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Abstract: Game spaces in which an organism must repeatedly compete with an opponent for
mutually exclusive outcomes are critical methodologies for understanding decision-making under
pressure. In the non-transitive game rock, paper, scissors (RPS), the only technique that guarantees
the lack of exploitation is to perform randomly in accordance with mixed-strategy. However,
such behavior is thought to be outside bounded rationality and so decision-making can become
deterministic, predictable, and ultimately exploitable. This review identifies similarities across
economics, neuroscience, nonlinear dynamics, human, and animal cognition literatures, and provides
a taxonomy of RPS strategy. RPS strategies are discussed in terms of (a) whether the relevant
computations require sensitivity to item frequency, the cyclic relationships between responses, or
the outcome of the previous trial, and (b) whether the strategy is framed around the self or other.
The negative implication of this taxonomy is that despite the differences in cognitive economy and
recursive thought, many of the identified strategies are behaviorally isomorphic. This makes it difficult
to infer strategy from behavior. The positive implication is that this isomorphism can be used as a
novel design feature in furthering our understanding of the attribution, agency, and acquisition of
strategy in RPS and other game spaces.

Keywords: decision-making; behavioral isomorphism; cognitive economy; recursive thought; rock,
paper, scissors

1. Competitive Decision-Making

There are a number of situations where an organism must repeatedly compete with others for
mutually exclusive outcomes [1–3]): There will be only one Prime Minister or President, only one winner
at Scrabble, only one bird able to forage nectar from any given flower. Within these domains encompassing
“ . . . cheetahs and gazelles, goalkeepers and penalty-kickers, cops and robbers . . . ” ([4] p. 169), the
maximization of gains and minimization of losses is essential for survival, and often requires domination
of one’s adversary. Adopting a level of behavioral predictability simpler than that of your opponent
increases the possibility that, as prey you are captured, as a team you are eliminated, and as a deliverer of
justice criminals remain elusive.

Game spaces have been established to study the dynamics of such competitive processes in a
controlled fashion, where response and strategy are tractable. A number of spaces are available [5], but
one space that continues to inspire research in economics [6], neuroscience [7], nonlinear dynamics [8],
human [9,10], and primate [11,12] cognition, in addition to reflecting biological realities of the animal
world itself (Uta stansburiana [13]; Drosophila melanogaster [14]), is that of rock, paper, scissors (RPS).
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RPS serves as a three-response version of a simpler matching-pennies game (e.g., [15]). At each
round of RPS, two players reveal a response from three options: Rock, paper, scissors, where rock
beats (blunts) scissors, scissors beats (cuts) paper, and, paper beats (covers) rock. The empirical
attractiveness of the game is derived from the relationships between the items [16], in that there is no
one selection that is guaranteed to perform better than another. Due to the unique Nash equilibrium
of the game [17], the only strategy that can guarantee the lack of exploitation is the mixed strategy
or minimax solution, whereby all three responses are randomly played 33% of the time and without
regard for the previous trial [18–21]. Approximations of the mixed strategy have been reported in
pigeons [4], monkeys [22], and professional sports players [23,24]. This is in contrast to the position
that mixed strategy is “cognitively extremely demanding and eventually implausible” ([25], p. 73) and
the numerous empirical observations that reliably demonstrate the difficulties that individuals have
attempting to behave randomly (e.g., [26–28]). Heterogeneity in the ability to express randomness is
partly caused by the nature of the task. Commonly used ‘production’ tasks where participants are
explicitly asked to behave randomly provide empirical evidence for deviations from randomness have
been reviewed with respect to their logical and methodological problems [29]. In contrast, contexts
where random performance is implicitly optimal such as competitive zero-sums game are more liberal
tests of the ability to express mixed strategy [29]. Despite this, game performance deviates from
stochastic behavior. To understand the varieties of predictable non-random performance on offer, an
RPS strategic taxonomy is set out in terms of frequency-, cycle-, or outcome-based processes initiated
from the perspective of the self or the other, based on empirical data from this game.

