88∗∗ 0.90∗∗ 0.90∗∗ 0.89∗ 0.88∗∗∗ 0.93∗

MF-VARmed 0.93 0.92 0.90 0.87 0.89 0.84∗∗ 0.83∗ 0.86
MF-CSVM-VARmed 0.98 0.94 0.89 0.87∗∗ 0.92 0.82∗∗∗ 0.82∗∗ 0.85∗∗

MF-VARb 0.75 1.13 1.29 1.27 0.45 0.51 0.53 0.53

In�ation

MF-VAR 1.03 1.06 1.03 1.01 0.98∗∗∗ 0.99 0.96∗∗∗ 0.97∗∗∗

MF-CSVM-VAR 1.02 0.99 0.97∗∗∗ 0.98∗ 0.96∗∗∗ 0.93∗∗∗ 0.94∗∗∗ 0.94∗∗∗

MF-T-VAR 0.96 1.04 1.04 1.01 0.99 0.97 0.96∗∗ 0.96∗∗

MF-T-CSVM-VAR 0.98 0.99 0.98 0.98 0.98 0.93∗∗ 0.95∗∗ 0.95∗∗

MF-VARmed 1.01 1.03 1.02 0.98 0.96∗∗∗ 0.92∗∗∗ 0.90∗∗∗ 0.90∗∗

MF-CSVM-VARmed 1.01 1.00 0.98 0.95 0.96∗∗∗ 0.92∗∗∗ 0.90∗∗∗ 0.88∗∗∗

MF-VARb 0.41 0.60 0.54 0.52 0.16 0.20 0.22 0.22

Unemployment Rate

MF-VAR 0.72∗∗ 0.75∗∗ 0.80∗∗∗ 0.83∗∗∗ 1.04 1.05 1.08 1.05
MF-CSVM-VAR 0.66∗∗ 0.64∗∗ 0.69∗∗∗ 0.73∗∗∗ 1.02 0.99 0.99 0.95
MF-T-VAR 0.64∗ 0.73∗∗ 0.80∗∗∗ 0.83∗∗∗ 0.96 0.97 1.05 1.06
MF-T-CSVM-VAR 0.61∗ 0.61∗∗ 0.68∗∗∗ 0.72∗∗∗ 0.98 0.99 1.04 1.02
MF-VARmed 0.82∗ 0.80∗ 0.78∗∗ 0.77∗∗ 1.11∗ 1.30∗∗∗ 1.57∗∗∗ 1.67∗∗∗

MF-CSVM-VARmed 0.94 0.87 0.84∗ 0.83∗∗ 1.04 1.09 1.22∗∗ 1.26∗∗∗

MF-VARb 0.29 0.84 1.48 2.07 0.13 0.26 0.36 0.48

Notes: The relative RMSEs are expressed as ratios relative to the benchmark model. A �gure below unity
indicates that the model outperforms the benchmark. The benchmark is reported in absolute terms in italic
�gures (the last column of each panel). Bold �gures indicate the best performance for the variable and horizon.
∗, ∗∗and ∗∗∗denote signi�cance at the 10%, 5% and 1% level, respectively, according to the Diebold-Mariano test
with Newey-West standard errors. GDP is measured in annualized growth rates. The left and right panel refers
to periods that the NBER identi�es as recessions and expansions, respectively. Out-of-sample: 2001M2-2017M12.

Since the results with respect to the business cycle regimes indicate a signi�cant di�erence

in forecast performance for GDP and UR, it is of peculiar interest to examine the development

of the relative RMSE over time for both variables. Thereby, I focus on the nowcast of GDP and

UR as they reveal the largest gains in recessions. Figure 3 depicts the cumulative sum of RMSE

for the nowcast of GDP and UR. I subtract the cumulative sum of the benchmark model such

that positive values indicate a better performance and the benchmark is indicated by a zero line.

Regarding GDP, the MF-T-VAR improves upon all models during and following the �rst
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recession in 2001. Thereafter, the accuracy converges among all models up to the point that

they fail to beat the benchmark. All models start to improve after 2006 but diverge considerably

with the start of the Great Recession, more speci�cally, during the largest decline of GDP in

2008Q4 in which the MF-T-VAR outperforms all other models by quite a margin. One can see

another large kink in the �rst quarter of 2011 during which the GDP slumps by roughly 1%.

Though, in this occasion all models equally enhance relative the benchmark.

In contrast, UR depicts a more stable pattern. Right from the �rst sharp increase in the UR

in the middle of 2001, the MF-T-VAR starts to steadily improve upon all other models, with

a sharp increase again during the Great Recession. Following the Great Recession, all linear

models decline relative to the benchmark, whereas both T-VARs maintain their relative levels.

This decline in forecast accuracy is particularly striking for both medium-scale VARs during the

long recovery in the labour market following the Great Recession.

In summary, the MF-T-VAR and MF-T-CSVM-VAR provide by far the most accurate now-

casts during recessions, with the nowcast for GDP and UR clearly standing out. This gains

are mainly driven by deteriorating times during the recession periods, in particular the severe

conditions during the Great Recession. This shows that it is important to timely incorporate in-

formation on the current state of the business cycle into forecasting models for point forecasts of

GDP and UR�however CPI does not bene�t from it. Accounting for time-varying macroeconomic

uncertainty in form of CSVM increases point forecast accuracy for forecast horizons beyond the

nowcast on average over all variables�notably for UR during recessions. The medium-scale MF-

CSVM-VARmed reveals precise forecasts for GDP and CPI for horizons exceeding the nowcast

h > 1.

