
Spichtig, Mathias; Egas, Martijn

Article

When and how does mutation-generated variation
promote the evolution of cooperation?

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Spichtig, Mathias; Egas, Martijn (2019) : When and how does mutation-generated
variation promote the evolution of cooperation?, Games, ISSN 2073-4336, MDPI, Basel, Vol. 10, Iss.
1, pp. 1-17,
https://doi.org/10.3390/g10010004

This Version is available at:
https://hdl.handle.net/10419/219227

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g10010004%0A
https://hdl.handle.net/10419/219227
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


games

Article

When and How Does Mutation-Generated Variation
Promote the Evolution of Cooperation?

Mathias Spichtig and Martijn Egas *

Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,
1090GE Amsterdam, The Netherlands
* Correspondence: egas@uva.nl; Tel.: +31-20-525-7748

Received: 31 October 2018; Accepted: 25 December 2018; Published: 14 January 2019
����������
�������

Abstract: Mutation-generated variation in behavior is thought to promote the evolution of
cooperation. Here, we study this by distinguishing two effects of mutation in evolutionary games
of the finitely repeated Prisoner’s Dilemma in infinite asexual populations. First, we show how
cooperation can evolve through the direct effect of mutation, i.e., the fitness impact that individuals
experience from interactions with mutants before selection acts upon these mutants. Whereas this
direct effect suffices to explain earlier findings, we question its generality because mutational variation
usually generates the highest direct fitness impact on unconditional defectors (AllD). We identify
special conditions (e.g., intermediate mutation rates) for which cooperation can be favored by an
indirect effect of mutation, i.e., the fitness impact that individuals experience from interactions with
descendants of mutants. Simulations confirm that AllD-dominated populations can be invaded by
cooperative strategies despite the positive direct effect of mutation on AllD. Thus, here the indirect
effect of mutation drives the evolution of cooperation. The higher level of cooperation, however, is not
achieved by individuals triggering reciprocity (‘genuine cooperation’), but by individuals exploiting
the willingness of others to cooperate (‘exploitative cooperation’). Our distinction between direct and
indirect effects of mutation provides a new perspective on how mutation-generated variation alters
frequency-dependent selection.

Keywords: altruism; evolutionary game theory; frequency-dependent selection; mutation regime;
Prisoner’s Dilemma

1. Introduction

Evolution is driven by selection acting on heritable phenotypic variation. The amount of
phenotypic variation can be described as a function of selection modulating the variation generated by
mutation, recombination, and environmental factors. If selection is frequency-dependent, it can in turn
be described as a function of the distribution of phenotypic variants in the population. A standard
approach in evolutionary ecology is to ignore selection effects of phenotypic variation by reducing
the analysis to interaction dynamics of an invader phenotype in an otherwise homogeneous resident
population [1]. This approach is defensible if the addition of other phenotypic variants constitutes
no more than noise on the selective interactions between these two phenotypes. Under a regime of
frequency-dependent selection, however, increasing phenotypic variation may alter the outcome of
evolutionary analyses qualitatively [2]. For example, increasing (mutation-generated) variation in
behavior can promote the evolution of cooperation [2–7].

Studies of the evolution of cooperation typically document behavioral variation (e.g., [8–15]),
including those where behavioral strategies are explicitly assessed (e.g., [16,17]). Hence, the existence
of such behavioral variation may provide a general explanation for the evolution of cooperation [3–6].
However, this prediction is generated from studies simulating asexual populations, where each of
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these studies is based on a particular choice of mutation regime, i.e., a mutation rate (µ), a set of
strategies that mutation can generate, and a rule of how mutant strategies tend to differ from the
parental strategies (variation from recombination and from environmental factors is ignored). Given
the relative lack of knowledge of the genetic underpinning of behavioral traits, arbitrary choices are
inevitable. In asexual organisms, mutation is typically seen as the main source of heritable variation,
and the mutation regime determines the expressed (heritable) variation. Yet, it is unclear whether
the effect of mutation-generated variation in behavior to promote the evolution of cooperation is
general, i.e., holds under any mutation regime. Therefore, we investigate whether variation-promoted
evolution of cooperation is robust to the choice of mutation regime.

To analyze the effects of mutation regime on the evolutionary dynamics, we distinguish direct and
indirect effects of mutation by using a narrow-sense definition of mutants: mutants are the individuals
with a genotype distinct from their parent, i.e., a mutation event occurred during the generation of the
individual (transforming its genotype). As a consequence of this narrow-sense definition, faithfully
replicated offspring of mutants are not mutants themselves (in contrast to the use of the term in
“mutant-wild type” contexts where faithfully replicated offspring of mutants remain categorized as the
“mutant type”). Because selection acts on variation after it is generated by mutation, mutants (under
our definition) constitute the fraction of the population that has not yet been affected by selection.
We refer to the direct effect of mutation on the evolutionary dynamics when it concerns the average
fitness impact that individuals experience from interactions with the mutants, i.e., the instantaneous
impact of mutational variation before selection acts upon these mutants. Generally, the fitness impact
of mutation goes beyond that of the mutants alone as long as they (faithfully) produce descendants.
We refer to this latter impact as the indirect effect of the mutants when it concerns the average fitness
impact that individuals experience from interactions with descendants of mutants.

In this paper, we show that the distinction between direct and indirect fitness effects is useful
in providing insight in the impact of mutation-generated variation on the evolution of cooperation.
Our results show that (1) earlier findings on the impact of behavioral variation on the evolution
of cooperation are no more than special cases where there is a positive direct effect of mutation;
(2) cooperation can evolve through an indirect effect of mutation-generated variation even if
unconditional defectors benefit most from the direct effect; and (3) in cases with positive indirect effects
of mutation, the selected strategies in the population exhibit exploitation of cooperative acts.