2. Taxonomy of Strategy in RPS

2.1. Frequency-Based Strategy

The first deviation from the mixed strategy is the overplay of one item (frequency-based).
Specifically, the selection of rock currently enjoys a slight over-popularity in empirical studies of the
game [8,10,16,19,30,31]. An increase in item selection frequency solely as a result of personal salience
gives rise to the first type of RPS strategy: Self-frequency. In a collaborative environment where two
organisms must select the same response, the use of self-frequency can allow individuals to gravitate
towards joint selection, thereby maximizing their rewards [32]. However, in competitive environments,
self-frequency strategies can result in exploitation. As [33] observe, if a computer opponent plays
one item more often than another (e.g., rock) then human participants will play the appropriate
counter-item with increased frequency (e.g., paper). Therefore, an increase in item selection frequency
as a result of identifying primary salience in one’s opponent (secondary salience; [32]) may be referred
to as other-frequency, and can enjoy temporary dominance over an opponent whose own frequency
distribution is biased.

2.2. Cycle-Based Strategy

The second set of strategies available during RPS result from the non-transitive dominance
relations [16] between the items (henceforth, cycle-based). As shown in Figure 1, item selection can
change across consecutive encounters in one of two directions. Figure 1a shows the selection of an item
at trial n + 1 that would have beaten the previous item at trial n (e.g., rock followed by paper), whereas
Figure 1b shows the selection of an item in trial n + 1 that would have been beaten by the previous
item at trial n (e.g., rock followed by scissors). In the first instance, such behavior has been described
as an ‘ascending’ [19], ‘right-shift’ [34], or ‘one-ahead’ [35] strategy, whereas in the second instance,
behavior has been described as a ‘descending’ [19] or ‘left-shift’ [34] strategy. Upgrade and downgrade,
respectively, will be used for the reminder of the paper. Moreover, due to the cyclical nature of the
relationships between items, it is possible to repeat the strategy of upgrading or downgrading across
multiple consecutive trials, and there is evidence that individual do this, at least in the short term [10].
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would have been beaten by the opponent’s previous play (other-downgrade).  
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wit: “Neither the mouse nor the gazelle can afford to learn to avoid” [39, p. 33, emphasis in original]. 
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Despite this seemingly large array of strategies available during RPS play, many are simply re-
descriptions of the same mechanics, with different assumptions regarding the stance of the organism. 
Of primary note is the behavioral equivalence of an other-cycle (other-upgrade or CBR) strategy and the 
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1 as a concrete example, a player winning as a result of paper should be more likely to repeat the 
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viewed as a non-standard revision of the self-outcome strategy where repeats are associated with 
draws, downgrades associated with wins, and upgrades associated with losses (Supplementary Table 
S1), and an other-downgrade strategy (CWR) representing a similarly revised self-outcome strategy 

Figure 1. Recursive (a) upgrade and (b) downgrade item change strategies in rock, paper, scissors.

It is again important to consider whether the updating of response is primarily driven by one’s
own (self-cycle) or one’s opponent (other-cycle) behavior. In the same manner that it is sub-optimal to
maintain a single response during play (self-repeat; [4]), self-cycle behavior would also appear potentially
myopic and easily dominated by an attentive opponent. On the other hand, other-item strategies
are synonymous with Cournot dynamics [36], where Cournot’s best response (CBR) represents the
selection of an item that would have beaten the opponent’s previous play (other-upgrade; the behavioral
preference of schizophrenics, [19]). Cournot’s second-best response (CSBR) is the selection of an item
that would have drawn with the opponent’s previous play (other-repeat; also referred to as ‘one-back’
by [35], and Cournot’s worst response (CWR) is the selection of an item that would have been beaten
by the opponent’s previous play (other-downgrade).

2.3. Outcome-Based Strategy

What is critical to the current review is other-cycle strategies (see above) are behaviorally equivalent
to the implementation of self-outcome strategies. The traditional mechanics of outcome-based strategy
are rooted in model-free reinforcement learning principles where the outcome of an event influences
the subsequent weighting of future responding [37]. Stemming from behaviorist laws like the Law of
Effect [38], common expressions of such strategies may be summarized by the joint principles of
win-stay/lose-shift (e.g., [12,16]). In the context of self-outcome strategy, a previous response will be more
likely to be repeated as a result of winning, and changed as a result of losing. From an evolutionary
point of view, failure to initiate behavioral change following a loss (or even the perceived threat of loss)
is likely to be more damaging than the failure to repeat an action following a win. To wit: “Neither the
mouse nor the gazelle can afford to learn to avoid” ([39], p. 33, emphasis in original). Some of the
most recent work on RPS has been interested in the direction of shift following negative outcomes [16],
thereby incorporating aspects of cycle-based strategy into self-outcome strategy [10,30].