4.4 Density Forecast Evaluation

Recently more and more interest and importance in the literature on forecasting is shifted towards

density forecasts to account for the uncertainty surrounding point forecasts (see Wright, 2019).

I employ the continuous ranked probability score (CRPS) introduced by Matheson and Winkler

(1976) to evaluate the entire forecast density. I follow Gneiting and Ranjan (2011) and apply

the score function:

S(pMt , yt+h, ν(u)) =

∫ 1

−0
QSu(PMt (u)−1, yt+h)ν(u)du, (19)

where QSu(PMt (u)−1, yt+h) = 2(I{yt+h < PMt (u)−1}− u)(PMt (u)−1− yMt+h) is the quantile score

for forecast quantile PMt (u)−1 of model M at level 0 < u < 1. I{yt+h < PMt (u)−1} denotes
an indicator function which is one in case of yt+h < PMt (u)−1 and zero otherwise. pMt denotes

the predictive density and (PMt )−1 the inverse of the cumulative predictive density for model

M . ν(u) is a weighting function. I use a simple uniform weighting scheme ν(u) = 1. Thus, the

average CRPS is:

CRPSMh =
1

Tf

∑
t

S(pMt , yt+h, 1). (20)
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Figure 3: Relative Cumulative Sum of Squared Nowcast Errors

(a) GDP

(b) UR

Notes: Lines refer to the relative cumulative sum of squared forecast errors at horizon h = 1 in di�erence to

the benchmark. A value above zero indicates a better forecast accuracy. GDP is measured in annualized growth

rates. Shaded areas correspond to the recessions dated by the NBER. Out-of-sample: 2001M2-2017M12

A lower value signi�es a better �t of the predictive density with respect to the true data density.

I evaluated the CRPS as a ratio relative to the benchmark:

relative CRPSMh =
CRPSMh
CRPSbH

(21)

17



To gauge equal predictive forecast accuracy, I regress the di�erences between the CRPS and the

benchmark on a constant. Inference is based on a t-test with Newey-West standard errors.

Table 5 shows the relative CRPS for the entire sample and Table 6 displays the results

conditional on the business cycle state according the NBER chronology. The overall result of

the density forecasts support the results of the point forecasts in Section 4.3. On average over

all variables and horizons, the MF-T-CSVM-VAR still beats all other models with a decline of

11% in CRPS. The result enhances to an overall reduction of 18% during recessions. While the

MF-T-CSVM-VAR still performs best during expansions, the reduction in relative CRPS is lower

with 8%.

Similar to the point forecasts, the best performance for the nonlinear MF-T-VAR and MF-

T-CSVM-VAR is during the recession periods for the nowcast of GDP and UR. However, the

di�erence for the MF-T-VAR to the benchmark for GDP is even larger with a decline in the

relative CRPS by 19% compared to 15%. The same holds for the MF-T-CSVM-VAR for UR,

though the incline from 39% to 41% is only minor. Furthermore, the improvement due to CSVM

in recessions for forecast horizons h > 1 is even more pronounced for each model. Thus, the

contribution of adding CSVM is best when analysing the whole predictive density as it takes

into account the change in volatility over time.

All in all, the results from the density forecast evaluation con�rmed the point forecast results.

For GDP and UR, one can achieve even better results in terms of the nowcasts during recessions.

Therefore, the MF-T-VAR and MF-T-CSVM-VAR can also very well re�ect the uncertainty

surrounding the point forecast that is associated with periods of high volatility during recessions.

The CSVM feature again works particularly well for forecast horizons exceeding the nowcast

h > 1 but is even more pronounced.

4.5 Nowcast Comparison with the Survey of Professional Forecasters

In general, any forecasting model has a hard time to beat survey or institutional forecasts (see

discussion in Wright, 2019). Nevertheless, these forecasts also perform rather poorly for GDP

during recessions (see, i.e., Dovern and Jannsen, 2017; Sinclair, 2019). With promising results

for the GDP nowcast from the MF-T-VAR during recessions, it is worth comparing this model's

nowcast against the Survey of Professional Forecasters (SPF) from the Federal Reserve Bank of

Philadelphia.

The SPF has two limitations for an exact evaluation against the MF-T-VAR. First, the

SPF reports only once a quarter and hence, I can compare it only on a quarterly basis which

cuts the out-of-sample period to 64 observations. Second, it is di�cult to exactly match the

information set with the corresponding SPF deadlines in real-time. The questionnaires are send

to the participants at the end of the �rst month of each quarter at the time of the publication

of the Bureau of Economic Analysis' advance report. The deadline to submit the forecasts is at

late in the second to third week of the second month of each quarter. Hence, the information

set for the SPF is in between the end of the �rst and end of the second month, though the

exact timing depends on the date of submission of each participant. As the CFNAI is crucial for

the MF-T-VAR and is only published at the end of each month, I compare it against the SPF
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Table 5: Relative CRPS

