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Abstract: We design an experiment to test how voters vote in a small committee election with three
alternatives. Voters have common preferences that depend on an unknown state of nature. Each voter
receives an imprecise private signal prior to the election and then casts a vote. The alternative with the
most votes wins. We fix the number of voters in our experiment to be five and focus on differences in
the information structure (prior and signal distributions). We test three different treatments (different
prior and signal distributions) that pose different challenges for the voters. In one, simply voting for
one’s signal is an equilibrium. In the other two, it is not. Despite the different levels of complexity
for the voters, they come relatively close to the predicted strategies (that sometimes involve mixing).
As a consequence, the efficiency of the decision is also relatively high and comes close to predicted
levels. In one variation of the experiment, we calculate posterior beliefs for the subjects and post
them. In another, we do not. Interestingly, the important findings do not change.

Keywords: committees; efficient information aggregation; simple plurality rule; Condorcet
jury theorem

JEL Classification: C72; D71; D72; D82

1. Introduction

Committees are an important staple of every level of decision making: From political institutions
to any other type of public and private organizations. In our scenario—the Condorcet jury setting—the
committee members (voters) have common interests that depend on an unknown state of nature.
So, ex ante, the committee members are not sure which alternative is best. Committee members have
prior beliefs about the probabilities of the different states of nature. Each committee member receives
an imprecise, but informative, private signal about the state of nature prior to the election. They update
their beliefs about the state of nature and cast a vote for one of the alternatives.

Can the committee efficiently elect the best alternative? Or would a dictator make a better choice?
In most scenarios, more information is better than less. In our setting, however, voters also have to
consider that they act in a game with multiple players. What if there is a conflict between information
aggregation and strategic behavior of the voters?

The original Condorcet Jury Theorem (CJT) does not consider strategic behavior, but the recent
previous literature does. The most relevant theoretical models for our experiment are Wit [1]
and Feddersen and Pesendorfer [2] (among others) for two-alternative elections and Goertz [3] for
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three-alternative elections.1 Wit [1] and Feddersen and Pesendorfer [2] show that the equilibrium in
two-alternative elections is unique and always efficient.2 Goertz [3] shows that in three-alternative
elections, equilibria may no longer be unique and both efficient and inefficient equilibria may exist
for the same committee. Equilibrium strategies are much harder to find and do not seem to have any
intuitive properties.

Gerling et al. [4] and Palfrey [5] review most of the previous experimental literature on information
aggregation in committees: Generally, in two-alternative elections, subjects tend to behave strategically;
and since the CJT holds in equilibrium, the experimental outcomes are efficient.

Bouton et al. [6] and Bouton et al. [7] are the first to hint at the fact that experimental elections with
three alternatives may be different in that respect, but their underlying model is not quite the same as
ours and so their findings do not really answer our question. The attention of the former paper is on
comparing the efficiency of approval voting versus the simple plurality rule and the latter investigates
Duverger’s Law. In the common underlying model, there are three alternatives, but only two states
of nature. The majority voters have only two possible types a and b and therefore consider only two
possible strategies, voting for alternative A or B. The minority voters only vote for C. The strategic
considerations of the voters in this model are more similar to those in a two-alternative election than
to those in our election with three states of nature and no myopic minority voters.

Three-alternative elections have interesting twists that do not occur in two-alternative elections,
and we would like to investigate how voters react to these. In the symmetric equilibrium of a
two-alternative election, a voter with type/signal a is always at least as likely as a voter with signal
b to vote for alternative A. Strategies follow a certain monotonicity, so that voters always either
vote informatively for their signal or mix between the two alternatives. In three-alternative elections,
one can investigate more complex information structures for which voting is less intuitive. There are
equilibria in which voters have an incentive to vote against their own signal and vote for one or
two of the other alternatives. There can be interesting tensions between posteriors and the efficient
equilibrium strategy that do not exist in two-alternative elections. We investigate how voters react
to these and how this impacts the efficiency of the decision. We essentially want to know whether a
committee is still an efficient decision making vehicle when there are more than two alternatives and
things get more complicated for the voters.

Experimentally, three-alternative elections pose yet another challenge. Goertz [3] shows that
efficient equilibria exist. However, the proof is not constructive. Since strategies do not follow
any nice properties, it is very hard to construct equilibria or find all the ones that exist for certain
signal distributions. We chose three different signal distributions for our treatments and developed a
numerical search algorithm to find the equilibria for our treatments. In treatment 1, informative
voting (voting for one’s signal) is an equilibrium. In treatment 2, informative voting is not an
equilibrium. One voter type mixes between all three alternatives, but there is no tension between
predicted equilibrium strategies and the posteriors (see more detailed discussion below). In treatment 3,
informative voting is not an equilibrium and there is a tension between predicted strategies and
posteriors. So, the complexity for the voters increases from treatments 1–3.

Not surprisingly, subjects vote informatively when it is an equilibrium. But even in treatments 2
and 3, we find that voters’ behavior is very close to the predictions. As a consequence, efficiency is about
as high as predicted. Following a large body of experimental literature on different Bayesian games,
we calculate posterior probabilities of the different states of nature—given a subject’s signal—and post
it on the computer screen for each subject before they have to cast a vote. However, we also ran a

1 The original CJT considers only two alternatives, so most theoretical models keep that assumption. Goertz [3] restricts her
attention to three alternatives. General results for any number of alternatives seem currently out of reach.

2 Note that there are several other papers that show the same in closely related models for two alternatives. There is also a
large body of literature on large elections in which the number of voters is uncertain and converges to infinity. Those are not
so closely related because the theoretical analysis is quite different (although the predictions tend to be similar).
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small number of sessions without posting posteriors to see whether this has any influence. We found
no noteworthy difference in outcomes between sessions with and without posteriors, especially
for efficiency.

In the following section, we present the theoretical model. We describe in a bit of detail
how a rational voter votes in our scenario. We then present the experimental set-up, the results,
and the conclusion.

2. Theoretical Background

2.1. Model

We get our theoretical predictions and the set up of the experiment from Goertz [3] which
extends the previous models based on the Condorcet Jury Theorem (e.g., Wit [1] or Feddersen and
Pesendorfer [2]) to three alternatives. We will keep this section brief and only highlight those aspects
of the model that we need for the experiment.

Consider a committee with a finite and odd number N ≥ 3 of voters. In all our sessions, we have
N = 5. The committee has to elect one of three alternatives from K = {A, B, C} with the simple
plurality rule (one voter one vote). There are three states of nature {a, b, c} = k with prior probabilities
πa, πb, πc > 0. Committee members have common, state-dependent preferences. In each state of
nature, they prefer one of the three alternatives and are indifferent between the other two.

u(X|x) = 1 ∀X ∈ K, x ∈ k,

u(Y|x) = 0 ∀Y 6= X ∈ K, x ∈ k.