3. Behavioral Isomorphism in RPS Strategy

Despite this seemingly large array of strategies available during RPS play, many are simply
re-descriptions of the same mechanics, with different assumptions regarding the stance of the organism.
Of primary note is the behavioral equivalence of an other-cycle (other-upgrade or CBR) strategy and
the implementation of a traditional self-outcome (win-stay/lose-shift) strategy. To take the first line in
Table 1 as a concrete example, a player winning as a result of paper should be more likely to repeat the
paper response on the next trial (win-stay), which is equivalent to upgrading the opponent’s previous
play of rock also to paper (other-upgrade). All other eight possible outcomes follow the same pattern:
The heuristic set out by the standard version of the win-stay/lose-shift self-outcome strategy yields the
same trial n + 1 behavior as does simply utilizing an other-upgrade heuristic.

Furthermore, given the isomorphism between other-cycle and self-outcome strategies more generally,
it is easy to go on to demonstrate that a simplistic other-repeat strategy (CSBR) can also be viewed
as a non-standard revision of the self-outcome strategy where repeats are associated with draws,
downgrades associated with wins, and upgrades associated with losses (Supplementary Table S1),
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and an other-downgrade strategy (CWR) representing a similarly revised self-outcome strategy where
repeats are associated with losses, downgrades associated with draws, and upgrades associated with
wins (Supplementary Table S2). Such an expansion of this logic is not without biological precedent.
For example, win-shift rather than win-stay strategies have utility for species foraging in environments
with a fast depletion rate [40]. For example, nectarivorous birds are attuned to win-shift behavior as a
result of the one-shot exploitation of flower nectar, but retain behavioral adaptation such that they can
learn counter contingencies like win-stay if their environment changes [41]. Therefore, while seemingly
counter to traditional reinforcement learning principles, the observation of win-shift strategies may be
influenced by both the demands of the environment and the degree of species intelligence [40,42].
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Table 1. Equivalence of deploying an other-upgrade strategy (also Cournot’s best response) and a traditional self-outcome strategy.

Trial n Strategy Trial n + 1 Trial n Strategy Trial n + 1

Other Self Other-cycle Self Outcome Self-Outcome Self

Rock Paper UPGRADE Paper Win WIN-REPEAT Paper
Rock Scissors UPGRADE Paper Lose LOSE-DOWNGRADE Paper
Rock Rock UPGRADE Paper Draw DRAW-UPGRADE Paper
Paper Scissors UPGRADE Scissors Win WIN-REPEAT Scissors
Paper Rock UPGRADE Scissors Lose LOSE-DOWNGRADE Scissors
Paper Paper UPGRADE Scissors Draw DRAW-UPGRADE Scissors

Scissors Rock UPGRADE Rock Win WIN-REPEAT Rock
Scissors Paper UPGRADE Rock Lose LOSE-DOWNGRADE Rock
Scissors Scissors UPGRADE Rock Draw DRAW-UPGRADE Rock
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4. Differences in Cognitive Economy

While there is behavioral isomorphism between self-outcome and other-cycle strategies, these
approaches clearly differ in their perceived processing demands and the perspective from which each
strategy is calculated (see also [43], and their discussion of cognitive feasibility in the comparison
of contingent average and discounted average rule systems). Not only do organisms often enter
competition with incomplete information regarding their opponent’s rule structure [43], but they are
also bounded by the limits of their cognition when trying to retain such information. As [44] note,
working memory plays a critical role in the updating of strategy during collaborative and competitive
environments, and to be successfully implemented, strategic demands cannot exceed working memory
capacity limits (see also [7,45]). From an information processing point-of-view, there is cognitive
economy for the organism in computing a response based on any other-cycle strategy as opposed to
any self-outcome strategy. This is because the amount of information and the number of rules required
to instantiate behavior on the basis of the other-cycle heuristic is less than the amount of information
and the number of rules required to instantiate behavior on the basis of the self-outcome heuristic.
To formalize the computations required by both approaches, the other-upgrade strategy detailed in
Table 1 may be encapsulated by three conditional rules (Formulae (1)–(3); where O = other, S = self,
r = rock, p = paper, s = scissors, n = current trial, n + 1 = subsequent trial):

IF O(n) = r THEN S(n + 1) = p (1)

IF O(n) = p THEN S(n + 1) = s (2)

IF O(n) = s THEN S(n + 1) = r. (3)

