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Abstract: The Stable Fixtures problem (Irving and Scott (2007)) is a generalized matching model
that nests the well-known Stable Roommates, Stable Marriage, and College Admissions problems as
special cases. This paper extends a result of the Stable Roommates problem to demonstrate that a
class of homophilic preferences with an appealing psychological interpretation is sufficient to ensure
that starting from an arbitrary matching, a decentralized process of allowing the sequential matching
of randomly chosen blocking pairs will converge to a pairwise-stable matching with probability one.
Strategic implications of this class of preferences are examined and further possible generalizations
and directions for future research are discussed.

Keywords: many-to-many matching; stability; stable fixtures problem; homophilic preferences

JEL Classification: C78; D47

1. Introduction

The Stable Fixtures problem first studied by Irving and Scott [1] is a generalization of the Stable
Roommates problem. The classical Stable Roommates problem entails matching each of 2n individuals
so that no two people prefer each other over their assigned partners. The Stable Fixtures problem
generalizes the Stable Roommates problem from a one-sided one-to-one matching model to a one-sided
many-to-many matching model by allowing each individual to have a unique capacity representing
his maximum possible number of matches. As in the Stable Roommates problem, there are instances
of the Stable Fixtures problem for which there are no stable solutions (Irving and Scott [1]). Irving and
Scott develop an algorithm that determines, for any given instance of the Stable Fixtures problem,
if a stable solution exists. The Stable Fixtures problem is of theoretical interest because it nests
several different matching models: the Stable Roommates problem, the Stable Marriage problem,
and the College Admissions problem. The relationship between the Stable Roommates and Stable
Marriage problems has been extensively studied,1 as has the relationship between the Stable Marriage
and College Admissions problems.2 As noted by Chung [4], the Stable Marriage problem is the
only point of contact between the Stable Roommates problem and the College Admissions problem.
Understanding stability in the more general Stable Fixtures problem has the potential to yield insights
into our understanding of how preferences, stability, and market structure interact in analyzing
different matching economies.

We present two main results in this paper. We consider a class of preferences referred to as
“subjective homophily”, which means that agents prefer to form matches with individuals they view
as more similar to themselves according to some subjective heuristic. However, we do not require that

1 See Gusfield and Irving [2] for an in depth review of the Stable Roommates Problem and its relationship with the Stable
Marriage problem.

2 See Roth and Sotomayor [3] for an extensive overview of two-sided matching.
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the agents agree perfectly on the degree of their similarity or difference. Instead, we place a restriction
on the degree of allowable divergence in their perceived difference we refer to as “approximate
symmetry”. This assumption enforces a certain degree of consistency on the subjective similarity
or dissimilarity of the agents, ensuring that their subjective views of one another are not radically
inconsistent. We demonstrate via an algorithm that the subjective homophily preference restriction
is sufficient to ensure the existence of a pairwise-stable matching in the Stable Fixtures problem,
leading to the first main result: starting from an arbitrary matching, a pairwise-stable matching can
be achieved via a decentralized process of randomly satisfying a finite sequence of blocking pairs.
We then prove that a direct mechanism fails to be strategy-proof when preferences are weak, but a
direct mechanism is strategy-proof in the case of strict preferences.

The paper is organized as follows. Section 2 provides a survey of relevant matching literature.
Section 3 presents the Stable Fixtures Problem. Section 4 introduces subjective homophily and its
relationship to preference. Section 5 discusses a strategic consideration while Section 6 presents
potential applications of the results. Section 7 concludes.

2. Related Literature

Gale and Shapley [5] proved that the two-sided marriage and college admissions markets always
admit stable matches. However, they also demonstrated that the one-sided generalization of the
Stable Marriage problem, the Stable Roommates problem, does not always admit stable matches.
Stable assignments for the roommates problem were studied further by Irving [6] and Gusfield [7].
Tan [8] developed necessary and sufficient conditions for the existence of stable matches in the Stable
Roommates problem. These results were generalized to the weak preferences case by Chung [4] to
obtain a sufficient condition for the existence of stable matches in the roommates problem.

Okumura [9] considers a one-sided many-to-many matching model that is similar, but not
identical, to the Stable Fixtures problem. In Okumura’s framework, agents are teams that are looking
to schedule games with one another. Unlike the Stable Fixtures problem, each team may play multiple
games against the same opponent. Okumura’s model is a generalization of matching models under
dichotomous preferences; that is, teams have an ideal number of games that they are willing to play
against each acceptable opponent, but are indifferent between acceptable teams. Okumura examines
stability and efficiency of matchings and the strategy-proofness of a direct mechanism in this context.