Model h=1 h=2 h=3 h=4

GDP

MF-VAR 0.89∗∗∗ 0.90∗∗∗ 0.94∗∗∗ 0.98∗∗∗

MF-CSVM-VAR 0.91∗∗∗ 0.88∗∗∗ 0.89∗∗∗ 0.94∗∗∗

MF-T-VAR 0.88∗∗∗ 0.89∗∗∗ 0.92∗∗∗ 0.94∗∗∗

MF-T-CSVM-VAR 0.89∗∗∗ 0.87∗∗∗ 0.87∗∗∗ 0.91∗∗∗

MF-VARmed 0.93∗∗ 0.88∗∗ 0.88∗ 0.89∗∗

MF-CSVM-VARmed 0.94∗ 0.86∗∗∗ 0.85∗∗∗ 0.86∗∗∗

MF-VARb 0.27 0.33 0.36 0.35

In�ation

MF-VAR 1.00 1.03 0.99 0.99
MF-CSVM-VAR 0.98∗ 0.94∗∗∗ 0.92∗∗∗ 0.92∗∗∗

MF-T-VAR 0.98 1.00 0.98 0.98
MF-T-CSVM-VAR 0.98 0.95∗ 0.93∗∗∗ 0.93∗∗∗

MF-VARmed 0.98∗∗ 0.97 0.95 0.93
MF-CSVM-VARmed 0.97∗∗ 0.95∗∗∗ 0.91∗∗∗ 0.88∗∗∗

MF-VARb 0.11 0.14 0.14 0.14

Unemployment Rate

MF-VAR 0.97 0.93 0.92∗ 0.92
MF-CSVM-VAR 0.92∗ 0.84∗∗∗ 0.80∗∗∗ 0.79∗∗∗

MF-T-VAR 0.88∗∗∗ 0.85∗∗∗ 0.87∗∗∗ 0.87∗∗∗

MF-T-CSVM-VAR 0.88∗∗∗ 0.82∗∗∗ 0.80∗∗∗ 0.80∗∗∗

MF-VARmed 1.02 1.11∗ 1.22∗∗ 1.29∗∗∗

MF-CSVM-VARmed 0.99 0.99 1.03 1.05
MF-VARb 0.09 0.20 0.31 0.43

Notes: The relative CRPS are expressed as ratios relative to the benchmark model. A �gure below unity indicates
that the model outperforms the benchmark. The benchmark is reported in absolute terms in italic �gures (the last
column of each panel). Bold �gures indicate the best performance for the variable and horizon. ∗, ∗∗and ∗∗∗denote
signi�cance at the 10%, 5% and 1% level, respectively, according to the di�erence in mean test with Newey-West
standard errors. GDP is measured in annualized growth rates. The out-of-sample goes from 2001M2-2017M12.

across the three information sets�I1, I2 and I3 de�ned as the end of the �rst, second and third

month of each quarter, respectively. Hence, the MF-T-VAR starts each quarter with I1 with an

information disadvantage of roughly two to three weeks against the SPF. This information set

does not contain a value for the CFNAI concerning the current quarter as it has a publication

lag of one month. The information set continues with I2 with an advantage of an additional

week of data releases which includes the �rst �gure of the CFNAI of the current quarter. The

�nal set I3 takes the whole current quarter into account.

Table 7 shows the nowcast errors relative to the SPF. For the full sample, there is an increase

in accuracy with incoming information. For I1, with an information disadvantage, the MF-T-

VAR performs worse than the SPF but breaks even with new information in I2 and I3. For

recessions, the MF-T-VAR beats the SPF already in I1 with gains increasing from 9% up to

29% with incoming new information at the end of the each month. On the contrary, the SPF

dominates the expansion subsample independent of the information set.
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Table 6: Relative CRPS for Recessions

NBER Recessions NBER Expansions
Model h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4

GDP

MF-VAR 0.95 0.93 0.92∗∗∗ 0.96∗∗ 0.87∗∗∗ 0.89∗∗∗ 0.94∗∗∗ 0.99∗∗

MF-CSVM-VAR 1.00 0.90 0.91 0.94 0.88∗∗∗ 0.87∗∗∗ 0.88∗∗∗ 0.94∗∗

MF-T-VAR 0.81∗∗∗ 0.94∗∗ 0.94 0.91∗∗ 0.90∗∗∗ 0.88∗∗∗ 0.91∗∗∗ 0.95∗∗

MF-T-CSVM-VAR 0.87∗∗∗ 0.89 0.89∗∗ 0.91∗∗ 0.90∗∗∗ 0.86∗∗∗ 0.87∗∗∗ 0.91∗∗∗

MF-VARmed 0.92 0.95 0.92 0.86 0.93∗ 0.86∗∗∗ 0.87∗ 0.89
MF-CSVM-VARmed 0.93 0.95 0.92 0.86∗ 0.95 0.83∗∗∗ 0.83∗∗∗ 0.86∗∗∗