In contrast, resolution of the standard self-outcome strategy (Table 1) requires a larger set of more
complex conditionals, where the self-item from the previous trial and the outcome of that trial interact
(Formulae (4)–(12); where, additionally, W = win, L = lose, D = draw):

IF S(n) = p AND (n) = W THEN S(n + 1) = p (4)

IF S(n) = s AND (n) = L THEN S(n + 1) = p (5)

IF S(n) = r AND (n) = D THEN S(n + 1) = p (6)

IF S(n) = s AND (n) = W THEN S(n + 1) = s (7)

IF S(n) = r AND (n) = L THEN S(n + 1) = s (8)

IF S(n) = p AND (n) = D THEN S(n + 1) = s (9)

IF S(n) = r AND (n) = W THEN S(n + 1) = r (10)

IF S(n) = p AND (n) = L THEN S(n + 1) = r (11)

IF S(n) = s AND (n) = D THEN S(n + 1) = r. (12)

Both mechanics arrive at the same behavioral outcomes, but the other-upgrade strategy is outwardly
and somewhat aggressively framed in terms of its exclusive focus on the opponent, while the self-outcome
strategy is inwardly framed in terms of its more complex focus on the interaction between the previous
item played by the organism and previous trial outcome. The increased working memory demands
of the self-outcome strategy are similarly highlighted by [46] in the context of Columba livia learning:
“to use a win-stay/lose-shift rule, the pigeon must remember not only the outcome of its last response
but also the stimulus alternative to which it most recently responded.” (p. 65). While self-outcome
logic may be beyond the computational scope of certain organisms, the implementation of other-item
logic is also problematic in terms of the stance the organism required to take. Despite its cognitive
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economy, the difficulty in accepting the description associated with other-item strategies is that the
mechanisms appear to ignore personal reinforcement and environmental history. As [47] further
emphasize, successful performance in a wide range of behavior such as foraging, gambling, and
investing all depend on the modelling of rewarded and unrewarded outcome distributions.

On the basis of a simplistic behavioral analysis, it is impossible to ascertain whether the organism
is operating on the basis of the previous actions of the self or an opponent. To compound the issue, the
distinction between self- and other-orientated strategies highlight a further descriptive fissure in terms
of whether it is necessary to invoke recursive thought to account for RPS performance.

5. Differences in Recursive Thought

Since success in competitive environments rely on the outmaneuvering of one’s opponent either
by virtue of behavioral unpredictability [4] or by exploiting a level of opponent predictability simpler
than one’s own, a certain level of recursive thought appears necessary to ‘second-guess’ or think
‘one-step-ahead’ of one’s competitor [3,48]. An organism’s slavish sensitivity to its own reinforcement
history (self-outcome) may prevent it from learning fast when there is complex environmental change [49]
and there is evidence that despite its demands on working memory, the use of win-stay/lose-shift strategy
in the context of human probability matching is actually linked to reduced individual estimates of
working memory [50]. Furthermore, strategies such as those modelled on self-outcome contingencies
remain predictable and hence exploitable if competitors are more sophisticated in their reasoning. For
example, [51] document the use of win-stay/lose-shift behavior in football match squad configurations
across consecutive games, but additionally note that such behavior was unsuccessful in influencing
future game outcome.

Unfortunately, the logic of recursion in RPS again fails to distinguish between lower- and
higher-order cognition. To demonstrate this, consider a case beyond a self-outcome strategy, where
recursive thinking is introduced on the basis of the opponent. Here, not only does the player prepare an
initial self-response based on the outcome of the previous trial, but they correct their initial response on
the basis of what they assume their opponent would do to counter their initial response (a second-order
self-outcome conditional; see also [27] p. 236). Note that this does not necessarily entail the appeal to
theory-of-mind however, as reasoning about opponents’ behavioral strategy is not synonymous with
reasoning about what the opponent may be thinking [52,53]. Taking the top line of Table 2 as a concrete
example, the player plans to repeat their paper response following a win against an opponent’s rock.
If the player thinks their opponent is sensitive to their win-stay strategy, their opponent should counter
with scissors (beating their expected paper), meaning that the ultimate response of the participant
should be rock (beating their opponent’s expected Scissors). Self-outcome logic can be extended with
the addition of {} to represent levels of recursion:

IF S(n) = p AND (n) = W THEN S(n + 1) = p
{IF S(n + 1) = p THEN O(n + 1) = s,

IF O(n + 1) = s THEN S(n + 1) = r}.
(13)