Another strand of the matching literature concerns itself with decentralized matching markets.
In the absence of a centralized algorithmic mechanism, it is common for many markets to allow
agents to freely form matches among themselves at random. Roth and Vande Vate [10] proved
a random paths result for the Stable Marriage problem, generalized by Chung [4] to the Stable
Roommates problem. This setting was further explored and generalized by Diamantoudi et al.
[11]. Kojima and Ünver [12] demonstrated a random paths to pairwise-stability result for two-sided
many-to-many matching markets. Ackerman et al. [13] study a decentralized matching process
for two-sided markets with an emphasis on the question of convergence time. They also study a
particular class of preferences called correlated markets, which is a similar notion to that of subjective
homophily explored in this paper. Cseh and Skutella [14] study better- and best-response dynamics in
a two-sided matching framework from an algorithmic perspective, and examine a case of correlated
markets. Both Ackerman et al. [13] and Cseh and Skutella [14] analyze two-sided matching markets,
rather than the one-sided many-to-many matching market that is the focus of this study.

Yet another aspect of the matching literature relevant to the research pursued herein consists of
coarse matching (McAfee [15]). Coarse matching is a type of matching framework where the agents
are broken into broad classes, and then matched on the basis of class membership. McAfee [15]
illustrated that efficiency gains could be achieved by using a coarse matching scheme to ration
electricity, rather than relying on the traditional system of rolling blackouts (analogous to a random
matching scheme). Hospitals, for example, are categorized in the high priority class under this system,
and, as such, are guaranteed access to power in a way that agents classed as lower priority are not.
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This type of rank based matching system has similarities with what are called assortative matching
markets (see Hoppe et al. [16]). The preference class examined herein has much in common with this
notion of assortative matching, as the agents are all able to be ranked in a manner conducive to deriving
pairwise-stable matchings.

Bartholdi and Trick [17] demonstrated that when preferences are derived from a simple
psychological model, there always exists a stable matching for the Roommates Problem. The idea
behind their preference restriction is intuitive: agents have preferences that are derived from a common
framework that allow the agents to be ordered sequentially. For example, they consider roommates
who wish to live with people who have similar preferences for setting the thermostat. Another example
is an individual who prefers to live with someone who comes from a town closer to his own hometown
over someone who comes from farther away. This class of preferences has an intuitive psychological
appeal because agents prefer other agents who are closer or “more like them" in the sense of the metric.
Implicit in this framework is a type of symmetry; agents agree on their differences. We show how
this can be relaxed by introducing the notion of “subjective homophily” between and among agents.
This reflects the possibility that agents may not agree completely on their differences or similarities,
but so long as those disagreements are not too large the existence of a stable matching is guaranteed.
We refer to this notion as approximate symmetry. We demonstrate that this class of preferences
confers a nice structure to the Stable Fixtures problem: when agents can be sequentially ordered in
this way, preferring those who are closer to those who are farther away, a stable solution will always
exist. In this vein, Abraham et al. [18] consider the stable roommates problem with globally-ranked
pairs. This preference structure is very similar to the notion of subjective homophily discussed herein,
however, they examine the Stable Roommates problem whereas this work concerns the more general
Stable Fixtures problem. Indeed, the globally-ranked pairs preference structure is akin to the correlated
markets structure of Ackerman et al. [13] and Cseh and Skutella [14]. Subjective homophily with
approximate symmetry is a slightly more general notion than correlated markets while representing a
particular case of the globally-acyclic preferences discussed by Abraham et al. [18].

3. The Stable Fixtures Problem

To define the Stable Fixtures problem, let X = {x1, x2, . . . xn} denote the set of agents. For all
xi ∈ X , there exists an integer ci which we call xi’s capacity, representing the maximum number of
possible matches for xi. Every agent xi ∈ X has a preference ordering over X ∪∅ and his preference
relation is denoted by �i. For each xi ∈ X , let �i denote the strict preference relation derived
from �i. We assume that the preference ordering is a weak order, that is, complete, and transitive;
thus preferences are assumed to be weak.3 If xi weakly prefers xk to xl , then we write xk �i xl .
An instance of the Stable Fixtures problem is completely defined by the collection of agents, X ,
their capacities, c = (c1, c2, . . . , cn), and the preference profiles of the agents, � = (�1,�2, . . . ,�n),
that is, (X , c,�).

When ci = 1 for every xi ∈ X , this is the Stable Roommates problem. If ci = 1 for every
xi ∈ X , and the agents can be partitioned into two sets, M ⊂ X and W ⊂ X such that M ∩W = ∅,
M ∪W = X , and agents in M only have preferences over agents in W and vice versa, this is the Stable
Marriage problem. Allowing agents on one side of the aforementioned partition to have capacities
greater than one is the College Admissions problem.

Definition 1 (Acceptable). If xj �i ∅, xj is acceptable to xi.

3 The assumption of weak preferences is important when examining the strategy-proofness of a direct mechanism. In this
case, a direct mechanism is not strategy-proof.
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In words, xj is acceptable to xi if and only if xi prefers being matched with xj over remaining
unmatched or leaving excess capacity open. In the event that xi would rather remain unmatched or
leave excess capacity open to matching with xj, we state that xj is unacceptable to xi, which we denote
by ∅ �i xj.