MF-VARb 0.46 0.64 0.75 0.72 0.25 0.29 0.30 0.30

In�ation

MF-VAR 1.05 1.11∗ 1.08 1.06 0.98∗∗∗ 0.99 0.96∗∗∗ 0.97∗∗∗

MF-CSVM-VAR 0.97 0.96 0.96 1.01 0.98 0.94∗∗∗ 0.90∗∗∗ 0.89∗∗∗

MF-T-VAR 0.94 1.05 1.08∗ 1.07∗∗ 0.99 0.97 0.95∗∗∗ 0.96∗∗∗

MF-T-CSVM-VAR 0.94 0.98 0.98 1.02 0.99 0.94∗∗∗ 0.91∗∗∗ 0.90∗∗∗

MF-VARmed 1.02 1.09∗∗ 1.10 1.06 0.96∗∗∗ 0.92∗∗∗ 0.91∗∗∗ 0.90∗∗

MF-CSVM-VARmed 0.98 1.01 1.00 0.99 0.97∗∗ 0.92∗∗∗ 0.88∗∗∗ 0.85∗∗∗

MF-VARb 0.21 0.32 0.27 0.23 0.09 0.11 0.12 0.13

Unemployment Rate

MF-VAR 0.75∗∗∗ 0.72∗∗∗ 0.74∗∗∗ 0.77∗∗∗ 1.04 1.03 1.04 1.03
MF-CSVM-VAR 0.63∗∗∗ 0.58∗∗∗ 0.61∗∗∗ 0.65∗∗∗ 1.02 0.97 0.94 0.89∗∗

MF-T-VAR 0.63∗∗∗ 0.67∗∗∗ 0.73∗∗∗ 0.76∗∗∗ 0.96 0.95 0.96 0.96
MF-T-CSVM-VAR 0.59∗∗∗ 0.55∗∗∗ 0.59∗∗∗ 0.64∗∗∗ 0.98 0.96 0.94 0.92
MF-VARmed 0.82∗∗∗ 0.80∗∗ 0.77∗∗ 0.76∗∗ 1.09∗ 1.26∗∗∗ 1.53∗∗∗ 1.68∗∗∗

MF-CSVM-VARmed 0.88∗∗ 0.85∗ 0.82∗ 0.80∗ 1.03 1.06 1.17∗∗ 1.24∗∗∗

MF-VARb 0.17 0.53 1.00 1.45 0.07 0.15 0.21 0.29

Notes: The relative CRPS are expressed as ratios relative to the benchmark model. A �gure below unity indicates
that the model outperforms the benchmark. The benchmark is reported in absolute terms in italic �gures (the
last column of each panel). Bold �gures indicate the best performance for the variable and horizon. ∗, ∗∗and
∗∗∗denote signi�cance at the 10%, 5% and 1% level, respectively, according to the di�erence in mean test with
Newey-West standard errors. GDP is measured in annualized growth rates. The left and right panel refers to
periods that the NBER identi�es as recessions and expansions, respectively. Out-of-sample: 2001M2-2017M12.

Table 7: RMSEs for GDP Nowcast relative to SPF

I1 I2 I3 I1 I2 I3 I1 I2 I3

Full sample Recessions Expansions

MF-T-VAR 1.06 1.00 0.98 0.91 0.85 0.71 1.15 1.10 1.12

Notes: The relative RMSEs are expressed as ratios relative to the SPF. A �gure below unity indicates that the
model outperforms the benchmark. Out-of-sample: 2001M2-2017M12.

Figure 4 displays the GDP nowcast errors (bars) for the SPF and the MF-T-VAR for I1,

I2 and I3 together with the annualized GDP growth rates (solid line). The sequence of bars at

each point in time is ordered as SPF, I1, I2 and I3. Errors are de�ned as actual minus forecast

y(t+h)− ŷ(t+h). Hence, negative errors indicate a too optimistic forecast for negative growth rates
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and too pessimistic forecast for positive growth rates. Thus, if the MF-T-VAR beats the SPF and

new information reduces nowcast errors, the bars should ascend (descend) for negative (positive)

errors from left to right at a speci�c point in time. Overall, the SPF and MF-T-VAR tend to

make the similar nowcast errors over time with a correlation of 0.85, 0.87 and 0.85 for I1, I2

and I3, respectively. 2001Q3, 2008Q1 and 2008Q4 render the steepest downturns with negative

forecast errors in the full sample coinciding with recessions. Thus, both the MF-T-VAR as well

as the SPF are too optimistic in downturns during recessions. However, in both occasions the

negative forecast error is lower for the MF-T-VAR. This is already present for I1 and decreased

even further with more information in I2 and I3�particularly evident for the largest forecast error

in 2008Q4. On the contrary, large negative forecast errors present in expansion, i.e. �rst quarter

of 2011 with annualized GDP growth of -1.5%, can not be diminished by the M-T-VAR.

Overall, the MF-T-VAR can help to lower systematic negative nowcast errors made by SPF

in recessions as described by Dovern and Jannsen (2017), though in expansions the SPF is still a

benchmark hard to beat. For information on other models and forecast horizons I refer to Figure

7 in Appendix D. In short, the medium-scale MF-VARs can keep up with the SPF concerning

GDP for forecast horizons h > 1 and even perform better by small margin for h = 4.

Figure 4: Nowcast Errors - SPF against MF-T-VAR

Notes: The black solid line refers to actual GPD in annualized growth rates. The forecast errors are de�ned as

(yt+h − ŷt+h) for h = 1. Hence, a negative value indicates that the forecast is too optimistic for negative GDP

growth rates. The blue, red, magenta and green bars refer to the nowcast error of the SPF and MF-T-VAR for

information set I1, I2 and I3, respectively. Shaded areas correspond to the recessions dated by the NBER. Out

of sample: 2001Q1 - 2017Q4

4.6 Nowcasting during the Great Recession

Unsurprisingly, the largest forecast errors according to Figure 4 occur in 2008Q4 during the Great

Recession with the largest drop in GDP. Thus, it is of great interest how the di�erent models

and the SPF perform during that time in detail. Figure 5 presents the entire nowcast densities

together with point nowcasts and the actual GDP value. Each panel includes the di�erent
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monthly information sets. Hence, I1, I2 and I3 refer to 2008M10, 2008M11 and 2008M12.