Before the election, each voter receives a private signal about the state of nature that is
independently drawn from a common distribution on {a, b, c} = S. Denote the signal of voter i
with si ∈ S. Signals are informative but imprecise. Denote by ϕz(x) the probability of receiving signal
x in state z. Signals are such that

ϕx(x) > ϕx(y) + ϕx(z) ∀ x ∈ k, x 6= y 6= z 6= x ∈ S, (1)

which implies that signal x occurs with a probability higher than 0.5 in state x. This assumption is,
among others, significant for the existence of an efficient equilibrium.

Committee members vote for one alternative in K or mix between different alternatives.
Abstention is not an option. The alternative with most votes is elected. The following tie-breaking
assumption applies: any tie involving alternative A is broken in favor of alternative A, and that a tie
between alternatives B and C is broken in favor of alternative B.

The voting literature is typically interested in symmetric Bayesian Nash equilibria in which voters
of the same type vote the same way. A voter’s type ti is defined as her private signal: ti = si and T = S.
A strategy is a function σ : T→ ∆(K), where σX(t) is the probability that a committee member of type
t chooses to vote for alternative X, and where ∑X σX(t) = 1∀t ∈ T. A strategy profile is responsive,
if voters change their vote as a function of their private information with positive probability, i.e., if
σ(ti) 6= σ(tj) for at least two different ti, tj ∈ T. The voting literature is usually interested in responsive
equilibria, although it is always an equilibrium in these games if all voters vote (unresponsively) for the
same alternative. A strategy profile is informative if all voters vote for their own type, i.e., σX(x) = 1
for all X ∈ K and x ∈ T. We occasionally use the informative voting strategy as a (naive) benchmark.

A strategy profile is efficient if the committee selects the correct alternative with a probability that
is at least as high as the probability with which a single decision maker alone with one signal only would
choose the correct alternative. Denote by PC

σzZ the probability with which a committee correctly elects
alternative Z in state z under strategy profile σ. The precise formulas can be found in the Appendix B.
Ex-ante efficiency of a committee using strategy profile σ can be calculated as PC

σ = πaPC
aA + πbPC

bB +

πcPC
cC. The efficiency of a single decision maker is given by Pone = πaPone

aA + πbPone
bB + πcPone

cC , where
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Pone
xX = πx(∑y∈S ϕx(y)σX

I (y)) and σX
I (y) is the probability that a single individual votes for alternative

X given type y. A single individual always selects the alternative that is most likely given the posterior
probabilities based on her type. Below we will indicate what σX

I (y) is for our three treatments.3

Definition 1 (Efficient equilibrium). An equilibrium σ∗ for a committee characterized by (π, ϕ) is efficient if
PC

σ∗ ≥ Pone.

Theoretically, one can only calculate ex-ante efficiencies. When we run our sessions, though,
we can also compare ex-post efficiencies (i.e., the frequency with which the committee actually elected
the correct alternative). Whenever it is possible, we use ex-post efficiencies rather than ex-ante ones.
We call the ex-post efficiency “observed efficiency”.

In all our treatments, there exists an efficient equilibrium. On average, voters perform better than
a single individual in all our sessions.

2.2. Voter Behavior

In this section, we briefly consider how a rational voter votes in this type of election.
When comparing expected utilities of different ballots, voters need to consider only those events
in which their vote changes the outcome of the election. These events are called pivotal events.
In two-alternative elections, the only pivotal event is a tie between the two alternatives.4 In a
three-alternative election, there are many more pivotal events, and the number of these events increases
with the number of voters. Suppose, for example, that there are five voters, and that one of these
voters considers voting for alternative A. Pivotal events occur if the other voters submit the following
votes: ABBC or ABCC. The pivotal events in three-alternative elections depend on the ballot that is
considered and on the number of voters in the committee. Voters calculate the probabilities of all the
pivotal events in which a vote for alternative Y changes the outcome of the election from X to Y in
state z. We denote the sum of all these probabilities with pivYX

z . These probabilities are quite complex
polynomials when there are more than two alternatives (see Appendix B).

Rational voters also consider the posterior probabilities of the different states of nature given their
types. We denote with πz(t) the posterior probability of state z given a voter’s private type t. Now we
can write the expected utility of considering a vote for alternative Y as

EU(Y|t) = −πx(t)pivYX
x + πy(t)pivYX

y + πy(t)pivYZ
y − πz(t)pivYZ

z . (2)

If the voter is indeed most likely pivotal in state y, for example, then voting for Y is a good choice.
If, however, the most likely pivotal event occurs in states x or z, then changing the outcome of the
election to Y is a bad choice. The comparison of expected utilities depends on the precise interplay
between pivotal and posterior probabilities.

On a sidenote, and since the comparison may interest the reader: in a two-alternative election,
Equation (2) reduces to the first two terms. Without going into much detail, this implies that a
voter with signal a, for example, is at least as likely to vote for alternative A as a voter with signal
b. So, the prediction is that at most one voter type mixes and that either the other or both types
vote informatively. Conceivably, this is not too hard for actual subjects to figure out either. It also

3 For the sake of comparison: The efficiency benchmark is quite different in large elections. As n→ ∞, a limit equilibrium σ∗

in a large election is efficient if it is true that PxX = 1 for all alternatives X and states of nature x (n is the mean of random
variable N). That implies that a limit equilibrium σ∗ with σn → ∞ as n → ∞ is only efficient if the correct alternative is
chosen with probability 1 in each state of nature (e.g., Goertz and Maniquet [8]). In the literature, this definition is sometimes
referred to as “full-information equivalence” because it requires the outcome of the election to be the same as it would be if
all private signals were public information. For a large election, the law of large numbers implies that the state of nature can
be inferred if all signals are publicly observable.

4 In most models of two-alternative elections, the number of voters is assumed to be odd. If it is even, then pivotal events are
different from ties.
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implies that the equilibrium is unique and always efficient (e.g., Wit [1]), which is not at all the case in
three-alternative elections.

3. Experimental Design and Predictions

3.1. Treatments

Table 1 shows our three treatments. N = 5 for all treatments and sessions. Note that for the
type distribution, the row entries add up to 1 (recall that a voter’s type is equal to the private signal).
Consider treatment 2, for example. In state b, type a’s frequency is 0.4, type b’s 0.55, and type
c’s 0.05. For the posterior probabilities, the column entries add up to 1. Consider treatment 2,
for example. Given type a, for example, the posterior probabilities of states a, b, and c are 0.284, 0.358,
and 0.358, respectively.

Table 1. Treatment design: priors and type Distributions.