Definition 2 (Acceptable Pair). A pair {xi, xj} is an acceptable pair if xi is acceptable to xj and xj is acceptable
to xi.

For the sake of consistency with Irving and Scott’s [1] original formulation of the Stable Fixtures
problem, we retain their notational conventions to define a matching as follows:

Definition 3 (Matching). A matching, µ, is a set of pairs of agents {xi, xj} ⊂ X such that, for all xi ∈ X ,

|{xj : {xi, xj} ∈ µ}| ≤ ci.

The size of µ is the number of pairs in µ. The members of the set µ(xi) = {xj : {xi, xj} ∈ µ} are
referred to as the matches of xi in µ. We denote the set of all possible matchings byM.

Definition 4 (Individually Rational). A matching µ is said to be individually rational if no agent is matched
to an agent he considers unacceptable.

Definition 5 (Blocking Pair). An acceptable pair {xi, xj} /∈ µ is a blocking pair for matching µ, or blocks µ if

1. Either xi has fewer than ci matches or strictly prefers xj to at least one of his matches in µ; and
2. Either xj has fewer than cj matches or strictly prefers xi to at least one of his matches in µ.

In words, this says that for {xi, xj} to be a blocking pair, either xi must have excess capacity or xi
must strictly prefer xj to one of his current matches, and either xj has excess capacity or strictly prefers
xi to one of his current matches.

Definition 6 (Pairwise-Stable). 4 A matching for which there is no blocking pair is said to be pairwise-stable.
Otherwise, the matching is said to be pairwise-unstable.

4. Preferences and Subjective Homophily

In this section, we build a framework for examining a certain class of preferences. Suppose that a
given agent, xi ∈ X , is looking to form relationships with other agents in X . In choosing his matches,
xi desires to be matched with agents he deems to be “closer” to him according to some measure of
likeness. This can be thought of as representing some notion of similarity, compatibility, or any other
trait that xi desires. For example, this could encompass where other agents hail from geographically or
their political views. To capture this idea, we introduce the notion of subjective homophily.

Definition 7 (Subjective Homophily Function). A subjective homophily function is a mapping, σi : X → R+

such that σi(j) > 0 for all xi, xj ∈ X such that i 6= j.

The subjective homophily function represents the “difference” an agent perceives between himself
and a fellow agent. The homophily function is called "subjective" because we do not require that
σi(j) = σj(i), that is, we do not require that xi’s view of the difference between himself and xj be the
same as xj’s view of the difference between himself and xi. This relaxes the symmetry assumption of

4 There are other notions of stability in many-to-many matching markets. See Echenique and Oviedo [19].



Games 2020, 11, 11 5 of 13

Bartholdi and Trick [17]. We are interested in the case where agents would like to match with those
who are perceived to be closest in terms of this notion of subjective homophily.

Given the subjective homophily function, we write that each agent in some sense represents his
own ideal point. The greater the similarity between two agents (the smaller their differences according
to the subjective homophily function), the more preferred they are.

When agent preferences are determined by subjective homophily functions, we have that:

xj �i xk ⇔ σi(j) ≤ σi(k) for all xi, xj, xk ∈ X .

Remark 1. The above formulation implicitly defines every agent as acceptable to every other agent. We can
accommodate unacceptability into the framework in the following way: if agent xi deems xj unacceptable,
we write σi(j) = ∞.

We now define a particular restriction on the subjective homophily function that will prove useful
in demonstrating our main results.

Definition 8 (Approximate Symmetry). A subjective homophily function satisfies approximate symmetry if,
for all xi, xj, xm, xn ∈ X

σi(j) ≤ σm(n)⇒ max{σi(j), σj(i)} ≤ min{σn(m), σm(n)}.

This condition imposes some degree of structure on preferences. We move away from the
requirement of complete symmetry of Bartholdi and Trick [17], but rather only require that preferences
be close enough to capture the effects of pure symmetry. The idea is that even if agents are not in
perfect agreement regarding their differences, there exists some common framework that allows them
to evaluate one another in such a way that their perceptions of one another are not radically different.
The notion of approximate symmetry essentially captures the key features of acyclical preferences,
as discussed by Chung [4] and Abraham et al. [18].

Definition 9 (Subjective Homophily Vector). Let σ = (σi(j))xi ,xj∈X be the vector of subjective homophily
function outputs between all agents. We call σ the Subjective Homophily Vector.

Definition 10 (Ordered Subjective Homophily Vector). Consider only entries σi(j) in σ such that i 6= j,
ordered from smallest to largest. The resulting vector is the Ordered Subjective Homophily Vector, denoted by σ.

Remark 2. When the subjective homophily function satisfies approximate symmetry, then σ can be written so
that, for all xi, xj ∈ X , either σi(j) immediately follows or immediately precedes σj(i). This is true even in the
event of ties.

4.1. Existence of Pairwise-Stable Fixture Matchings

The following lemma will be useful in constructing our algorithm to prove the existence of
pairwise-stable matchings for the Stable Fixtures Problem when agent preferences are consistent with
subjective homophily and satisfy approximate symmetry.