There are two main results to consider. First, all models with CSVM show signi�cant wider

tails in the predictive density. Thus, the time-varying volatility clearly takes the heightened

uncertainty during that time into account and thus, enhances density nowcasts. Second, for MF-

T-VAR, MF-T-CSVM-VAR and MF-VAR, all dashed-dotted lines are left of the dashed line and

right of the solid line, denoting means of the forecast densities, SPF nowcast and �nal GDP value,

respectively. Hence, these models nowcast better than the SPF from information set I1 onward.

Overall, if a forecaster is interested in both point and density forecasts, it is best to include

information about the business cycle in form of an index, regime dependent parameters and

additionally account for macroeconomic uncertainty in form of common time-varying volatility.

Figure 5: GDP Nowcast Densities for 2008Q4 during the Great Recession
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Notes: Figures refer to each model with its nowcast densities (based on a normal kernel density estimate) and

the respective mean (dashed-dotted line). Within each �gure, the blue, the red and the green dashed-dotted line

refer to 2008M10, 2008M11 and 2008M12 vintage, respectively. The SPF nowcast is shown by a black dashed line

while the �nal value for GDP by a black solid line.

5 Conclusion

Macroeconomists have a hard time to forecast and even nowcast during recessions. Especially

following the Great Recession in 2008/09, this problem has aroused interest in recent research on
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forecasting. To approach this problem, this paper proposes a novel VAR that can handle mixed-

frequency data and recurring business cycle regimes and common stochastic volatility in mean

as important business cycle features in real-time. To this end, I combined a mixed-frequency

VAR (MF-VAR) with a threshold VAR (T-VAR) which additionally accounts for time-varying

macroeconomic uncertainty in form of common stochastic volatility in mean (CSVM). I utilize

the Chicago Fed National Activity Index as business cycle index for the threshold variable to

date the business cycle in real-time. A Minnesota prior is used for all VARs where the shrinkage

parameter is estimated with an adaptive Normal-inverse-Gamma prior. This allows to determine

the amount of shrinkage and furthermore permits for di�erent shrinkage across business cycle

regimes and variables.

In a real-time forecasting experiment for US GDP, CPI and UR, the MF-T-CSVM-VAR

outperforms on average across all variables and horizons linear MF-VARs without the business

cycle features of di�erent size with respect to point and density forecasts. The di�erence in

performance is especially pronounced for nowcasts for GDP and UR during recessions. The

MF-T-VAR even reduces GDP nowcast errors made by the Survey of Professional Forecasters

(SPF) during the sharp drop in economic activity of 2008Q4 during the Great Recession. Thus,

the results suggest that it is valuable for the short-term forecast during recessions to identify

the current state of the economy and incorporate this information into the model. By contrast,

the medium-scale MF-CSVM-VAR reveals accurate GDP forecasts for horizons of two to four

quarters ahead in which case it is quite competitive to the SPF. The time-varying volatility

CSVM provides the largest gains for UR forecasts�notably density forecasts for two to four

quarters ahead.
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Appendix

A State-Space Representation

I follow Schorfheide and Song (2015) and split the state vector zt from equation (1) such that

it contains only the latent variable zt = zq,t = [ỹ′q,t, . . . , ỹ
′
q,t−p]

′ to decrease computation time.

Let the remaining monthly variables be zm,t−1 = [y′m,t−1, . . . , y
′
m,t−p]

′ . Hence, the measurement

equation for the MF-T-CSVM-VAR can be written as:

yt = Cm,St +Rq,Stzq,t +Rm,Stzm,t−1 +Bm,Stht−1 + ΥSt (A.1)

where

Cm,St =
[
0nq,1 A0m,St

]′
Bm,St =

[
0nq,1 bm,St

]′
Rq,St =

[
Rq1,St Rq2,St

]′
Rq1,St =

[
1/3 ∗ Inq 2/3 ∗ Inq Inq 2/3 ∗ Inq 1/3 ∗ Inq 0nq×nq∗p

]
Rq2,St =

[
0n−nq×1 Amq,St

]
Rm,St =

[
Rm1,St Rm2,St

]′
Rm1,St =

[
0nq×nm∗(p)

]
Rm2,St =

[
0nq,nm∗p Amm,St

]′
.

with A0m,St containing the intercepts for ym,t, bm,St being the parameters that relate ym,t

to ht−1, Amm,St being a (nm× nm ∗ p) matrix containing all VAR parameters that relates ym,t

to [y′m,t−1, . . . , y
′
m,t−p]

′ and Amq,St being a (nm× nq ∗ p) matrix containing all VAR parameters

that relates ym,t to [ỹ′q,t−1, . . . , ỹ
′
q,t−p]

′. The error term is divided into ΥSt = [0nq,1unm,t]. The

transition equation is adjusted as follows:

zq,t = Cq,St +Aq,Stzq,t−1 +Am,Stzm,t−1 +Bq,Stht−1 + υt υt ∼ N (0,ΞSt). (A.2)

where
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Cq,St =
[
A0q,St 0nq∗p,1

]′
Bq,St =

[
bq,St 0nq∗p,1

]′
Aq,St =

[
Aqq,St Inq∗p,nq∗(p+1)

]′
Am,St =

[
Aqm,St 0nq∗p,nm∗(p+1)

]′
.

with A0q,St containing the intercepts for ỹq,t, bq,St being the parameters that relate ỹq,t to

ht−1, Aqq being a (nq × nq ∗ p) matrix containing all VAR parameters that relates zq,t to zq,t−1

and Aqm being a (nq×nm ∗ p) matrix containing all VAR parameters that relates zq,t to zm,t−1.