Treatment State Priors
Type Distributions Posteriors by Type

a b c a b c

a 1
3 0.9 0.05 0.05 0.9 0.05 0.05

1 b 1
3 0.05 0.9 0.05 0.05 0.9 0.05

c 1
3 0.05 0.05 0.9 0.05 0.05 0.9

a 0.15 0.9 0.05 0.05 0.284 0.029 0.029
2 b 0.425 0.4 0.55 0.05 0.358 0.89 0.081

c 0.425 0.4 0.05 0.55 0.358 0.081 0.89

a 0.2 0.9 0.05 0.05 0.36 0.04 0.04
3 b 0.4 0.4 0.55 0.05 0.32 0.88 0.08

c 0.4 0.4 0.05 0.55 0.32 0.08 0.88

Our theoretical predictions for the treatments are in Table 2. McLennan [9] and Goertz [3] both
assert that there exists an efficient equilibrium in our type of election. However, the proof in neither
paper is constructive, at least not for all of our treatments. Treatment 1 is a symmetric committee.
Informative voting is an equilibrium for a symmetric committee, and it is efficient (Goertz [3]). There is
also another equilibrium (Goertz [3]): it is inefficient and has one of the types mixing between the two
alternatives not indicated by her type (Theorems 2 and 3). This committee is a “knife-edge” committee
in the sense that it is not stable to slight perturbations of the mixing probabilities or prior and type
distributions. We therefore discarded it as a possible prediction for our experiment. We used numerical
methods (a search algorithm) to verify that no other equilibria exist for treatment 1.5 For more details
on our search algorithm, please refer to the Appendix A.

In treatments 2 and 3, informative voting was not an equilibrium. The search algorithm found
the following equilibria: it returned unique responsive equilibria for treatments 2 and 3 that were
also efficient. In both of these, type a voters mixed between all three alternatives while types b and c
voted informatively.

The difference between treatments 2 and 3 lies in the information conveyed by the posterior and
the pivotal probabilities for type a and whether the two types of information pointed in the same
direction or not. In treatment 2, the posterior probabilities for a voter with type a no longer indicated
strong evidence for state a. When considering voting for her type, type a also must take into account
the pivotal probabilities. Those can be calculated using the formulas from the Appendix B. We only
need to consider a few to see that voting for A was not necessarily a good choice: pivAB

a = 0.0135,

5 In this type of a voting game, it is always an equilibrium for all types to vote for the same alternative. Those are typically
called unresponsive equilibria. The algorithm finds these as well. However, they are not particularly useful as predictions
for experimental data because subjects never appear to use these types of strategies.
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pivAC
a = 0.0135, pivAB

b = 0.0726, and pivAC
c = 0.0726. A voter of type a would find herself most likely

pivotal in states b or c when voting for A. So, voting exclusively for A was certainly not a good idea.
Notice that both posterior probabilities and pivotal probabilities pointed away from voting for A
exclusively. A naive voter using only posterior probabilities may vote for either B or C exclusively.
A rational voter recognizes that she should mix between all three alternatives.

Table 2. Predicted strategies by type: **analytical, ***numerical.

Treatment Type
Prob. Voting for

PC
σ I PC

σ∗A B C

a 1 0 0
1 ** b 0 1 0 0.9945 0.9945

c 0 0 1

a 0.379 0.235 0.386
2 *** b 0 1 0 0.6575 0.7817

c 0 0 1

a 0.507 0.188 0.305
3 *** b 0 1 0 0.6775 0.7693

c 0 0 1

Treatment 3 was chosen such that posterior probabilities for a type a voter were “in favor”
of voting for alternative A. When considering voting for her type, type a faced the same pivotal
probabilities as in treatment 2, so a voter voting for A found herself most likely pivotal in states b
and c.6 In this treatment, posterior probabilities and pivotal probabilities gave conflicting information
and the differences in pivotal probabilities by far outweigh the differences in posterior probabilities.
A naive voter using only posterior probabilities may vote for A exclusively in this treatment. Only a
rational voter realized that pivotal probabilities need to be considered as well and that she should mix
between all alternatives.

Table 2 also indicates the ex-ante efficiency of the decision under the predicted strategies,
PC

σ∗ (calculated using the formulas in the Appendix B). Since all voters had the same preferences,
efficiency is a convenient measure of wellbeing of the voters. It measures how often the committee
selects the correct alternative given a particular strategy profile. Since we occasionally used it as a
naive benchmark, the table also indicates the efficiency of an informative voting profile (all voters
voting for their type), denoted by PC

σI
.

3.2. Experimental Design

The experimental sessions were run at the Social Sciences Research Laboratory of the University
of Saskatchewan, Saskatoon.7 Subjects were recruited from the undergraduate population through the
participant pool of the lab and through class announcements and advertisements in various places.
We ran nine sessions with a total of 106 subjects.

We chose a within-subject design: within one session, subjects went through all three treatments
in different orders. The experiment was run on computer terminals in the laboratory. The experimental
software was developed using zTree (Fischbacher [10]). First, a set of instructions was read aloud
while participants read along. Instructions (see Appendix C) were handed out as hard copies so that

6 When type a considers voting for her type, pivotal probabilities were the same in treatments 2 and 3 because type
distributions are the same in both treatments. Pivotal probabilities depend on the probabilities with which a random voter
votes for a certain alternative, which are equal to type distributions when voters vote for their types.

7 Ethics approval was obtained from the Research Ethics Boards at the University of Guelph and the University of
Saskatchewan, Saskatoon.
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participants were able to refer to them during the course of the session. Questions were answered,
followed by two dry runs to familiarize the subjects with the software and the information presented
on the various screens (see Appendix C).

Afterwards, subjects played 60 voting periods for cash. At the beginning of each voting period,
subjects were randomly matched into different committees with five members each. Subjects knew
that they were randomly matched at the beginning of each voting period and not likely to play with
the same committee again. Since we typically over-recruited participants, some participants were
randomly selected to be “inactive” during a particular voting period (with no information or feedback
provided to them about the current period).

If a committee chose the correct alternative, each member received 100 experimental currency
units (ECU). Otherwise, they received nothing. Each participant’s ECU balance at the end of the
60 periods was converted into CA$ at a rate of 200:1. In addition, subjects were paid a show-up fee
of CA$ 6.

The Voting Task

The voting task needed to be sufficiently abstract to avoid framing. We presented the task as
follows (from the instructions): “there are three different jars with balls inside. Each jar has a different
color: red, blue, or green. In each jar, there are 100 red, blue, and green balls, but the number of balls
of different colors in each jar is different. For example, in the red jar, there will typically be more red
balls than other balls... At the beginning of a voting period, the computer will randomly select one jar
for each committee...If the committee decision matches the color of the jar selected by the computer,
each committee member receives 100 ECUs.”