Lemma 1 (Bartholdi and Trick). If among all available choices, agent xi most prefers agent xj, and agent xj
most prefers agent xi, then in any pairwise-stable matching xi and xj must be matched.

Proof. If xi and xj are not matched, they form a blocking pair.

We now demonstrate that the existence of a pairwise-stable fixtures matching is guaranteed when
preferences are consistent with subjective homophily satisfying approximate symmetry. The following
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lemma can be viewed as a fairly straightforward extension of Abraham et al.’s [18] results for the
Stable Roommates problem to the case of the more general Stable Fixtures problem.

Lemma 2. If agent preferences are consistent with subjective homophily and satisfy approximate symmetry
then there exist pairwise-stable fixture matchings.

Proof. We demonstrate a constructive algorithm for obtaining a pairwise-stable fixture matching:
Step 1: Begin with the first entry in σ̄. Let σi(j) be this entry. Since neither xi nor xj currently has

any matches, we match them. Remove σi(j) from σ̄. By approximate symmetry, the next entry in σ̄ is
σj(i). Because xi and xj are matched, this entry can be removed as well. Reduce both ci and cj by 1.
If either xi or xj has filled his capacity, remove any remaining subjective homophily function output
corresponding to that agent from σ̄. If neither xi nor xj has filled his capacity, no entries are removed
from σ̄. Define σ̄1 as the vector of subjective homophily function outputs remaining following Step 1.

Step k: If σ̄k−1 = ∅, the algorithm terminates. If σ̄k−1 6= ∅, we match the agents corresponding to
the first entry in σ̄k−1. Remove the subjective homophily function outputs corresponding to a match
between these two agents from σ̄k−1, and reduce each agent’s capacity by 1. If either agent has filled
his capacity, we remove all subjective homophily function outputs corresponding to that agent from
σ̄k−1 and rename the resulting vector σ̄k.

This algorithm will terminate after a finite number of steps (there are a finite number of
agents, and therefore a finite number of subjective homophily function outputs to consider),
when either all subjective homophily function outputs have been removed or there is a single agent
remaining with excess capacity. We now demonstrate that the resulting matching is pairwise-stable.
Assume for contradiction that the matching resulting at the termination of the above algorithm is not
pairwise-stable. Then there exists a blocking pair, {xi, xj}, such that

1. either xj �i xk for some xk that xi is matched with, or xi has not filled his quota and has excess
capacity remaining, and

2. either xi �j xl for some xl that xj is matched with, or xj has not filled his quota and has excess
capacity remaining.

Assume that xj �i xk for some xk that xi is matched with. This implies that σi(j) < σi(k). But since
xi and xj are not matched, it must be the case that when the algorithm reached σi(k), xj’s entries
must have already been removed, meaning that his quota was filled. Therefore, there is no agent, xl ,
matched with xj such that xi �j xl . We now assume that xi has not filled his quota and therefore has
excess capacity available. This implies that there is no one remaining to whom he can be matched as
all other agents must have filled their quotas with agents closer to them than xi. Thus, {xi, xj} can not
be a blocking pair, and we have obtained the contradiction.

The matching is pairwise-stable.

It is important to here note the relevance of the weak preference ordering. Given that the subjective
homophily function may admit ties between and among agents, it is possible for there to be multiple
pairwise-stable matchings. When preferences are strict, the pairwise-stable matching achieved at the
termination of the above algorithm will be unique. However, in the case of weak preferences where
there are ties among agents in terms of subjective homophily, the outcome of the above algorithm
will depend on how the subjective homophily outputs are ordered. However, the assumption of
approximate symmetry means that such an ordering is possible, but may depend on the order in which
agents with equivalent subjective homophily function outputs are ordered. This generates strategic
implications that will be explored in more detail in Section 5.

4.2. Random Paths to Pairwise-Stable Fixture Matchings

We have demonstrated that when preferences are consistent with subjective homophily and
satisfy approximate symmetry, there exists a pairwise-stable solution to the Stable Fixtures problem.
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A natural question is whether stable matchings can be obtained through a decentralized matching
process as opposed to a centralized algorithmic mechanism.

Our main result shows that when preferences are consistent with subjective homophily and satisfy
approximate symmetry, a pairwise-stable matching can always be attained from a pairwise-unstable
matching by satisfying a finite sequence of blocking pairs. Starting from an arbitrary matching µ,
if {xi, xj} form a blocking pair and it is true that both |µ(xi)| < ci and |µ(xj)| < cj, then we can simply
match both agents to generate a new matching, µ′. In this case, no other agents are affected by the
match. However, it is possible that an agent xi may have his entire capacity filled under µ, that is,
|µ(xi)| = ci. If {xi, xj} form a blocking pair for matching µ in this case, this means that xi must “dump”
one of his current matches in order to match with xj. In this case, xi will dump his least preferred match
among his current matches, that is, xi will dump xk ∈ µ(xi) such that σi(k) ≥ σi(l) for all xl ∈ µ(xi).
In words, xi will dump the current match of his who is farthest away from him, according to the
perceived subjective homophily, of all his current matches under µ in favor of matching with xj.
The dumped agent will then gain one unit of excess capacity.