2. Model

We use the evolutionary game version of the finitely repeated Prisoner’s Dilemma game
(frPD; [18,19]) to study the impact of different mutation regimes. In the Prisoner’s Dilemma (PD) game,
individuals engage in pairwise interactions where they choose to cooperate (C) or to defect (D). Both
players execute their action simultaneously. Individuals receive payoff dependent on their own choice,
as well as the choice of their opponent, as given in the following payoff matrix:

C D

C R S

D T P

The payoffs follow the relations T > R > P > S and 2 R > T + S. The consequence is that defection
generates higher individual payoffs T (>R) and P (>S), while mutual cooperation maximizes the
common payoff. In the frPD game, the Prisoner’s Dilemma game is repeated a fixed number (=r) of
times. The total number of deterministic strategies adjusted to an frPD game is finite (i.e., 22r−1; [19]).
Cressman [19] provides a general analysis of evolutionary frPD games in absence of mutation.
The strategy that defects (=d) and the strategy that cooperates (=c) are the two strategies in a one-shot
game (r = 1). It follows from the payoff matrix that for any population composition of the two strategies,
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individuals with strategy d always generate a higher average payoff than individuals with strategy c.
Consequently, strategy d evolves towards fixation in infinite populations, i.e., the state in which mutual
defection is observed in all PD games. For much the same reason, in mutation-free evolutionary frPD
games (r > 1) polymorphic populations composed of players with all deterministic strategies evolve
towards states in which the players exclusively defect [18,19]. Unconditional defectors (AllD) obtain
fitness dominance (wAllD ≥ wi for all strategies i; wi is the fitness of strategy i) during this process of
convergence towards full defection [19].

In our model, we assume infinite, asexual populations composed of deterministic strategies.
The code used for the strategies is described below. Strategy i individuals generate average payoff
pi = ∑

j∈s
pij f j from game interactions; pij is the payoff that a strategy i individual generates in

interactions with a strategy j individual, fj is the frequency of strategy j, and s represents the strategy
set (i.e., the collection of the considered strategies). For generality, we assume that the average fitness
of strategy i individuals is determined by the sum of payoff from the game and payoff from other
“background” activities, i.e., wi = pi + K, where background fitness K is the game-unassociated fitness
component (in the simulations, we used positive integers for K) which in this paper is assumed identical
for each individual. Fitness determines reproductive success but not survival abilities. Consequently,
all players have, independent of their performance, the same expected number of pairwise interactions
over their life time in the game.

2.1. Strategies

Strategies are defined by their responses to each possible sequence of actions of an opponent in
the game. To take the work of [18,19] as a starting point in our analysis, we use the type of strategy sets
proposed by Nachbar [18], which we here call ‘TfTx’ sets. The famous ‘Tit for Tat’ (TfT; [20]) strategy,
which starts with C and thereafter repeats the previous action of the opponent, is contained in ‘TfTx’
sets. The strategy TfTx behaves as TfT in the first x rounds and unconditionally defects in the remaining
(r− x) rounds. ‘TfTx’ sets contain all TfTx strategies with x = {0, 1, . . . , r− 1, r}. The extremes represent
AllD (x = 0) and TfT (x = r). In absence of mutation, AllD evolves towards fixation in any polymorphism
of the ‘TfTx’ strategies [18]. Hence, in our analyses below, we use the fitness of AllD as the benchmark
for measuring the relative success of other strategies when mutation-generated variation is introduced
in the model.

McNamara et al. [3] altered the frPD game in that players can end the game after any round
(whereby both players receive an identical payoff for each unplayed round). We do not implement this
altered frPD game to avoid the consequent increase in the number of deterministic strategies (assuming
the work of [18,19] can be extrapolated to the game of McNamara et al. [3]). Hence, we consider ‘TfTx’
sets as analogous to the sets used by McNamara et al. [3]. To confirm this analogy, we repeated the
simulations of McNamara et al. [3] using ‘TfTx’ sets and retrieved qualitatively the same results in
these simulations as McNamara et al. [3] did with their sets.

Besides the ‘TfTx’ sets, we also investigate complete sets of all deterministic frPD strategies
(the size of these sets increases with the number of rounds, r, that is played in the frPD game). We use
the name Xr for the strategy sets that contain all deterministic strategies, whereby r represents the
number of rounds of the frPD game. These strategy sets can be described with the following code.
We encode individual strategies by strings of letters {d, c} which represent actions {D, C} in response to
specific perceived actions of an opponent. The length of the string of letters depends on the number of
rounds of the frPD game. The first letter of the code specifies the initial action (i.e., the action played in
the first round of the game). The second and third letters of the code represent the responses to the
initial action D, respectively C, of an opponent. If a third round is played in the game, we need to add
four more positions to code for the response of a strategy to any of the four possible combinations
of actions by the opponent in the first and second round. For this example of the 3-round game,
we describe the four possible combinations as ‘action sequences’ {DD, DC, CD, CC}, where the action
sequence describes the actions taken by the opponent in the order they occurred, i.e., DC means that
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the opponent played defect in the first round and cooperate in the second round. Hence, the letters
at the fourth to seventh positions in the code represent the responses to action sequences {DD, DC,
CD, CC}. In a similar vein, for the 4-round game, letters at the eighth to fifteenth positions of the code
represent responses to action sequences {DDD, DDC, DCD, DCC, CDD, CDC, CCD, CCC}, etc. As an
example for the game with r = 3, the strategy cddcdcc cooperates in the first round (first letter of the
string is c), unconditionally defects in the second round (second and third letters of the string are
both d), and defects in the third round only if the opponent defected in the first round and cooperated
in the second round (i.e., played action sequence DC) (fourth to seventh letters of the string are all c,
except for the fifth letter which codes for action D when the opponent played action sequence DC).
In notations of strategy groups, we use dots to mark code positions at which the strategies of the group
can differ, i.e., in this notation a dot can be replaced with either d or c. A special example is formed
by the strategies ({X1, X2, X3, X4}→ {d, dd., dd.d . . . , dd.d . . . d . . . . . . }) which signify the groups of
strategies that exclusively defect in interactions among each other. We call these strategies “defectors”.
Populations exclusively composed of defectors are the only type of populations in which action C is
never executed (i.e., full defection by all players).

2.2. Mutation

We assume that strategies are determined by genotypes. The mutation rate µ determines the
fraction of offspring that do not carry the parental genotype. We refer to these offspring as mutants.
We define ui as the fraction of mutants that express strategy i. The distributions of such fractions (u)
are constants if the probabilities with which mutants express any of the possible strategies in the given
strategy set are independent of the parental strategy. The u distributions are dependent variables of
population compositions otherwise. We refer to the latter as variable u distributions.