B Prior

VAR-coe�cients

I use an independent Normal-inverse-Wishart Minnesota prior for the VAR parameters. The

prior mean on the �rst lag is 0 (0.9) if the respective variable is non-persistent (persistent) since

all variables are transformed to be stationary. Thus, the prior mean for row j and column i of

the coe�cient matrix of lag l is set as follows:

E(Aj,il ) =


0.9 if i = j and l = 1 and j is persistent

0 if i = j and l = 1 and j is non-persistent

0 otherwise.

(A.3)

The prior variance for row j and column i of the coe�cient matrix of lag l is set as follows:

V ar(Aj,il ) =



λ1
l2

if i = j
λ1λ2σ2

jj

l2σ2
ii

if i 6= j

λ1λ3σ2
jj

l2σ2
ii

if i 6= j ∧ j = y∗

1000 if l = 0

(A.4)

where σii is the residual standard error of an AR(p) for variable i. The amount of shrinkage is

determined by the vector of hyperparameters Λ = [λ1, λ2, λ3]
′. λ1 governs the overall shrinkage.

λ2 applies cross-variable shrinkage and λ3 as an extra shrinkage parameter for the business cycle

variables, namely the business cycle index y∗ (CFNAI) and the uncertainty factor ht (CSVM).

The prior variance for row j of the coe�cient on ht−1 is V ar(bj,1) =
λ1λ3σ2

jj

σ2
where σ2 is the

mean of the residual standard errors of AR(p) for each variable rescaled to have a variance of

one. Starting values are Λ = [0.04, 1, 1]′ such that there is no cross-variable shrinkage and the

overall shrinkage is in line with standard values picked for US data.

The prior scale matrix for the inverse-Wishart is diagonal:
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p(Ω) ∼ IW(S, ν) (A.5)

with S = diag(σ211, . . . , σ
2
NN ) where σ2ii is again the residual variance of an AR(p) for variable

i. The degrees of freedom ν are set to a minimum to account for a loose prior. The same prior

is used across regimes St = 1, 2.

Shrinkage

I utilize a hyperprior to determine the degree of shrinkage in form of an inverse-Gamma prior:

p(λi) ∼ IG(α, βi) i = 1, 2, 3 (A.6)

with shape α = 0.1 and scale βi = 0.044 for i = 1, 2 and scale βi =
√

0.044 for i = 3 such

that it is weakly informative and has a mode of 0.04 for i = 1, 2 which is in line with common

values used for US data and with 0.2 for i = 3 giving a priori a less shrinkage for the business

cycle variables assuming that those variables are more important.

Threshold Variable

I assume a uniform prior for the delay d and threshold parameter r:

d ∼ U(1, p) (A.7)

r ∼ U(y∗q , y
∗
1−q). (A.8)

where p is the maximum number of lags in the VAR and y∗q denotes the qth quantile of

the threshold variable. The quantile is set to 10% to avoid outlier regimes. Given the real-time

information content regarding the NBER business cycle dating, recessions account for about 15%

to 20% of observations such that 10% is a general reasonable lower bound.

The starting value for r is set according to a simple univariate threshold AR model with

CFNAI. I apply the MCMC simulation by Vrugt et al. (2009) with M = 10 chains with 500000

draws based on 10 random starting values below the average r < 0. The posterior mean of the

�nal chain provides a proper reasonable starting value for the more complex threshold VAR.

Common Stochastic Volatility

The CSV prior setting mainly follows Carriero et al. (2016). I initialize the factor ft with a

Normal prior:

ft ∼ N (1, 0.5) (A.9)

and the variance of the innovations of the random walk law of motion by an inverse-Gamma

distribution:

φ ∼ IG(4, 0.04) (A.10)

30



Furthermore, ftΣ is identi�ed up to scale. Hence, I �x f0 = 1 for indenti�cation.

Latent state

I follow Schorfheide and Song (2015) for the prior on the latent state variable zq,t and initialize

the Kalman �lter with a Normal prior:

p(zq,0) ∼ N(zq,−1, I). (A.11)

where I use a training sample of one year to estimate zq,−1 with a linear MF-VAR based on

actual observations for the monthly variables, interpolated values for the quarterly latent values

and VAR parameters resting on their prior means.