Definition 11 (Satisfying the Blocking Pair). Let X be a set of agents with preferences consistent with
subjective homophily that satisfy approximate symmetry. Let µ ∈ M be a matching. Let {xi, xj} ⊂ X be a
blocking pair for µ. A new matching, µ′, is obtained from µ by satisfying the blocking pair {xi, xj} if:

1. xj ∈ µ′(xi) and xi ∈ µ′(xj).
2. If |µ(xi)| = ci, then ∃xk ∈ µ(xi) s.t. σi(k) ≥ σi(l) ∀xl ∈ µ(xi) and xi dumps xk in favor of matching

with xj.
3. If |µ(xj)| = cj, then ∃xm ∈ µ(xj) s.t. σj(m) ≥ σj(h) ∀xh ∈ µ(xj) and xj dumps xm in favor of matching

with xi.
4. If xk = xm = xd, then µ′(xd) = µ(xd)\{xi, xj} and if xk 6= xm, then µ′(xk) = µ(xk)\{xi} and

µ′(xm) = µ(xm)\{xj}.
5. ∀xr ∈ X\{xi, xj, xk, xm}, µ′(xr) = µ(xr).

Condition (1) states that after satisfying the blocking pair, xi and xj must now be matched with
each other. Conditions (2) and (3) state that if xi or xj is currently matched at full capacity under the
original matching µ, they must dump their least preferred current match to satisfy the blocking pair.
Condition (4) states that under the new matching µ′, dumped agents remain matched to the same
set of agents that they were matched with under µ minus the members of the satisfied blocking pair.
Condition (5) states that all other agents not affected by the blocking pair have the same matches under
the new matching µ′ as under the old matching µ.

Remark 3. Any individually irrational matching can be transformed into an individually rational matching by
having agents dump any unacceptable matches.

We now demonstrate that starting from an arbitrary matching we can achieve a stable matching
by sequentially satisfying a finite number of blocking pairs.

Lemma 3. When agent preferences are consistent with subjective homophily and satisfy approximate symmetry,
for any matching µ, there exists a finite sequence of matchings (µ1, µ2, . . . , µT), such that µ1 = µ, µT is
pairwise-stable, and for each t = 1, 2, . . . , T− 1, there is a blocking pair for µt such that µt+1 is obtained from
µt by satisfying that blocking pair.

Proof. We provide a constructive algorithm that will transform the current matching µ into a stable
matching in a finite number of steps:

Step 1: Let µ1 = µ. Consider the first entry of σ that corresponds to a pair of agents {xi, xj} that
are not matched under µ1. This represents the first potential blocking pair. If these agents do not form
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a blocking pair, then either xi or xj must be matched to capacity and does not wish to dump any of his
current matches. As subjective homophily outputs are increasing, no future blocking pair will arise
involving these two agents together. Remove any subjective homophily outputs corresponding to
this agent from σ. Define µ2 = µ1. If, however, {xi, xj} does constitute a blocking pair, we have two
possible cases:

Case 1. If |µ1(xi)| < ci and |µ1(xj)| < cj, we match xi and xj. Since neither xi nor xj is currently matched at
full capacity, no other agents are affected. Call the resulting matching µ2.

Case 2. If |µ1(xi)| = ci or |µ1(xj)| = cj, then either xi or xj are at full capacity under the current matching,
and must dump their least preferred agent to satisfy the blocking pair. We satisfy the blocking pair and any
dumped agents gain one unit of excess capacity. Call the resulting matching µ2.

Define σ̄1 as the vector of subjective homophily function outputs remaining following Step 1.
Step k: Consider the first entry of σk−1 corresponding to a pair of agents {xi, xj} that are not

matched according to the matching µk−1. This represents a potential blocking pair. If these agents
do not form a blocking pair, then either xi or xj must be matched to capacity and does not wish to
dump any of his current matches. As subjective homophily function outputs are increasing, no future
blocking pairs involving this agent can arise. Remove any subjective homophily function outputs
corresponding to this agent from σk−1. Define µk = µk−1 If, however, {xi, xj} does constitute a
blocking pair, we have the same two possible cases as above and proceed accordingly.

This algorithm terminates in a finite number of iterations resulting in the matching, µT . The proof
of stability follows the same argument as given in the proof of Lemma 2.

The critical step in the above proof is that blocking pairs can be satisfied sequentially based on
subjective homophily. Any time an agent is dumped when a blocking pair is satisfied, the dumped
agent has a greater subjective homophily function output value than the newly matched agent.
This means that a dumped agent will not create any new instability among the matches that have
been generated in previous steps of the algorithm.