2.3. Evolutionary Dynamics

We analyze evolutionary changes in this model using both discrete generations and continuous
(overlapping) generations. In the discrete-generation model (dgm), the frequency fi′ of strategy i in the
next generation is determined as

fi′ = (1− µ) fi
wi
w

+ µui, (1)

where w = ∑
i

fiwi is the average fitness of the population, µ is the mutation rate, and ui is the fraction

of mutants that carry strategy i. The frequency dynamics in the continuous-generation model (cgm)
follows the replicator-mutator dynamics [21]:

.
f i = fi((1− µ)wi − w) + µui (2)

For ease of reference, all parameters of the model are summarized in Table 1.
We use the characteristic wAllD ≥ wi of the evolutionary attractor to set a benchmark for the

evolutionary effect of mutation: recurrent mutation significantly affects evolutionary frPD games
whenever the fitness relation wi > wAllD is either persistently or periodically observed for at least
one strategy i. Behavioral differences cause the differences in fitness between strategies i and AllD.
Therefore, wi > wAllD implies—as AllD is the strategy which always defects—that strategy i employs at
least some cooperation. Beyond that the observation wi > wAllD does not carry information about the
frequency with which strategy i or the remainder of the population executes cooperation. However,
frequencies of cooperative behaviors may positively correlate with mutation rates without challenging
the fitness dominance of AllD [22]. For example, mutation could frequently generate the strategy
unconditional cooperator (AllC). The expected outcome of an increase in mutation rate would then
be an increased execution of cooperation but also an increased fitness of AllD. If significant effects
(wi > wAllD) and increased cooperation co-occur, we take this as an indication that cooperation evolves
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due to a change in the direction of selection. Please note that significant effects might emerge without
the consequence that cooperation is amply executed.

Table 1. Overview of parameters in the model.

fi frequency of strategy i

pij
payoff of a strategy i individual from interactions with a
strategy j individual,

s the strategy set (i.e., the collection of the considered strategies),

pi = ∑
j∈s

pij f j average payoff from game interactions for a
strategy i individual,

wi = pi + K average fitness of strategy i individuals,

K game-unassociated fitness component, i.e., background fitness,

w = ∑
i

fiwi average fitness of the population,

µ mutation rate,

ui fraction of mutants that carry strategy I,

r number of rounds in the frPD.

2.4. Simulation Statistics

Simulations comprise the Xr sets {X1, X2, X3, X4} which contain, respectively, {2, 8, 128, 32,768}
strategies. For technical reasons, due to the size of the set, only dgm-simulations were performed for
the X4 set.

In our simulations, we sample the following behavioral statistics. The average cooperation in
round x is given by Cx = ∑

i,j∈s
ax,ij fi f j, whereby ax,ij = 1 if strategy i cooperates in round x against

strategy j and ax,ij = 0 otherwise. The average cooperation per frPD game is given by C =
r
∑

i=1
Ci

(in case of non-equilibrium dynamics, C is averaged over specified ranges of generations). As 0 ≤ C
≤ r, a population with C ~ 1 is interpreted as fairly cooperative if r = 1 and as fairly uncooperative if
r = 100. For comparisons of evolutionary frPD with different r-values, we thus use the average number
of C executions per Prisoner’s Dilemma game, C

r . The average payoff per frPD game generated with
payoff P is given by pP = P ∑

i,j∈s
aP,ij fi f j whereby aP,ij is the number of times strategy i generates payoff

P from strategy j. For payoffs T, S, and R, we analogously define the averages pT , pS, and pR.

3. Results

In the absence of recurrent mutation, AllD obtains fitness dominance at the evolutionary attractors
for ‘TfTx’ strategy sets [18] and for Xr strategy sets [18,19]. Hence, in our analyses, we use the fitness of
AllD as the benchmark for measuring the relative success of other strategies when mutation-generated
variation is introduced in the model. Specifically, the evolutionary impacts of recurrent mutation
are significant whenever strategies persistently or periodically exceed the fitness of AllD (wi > wAllD).
In the first subsection, we analyze the contributions to the significant impacts that result from direct
effects of mutation and from the indirect effects of mutation-induced population compositions. In the
second subsection, simulations of Xr-populations are used to assess the relevance of indirect effects in
absence of direct effects.

3.1. Effects of Mutation on the Evolution of ‘TfTx’ Sets and of Xr Sets

Populations can be subdivided in fractions µ of mutants and (1 − µ) of non-mutants. Strategy i
generates average payoff πi = ∑

j∈s
uj pij from interactions with mutants. The average fitness of strategy i
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individuals is wi = (1 − µ)θi + µπi + K, where θi is the average payoff generated from interactions with
non-mutants. We interpret the occurrence of inequalities πi > πAllD as direct effects and of inequalities
θi > θAllD as indirect effects if they coincide with the observation of significant effects (wi > wAllD).
Direct effects and indirect effects are not mutually exclusive. In the following, the discussion on
indirect effects focuses on their emergence for cases when direct effects are excluded (i.e., πAllD ≥ πi
for all i ∈ s and at all population compositions).

For constant u distributions, strategies generate fixed returns πi, i.e., the payoff from interactions
with mutants is independent of the population composition. Then, direct effects can be excluded if
(πi – πAllD) ≤ 0 for all strategies i. Direct effects can occur (and are inevitable for sufficiently high
µ-values) if (πi – πAllD) > 0 for at least one strategy i. For variable u distributions, the averages πi
are functions of population compositions. These compositions are also functions of the mutation rate
µ. As a consequence, there is no simple expression for when direct effects can emerge. We focus on
analytical results assuming constant u distributions and only briefly discuss the more complicated
case of variable u distributions.

For ‘TfTx’ sets, the difference in performance between TfTx and AllD in interactions with mutants

can be given by the recursion πTfTx − πAllD =
x−1
∑

i=0
(πT f Ti+1 − πT f Ti) (note that in ‘TfTx’ notation, AllD is

TfT0). The adjacent strategies TfTx−1 and TfTx perform identically with mutants expressing strategies
TfTy for which y ≤ x − 2. TfTx individuals generate one additional round of mutual cooperation
from interactions with mutants expressing strategies TfTy for which y ≥ x. TfTx individuals are
exploited by TfTx−1 mutants at a single occasion, and they do not exploit TfTx mutants in round
x + 1. Consequently, strategy TfTx is more effective in interactions with mutants than TfTx−1 (πTfTx −
πTfTx−1 > 0) if

r

∑
i=x

uT f Ti (R − P) > uTfTx −1 (P − S) + uTfTx (T − R),

From this inequality it follows that for uniform ‘TfTx’-u distributions (i.e., uTfT0 = uTfT1 = . . .
= uTfTr), the distribution of the π values has a single peak at πTfTx whereby x is the highest integer
for which inequality (r + 1 − x) (R − P) > T − S is satisfied. As a consequence, direct effects can
be obtained for uniform distributions by manipulating µ if r(R − P) > T − S (i.e., πTfT1 − πAllD > 0).
The expectation that changes in conditions yielding increased x-values also result in increased execution
of cooperation at the evolutionary equilibrium, was confirmed in a set of simulations.