The prior and type distribution and the type of each committee member were represented as
follows (from the instructions): “the computer will choose the different jars with certain probabilities.
You and the other members of your committee are told these probabilities prior to the vote (probabilities
are shown in pie charts). Each jar has 100 colored balls... For each committee member, the computer
draws one out of the 100 balls from the selected jar. A drawn ball is put back into the jar before a ball is
drawn for the next committee member... The color of your ball gives you a better idea about the likely
color of the jar selected for your committee...”.

There is plenty of experimental evidence showing that subjects are generally not very good at
calculating and using posterior probabilities (e.g., Charness and Levin [11]). To abstract from this
known influence on voting behavior, the posterior probabilities of the different states were calculated
for the committee member’s ball draw and presented in a simple pie chart (screen shots can be found
in the Appendix C). The computer also indicated the posterior probabilities for all other possible ball
draws to help subjects form beliefs about what others in their committee may do. Of course, they had
no information about the actual colors of the balls drawn for the other committee members. In two of
our sessions, we did not indicate posterior probabilities to the subjects. Surprisingly, the important
findings did not change.

After 20 voting periods, we changed the treatment, so that each subject participated in each
treatment. Between sessions, we also changed the order of the treatments to avoid order effects.

After each voting period, the committee members received feedback about the committee: the
numbers of votes for each alternative, the committee decision, and their payment. Inactive committee
members received no feedback.
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4. Results

4.1. Basic Statistics

Table 3 provides basic information about the experimental sessions.8 We conducted nine sessions
which can be grouped into three waves. Sessions 1–3 had the same order of treatments (they were our
pilot sessions). In sessions 4–7, we changed the order of the treatments to account for a possible order
effect. Session 8 and 9 were used to test the effect of displaying posterior probabilities on the computer
screens (we did not display posteriors in these sessions). We discuss the differences between sessions
1–7 and sessions 8–9 in more detail in a separate section below.

Average earnings ranged between CA$ 15 and CA$26.25 per sessions and excluded the show-up
fee of CA$6. Differences in average earnings can in part be attributed to the fact that sessions had
different numbers of subjects; some sessions had more, some had fewer inactive committee members
who did not earn any profit in certain periods. Subjects in sessions with more inactive committee
members earn less total profit. The number of five-voter committees operating simultaneously in each
session is provided in the last column.

Table 3. Basic statistics.

Session Order Posteriors Avg. Earnings Subjects No. of Committees per Period

1 1-2-3 Yes 25.75 10 2
2 1-2-3 Yes 15 9 1
3 1-2-3 Yes 24.83 15 3
4 2-1-3 Yes 26.25 10 2
5 3-2-1 Yes 25.75 10 2
6 1-2-3 Yes 20 12 2
7 3-1-2 Yes 23.67 15 3
8 1-2-3 No 21.25 12 2
9 1-2-3 No 18.85 13 2

Total 22.45 (avg.) 106 19

4.2. Results

As a first step, we want to investigate a really “naive” voting strategy: informative voting
(i.e., naively voting for one’s signal or type). We already know from the previous literature that voters
do not behave naively in two-alternative elections. But we want to verify if this is still true in the
arguably more complex three-alternative elections.

Table 4 shows the frequency of voting according to one’s type (informative voting) for each signal,
treatment, and session. The ranking coincides with what would be expected of rational voters: All
types should vote informatively in treatment 1, and types b and c should also do so in treatments 2
and 3. Voters of type a were predicted to vote more frequently for their type in treatment 3 than in
treatment 2. This was exactly what we observe. Independent of the session (and therefore the order of
play), the frequency of type a voting for alternative A changed between treatments. Type a subjects
voted informatively with the highest frequency in treatment 1, followed by treatment 3, and with the
lowest frequency in treatment 2. Notice also that the frequency of informative voting is quite close
to 1 in treatment 1 for all types. Subjects understand that informative voting is the best choice in
that treatment.

8 The data can be found as supplementary material.
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Table 4. Frequencies of informative/naive voting by type and treatment.

Session T1 T2 T3

Order of Play a b c a b c a b c

1-2-3 1.00 0.977 0.929 0.234 0.982 0.882 0.53 0.961 1.00
1-2-3 1.00 0.969 1.00 0.233 1.00 1.00 0.933 1.00 0.968
1-2-3 0.976 0.991 0.91 0.298 1.00 0.964 0.719 0.986 0.987
2-1-3 0.984 0.947 1.00 0.194 1.00 0.98 0.596 1.00 0.982
3-2-1 1.00 1.00 0.986 0.365 0.907 0.94 0.747 0.96 0.982
1-2-3 1.00 0.988 1.00 0.265 1.00 1.00 0.707 1.00 1.00
3-1-2 0.939 0.895 0.944 0.229 0.923 0.986 0.503 0.902 0.857
1-2-3 0.917 0.89 0.913 0.281 1.00 1.00 0.563 1.00 1.00
1-2-3 0.96 0.973 1.00 0.292 1.00 0.972 0.541 1.00 1.00

We can also conclude that type a voters do not use a naive voting strategy in treatments 2 and 3.
Pair-wise comparison of the frequencies of type a’s informative voting between treatments were highly
significant using a one-sided binomial test with sessions as the unit of observation.9 The frequency of
informative voting did not change significantly in sessions 8 and 9 without posted posteriors (see more
detailed discussion below).

As the next step, we investigated the complete voting strategy of each type of voter. Table 5
presents the average voting strategy of the subjects by type (frequencies of voting for the three different
alternatives by type). As predicted, voters with types b and c voted informatively with a very high
frequency (very close to 1) in all three treatments. Type a, on average, voted informatively in treatment
1 and mixed between all three alternatives in treatments 2 and 3.

Table 5. Observed frequencies of voting by type (equilibrium predictions in brackets).

Type
T1 T2 T3

A B C A B C A B C

a 0.97 0.017 0.013 0.267 0.399 0.334 0.626 0.175 0.199
(1) (0) (0) (0.379) (0.235) (0.386) (0.507) (0.188) (0.305)

b 0.016 0.957 0.027 0.004 0.976 0.02 0.012 0.974 0.014
(0) (1) (0) (0) (1) (0) (0) (1) (0)

c 0.018 0.023 0.959 0.002 0.03 0.968 0.004 0.027 0.969
(0) (0) (1) (0) (0) (1) (0) (0) (1)

For comparison, the table also shows the predicted mixing probabilities for rational voters
(in brackets). Type a’s frequency of voting for the different alternatives changed qualitatively according
to the equilibrium predictions in all three treatments. In fact, the frequencies were remarkably close to
the predicted frequencies.10

The predicted strategies for type a in treatments 2 and 3 call for mixing between the three
alternatives. On average, subjects do just that. One may wonder, however, whether this is just the
result of taking an average over different subjects who each, individually, use different pure strategies.
We checked individual voting behavior: voters of all types in treatment 1 and voters of types b and c
mostly used pure (informative) strategies; voters of type a in treatments 2 and 3 do not.