Having proved the above lemma, the random paths to pairwise-stability result is an immediate
consequence of the standard Markov-chain argument, summarized as follows: starting from an
arbitrary matching µ, a random process can generate a sequence of matchings by satisfying a single
randomly chosen blocking pair. The probability of any one blocking pair being chosen is positive for
all such blocking pairs for a given matching. The following proposition results from the fact that for
any matching, every blocking pair has a positive probability of being chosen.

Proposition 1. If agent preferences are consistent with subjective homophily and satisfy approximate symmetry,
then a decentralized process of allowing randomly chosen blocking pairs to match will converge to a pairwise-stable
fixtures matching with probability one.

5. Strategic Consideration

We now provide a strategic consideration in light of the above results. We will focus on the
following direct mechanism. Let Si be the set of all possible subjective homophily functions of agent xi
and let S = Πxi∈X Si. We consider a direct mechanism ν : σ →M, whereM represents all possible
matchings, as defined earlier. Since this is a direct mechanism, each agent xi reports a subjective
homophily function, σ̃i, that may or may not represent the true preference. Let σi ∈ Si represent
the true subjective homophily function of agent xi, σ = (σ1, σ2, . . . , σn) ∈ S. A direct mechanism is
strategy-proof if for all σ ∈ S, σ̃i ∈ Si, νi(σ) �i νi(σ̃i, σ−i), where σ−i represents the subjective homophily
functions of all other agents except xi and preferences over matchings are derived from subjective
homophily in the following manner: if µ is a matching where µ(xi) represents the matches of xi ∈ µ

and |µ(xi)| ≤ ci, for any agents xj and xk we have that:
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1. µ(xi) ∪ xj �i µ(xi) ∪ xk ⇔ σi(j) < σi(k);
2. µ(xi) ∪ xj ≈i µ(xi) ∪ xk ⇔ σi(j) = σi(k); and
3. µ(xi) ∪ xj �i µ(xi)⇔ xj �i ∅.

In words, this means that an agent’s preference over overall matchings is determined by his
preference over individual agents as matches. For any two matchings µ̄ and µ̂ where the set of matches
for agent xi differ by only one agent, xi will prefer the matching where his set of matches contains the
more preferred agent. This is an example of responsiveness in preferences, following the definition of
responsiveness used by Sotomayor [20].

Let ν be a mechanism for selecting a pairwise-stable matching. We have the following result:

Proposition 2. If agent preferences are consistent with subjective homophily and satisfy approximate symmetry,
then any direct mechanism for selecting a pairwise stable matching does not satisfy strategy-proofness.

Proof. We show the existence of a preference profile such that νi(σ̃i, σ−i) �i ν(σ) for some xi ∈ X and
σ̃i ∈ Si. Consider the case of five agents, where c1 = 2 and cj = 1 for j = 2, 3, 4, 5, with preferences
defined by the following subjective homophily functions: σi(5) = 10 ∀i 6= 5 and σi(j) = 1 ∀i 6= j
otherwise. Therefore, in this example, the first four agents all rank x5 last, but otherwise each agent
is indifferent between all other agents, the first agent has a capacity of 2 units while the remaining
four agents each have capacities of one unit. If the agents report their subjective homophily functions
truthfully, that is, each agent xi submits σi, the resulting matching will terminate with agent x4 matched
to agent x5. The matching is pairwise-stable as a result of Lemma 1. Consider the following misreport
of agent x4 when the other agents report truthfully. If agent x4 reports σ̃4(1) = 0.5, this will result in
agent x4 being matched with agent x1. Now agent x3 is matched with x5 rather than x1. However,
since x1, x2, and x4 are indifferent between their current matches and agent x3, the resulting matching
is pairwise-stable and is strictly preferred by agent x4. Therefore, in this example, x4 has an incentive
to deviate from the strategy profile σ. This implies that the mechanism ν is not strategy-proof.

In the above example, the algorithm of Lemma 1 results in one of the agents being matched
with the least preferred fifth agent, depending on the manner in which the agents are numbered.
Thus, for this preference profile there is a profitable deviation for that agent in manipulating his
reported subjective homophily function. This is only feasible in the case of weak preferences where
ties are admitted. In the strict preferences case, there exists a unique pairwise-stable matching and
approximate symmetry rules out these manipulations, leading to the following corollary:

Corollary 1. If agent preferences are strict, consistent with subjective homophily, and satisfy approximate
symmetry, then a direct mechanism for selecting a pairwise-stable matching is strategy-proof.