For Xr sets, the following property should be noted. The response ρij is the action sequence
(of length r) that strategy i triggers from strategy j, and ρi is the entire set of responses ρij (j ∈ Xr) of
strategy i. Given the comprehensiveness of Xr sets it follows that—for arbitrary set ρi (i ∈ Xr)—the
same number of respective responses is found for each of the 2r action sequences (i.e., ρi and ρj
(i 6= j) are two permutations of the same set of sequences). The consequence is that, with uniform
u distributions, the mean behaviors of mutants are not influenced by the strategy of the opponents.
In that case, it can be inferred from the payoff dominance of D over C that AllD generates the absolute
highest mean payoff from mutants (πAllD > πi).

For the uniform distributions analyzed above, mean behaviors of mutants are not influenced
by the strategy of the opponents. We refer to such u distributions with unbiased average mutant
behaviors as symmetric and to alternative u distributions with biased average mutant behaviors as
asymmetric. This distinction is useful because not only uniform u distributions of Xr sets are symmetric.
For example, any distribution with uniform ui values for the conditional strategies is symmetric because
the behavior of unconditional strategies is not influenced by the opponent. In the Appendix A, we
define the space of symmetric u distributions. Note, for both symmetric and asymmetric distributions,
increasing the share of unconditional strategies tends to favor πAllD as AllD expresses best response
behavior to unconditional strategies. As outlined for the uniform distributions, direct effects can be
excluded for all symmetric distributions. Hence, direct effects emerge only if strategies can trigger
distinct mean mutant behaviors (i.e., the key characteristic of asymmetric distributions).
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Symmetric u distributions for Xr sets are a special case. The ‘TfTx’ sets—as shown above—allow
for direct effects, and they represent asymmetric distributions (the ui values of ‘TfTx’ sets are formed
from u distributions of Xr sets by setting the ui values to zero for strategies outside the ‘TfTx’ sets).
It is apparent, for direct effects to occur, that average encounters with mutants should be inefficient
for AllD but efficient for certain other strategies, i.e., mutants should tend to conditionally defect in
interactions with AllD and should tend to conditionally cooperate in interactions with certain other
strategies. Examples are distributions (such as ‘TfTx’) for which mutants tend to express reciprocal
behaviors [20,23].

3.2. Simulations of Xr-Populations

To gain insight in indirect effects, we performed simulations using the Xr strategy sets {X1, X2,
X3, X4} with uniform u distributions. As discussed in the previous subsection, direct effects are
excluded with uniform u distributions. A set of simulations was performed with fixed parameters
K = 0 and {T, S, R} = {5, 0, 3}, while varying mutual defection payoff P = {0.05, 0.3, 1} and mutation rates
µ = {0.0001, 0.001, 0.01, 0.1}. For these parameter combinations, Table 2 shows whether populations
evolve to an equilibrium or not (equilibrium conditions are described in the Appendix B). For all
settings, {X1, X2}-populations (i.e., playing the one-round and the two-round game) evolve to
equilibrium (Table 2). The table shows that for P = {0.05, 0.3}, no equilibrium is attained in the
evolution of certain X3-populations and of certain X4-populations.

Table 2. Observed type of dynamics in the final phases of simulations of four Xr sets (top row) at three
mutual defection payoffs (first column). For each {Xr, P} combination, simulations were performed
at the mutation rates µ = {0.0001, 0.001, 0.01, 0.1}. In this alignment, letters {n, e, E} of the four-digit
strings represents the dynamics found in simulations at respective rate; n: non-equilibrium dynamics,
e: equilibrium in which only defectors obtain above average fitness, and E: equilibrium in which
non-defectors obtain above average fitness (for example, eeeE means that equilibrium is found at all
four rates whereby non-defectors attain above average fitness only at rate µ = 0.1). Fixed parameters:
T = 5, S = 0, R = 3, K = 0.

X1 X2 X3 X4

P = 0.05 eeee eeee nnEE nnEE
P = 0.3 eeee eeee nEEE nnnE
P = 1 eeee eeee eeeE eeeE

The equilibrium populations described in Table 2 are dominated by AllD (i.e., fAllD > fi
for i 6= AllD)—this characteristic applies to all observed equilibrium populations in our study.
Furthermore, all observed equilibrium strategy frequencies fi are identical for both continuous and
discrete-generation models. At equilibrium, dominance of AllD implies that the strategy also has
fitness dominance. We do not find persistent indirect effects in the populations that do not reach
equilibrium. Consequently, we do not find persistent indirect effects in the simulations.

For P = 1, the {X1, X2, X3, X4}-populations evolve to equilibrium for all mutation rates (Table 2).
For rates µ = {0.001, 0.01, 0.1}, Table 3a shows the average number of C executions per Prisoner’s
Dilemma game ( C

r ) in these equilibrium populations. For each setting, these averages increase with

mutation rates. The C
r -values of X1-populations (Table 3a) are only slightly higher than the inflow

of cooperator (c) mutants (~0.5µ). The execution of cooperation can thus be attributed to c-mutants.
The table shows for each mutation rate that C

r -values of {X2, X3, X4}-populations are approximately
three times higher than those of X1. We attribute this difference to the fact that sets {X2, X3, X4} contain
conditional strategies. Table 3b shows that evolution to an equilibrium is found in simulations of
X3-populations using the two background fitness values K = {0, 5, 20}. Along K = {0, 5, 20} we find an
increase in mean cooperation for each rate µ (Table 3b).
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Table 3. Average amount of executed C actions per PD game ( C
r ) found in populations at equilibrium,

as a function of mutation rate. The top row gives mutation rates, first column the Xr sets, and second
column the background fitness values K. Part a: varying strategy set for K = 0; part b: varying background
fitness for strategy set X3. The C

r -values from equilibrium populations in which non-defectors obtain
above average fitness are given in italic. Fixed parameters: P = 1, T = 5, S = 0, R = 3.