The behavioral outcomes derived from applying a second-order self-outcome conditional are identical
to Supplementary Table S1, which maps out a simpler, non-recursive other-repeat (also a variant of
self-outcome) strategy. Consequently, the simple examination of behavior once again fails to distinguish
between an organism engaged in second-order recursive thought focused on the self in terms of item
and outcome, and an organism simply copying the response of its combatant seemingly without
regard for the outcome of its own play. On the one hand, the demonstration that RPS behavior fails to
distinguish between complex recursive thought involving multiple iterations of counter-play, relatively
simple outcome conditionals and simpler still cycle strategies, is problematic when the goal is to interpret
strategy from behavior. However, this behavioral isomorphism becomes a useful empirical tool with
which to explore the mechanisms of strategy attribution, agency, and acquisition.
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Table 2. Logic of a second-order self-outcome conditional.

Trial n Strategy Trial n + 1 Trial n + 1 Trial n + 1

Other Self Outcome Self-Outcome Self Other Self (Revised)

Rock Paper Win WIN-REPEAT Paper Scissors Rock
Rock Scissors Lose LOSE-DOWNGRADE Paper Scissors Rock
Rock Rock Draw DRAW-UPGRADE Paper Scissors Rock
Paper Scissors Win WIN-REPEAT Scissors Rock Paper
Paper Rock Lose LOSE-DOWNGRADE Scissors Rock Paper
Paper Paper Draw DRAW-UPGRADE Scissors Rock Paper

Scissors Rock Win WIN-REPEAT Rock Paper Scissors
Scissors Paper Lose LOSE-DOWNGRADE Rock Paper Scissors
Scissors Scissors Draw DRAW-UPGRADE Rock Paper Scissors
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6. Future Work into Attribution, Agency, and Acquisition

Attributions regarding opponency are critical in determining the quality of decision-making.
For example, [54] argue that evidence for primates making inferences about others may depend on
the competitive nature of the environment, whereas [55] showed that opponents who demonstrated
less sensitivity to previous outcomes may also encourage similar insensitivities in the competing
organism. Therefore, irrational decisions defined as deviations from mixed strategy may be more
likely in non-threatening environments, such as where primates can remain behaviorally vulnerable if
their opponent fails to take advantage of strategic weakness [22]. One problem though in assessing
an organism’s sensitivity to potential competitive threat via the adjustment of opponent strategy
is that changes in the distribution of items and outcomes may introduce additional confounds in
working memory demands [44]. However, the empirical use of differentially described but behaviorally
isomorphic RPS strategy help to resolve this issue. For example, identical opponent behavior could be
described to the participant in two different ways across separate blocks: “the computer’s strategy will
be based on your previous selection” vs. “the computer’s strategy will be based on its last selection
and outcome” ([56], p. 1484). Here, the attempt is to test the impact of perceiving an opponent
either as seemingly aggressively focused on the player (i.e., other-upgrade) or an opponent seemingly
solipsistically focused on its own responses and outcomes (i.e., self-outcome; see the above section on
Differences in cognitive economy). Thus, the impact of perceived increased (other-upgrade) or decreased
(self-outcome) competitive threat on behavior could be examined without recourse to actual behavioral
change between the opponents. Such experiments represent manipulations of language only, thanks
to the behavioral isomorphism between certain RPS strategies. Data such as these could help to
reveal the relative fitness of the organism in terms of responding and adapting to variable levels of
competitive threat from both first-hand (experience) and second-hand (description) environmental
information [57].