Proof. Suppose all agents truthfully report their subjective homophily functions to obtain the matching
µ = ν(σ). Further suppose that there is an agent xi who misreports to obtain a more favorable matching,
µ′. This implies that µ′(xi) �i µ(xi), that is, the set of matches that xi attains under the misreport
is preferred to the outcome when reporting truthfully. This implies that there must exist an agent,
xj with whom xi is matched under µ′ but not under µ. However, by Lemma 1, if xi and xj are not
matched under truthful reporting, this means that xj’s matches under µ must be preferred by xj to her
matches under µ′. That is, for xi and xj to be matched under the new matching µ′, there must exist
an agent xk with whom xj is matched under µ, but xk is replaced by xi under the new matching µ′.
However, given that xi and xj are not matched under µ and that preferences are strict, this implies
that xj must prefer xk to xi. Therefore, the matching µ′ resulting from agent xi’s misreport will not be
pairwise-stable and will therefore result in the unraveling of the matching.
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6. Other Applications

An immediate application of Proposition 1 is that by demonstrating that a given class of
preferences is consistent with the subjective homophily function formulation, we can guarantee
the existence of pairwise-stable fixture matchings and the attendant random paths to pairwise-stability
result, extending results from the one-sided one-to-one Stable Roommates problem to the one-sided
many-to-many Stable Fixtures Problem. We now provide two examples of preference domains that are
consistent with the subjective homophily function derivation.

The first application of our results is extending the results of Bartholdi and Trick [17].
Bartholdi and Trick considered a preference restriction for the Stable Roommates problem where agent
attributes can be represented by points in a metric space, every agent strictly prefers agents who are
more similar according to the metric, and every agent prefers having a roommate to not having one.
They prove that this preference restriction guarantees the existence of Stable Roommate matchings.

Corollary 2. If agents can be represented as points in a metric space, every agent strictly prefers agents closer
to him to those farther away, and strictly prefers having a match to not, then there exists pairwise-stable fixture
matchings. A decentralized process of allowing randomly chosen blocking pairs to match will converge to a
pairwise-stable fixtures matching with probability one.

Proof. Let d(i, j) represent the distance between agents xi, xj ∈ X . For all xi, xj ∈ X , define si(j) =
d(i, j). By definition of a metric space, d(i, j) = d(j, i) for all xi, xj ∈ X . Thus approximate symmetry is
satisfied and a pairwise-stable matching exists.

Another domain of interest is Dichotomous preferences. Under Dichotomous preferences,
each agent partitions the set of all agents into two groups (see Bogomolnaia and Moulin [21] for
further discussion of dichotomous preferences).

Definition 12 (Dichotomous Preferences). A preference profile is Dichotomous if every agent classifies all
agents into two groups in such a way that within each group he is indifferent among members.

Corollary 3. If the preference profile is Dichotomous, there exist pairwise-stable fixture matchings.
A decentralized process of allowing randomly chosen blocking pairs to match will converge to a pairwise-stable
fixtures matching with probability one.

Proof. Assume that each agent xi ∈ X partitions the set of agents into two sets, agents who are
acceptable as matches and agents who are not acceptable. For all xi, xj ∈ X , define

si(j) =
{

1 if {xi, xj} is an acceptable pair,
∞ if {xi, xj} is not an acceptable pair.

Thus Dichotomous preferences are consistent with subjective homophily satisfying approximate
symmetry, and therefore pairwise-stable fixture matchings exist and the attendant random paths
result holds.

7. Discussion and Concluding Remarks

We have demonstrated that for a psychologically appealing class of preferences, a decentralized
matching process will converge to a pairwise-stable matching with probability one by satisfying
random blocking pairs from any unstable matching. We further demonstrated that in the absence of a
purely strict preference ordering for this class of preferences, a direct mechanism is not strategy-proof.
This may provide normative evidence to favor the decentralized process of matching in these matching
markets rather than a centralized mechanism that may be subject to manipulation by the agents.
These results represent an attempt to extend previous work on both one- and two-sided matching
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models from the one-to-one to the many-to-many one-sided case, and constitute a step towards better
understanding one-sided many-to-many matching models which remain to be studied in further detail.

Abraham et al.’s [18] study of globally ranked pairs in the Stable Roommates problem represents
in one sense an extension and generalization of Bartholdi and Trick’s [17] analysis of the roommates
problem. Globally ranked pairs are consistent with the notion of subjective homophily. Indeed,
Abraham et al. [18] consider the case of globally-acyclic preferences, which is related to the No Odd
Rings condition of Chung [4]. Subjective homophily and approximate symmetry can be considered
a special case of globally acyclic preferences. However, Abraham et al. [18] focus on the Stable
Roommates problem, which is one particular instance of the Stable Fixtures Problem. Lemma 1 can be
viewed in some sense as an extension of Abraham et al.’s [18] Stable Roommates results to the Stable
Fixtures setting.

The random paths analysis of the one-sided many-to-many setting of this paper mirror results
found for two-sided settings: Ackerman et al. [13] and Cseh and Skutella [14] look at correlated
markets in the context of two-sided matching markets. Correlated markets, in a graph-theoretic
context, are related to the approximate symmetry assumption of this paper in that more preferred
edges have lower weights. However, in the correlated markets studied by Ackerman et al. [13] and
Cseh and Skutella [14], the same weight for an edge cannot appear more than once, while this can occur
in our setting given the weak preferences case of subjective homophily and approximate symmetry,
making this a slightly more general preference structure than correlated markets.