C Metropolis-within-Gibbs sampler

In the following I explain in detail each step of the MCMC algorithm for the MF-T-CSVM-VAR

since all other models can be estimated by skipping the respective step in the sampler and in the

conditioning set. I employ a total of 30000 iterations where the �rst 25000 are used as burn-in

draws. A vector of variables over time T is denoted by xT = [x′1, . . . , x
′
T ]′. For the remainder ASt

indicates the coe�cient matrix of all VAR(p) dynamics including A0,St and b1,St for St = 1, 2 as

it is estimated in the same step. The sequence for the MCMC is as follows:

1. Initialize A1, Λ1, Σ1, A2, Λ2, Σ2 , r, d, φ, f
T

2. p(ỹT |A1,Λ1,Σ1, A2,Λ2,Σ2, r, d, φ, f
T , yT )

3. p(A1|ỹT ,Λ1,Σ1, A2,Λ2,Σ2, r, d, φ, f
T )

4. p(Σ1|ỹT , A1,Λ1, A2,Λ2,Σ2, r, d, φ, f
T )

5. p(A2|ỹT , A1,Λ1,Σ1,Λ2,Σ2, r, d, φ, f
T )

6. p(Σ2|ỹT , A1,Λ1,Σ1, A2,Λ2, r, d, φ, f
T )

7. p(Λ1|ỹT , A1,Σ1, A2,Λ2,Σ2, r, d, φ, f
T )

8. p(Λ2|ỹT , A1,Λ1, A2,Σ1,Σ2, r, d, φ, f
T )

9. p(r|ỹT , A1,Λ1,Σ1, A2,Λ2,Σ2, d, φ, f
T )

10. p(d|ỹT , A1,Λ1,Σ1, A2,Λ2,Σ2, r, φ, f
T )

11. p(φ|ỹT , A1,Λ1,Σ1, A2,Λ2,Σ2, r, d, f
T )

12. p(fT |ỹT , A1,Λ1,Σ1, A2,Λ2,Σ2, r, d, φ)

After step 2., one can drop the conditioning on the data yT since the data does not provide

any further information after condition on the latent state ỹT . Conditional on r, d and ỹT , the

sample is split into two regimes St = 1, 2. Furthermore, conditional on fT , one can transform
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y̌T = 1√
fT
ỹT . Hence, step 3.-6. are standard draws from the multivariate Normal distribution

for p(ASt |·) and from the inverse-Wishart for p(ΣSt |·) based on the subsamples and transformed

variables y̌T . Drawing the variance φ of log-volatilities is, conditional on ft, from an inverse-

Gamma distribution.

The Gibbs sampler includes two Metropolis-Hastings step. Step 9. uses a random walk for the

threshold r and step 12. an independence chain Metropolis-Hastings for the stochastic volatility

ft. Apart from the standard draws, the remaining steps draw from the following conditional

posterior distributions:

2. Step: Latent states zq,t to obtain ỹq,t:

Draws for zq,t are based on the algorithm by Carter and Kohn (1994). To this end, I apply

the Kalman �lter until T to estimate the mean zq,T |T as well as the covariance matrix

PT |T . Hence, I draw zq,T from N(zq,T |T , PT |T ). After backward smoothing the state vector

recursively for t = T − 1, . . . , 1, I draw zq,t from N(zq,t|t, Pt|t)

7. and 8. Step: Shrinkage parameters ΛSt :

To simplify notation, I drop the index St. Conditional on all other parameters, Λ =

[λ1, λ2, λ3]
′ only a�ects the VAR coe�cients through its prior dependence. Since the prior

variance V ar(A) = V is diagonal, one can operate row-wise by selecting the respective

elements containing λi from the prior variance. Hence, the conditional posterior simpli�es

to:

p(λi|λ−i, ỹT , A,Σ, r, d, φ, fT ) ∝ p(Ai|λi)p(λi) ∀ i = 1, 2, 3 (A.12)

where p(Ai|λi) denotes prior distribution of all elements of A associated with λi and p(λi)

indicates the prior distribution for the hyperparameter. λ−i are the remainder shrinkage

parameters excluding i. The conditional posterior p(λi| . . .) ∼ IG(a, b) is inverse-Gamma

with posterior shape and scale:

a = a+ 1/2 ∗ ki (A.13)

b = 1/2 ∗
(
(vec(Ai)− vec(Ai))′V −1(vec(Ai)− vec(Ai)) + b

)
(A.14)

where ki refers to the number of parameters attached to λi, a and b indicate prior shape

and scale and vec() is the vectorization operator. Ai denotes the prior mean of Ai.

9. Step: Threshold value r:

The conditional posterior distribution of r is analytical infeasible given by:

p(r|·) =|Σ|T11 |Σ|
T2
2 exp

(
−

2∑
St=1

(Y̌St − X̌StASt)
′Σ−1St

(Y̌St − X̌StASt)

)
(A.15)
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where T1 and T2 are the sample size of regime 1 and 2, respectively. Since the prior for r

is uniform, the acceptance probability for the Metropolis-Hastings step at iteration s is

αsr = min

(
p(r∗|·)
p(rs−1|·)

, 1

)
for St = 1, 2 (A.16)

where the proposal r∗ is generated by a random walk:

r∗ = rs−1 + ϑ ϑ ∼ N(0, σ2r ). (A.17)

The standard deviation σr is adjusted in iteration s according to the method proposed by

Garthwaite et al. (2016):

σsr = σs−1r + c(αs−1 − α∗)/(s− 1), (A.18)

where α∗ = 0.4 is the target acceptance rate and c = 1/[α∗(1 − α∗)] is the optimal step

size.