A second research strand that opens up is the study of how agency influences competitive
decision-making. For example, [58] report an increased willingness for human participants to accept
inequitable offers during an ultimatum game when their opponent was thought to be a computer
relative to another human. Such a perceived lack of agency in the case of computerized opponency
also appears linked to a reduction in skin conductance modulation [59], suggestive of decreased
emotional reactivity to wins and losses when interacting with known automaton. Data from other
game spaces suggest that the experience of negative emotion plays a key role in determining relatively
poor-quality decision-making. In the case of RPS, the higher subjective value of losing relative to
winning is a likely driving force behind the increased predictability of lose-shift behavior [10,30].
Similarly, the phenomenon of tilting in the poker community [60,61] describes a deterioration in
the quality of decision making following loss including chasing behavior, wherein players attempt
to recoup lost bets often by increasing stakes (c.f., Martingale strategy in roulette; [62]). Therefore,
belief in competitive interaction with automata relative to conspecifics should reduce the emotional
experience of loss and allow for rational rather than irrational subsequent behavior. Additionally,
identifying those individuals for whom automated interactions yield equivalent or even heightened
emotional response will be critical for understanding the antecedents of pathological gambling [63].
For example, fixed-odds betting terminals (FOBTs) are both automated and completely random in their
behavior, thereby offering no recourse for strategy. Nevertheless, gamblers interacting with machines
often ascribe agency to them, such as being more likely to play machines that have not recently
paid out [42,64]. Compounded with their variable schedules of reinforcement [65], they represent
a major temptation for repetitive gambling behavior without the need for interpersonal interaction.
This understanding of expectations from both sentient and programmed agents is crucial as more
and more virtual interactions are developed where the boundaries between human and automated
respondents are increasingly blurred. The manipulation of perceived opponent agency against a
backdrop of behavioral isomorphism then becomes a robust paradigm within which these questions
can be addressed. For example, one might imagine an experiment where RPS is delivered across
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remote computer terminals. Participants believe that their opponents alternate between a variety of
human players and automated players but some of the behavioral patterns are exact between the
two categories. This might provide additional insights regarding reactions to, and consequences of,
success and failure against humans vs. computers [58,59], again with keeping all opponent behavioral
parameters equivalent.

Finally, differences in internally (self-) or externally (other-)focused strategy may have varying
degrees of salience for individuals impacted by Autistic Spectrum Disorder (ASD). As such, the
presentation of opponent strategy may have significant consequences for the successful acquisition of
environmental contingencies and the ability to improve performance in competitive domains. ASD is
characterized by difficulties in the internal regulation of performance [66] and the association of
reward with social stimuli [67]. If individuals on the autistic spectrum differ their ability to learn
and subsequently dominate opponent strategy depending on the perspective of that strategy, then
such an approach offers significant promise for the improvement of higher-order cognition in special
populations. Specifically, if the same behavior can be described in both a social (other-) and non-social
(self-)way, then individual with ASD might show faster and more reliable acquisition of learning when
the description of their opponent’s actions is more consistently framed within their own cognitive
style (i.e., non-social or self-focused).

Despite its relative simplicity and ubiquity, RPS yields complex and potentially recursive patterns
of data that can compromise an organism’s dominant position during competition. Deviations from
mixed strategy have been described with respect to sensitivity to item frequency, the cyclic relationships
between responses, or the outcome of the previous trial, and whether the strategy is described in
terms of the self or the other. One negative implication from this review is that despite differences in
cognitive economy and the potential recruitment of recursive thought, many of these strategies have
behavioral isomorphism and so caution is warranted when inferring strategy from behavior. However,
the more positive interpretation of this conclusion is that such behavioral isomorphism introduces
fruitful avenues of research into strategic attribution, agency, and acquisition that can be applied not
only to RPS, but also to other competitive game spaces in which individuals compete for mutually
exclusive outcomes.

In addition to the general caution raised by the current review in terms of attributing either
relatively low-level or high-level cognition to organisms on the basis of their competitive behavior
alone, the specific analysis of RPS also yields unique insights as a result of its novel structure. One key
feature of competitive experience in the real world—and in contrast to similar encounters developed in
the laboratory—is that the information we have about environmental contingencies and the outcome of
our actions is often ambiguous [68]. As such, the presence of draw trials in a standard three-response,
three-outcome version of RPS provides an example of an ambiguous outcome that may be compared
against the consequences of more transparent wins and losses (e.g., [68–70]). Reactions to draws are
of interest as they may be interpreted as either positive or negative [69,71,72], and this interpretation
may impact on the overall sense of success felt during the game. As ([27], p. 225) state: “to tie is
to fail to win, but on the other hand to tie is to avoid a loss.” Interestingly, neural activity following
wins, losses, and draws (feedback-related negativity, FRN; [73]) suggests that ambiguous outcomes
generate a response statistically different from wins but statistically indistinguishable from losses [69].
Thus, games containing draw trials might weight the distribution of positive and negative outcomes
more towards the anticipation of goal-failure rather than goal-success, potentially accounting for
the preponderance of shift behavior relative to stay behavior, simply because negative outcomes are
more frequent than positive outcomes. Behavioral and neural comparisons of RPS with a simpler
two-response, two-outcome game such as matching pennies (MP; [15,31]) will help to explain how the
presence of ambiguous outcomes contribute to behavior during competitive environments, and this is
the focus of our current empirical work.
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