Posterior Voting. How much of the observed behavior is influenced by the fact that posterior
probabilities are posted? Do voters vote as indicated by the posterior probabilities (i.e., vote for the

9 Nine out of nine successes, p− value = 0.001953, with the null of prob= 0.5. Similar binomial tests were performed in other
cases, unless otherwise stated.

10 Despite qualitative support for comparative statics, the results differ systematically from theoretical point predictions.
In treatments 2 and 3, type a’s probability of voting for A, B, and C are different from the equilibrium mixed strategy
(p-value < 0.002, except for B in treatment 3).
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alternative that has the largest posterior probability given their signal)? In most of our cases, posterior
voting coincided with informative/naive voting. So, whenever we can reject informative voting as an
explanation of voting behavior, we can also reject posterior voting. There was only one case in which
the two types of strategies differed: type a in treatment 2. Unfortunately, in that case, the prediction for
posterior voting was not clear-cut. Given a voter’s type is a, states b and c were both the most likely
states. So, a reasonable posterior voting strategy is any probability distribution over alternatives B
and C, including voting exclusively for B or voting exclusively voting for C. Nevertheless, we do not
believe that type a voters engaged in posterior voting in this case because they voted for alternative A
with a relatively high probability as well. In addition, the important findings were similar in sessions
with and without posted posteriors (see more detailed discussion below).

We also investigated how subjects fared in terms of efficiency. Table 6 shows the average efficiency
of the subjects by treatments and compares it to several benchmarks. The first was the efficiency
of a single decision maker. The second benchmark was the efficiency of the theoretically predicted
equilibrium strategy profile. Since we used it as a naive benchmark, we also include the efficiency of
an informative voting profile as another benchmark.

Table 6. Efficiency.

Session Order T1 T2 T3

1 1-2-3 1 0.775 0.8
2 1-2-3 1 0.9 0.8
3 1-2-3 1 0.8 0.683
4 2-1-3 1 0.85 0.8
5 3-2-1 1 0.75 0.825
6 1-2-3 0.975 0.75 0.675
7 3-1-2 0.983 0.8 0.583

8 (no post.) 1–2–3 0.975 0.7 0.875
9 (no post.) 1–2–3 0.975 0.775 0.7

Total 0.989 0.782 0.734

Single Decision Maker 0.9 0.6375 0.62
Informative/naive Voting 0.989 0.703 0.679
Equilibrium 0.989 0.799 0.763

The equilibrium benchmark and the naive (informative) benchmark were calculated using the
actual type draws from the experimental data. We obtained the informative benchmark by simply
replacing the votes observed in the data with votes that correspond to the voters’ types and calculating
the efficiency of the resulting outcomes. The equilibrium benchmark was calculated using simulations
to get a relatively precise efficiency measure in the setting where players use mixed strategies. For each
actual committee vote in the experimental data, we simulated 800 alternative votes based on the same
type draws but employing the equilibrium mixed strategies. The single-individual benchmark was
calculated as ∑x∈k πx

(
∑y∈S ϕx (y) σX

I (y)
)

where σX
I (y) is the probability that a single individual

votes for alternative X given type y. The single individual votes for the alternative that was most likely
correct based on the posterior probabilities. So, in treatments 1 and 3, σX

I (x) = 1 and σX
I (y) = 0 for all

types. In treatment 2, σB
I (b) = σC

I (c) = 1 and σB
I (a) + σC

I (a) = 1. In the literature on small committees,
a committee was considered efficient if it elected the correct alternative with a higher probability than
a single individual alone. This was clearly true in all our cases.

Average efficiency was relatively high in all treatments—higher than the single-decision-maker
and also (in treatments 2 and 3) higher than the informative-voting strategy profile. It was a bit lower
than the equilibrium benchmark in treatments 2 and 3, which is not surprising given that average
strategies were not quite the same as equilibrium strategies.
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We verified some of the above observations with statistical tests. Efficiency was highest in
treatment 1 (binomial test, p-value < 0.002).11 Consistent with the equilibrium, efficiency was higher
in treatment 2 than in treatment 3, but the pattern cannot be confirmed statistically with sessions
as the unit of observation. When we compared observed and predicted efficiency, we found that
in treatment 1 observed efficiency was no lower than the equilibrium benchmark (binomial test,
p-value < 0.05). In treatments 2 and 3, we found that they were not significantly different. Even though
strategies were not quite as predicted, efficiency did not suffer. It was not significantly lower than it
should have been if subjects played precisely the equilibrium strategies. That was quite reassuring for
committees with uncertainty and maybe a bit surprising at first, given that subjects do not play precise
equilibrium strategies.

Comparing efficiency to the naive informative-voting benchmark, we found—not
surprisingly—that observed efficiency in treatment 1 was no lower than the benchmark (binomial test,
p-value < 0.05). We also verified that observed efficiency in treatments 2 and 3 was higher than under
the benchmark (p-value < 0.05 and 0.1, respectively).

Table 7 displays the observed efficiencies by state for treatments 2 and 3 and compares them
to the equilibrium benchmark and the informative/naive benchmark. In both treatments, observed
efficiency was lower than predicted by the equilibrium in at least one state and higher in the other(s).
In treatment 2, type a voters voted a bit too often for alternative B at the expense of alternatives A
and C (see Table 5). So, we found a higher efficiency in state b and lower efficiencies in states a and c.
In treatment 3, type a voters vote too often for alternative A (see Table 5). So, we get higher efficiency
in state a, but lower efficiencies in states b and c.

Table 7. Efficiency by state compared to benchmarks.

T2 T3

a b c a b c

Observed 0.368 0.918 0.783 0.753 0.714 0.742
Equilibrium 0.445 0.856 0.867 0.652 0.755 0.823
Informative/Naive 0.982 0.643 0.664 0.987 0.543 0.65

4.3. Effect of Posting Posterior Probabilities

Given the importance of posterior probabilities in this setting, we investigate in this section
whether any of the previous results are influenced by calculating and posting posterior probabilities
for the subjects. In sessions 8 and 9, we posted prior and type distributions just as before, but omitted
the posterior probabilities on the computer screens (see screenshots in the Appendix C). We repeated
some of our analysis above while looking at sessions 1–7 and sessions 8 and 9 separately to see if
there are any significant differences. We focused our analysis on the one voter type on which posting
posteriors likely had the largest influence—type a—and on the efficiency of the voting decision.

Table 8 presents the frequency of informative/naive voting for type a with and without posteriors.
The last three columns show the differences in frequencies between treatments, calculated separately
for sessions with and without posteriors. The key takeaway from these results is that the treatment
effects were consistent and similar in magnitude regardless of the information condition. Frequency
rankings across treatments were the same for sessions with and without posteriors. The last row of the
table shows the differences in frequencies between sessions with and without posteriors. These are the
effects of omitting posterior information for each treatment. Relative to the treatment effects, omitting
posterior probabilities had little effect on voting behavior.