µ = 0.001 µ = 0.01 µ = 0.1

a

X1 K = 0 0.0005 0.0051 0.0577
X2 K = 0 0.012 0.012 0.141
X3 K = 0 0.0014 0.0148 0.1844
X4 K = 0 0.0013 0.013 0.1712

b

X3 K = 0 0.0014 0.0148 0.1844
X3 K = 5 0.0038 0.0382 0.3294
X3 K = 20 0.0109 0.1002 0.43

The observed cooperation in the populations of Table 3 is maintained by mutation-selection
balance because direct and indirect effects are absent. This interpretation of the C

r -data is
straightforward for the X1-populations. For the populations with repeated games, cooperation can
be argued to be disadvantageous because ‘non-AllD’-individuals would increase their fitness by
substituting their strategy for AllD. However, we emphasize that in several {X3, X4}-populations,
non-defectors obtain above-average fitness at equilibrium (Tables 2 and 3). The potential for the
evolution of conditional behavior in repeated games ({X2, X3, X4}) seems to reduce selection against
cooperation (as cooperation levels are higher for these sets than in X1; see Table 3a). As expected, a
similar effect can be attributed to increasing background fitness K (Table 3b).

Table 2 shows that for the lowest mutual defection payoff (P = 0.05), {X3, X4}-populations do not
converge to equilibrium in the simulations with the two lowest mutation rates. For the intermediate
P-value of Table 2, this phenomenon is also observed for X3-populations at the lowest rate and for
X4-populations at the three lowest rates. With its 256 times smaller set size, the X3-populations are
more convenient to study. This is why we mainly study non-equilibrium behavior in X3-populations.

For P = 0.05, Figure 1a shows the mean execution of cooperation per frPD game (C) along
µ = {0.00001, 0.0001, 0.001, 0.01, 0.1}. For the lowest rate and for the two highest rates, these means are
sampled at equilibrium. As mentioned, the equilibrium frequencies are not affected by the choice
of the generation model (i.e., dgm or cgm). Hence, the C-values are identical in Figure 1a for each of
these rates. After transient phases, the populations at rates µ = {0.0001, 0.001} evolve in cycles. As an
example, consider the strategy dynamics at rate µ = 0.001 in Figure 1b for dgm and in Figure 1c for
cgm. Table 4 lists the strategies with max(fi) > 0.1 during the cycles for these two figures. For mutation
rates µ = {0.0001, 0.001}, the C-values in Figure 1a are averaged over one cycle period. The C-values
are identical if populations are initialized with fAllD = 1 and with a uniform frequency distribution.
For both mutation rates, the averages C are higher if sampled over dgm-cycles than if sampled over
cgm-cycles (Figure 1a). The figure also shows that for both models, the C-values are higher in the
cycling populations than for the equilibrium populations at µ = 10−5. The C-values are higher than the
equilibrium-values found at the higher rate µ = 0.01 for the dgm at rates µ = {0.0001, 0.001} and for the
cgm at rate µ = 0.001 (Figure 1a). Consequently, for both types of generation models, an optimum in C
exists within the interval 10−5 < µ < 0.01.
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 Strategy max(fi) max(fi) 
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2 cdddddd (TfT1) 0.544 0.544 

3 ddddddc 0.201 0.201 

4 ddcdddd 0.168 0.168 

Figure 1. (a) Average execution of cooperation per game (C) as function of mutation rate in
X3-simulations of dgm-populations (white) and of cgm-populations (gray). For rates µ = {10−5, 0.01,
0.1}, averages are sampled at equilibrium, and for rates µ = {0.0001, 0.001}, averages are sampled over
a cycle period (see panel (b,c)). Fixed parameters: P = 0.05, T = 5, S = 0, R = 3, K = 0; (b) For the
conditions of panel (a), the frequency dynamics of an evolving dgm-population at rate µ = 0.001. 1:
ddddddd (AllD); 2: cdddddd (TfT1); 3: ddddddc; 4: ddcdddd; 5: cdcdddd (TfT2); 6: dcddddd; 7: dccdddd; (c) For
the conditions of panel (a), the frequency dynamics of an evolving cgm-population at rate µ = 0.001.
Panel (b,c) use the same line code.

For the two mutation rates µ = {0.0001, 0.001}, we tested the sensitivity of the cycling dynamics
in dgm-populations to the choice of background fitness K. The populations show cycling dynamics if
K ≤ {45, 3} (→µ = {0.0001, 0.001}) and evolve to equilibrium for higher K-values. The X3-populations
showing non-equilibrium dynamics in our simulations evolve in cycles (and show periodic
indirect effects).

The strategy dynamics in Figure 1b,c resemble those in the corresponding simulations with
the lower mutation rate µ = 0.0001. All four cycles show (as in Figure 1b,c) alterations of phases
with dominance of AllD followed by phases with dominance of TfT1 (cdddddd). As can be inferred
from these dynamics, AllD respectively TfT1 have the highest fitness when invading the populations.
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Consequently, these populations express periodic indirect effects. In Figure 2, we give behavioral
statistics from the simulation of Figure 1b. Figure 2a shows the dynamics of the mean number of
executed C actions for each round of the game (Ci, i = {1, 2, 3}). Cooperation is more intensively
executed during TfT1 phases, especially in round 1 (Figure 2a). The relatively longer TfT1 phase
durations in the dgm-populations (compare Figure 1b with Figure 1c) explain that C-values are higher
in dgm-populations than in corresponding cgm-populations (Figure 1a at µ = {0.0001, 0.001}).

Table 4. List of strategies that obtain peak frequencies higher than 0.1 (max(fi) > 0.1) within the cycle
phases of the dgm-dynamics depicted in Figure 1b. Code representation (conventional name in brackets)
of the strategies is given in the second column. The peak frequency within the cycle phases is given
in the third column. The peak frequency within the cycle phases of the cgm-dynamics of Figure 1c is
given in the fourth column.

Strategy max(fi) max(fi)

1 ddddddd (AllD) 0.921 0.921
2 cdddddd (TfT1) 0.544 0.544
3 ddddddc 0.201 0.201
4 ddcdddd 0.168 0.168
5 cdcdddd (TfT2) 0.166 0.165
6 dcddddd 0.159 0.157
7 dccdddd 0.103 0.102
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Figure 2. Both panels show behavioral statistics of the evolving populations in Figure 1b. (a) Average
execution of cooperation in round 1 (C1: red), in round 2 (C2 : blue), and in round 3 (C3 : green)
as function of time; (b) Average payoff generated per game with payoff P (red), payoff T (green),
and payoff R (blue) as function of time. Dashed lines represent respective expected values (i.e.,
P ∑

i∈{1,2,3}
(1− Ci)

2, T ∑
i∈{1,2,3}

(1− Ci)Ci, and R ∑
i∈{1,2,3}

Ci
2) and solid lines represent respective observed

values (i.e., pP, pT , and pR).
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For the three payoffs P, T, and R, Figure 2b shows the dynamics of the mean payoff values per
frPD game (i.e., pP, pT , and pR). Steep increases in the generation of T-payoffs (Figure 2b) mark the
onset of invasions by TfT1 (Figure 1b). Defectors like AllD generate this payoff in the first round when
interacting with TfT1 and defectors are the dominant opponents of this strategy at the onset of invasions
(Figure 1b). The increase in the generation of T-payoffs is therefore partly explained by defectors
triggering this payoff from TfT1. For TfT1, these first round interactions seem disadvantageous, but
this disadvantage is evidently compensated because TfT1 invades.