One-sided many-to-many matching is of theoretical interest because it provides a general
framework that can encapsulate many of the most commonly studied matching markets.
Understanding the interaction between preferences and stability in this type of unified framework that
nests Stable Roommates, Stable Marriage, and College Admissions as special cases is of theoretical
and also practical interest. For example, it is conceivable to consider markets where firms act as both
employers (hiring independent consultants or signing contracts with suppliers) while simultaneously
being employed to provide particular services. When the separation between workers and firms is not
clearly delineated, this type of one-sided many-to-many matching model may be of interest.

The scheduling of American college football games is yet another possible application of a fixtures
problem, and importantly one where preferences may exhibit a certain degree of subjective homophily.
Such athletic contests represent a kind of one-sided many-to-many matching problem with the teams
as agents: Team A may play both Team B and Team C, but this does not necessarily imply that Teams B
and C have to play one another. Given that there are typically only twelve regular season games played
by any one college football team (Wischnowksy [22]), the fixed number of games played in a season can
be viewed as the capacity of a team. In the United States, there are too many college football programs
and too few games for any one team to face all possible rivals. For this reason, there is contentious
debate about how teams are ranked after the regular season, as this determines which teams end up
competing in the invitational tournament that determines the national champion. At the end of the
college football season, the College Football Playoff Selection Committee chooses what it deems to
be the four top teams in the country to compete in a playoff to determine the national champion.5

There are a variety of criteria that are used for selecting the four best teams. Since not all teams play
one another, simply having the most wins is not sufficient to guarantee a playoff spot. The quality
of wins also matters in this context. Indeed, strength of schedule is one of the primary selection
criteria [23]. A top team that has faced and defeated lesser opponents will not be viewed as favorably
as a rival that has beaten more challenging teams. This means that teams have an incentive to schedule
and defeat opponents of similar or better quality, rather than easily defeating lesser competition.
This is arguably an example of subjective homophily in preferences. These matching markets also

5 Information regarding the selection criteria and process is available from the official College Football Playoff website:
https://collegefootballplayoff.com/sports/2016/10/24/selection-committee-protocol.aspx [23].

https://collegefootballplayoff.com/sports/2016/10/24/selection-committee-protocol.aspx
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represent a potentially rich area for the exploration of strategic considerations in examining wider
classes of preferences.

Sufficient conditions that guarantee stability in the Roommates Problem have been found, and a
natural direction for future research is looking into general sufficient conditions that guarantee
the existence of Stable Fixture matchings. The subjective homophily function with approximate
symmetry satisfies Chung’s “No Odd Rings” sufficient condition for the existence of Stable Roommates
matchings, and an open question is whether and how his results may be further generalized to the
Stable Fixtures problem. This has the potential to deepen our understanding of the relationships
between one-sided and two-sided matching markets and one-to-one, many-to-one, and many-to-many
matchings. This paper provides a sufficient condition for stable matchings and random paths to
pairwise-stability under a restricted, psychologically appealing class of preferences. Examining other
preference profiles and whether they can guarantee stability is a promising potential direction for
future research that may help us understand general sufficient conditions for the existence of stable
matchings in the Stable Fixtures problem.

Further work remains to be done to study more general conditions for the existence of random
paths to pairwise-stable matchings in the Stable Fixtures problem. Kojima and Ünver [12] proved
that for a two-sided many-to-many matching model, as long as one side has responsive preferences
while the other side has substitutable preferences, a random path to a pairwise-stable matching
always exists. The subjective distance metric preferences are responsive, and responsive preferences
satisfy substitutability. Understanding the interplay of these types of preference domains in one-sided
many-to-many matching models will be of interest in developing new results on random paths to
pairwise-stable matchings.

Another promising direction for future research is to consider modeling the Stable Fixtures
Problem using linear programming techniques. Abeledo and Rothblum [24] demonstrated how the
existence of stable matchings in the Stable Marriage and Stable Roomates problems can be determined
using linear inequalities and integer programming techniques. Chung [4] notes that his no odd rings
condition can be derived using the techniques of Abeledo and Rothblum. This may prove fruitful in
further examining the Stable Fixtures Problem.

Irving developed a general algorithm for finding solutions to the Stable Fixtures problem, but the
strategy-proofness of this algorithm, whether agents can misreport their preferences to attain a more
preferred matching, remains to be studied. The strategic implications of subjective homophily based
preferences represent one small step in this direction, and more work remains to be done in examining
strategy-proofness for a wider class of preferences in these kinds of markets.

Notions of Stability in one-sided many-to-many matching problems may also hold promise
for future research. Echenique and Oviedo [19] discuss various notions of stability in two-sided
many-to-many matching markets. In this paper, we focus on examining pairwise-stability, but there
are other notions of stability that are not equivalent to pairwise stability in many-to-many markets,
such as group stability, setwise stability, and core stability. Exploring these stability concepts in the
one-sided many-to-many matching framework is a promising future avenue to explore.
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