11 In binomial tests of comparison to benchmarks, we used session-level benchmark values rather than the overall benchmark
averages reported in Table 6.
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Table 8. Informative/naive voting of type a.

Treatments Differences

T1 T2 T3 T1–T3 T2–T3 T1–T2

No Posteriors 0.939 0.286 0.551 0.388 -0.265 0.653
Posteriors 0.98 0.262 0.647 0.333 -0.385 0.718
Combined 0.97 0.267 0.626 0.344 -0.359 0.703

No Post.- Post. −0.041 0.024 −0.096

To evaluate statistical significance of these differences, we estimated a logit model with subject
and session random effects (a special case of a hierarchical/mixed-effects model):

yk∗
sij = β0 +

2

∑
t=1

δtTREATt +
3

∑
t=1

γtTREATt × NOINFO + vs + usi + esij,

yk
sij = 1 if yk∗

sij > 0 and 0 otherwise.

The dependent variable yk
sij is a dummy variable indicating a vote for alternative k (A, B, or C)

in session s by subject i in period j. TREATt are treatment dummies (treatment 3 dummy is omitted).
NOINFO is a dummy variable equal to 1 if posterior information is omitted, and equal to 0 otherwise.
We also estimated an alternative specification with a dummy variable INFO = 1− NOINFO instead
of NOINFO to vary the base case. The model error consists of a session random effect vs, a subject
random effect usi, and a random error esij. Inclusion of the random effects allows for non-independence
of decisions by the same subject as well as within a session.

In this formulation, the sign and statistical significance of coefficients δt correspond to the
differences between treatments reported in Table 8. The sign and statistical significance of coefficients
γt correspond to the differences between information conditions (posteriors or not) given in the last row
of Table 8. Table 9 reports estimation results for informative/naive voting of type a (models (1) and (2))
as well as type a’s voting for the other alternatives (models (3)–(6)). Model (1) estimates of coefficients
on TREAT variables confirm that treatment differences (T1–T3 and T2–T3) in the “posteriors” row of
Table 8 are highly statistically significant. The corresponding estimates in model (2) produce the same
conclusion for the “no posteriors” row. Therefore, the treatment effects are statistically significant in
both information conditions. Estimates of coefficients on the interaction terms in model (1) indicate that
the effect of omitting posteriors information is not significant except in treatment 1. Informative/naive
voting is the equilibrium strategy in treatment 1, and it is not clear why type a vote informatively less
frequently without posteriors. Estimates of models (3)–(6) are also in line with predicted treatment
effects on type a’s voting for B and C while showing essentially no impact of omitting posteriors.

We further investigated the impact of posterior information on efficiency. Table 10 reports
efficiency differences between treatments and information conditions. We again used a logit model to
assess statistical significance of the differences:

y∗sj = β0 +
2

∑
t=1

δtTREATt +
3

∑
t=1

γtTREATt × NOINFO + vs + esj,

ysj = 1 if y∗sj > 0 and 0 otherwise.

In this case, the dependent variable ysj is a dummy variable equal to 1 if a committee voted for
the preferred (efficient) alternative in session s and election j, and 0 otherwise. The model includes
session random effects vs. Table 11 reports estimation results of the stated model (model (1)), as well as
models with INFO dummy instead of NOINFO (models (2) and (4)), and models that omit treatment
2 dummy instead of treatment 3 dummy (models (3) and (4)). Lack of significance of estimates on
interaction terms indicates that we are unable to detect differences in efficiency as a result of omitting
posteriors. At the same time, significant coefficients on TREAT1 in all models indicate that the
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differences T1–T3 and T1–T2 are statistically significant with and without posteriors. The difference
T2–T3 is statistically significant and has the correct sign with posteriors (coefficients on TREAT2 in
model (1)) but is not significant without posteriors (coefficients on TREAT2 in model (2)).

Table 9. Treatment and information (posting posteriors) effects on voting of type a.

(1) (2) (3) (4) (5) (6)
Vote A Vote A Vote B Vote B Vote C Vote C

TREAT1 3.7090 ∗∗∗ 2.9835 ∗∗∗ −3.1215 ∗∗∗ −1.9966 ∗∗∗ −3.6967 ∗∗∗ −3.1606 ∗∗∗

[0.3644] [0.4088] [0.4654] [0.5205] [0.5481] [0.5724]

TREAT2 −2.0544 ∗∗∗ −1.5798 ∗∗∗ 1.3900 ∗∗∗ 1.4305 ∗∗∗ 1.0990 ∗∗∗ 0.3836
[0.1390] [0.2605] [0.1386] [0.2760] [0.1493] [0.2611]

TREAT1 x NOINFO −1.2132 ∗∗ 0.9496 1.2604
[0.5991] [0.7214] [0.8438]

TREAT2 x NOINFO −0.0132 −0.1348 0.0089
[0.3766] [0.3329] [0.4125]

TREAT3 x NOINFO −0.4877 −0.1753 0.7243 ∗

[0.3598] [0.3609] [0.4180]

TREAT1 x INFO 1.2132 ∗∗ −0.9496 −1.2604
[0.5991] [0.7214] [0.8438]

TREAT2 x INFO 0.0132 0.1348 −0.0089
[0.3766] [0.3329] [0.4125]

TREAT3 x INFO 0.4877 0.1753 −0.7243 ∗

[0.3598] [0.3609] [0.4180]

Constant 0.7827 ∗∗∗ 0.2949 −1.8872 ∗∗∗ −2.0625 ∗∗∗ −2.0938 ∗∗∗ −1.3695 ∗∗∗

[0.1746] [0.3148] [0.1735] [0.3217] [0.2123] [0.3657]

Log likelihood −1097.859 −1097.859 −998.330 −998.330 −920.495 −920.495
N 2443 2443 2443 2443 2443 2443

Standard errors in brackets. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 10. Efficiency.

Treatments Differences

T1 T2 T3 T1–T3 T2–T3 T1–T2

No Posteriors 0.975 0.738 0.788 0.187 −0.050 0.237
Posteriors 0.993 0.793 0.720 0.273 0.073 0.200
Combined 0.989 0.782 0.734 0.255 0.048 0.207

No Post.- Post. −0.018 −0.055 0.068
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Table 11. Treatment and information effects (posting posteriors) on efficiency.