Figure 2b additionally shows the dynamics of expected average payoff values generated per
game from receiving payoff P, T, or R (i.e., P ∑

i∈{1,2,3}
(1− Ci)

2, T ∑
i∈{1,2,3}

(1− Ci)Ci, and R ∑
i∈{1,2,3}

Ci
2).

For payoff T, the observed value is higher than the expected value (Figure 2b) over the dominance
phase of TfT1 (Figure 1b). These differences between observed and expected values are caused by the
conditional behaviors in rounds 2 and 3. Hence, we propose that the invasions of TfT1 are fueled by
triggering T-payoffs in these rounds. At the onset of invasions, AllD is the dominant strategy (Figure 1b)
and defection is the predominant behavior (Figure 2). Defectors (in contrast to non-defectors) are not
penalized when interacting with AllD and they can therefore be expected to perform better than other
strategies in AllD-dominated populations. The strategy TfT1 generates T-payoffs from the twelve
defectors {ddcd . . . , dddd.c.}. Game interactions between these defectors and TfT1 indeed significantly
contribute (data not shown) to the increases of pT (Figure 2b).

In the appendix, we derive the invasion condition for a single TfT1-individual in a population
state with full defection. We find that such invasion occurs if the combined frequency of defectors
{ddcd . . . , dddd.c.} exceeds (P − S)/(T − P) (~0.01 in the simulation of Figure 1b). This condition is
fulfilled over the entire cycle period in Figure 1b, but the population state deviates from full defection
due to mutation. In this state, AllD obtains the highest benefit from interactions with mutants (i.e.,
µ(πAllD − πTfT1) > 0). Thus, the invasion conditions in the simulations should be more stringent
than those derived in the appendix. Before the onset of the invasions, the population does converge
towards a state of full defection (Figure 2) and thus towards the conditions underlying the analysis
in the appendix. In our opinion, the invasions of TfT1 in the simulations are fueled by interactions
with defectors {ddcd . . . , dddd.c.}, just like in the analysis. That AllD subsequently regains dominance,
thereby closing the cycle (Figure 1b,c), is in line with the expectations from the selection dynamics of
evolutionary frPD games [18,19].

In Tables 2 and 3, we mark the equilibria (E in Table 2 and italic numbers in Table 3) in which
non-defectors have above-average fitness. The strategy TfT1 has the highest fitness among the
non-defectors in these equilibria. Furthermore, these equilibria emerge at the higher mutation rates
(Tables 2 and 3) possibly because mutation benefits TfT1 (e.g., by generating defectors {ddcd . . . , dddd.c.}
opponents) in these equilibria. However, invasion by this strategy is prevented also because AllD is
the strategy that benefits most from interactions with mutants (µ(πAllD − πTfT1) > 0).

The X4-simulations are more computation-intensive than the X3-simulations, and we restricted
these simulations to 104 generations due to constraints on computation time. Consequently, the
data obtained do not allow definitive conclusions on the nature of non-equilibrium X4-dynamics.
Over the simulation periods, chaotic dynamics occurs for the X4-populations with non-equilibrium
dynamics in Table 2. For example, in Figure 3, the X4-frequency dynamics at {P, µ} = {0.3, 0.01} exhibits
a transient period of ~2000 generations, after which alternations of dominance by strategies {AllD,
ddcdddddddddddd, TfT1, dddddcddddddddd} emerge. The population therefore expresses periodic indirect
effects. As in Figure 1b,c, strategies AllD and TfT1 in Figure 3 become periodically dominant, with
dominant phases of strategies {AllD, TfT1, dddddcddddddddd} that have fairly regular phase lengths
(Figure 3).
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Figure 3. The frequency dynamics of an X4-simulation at {P, µ} = {0.3, 0.01}; other conditions as in
Figure 1. The four vertical lines indicate the position of a respective dominance phase of strategies
{AllD, ddcdddddddddddd, TfT1, dddddcddddddddd}.

For {X1, X2, X3, X4}, Table 2 shows that all populations evolve to equilibrium in the two smallest
sets {X1, X2}, and non-equilibrium dynamics occurs more frequently when going from set X3 to set X4
(e.g., the X3-population evolves to equilibrium under the conditions of Figure 3). We interpret this
observation as an indication that increasing the number of rounds (r) increases the parameter range
for which periodic indirect effects emerge. This interpretation meets our intuition because strategy
TfT1 generates one T-payoff from X2-defector ddc, two T-payoffs from X3-defectors ddcdc.., and three
T-payoffs from X4-defectors ddcdc..d . . . c . . . .

4. Discussion

Whereas empirical ecologists typically observe wide behavioral variation, theoretical ecologists
tend to ignore or minimize behavioral variation in their models in order to make their analyses tractable.
In this paper, we provide a method to analyze effects of behavioral variation on evolutionary dynamics,
and apply it to the evolution of cooperation. We present a model in which behavioral variation is on
the one hand subject to a restriction because probabilistic strategies are excluded, yet on the other
hand comprehensive because all deterministic strategies are taken into account (see [24–27] for earlier
studies of evolutionary repeated games with comprehensive strategy sets). We first discuss the method
of analysis, and then when and how behavioral variation affects the evolution of cooperation.

4.1. Direct and Indirect Effects of Mutation-Generated Variation

We consider direct and indirect effects of mutation in frequency dependent selection environment.
Direct effects are fitness effects that emerge from (game) interactions with mutants and indirect effects
are fitness effects that emerge from interactions with descendants of mutants. Direct effects are mainly
determined by the mutation regime (as reflected in the u distribution of mutants over all possible
strategies). Indirect effects are additionally influenced by selection on the progeny of mutants. Both in
direct and indirect effects invading strategies depend on the presence of other strategies (see [27,28]
for analysis of invasions that depend on other strategies).