10. Step: Delay parameter d:

The conditional posterior distribution p(d|·) is a multinomial distribution:

p(d|·) =
L(A1, A2,Σ1,Σ2, r, d|y̌T )∑p
d=1 L(A1, A2,Σ1,Σ2, r, d|y̌T )

(A.19)

where L(·|y̌T ) denotes the likelihood function conditional on the transformed latent state

y̌T and
∑p

d=1 adds up all likelihoods based on the support of the uniform prior d ∼ U(1, p)

with p being the lag order of the VAR.

12. Step: Stochastic volatility ft:

The draw is based on the algorithm by Jacquier et al. (2002). For each draw of ft, given

the random walk law of motion, only the knowledge of ft+1 and ft−1 is relevant:

p(ft|f−t, . . .) = p(ft|ft−1, ft+1, . . .) (A.20)

such that the conditional posterior is the product of a Normal density arising from the

likelihood and a log-Normal density arising from the random walk law of motion of ht =

ln(ft). A log-Normal density is taken as a proposal and then progresses for t = 1, . . . , T

cycling through T Metropolis-Hastings steps. I refer to Jacquier et al. (2002) for more

details. One simply needs to adjust for the exact likelihood of the VAR model and the

exact law of motion for the for stochastic volatility in case-by-case.
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D Forecast - Additional Figures

Figure 6: Monthly GDP from the MF-T-CSVM-VAR

(a) in monthly growth rates

(b) in quarterly growth rates

Notes: Panel (a) corresponds to ỹq,t from equation (3). Panel (b) corresponds to yq,t from equation (3). Shaded

areas correspond to the recessions dated by the NBER. Sample: 1967M4-2017M12
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Figure 7: RMSE relative to SPF - GDP

(a) Full sample
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Notes: The relative RMSEs are expressed as ratios relative to the SPF for horizons h = 1, . . . , 4. A �gure below

unity indicates that the model outperforms the SPF. The blue, red and yellow line belong to information set I1,

I2 and I3, respectively, as explained in Section 4.5. Figure (a) refers to the full sample. Figure (b) and (c) refer

to the NBER recession and expansion subsample, respectively. Out-of-sample: 2001M2-2017M12
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Figure 8: RMSE relative to SPF - UR

(a) Full sample
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Notes: The relative RMSEs are expressed as ratios relative to the SPF for horizons h = 1, . . . , 4. A �gure below

unity indicates that the model outperforms the SPF. The blue, red and yellow line belong to information set I1,

I2 and I3, respectively, as explained in Section 4.5. Figure (a) refers to the full sample. Figure (b) and (c) refer

to the NBER recession and expansion subsample, respectively. Out-of-sample: 2001M2-2017M12.
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E Shrinkage and Forecasting

Each model that contains either the CFNAI business cycle index and/or the CSVM uncertainty

factor have an separate cross variable shrinkage parameter λ3 such that those variables might get

less shrinkage due to their importance for forecasting. However, the standard Minnesota prior

usually comes with a single cross variable shrinkage parameter (λ3 = λ2). Hence, I compare

those two shrinkage setups with respect to their point forecast accuracy. Figure 9 displays a

heatmap based on the relative RMSEs. The relative RMSEs are expressed as ratios relative to

the same model with cross variable shrinkage. A �gure below unity indicates that the model

with BC shrinkage (λ3 6= λ2) performs better.

The �rst detail one notice is that RMSEs are signi�cantly reduced for GDP and UR during

recessions for both T-VARs. While this is noticeable for GDP only for h=1, it is signi�cantly

better for UR across all forecast horizons. However, also for UR the improvements are strongest

with up to 11% in relative RMSEs for the MF-T-CSVM-VAR for h=1. This advantage is no

longer present in expansion in any way. Neither the small-scale nor the medium-scale VARs can

improve their RMSEs by BC shrinkage during expansions.

In summary, the in�uence of the BC shrinkage on forecasting accuracy is stronger in times

of recessions than expansions. Whereby the advantages in recession outweigh the slight disad-

vantages in expansion for the full sample. That means less shrinkage for CFNAI and CSVM

is bene�cial during recessions emphasizing the important information for short term forecasting

contained in both BC variables during deteriorating times.
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Figure 9: Relative RMSEs - BC Shrinkage against Cross Variable Shrinkage
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F Real-Time Data Set

Name Transformation ALFRED Code

Real Gross Domestic Product (GDP) 1 GDPC1

Consumer Price Index for All Urban Consumers: All Items (CPI) 1 CPIAUCSL

Civilian Unemployment Rate 4 UNRATE

All Employees: Total Nonfarm Payrolls 1 PAYEMS

Yield Spread (YS), 10-year - 3-month treasury bill rate 4 GS10-TB3MS

S&P 500 Index 1 (FRED-MD)

Chicago Fed National Activity Index 4 (Chicago Fed)

Industrial Production Index 1 INDPRO

Capacity Utilization: Total Industry 2 TCU

Housing Starts: Total 3 HOUST

Real Personal Consumption Expenditures 1 PCEC96

Index of Aggregate Weekly Hours 2 AWHI

Real Manufacturing and Trade Sales 1 (FRED-MD)

New Orders Durable Goods 1 (FRED-MD)

Transformation: 1. ∆ln(yt) 2. ∆yt 3. ln(yt) 4. yt. Additional Sources: Chicago Fed https:

//www.chicagofed.org/publications/cfnai/index. FRED-MD https://research.stlouisfed.org/econ/

mccracken/fred-databases/.
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