(1) (2) (3) (4)
Efficient Outcome Efficient Outcome Efficient Outcome Efficient Outcome

TREAT1 4.0605 ∗∗∗ 2.3543 ∗∗∗ 3.6595 ∗∗∗ 2.6314 ∗∗∗

[0.7211] [0.7666] [0.7237] [0.7599]

TREAT2 0.4009 ∗∗ −0.2771
[0.1921] [0.3733]

TREAT3 −0.4009 ∗∗ 0.2771
[0.1921] [0.3733]

TREAT1 x NOINFO −1.3436 −1.3436
[1.0096] [1.0096]

TREAT2 x NOINFO −0.3154 −0.3154
[0.2967] [0.2967]

TREAT3 x NOINFO 0.3626 0.3626
[0.3069] [0.3069]

TREAT1 x INFO 1.3436 1.3436
[1.0096] [1.0096]

TREAT2 x INFO 0.3154 0.3154
[0.2967] [0.2967]

TREAT3 x INFO −0.3626 −0.3626
[0.3069] [0.3069]

Constant 0.9483 ∗∗∗ 1.3109 ∗∗∗ 1.3492 ∗∗∗ 1.0338 ∗∗∗

[0.1346] [0.2767] [0.1485] [0.2577]

Log likelihood −439.530 −439.530 −439.530 −439.530
N 1140 1140 1140 1140

Standard errors in brackets. * p < 0.1, ** p < 0.05, *** p < 0.01.

5. Conclusions

Our findings suggest that small committees remain an efficient vehicle for information aggregation
in elections with three alternatives—despite the fact that they are more complex for voters than
two-alternative elections. Surprisingly, we also find that the important findings remain the same
whether or not we calculate and post posterior probabilities for the subjects.

Our main focus lies on voter behavior and efficiency in three different treatments (signal
distributions) that pose different strategic challenges. So, we chose treatments for which—according
to our search algorithm—the responsive equilibrium is unique and efficient (except for treatment 1,
for which an “unstable” knife-edge equilibrium also exists). We leave it to future research to investigate
other treatments in which efficient and more “plausible” inefficient equilibria co-exist. It would be
interesting to see whether voters continue coordinating on the efficient equilibria or whether they
also coordinate on the inefficient ones. In this sense, three-alternative elections remain an interesting
scenario to be investigated further (recall that in two-alternative elections, the committee equilibrium
is always unique and efficient). Since general theoretical results remain elusive, our search algorithm
can be a useful tool for constructing the desired treatments.
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Appendix A. Numerical Search Algorithm

In this section, we briefly describe the algorithm we use to numerically find the equilibria for our
treatments, and its limitations. Please note that the equations for the pivotal probabilities and for PxX ,
to which we refer in this section, can be found in a separate section below.

For a committee characterized by (N, π, ϕ), the task of the search algorithm is to search over all
possible σ with

σ =

 σA(a) σB(b) 1− σA(a)− σB(a)
σA(b) σB(b) 1− σA(b)− σB(b)
σA(c) σB(c) 1− σA(c)− σB(c)

 .

Unfortunately, we know that best response functions may not be continuous in this environment
(e.g., the inefficient equilibrium described in Theorem 2 of Goertz [3], among others). So, we cannot
resort to optimization algorithms to save on computational effort.12 The algorithm loops through all
possible six-tuples with the only restriction that 0 ≤ σX(t) ≤ 1. It is possible that equilibria may be
missed due to limitations of such numerical methods. For example, the algorithm can only search
over a discrete space while theoretically the entries of σ are from a continuous space. There is also an
important trade-off between computational effort (time the algorithm takes to come to a conclusion)
and the number of digits that are permitted. Just to give the reader a feel: three digits alone for each
entry of σ imply 10006 iterations of the algorithm.

Pure strategy equilibria are not the ones that are going to be missed. Equilibria with mixing
might: With a limited number of digits, it may never be true that expected utilities of two or more
ballots are precisely equal. Theoretically, however, this is the condition that needs to be satisfied for
equilibria with mixing. To get around this problem, our algorithm keeps note of σs for which the
expected utilities do not differ more than a pre-specified difference. Then there is a finer grid search
around these σs, and so on. This way, we try to mitigate the conflict between computational effort and
possibly missing equilibria. This method is not infallible, of course:

• The number of digits will always be limited.
• The choice of the acceptable difference in expected utilities needs to be specified ex-ante.

Unfortunately, expected utilities may differ vastly for different σs and this cannot be known
ex-ante. So, if the acceptable difference is too small, the algorithm may miss certain equilibria. If it
is too large, computational effort is not reduced. This problem remains, even if we use relative
differences rather than absolute differences.

• Expected utilities may not change continuously. If the initial number of digits is not large enough,
then expected utilities may never get close enough to qualify for a finer grid search. The inefficient
equilibrium in Theorem 2 of Goertz [3] is an example.

The algorithm returns unique responsive equilibria for our three treatments. There may be others
with mixing that were missed. Because of the difficulties described above, the equilibria that are
missed, if any, can only be described as “knife-edge”. We consider it unlikely that human voters would
coordinate on those types of equilibria, so we discard these as possible predictions, even if they exist.

Appendix B. Probability Formulas

Appendix B.1. Pivotal Probabilities

Denote by pivYX
z the probability of the pivotal event in which one more vote for alternative Y

changes the outcome of the election from X to Y in state z. Denote by λX
z = ϕz(x)σX(x)+ ϕz(y)σX(y)+

12 Although, even solving for maxσPC may not be straightforward because the first order condition of PC is a polynomial of
order N − 1 which does not have a general solution for every N and may not even have a real root.
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ϕz(z)σX(z), x 6= y 6= z 6= x the probability with which random voter votes for alternative X in state z.
Denote by (w) the greatest integer smaller than or equal to w.

pivBA
z =

( N−1
6 )

∑
j=0

(N − 1)!
(N−1

2 − j)!(N−1
2 − j)!(2j)!

(λA
z )

( N−1
2 −j)(λB

z )
( N−1

2 −j)(λC
z )

(2j),

pivAB
z =

( N+3
6 )

∑
j=1

(N − 1)!
(N−1

2 − j)(N−1
2 − j + 1)!(2j− 1)!

(λA
z )

( N−1
2 −j)(λB

z )
( N−1

2 −j+1)(λC
z )

(2j−1),

pivAC
z =

( N+1
6 )

∑
j=1

(N − 1)!
(N−1

2 − j)!(2j− 1)!(N−1
2 − j + 1)!

(λA
z )

( N−1
2 −j)(λB

z )
(2j−1)(λC

z )
( N−1

2 −j+1),

pivCA
z =

( N−1
6 )

∑
j=0

(N − 1)!
(N−1

2 − j)!(2j)!(N−1
2 − j)!

(λA
z )

( N−1
2 −j)(λB

z )
(2j)(λC

z )
( N−1

2 −j),

pivBC
z =

( N+1
6 )

∑
j=1

(N − 1)!
(2j− 1)!(N−1

2 − j)!(N−1
2 − j + 1)!