In our analysis of direct and indirect effects of mutation in asexual populations, we take advantage
of simplifying cladistics: each mutant is the founder of a clade whereby the clade constitutes the clonal
descendants that faithfully inherit the genome of the mutant. Direct effects are caused by interactions
with founders and indirect effects are caused by interactions with descendants. If we had modeled
sexual reproduction, then this would complicate the cladistics, as clades cross over, thereby generating
new behavioral variants in another way than by mutation. Cultural transmission, however, could
have similarly simple cladistics to our asexual model; a system with innovators and imitators could,
to some degree, be analogous to our system with mutants and descendants (non-mutants).
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To analyze direct effects for large strategy sets, we assume constant u distributions resulting
in constant returns (πi) from the interactions with mutants. In nature, u distributions are probably
variable; for example, the u distribution is variable if mutation swaps single code positions rather
than modifies entire codes/strategies (as in our study). Variable u distributions would complicate the
analysis of direct effects because the population composition has to be considered (whereby genotype
x mutation interactions, i.e., genotypes differ in their propensity to mutate, would further complicate
this analysis).

We also assume that fitness differences concern differences in fertility. If we had considered fitness
differences in viability, this would have complicated the determination of the πi-values. For example,
it is not clear to us whether πi-values are still constants with constant u distributions. The fraction
of mutants would definitely deviate from µ. However, if we had considered differences in viability
(rather than fertility), then we cannot think of a reason our qualitative findings with respect to the
‘TfTx’ sets, the Xr sets, and the symmetric u distributions would have changed.

Indirect effects require sufficiently strong frequency-dependent selection; they only emerge when
the strength of selection is high. Indeed, indirect effects do not emerge in our simulations above
certain values of background fitness K. To demonstrate indirect effects, our method is best applied to a
system with a unique attractor in the selection environment in absence of mutation. This attractor in
turn is best represented by a strategy that benefits most from interactions with the mutants, because,
otherwise, direct effects could blur indirect effects.

4.2. Direct Effects as a Mechanism Promoting the Evolution of Cooperation

We use an evolutionary game version of the finitely repeated Prisoner’s Dilemma (frPD), because
it has a unique attractor in absence of mutation: unconditional defector (AllD) [19]. This provides a
straightforward criterion to test what happens when mutation is included; mutation has significant
effects whenever at least one strategy persistently or periodically achieves a higher fitness than that
of AllD.

We show conditions for direct effects when mutation produces ‘TfTx’ strategies [18], which permit
the evolution of cooperation. We further show that the evolution of cooperation through direct effects
are excluded for Xr strategy sets [19] with a uniform u distribution. For the latter analysis, we define
a class of u distributions, the symmetric u distributions (see Appendix A: uniform u distributions of
Xr sets are examples of symmetric u distributions), for which the average (conditional) behavior of
mutants is independent of the opponent strategy. Whenever the opponent strategy does not influence
the average behavior of mutants, then AllD is the opponent strategy that receives the highest payoff
from the interactions with mutants. Hence, direct effects are excluded for symmetric u distributions.

The ‘TfTx’ sets exemplify how to create mutation regimes that can elicit direct effects resulting in
the evolution of cooperation. The TfTx strategies are contained in the corresponding Xr set and the Xr
sets are subsets of the (infinite) space of probabilistic strategies adjusted to frPD games. We introduce
the symmetric u distributions because they constitute a boundary in the u distribution space: they
separate the subspace where mutants cooperate most often with AllD from the subspace where mutants
cooperate most often with another strategy. Direct effects can only emerge in the latter subspace,
depending on the conditions of the frPD game and the mutation rate. Please note that the emergence
of direct effects does not imply that the population evolves to a state where cooperation is amply
executed (e.g., if the strategy benefiting most from the mutants is a defector).

Direct effects that result in the evolution of cooperation emerge only in a fraction of the u
distribution space. We can only speculate about the size of this fraction. Even if this fraction is tiny,
it may be important for the evolution of cooperation if u distributions in natural systems would fall
into this category. Nevertheless, the empirical evidence for direct reciprocity (in general) is scarce [29],
let alone evidence for mutation regimes. In any case, for evolutionary games with a clear attractor
strategy like AllD for evolutionary frPD games, we conjecture that this strategy is most likely to benefit
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most from the mutants. Consequently, the evolution of cooperation by direct effects is possible but we
predict it is not very likely in general.

The study of McNamara et al. [3] inspired our definition of direct effects. In our view, the evolution
of cooperation in the studies of [4–6] is explained by direct effects. The strategy sets used in these
studies are only part of a much larger set of (deterministic) strategies, just like the ‘TfTx’ sets in relation
to the Xr sets. Furthermore, if their mutation regimes were replaced by regimes comprising broader
strategy sets, then we would expect that the unconditional defectors in their evolutionary games
benefit most from interactions with mutants. Hence, we think that the mutation-induced promotion of
the evolution of cooperation, as described by [3–6], is a rather special outcome. If, however, behavioral
variation is not caused by mutation,but culturally inherited, then cooperation may evolve under a
wider set of conditions if it is true that humans choose from ‘TfTx’ strategy sets and disregard most
Xr strategies.

4.3. Indirect Effects as a Mechanism Promoting the Evolution of Cooperation

In simulations of Xr sets with uniform u distributions (i.e., a condition without direct effects),
we observe periodic indirect effects (Figure 1b,c and Figure 3). We find several conditions where such
effects emerge (Table 2) at intermediate mutation rates (Figure 1a). The periodic indirect effects all
show a similar pattern (Figures 1b,c and 3): a population dominated by AllD is invaded by strategy
TfT1 and vice versa, giving rise to cycles of alternating dominance. We suggest that the invasion of
TfT1 is due to a group of defectors defined by {ddcd . . . , dddd.c.} (see also Appendix C). The behavior
of these defectors towards other defectors is similar to the dominant behavior in AllD-dominated
populations: play defect in all rounds of the game. Therefore, these defectors are less vulnerable to the
(AllD-influenced) selection in such populations and decrease less (due to mutation-selection balance)
than other Xr strategies. TfT1 exploits the behavioral deviations that certain defectors have from the
behavior of AllD (see Appendix C). As a consequence, the execution of cooperation increases during
TfT1-invasions (Figure 2a) and the average execution of cooperation can exceed the execution value
expected from a mutation-selection balance (Figure 1a).