(λA
z )

(2j−1)(λB
z )

( N−1
2 −j)(λC

z )
( N−1

2 −j+1),

pivCB
z =

max{0,( N−1
6 )−1}

∑
j=0

(N − 1)!
(2j)!(N−1

2 − j)!(N−1
2 − j)!

(λA
z )

(2j)(λB
z )

( N−1
2 −j)(λC

z )
( N−1

2 −j).

Appendix B.2. Committee Probabilities PC
xX

Denote by (w) the smallest integer larger than or equal to w.

PC
aA =

( N
2 )

∑
j=0

(
N

N − j

)
(λA

a )
(N−j)[

j

∑
i=0

(
j

j− i

)
(λB

a )
(j−i)(λC

a )
i] +

+

N−( N
2 )−( N

3 )−1

∑
j=0

(
N

(N
3 ) + j

)
(λA

a )
(( N

3 )+j)[
( N

3 )+j

∑
i=N−2( N

3 )−2j

(
N − (N

3 )− j
i

)
(λB

a )
i(λC

a )
(N−( N

3 )−i−j)],

PC
bB =

( N
2 )

∑
j=0

(
N

N − j

)
(λB

b )
(N−j)[

j

∑
i=0

(
j

j− i

)
(λA

b )
(j−i)(λC

b )
i] +

+

N−( N
2 )−( N

3 )−1

∑
j=0

(
N

(N
3 ) + j

)
(λB

b )
(( N

3 )+j)[
( N

3 )+j

∑
i=N−2( N

3 )−2j

(
N − (N

3 )− j
i

)
(λA

b )
i(λC

b )
(N−( N

3 )−i−j)]−

−
N−( N

2 )−( N
3 )−1

∑
j=0

(N)!

((N
3 ) + j)!((N

3 ) + j)!(N − 2(N
3 )− 2j)

(λB
b )

(( N
3 )+j)(λA

b )
(( N

3 )+j)(λC
b )

(N−2( N
3 )−2j),
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PC
cC =

( N
2 )

∑
j=0

(
N

N − j

)
(λC

c )
(N−j)[

j

∑
i=0

(
j

j− i

)
(λA

c )
(j−i)(λB

c )
i] +

+

N−( N
2 )−( N

3 )−1

∑
j=0

(
N

(N
3 ) + j

)
(λC

c )
(( N

3 )+j)[
( N

3 )+j

∑
i=N−2( N

3 )−2j

(
N − (N

3 )− j
i

)
(λA

c )
i(λB

c )
(N−( N

3 )−i−j)]−

−
N−( N

2 )−( N
3 )−1

∑
j=0

(N)!

((N
3 ) + j)!((N

3 ) + j)!(N − 2(N
3 )− 2j)

(λC
c )

(( N
3 )+j)(λA
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Appendix C. Experimental Instructions and Screen Shots

1 
 

Instructions 

This is an experiment in the economics of group decision making. The instructions are simple, and if you 

follow them carefully and make good decisions, you may earn a considerable amount of money which 

will be paid to you in cash at the end of the experiment. 

1. In this experiment you will act as members of a committee that has to decide collectively about an 

abstract task that will be described to you below. Each committee has five members, and each member 

has one vote. That will never change throughout the entire session.  

2. You will make all your decisions on your computer terminals. All interactions between you and other 

participants will happen on the computers. Please do not communicate with other participants in any 

other way. This is important for the validity of the experiment. 

3. We will now go through these instructions and then have two practice voting periods so that you can 

familiarize yourself with the software and the types of decisions you will have to make. If you have any 

question at any point, please raise your hand. If, at any time during the experiment, you have a 

question, please raise your hand and an experimenter will come and assist you. 

4. After the practice round, there will be 60 voting periods played for cash. At the beginning of each 

voting period, you are randomly matched by the computer into different committees with five members 

each. In the next period, you are randomly re-matched again. If the number of participants in the room 

is not a multiple of five, some of you may randomly be chosen to sit out during a voting period and not 

be part of any committee (inactive committee member).  Multiple committees will hold a vote 

simultaneously during a voting period. What happens in one committee is not influenced at all by what 

happens in other committees that operate at the same time.  

4. Voting Task 

There are three different jars with balls inside. Each jar has a different color: red, blue, or green. In each 

jar, there are 100 red, blue, and green balls, but the number of balls of different colors in each jar is 

different. For example, in the red jar, there will typically be more red balls than other balls, and in the 

blue jar there will be more blue balls. At the beginning of a voting period, the computer will randomly 

select one jar for each committee. The different jars may be chosen by the computer with different 

probabilities. Jars are chosen independently for the different committees. A jar chosen for one 

committee has no bearing on a jar chosen for a different committee in the same period or for the jars 

chosen in subsequent periods. 

The committee members do not know the color of the jar. It is the task of the committee to vote on the 

color of the jar and select the correct one. Each committee member has one vote, and committee 

members submit their votes simultaneously. The color with the most votes wins (committee decision). 

If there is a tie, the following tie-breaking rule applies: In a tie with red, red automatically wins. In a tie 

between blue and green, blue automatically wins. 

To help you make a decision on your vote, one ball is drawn for each committee member from the jar 

selected by the computer. The color of your ball tells you something about the likely color of the jar. 
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2 
 

Committee members will be told the probabilities with which the computer selects the different jar. 

They will also know the numbers of balls with different colors in each of the three jars.  

5. Payment from a Decision 

If the committee decision matches the color of the jar selected by the computer, each committee 

member receives 100 ECUs (experimental currency units) that are added to the ECU balance. If the 

committee decision does not match the color of the jar, the committee members receives no ECUs.  At 

the end of the experiment, the ECUs are converted into CA$ and paid to you in cash.  

It should be the goal of a committee member to vote in a way so that the committee decision matches 

the color of the jar. How should you vote? If we knew the answer, we would not have to conduct the 

experiment. You should do what you think is best. 

6. Probabilities of Jars and Distribution of Balls 

The computer will choose the different jars with certain probabilities. You and the other members of 

your committee are told these probabilities prior to the vote. 

Example 

 

Each jar has 100 colored balls. The number of balls with different colors is different in each jar. As a 

convention, the color of the jar corresponds to the color of the most frequent balls. For example, you 

will be told prior to the vote:  

Example  

 

 

 

 

The probabilities of the jars and the numbers of balls with different colors in the jars stays the same for 

20 voting periods and then change. So, throughout the session, there will be three different scenarios. 

7. Your Drawn Ball 

For each committee member, the computer draws one out of the 100 balls from the selected jar. A 

drawn ball is put back into the jar before a ball is drawn for the next committee member. That means 

Blue 
50% 

Red 
25% 

Green 
25% 

Probabilities of Jars: 

60 Red Balls 

20 Blue Balls 

20 Green Balls 

60 Blue Balls 

20 Red Balls 

20 Green Balls 

60 Green Balls 

20 Red Balls 

20 Blue Balls 
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