We only found periodic indirect effects. We suspect that—for evolutionary frPD games (without
direct effects)—persistent indirect effects emerge only for special parameter regions, if they exist at
all. This is because they require a strong enough effect of the AllD individuals on the fitness of others
already before this strategy fully achieves fitness dominance.

The periodic indirect effects observed in our study resulted in periodic increases in the execution
of the action ‘cooperation’ (Figure 2a). However, one may ask whether this increase constitutes
co-operation in the sense of individuals mutually helping each other. If TfT invades a population
otherwise composed by AllD then after the first round the TfT-players cooperate only with other
TfT-players. Cooperation therefore mostly takes place among individuals with the same phenotype (i.e.,
TfT players) and the mutual cooperation payoff is generated more often than expected. Such positive
assortment is known as a fundamental principle for the evolution of cooperation [30]. In our
simulations, we find the opposite: decisive executions of cooperation take place between individuals
with different phenotypes, i.e., TfT1 and defectors {ddcd . . . , dddd.c.}, and the mutual cooperation
payoff is generated less often than expected (Figure 2b). Furthermore, in the interactions between
TfT1 and these defectors it is not beneficial for the defectors to stick to their strategy, as they would
fare better by playing unconditional defection. On the other hand, it is typical for the evolution of
cooperation that the average payoff increases, as observed during TfT1 invasions (Figure 2b).

Strategy TfT invades in the large set of strategies that invade in the wake of TfT1 invasions
(Figure 1b,c and Figure 3). This conditional cooperator might play a more pronounced role in frPD
games with more than four rounds (as increasing r promotes the performance of TfT). Unfortunately,
we cannot check this prediction because the sheer size of the corresponding Xr sets (e.g., 2,147,483,648
strategies in a game with five rounds) makes running simulations with five or more rounds unfeasible.
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5. Conclusions

By analyzing direct effects, we explain the phenomenon of mutation-promoted evolution of
cooperation, described previously by [3–6]. However, we argue that this phenomenon is probably a
rather special case; the strategy favored by selection without mutation—AllD in our study—is most
likely also the strategy with the highest benefit from interactions with mutants (direct effect). In such
cases, cooperation can still evolve as an indirect effect of mutation-generated variation under a limited
set of conditions. The resulting cooperation dynamics, however, shows exploitation of cooperative acts
rather than mutual cooperation. Indeed, evolution of cooperation in PD games typically requires a
mechanism that induces assortativity in couples of players with cooperative or defective strategies [31],
in contrast to models of the evolution of collaboration (e.g., [32,33]).

The study of McNamara et al. [3] is seminal in highlighting the importance of behavioral variation
in evolutionary dynamics [2]. Theoreticians tend to avoid this topic because behavioral variation
complicates model analysis. To facilitate such analysis, our method to separate direct and indirect
effects of behavioral variation is a useful approach to assess if and when behavioral variation is
important in evolutionary dynamics.
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Appendix A. The Symmetric u Distributions

A u distribution is symmetric if the average conditional game behavior of mutants is independent
of the game behavior that the opponent expresses. That is, given a mutant sampled from this
distribution, if this mutant expresses conditional behavior in arbitrary round x then the probability
that this mutant defects in round x is independent of the action sequence the opponent played in the
previous rounds. In the following, we demonstrate the symmetric u distributions.

Game behavior can be conditional from round 2 onwards. Strategies carrying dd or cc at code
positions 2 and 3 express unconditional behavior in round 2. Strategies carrying dc or cd express
conditional behavior in this round. Similarly, strategies carrying dddd or cccc at positions 4 to 7 express
unconditional behavior in round 3. The strategies with a different code at these positions express
conditional behavior in round 3. Also, for the higher rounds, two codes determine unconditional
behavior and the remaining codes determine unconditional behavior in that round.

Constant u distributions are symmetric if each round behavior mutates according to the following
rule. In round x, the mutant expresses unconditional defection with probability ux1, unconditional
cooperation with probability ux2, and conditional behavior with probability ux3 (=1 − ux1 − ux2).
In case of the latter mutation event, the probability that the mutant carries either code determining
conditional round x behavior requires the following property: the chance that the mutant defects
(cooperates) in this round is independent of the previous action sequence played by the opponent.
This condition is given if either of these codes is carried by the mutant with equal probability.

Variable u distributions are symmetric if each round behavior mutates according to the following
rule. Mutation treats parental genotypes with unconditional round x defection, with unconditional
round x cooperation, and with conditional round x behavior differently. Unconditional round x
defection (cooperation) is faithfully inherited with probability 1− uxD (1− uxC) and mutates otherwise.
Conditional round x behavior always mutates. Dependent on the parental genotype, we therefore
find three forms of mutation events. For each form, mutation proceeds analogously as described
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for constant symmetric u distributions (whereby the three probabilities {ux1, ux2, ux3} can be distinct
between the forms).

Appendix B. Equilibrium Conditions

We assess equilibrium in {X1, X2, X3}-populations as reached if all differences ( fi′ − fi) in the
dgm are less than 10−8 between consecutive generations. Note, the corresponding cgm-populations
evolve to the same frequency distributions for all observed equilibria. The approached equilibria are
identical for initial X1-populations {fD = 0, fD = 0.5, fD = 1}. The equilibrium {X2, X3}-populations
are identical if initiated with fAllD = 1 or if initiated with uniform frequency distributions. Only the
dgm-model is implemented to simulate X4-populations and all X4-populations are initiated with fAllD
= 1. X4-equilibrium is assumed if all differences fi′ − fi decrease over consecutive generations for a
period of 2000 generations.

Appendix C. Invasion Condition of TfT1 in X3-Defector Populations

We study the fitness of a TfT1 individual in populations otherwise composed of defectors (full
defection). Defectors B are the strategies {ddcd . . . , dddd.c.}. Defectors A are the remaining defectors of
the X3 strategy set. Strategy TfT1 earns payoff (S + 2P) from interactions with defector A individuals,
payoff (S + 2T) from interactions with defector B subgroup ddcd.c., and payoff (S + P + T) from
interactions with the other defector B subgroup. The combined frequency of defectors B strategies
is defined as f B. We calculate the most stringent condition for invasion of TfT1, i.e., assuming that
the defectors ddcd.c., from which TfT1 generates the higher payoff, are absent. Then, TfT1 individuals
should obtain above average payoffs if f B (S + P + T) + (1 − f B) (S + 2P) > 3P. Consequently, negligibly
small fTfT1-values increase if f B > (P − S)/(T − P).
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