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Abstract: We study the evolution of cooperation in group interactions where players are randomly
drawn from well-mixed populations of finite size to participate in a public goods game. However,
due to the possibility of unforeseen circumstances, each player has a fixed probability of being
unable to participate in the game, unlike previous models which assume voluntary participation.
We first study how prescribed stochastic opting-out affects cooperation in finite populations, and then
generalize for the limiting case of large populations. Because we use a pairwise comparison updating
rule, our results apply to both genetic and behavioral evolution mechanisms. Moreover, in the
model, cooperation is favored by natural selection over both neutral drift and defection if the return
on investment exceeds a threshold value depending on the population size, the game size, and a
player’s probability of opting-out. Our analysis further shows that, due to the stochastic nature of the
opting-out in finite populations, the threshold of return on investment needed for natural selection to
favor cooperation is actually greater than the one corresponding to compulsory games with the equal
expected game size. We also use adaptive dynamics to study the co-evolution of cooperation and
opting-out behavior. Indeed, given rare mutations minutely different from the resident population,
an analysis based on adaptive dynamics suggests that over time the population will tend towards
complete defection and non-participation, and subsequently cooperators abstaining from the public
goods game will stand a chance to emerge by neutral drift, thereby paving the way for the rise of
participating cooperators. Nevertheless, increasing the probability of non-participation decreases the
rate at which the population tends towards defection when participating. Our work sheds light on
understanding how stochastic opting-out emerges in the first place and on its role in the evolution
of cooperation.

Keywords: adaptive dynamics; finite populations; social dilemmas; evolutionary dynamics;
mathematical biology

1. Introduction

Cooperation is everywhere [1–4]. Bacteria cooperate. For example, bacteria cooperate in
biofilm production, where bacteria go so far as to use quorum sensing to determine when there
are enough cooperators that contributing to the biofilm is worthwhile [5]. Ants cooperate, building
vast anthills where members of a colony live together [6]. Birds cooperate, sounding an alarm
when predators are nearby [7]. Additionally, several felids and canids cooperate, working together
to catch prey [8]. Moreover, humans cooperate [9]. Indeed, whenever we contribute to a joint
hunting effort [10], bring food to a potluck, or work together to combat climate change [11], we are
cooperating. Why, though, do we see cooperation in all walks of life? How does cooperation evolve?
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Researchers have dedicated significant effort in the past decades towards studying the evolution of
cooperation. See Traulsen and Nowak [3], Antal et al. [12], Boyd et al. [13], Broom and Rychtár [14],
Hauert et al. [15], Hauert et al. [16], Javarone [17], Nowak [18], Priklopil et al. [19], Santos et al. [20]
as examples.

In particular, one common type of social interaction in which cooperation frequently arises and
which has recently attracted attention from researchers is the public goods game (in abbreviation as
PGG thereafter). See [11,13,15,16,21–24]. In a PGG, cooperators contribute to a common pool which all
participants of the game then share equally. In fact, in all of the instances of cooperation mentioned in
the preceding paragraph, organisms contribute to a public good. In the case of bacteria, the public
good is biofilm production. For ants, the good is the anthill. For birds, the good is the knowledge that
a predator is nearby and hence that they should be careful. For felids and canids, the good is the catch
of the hunt. Lastly, for the party-goers, the good is the food at the potluck.

However, whenever cooperators contribute to a common pool, there are free-riders, who benefit
from the common pool without contributing. Game theorists frequently refer to such free-riders
as defectors. These defectors cause the participants of the game to receive a smaller share of the
common pool—a smaller payoff—than the social optimum where every player cooperates. In fact,
assuming players can only cooperate or defect, a defector earns a larger payoff regardless of the number
of cooperators because the defector does not have to contribute to the common pool, making defection
the dominant strategy (or more generally individually optimal strategy). Game theorists refer to the
situation in which the dominant strategy is individually optimal yet not socially optimal as a social
dilemma [25]. Consequentially, if each player were rational, each player would choose to defect,
regardless of the strategies of other players. As a result, each player would receive zero payoff worse
than that if all have cooperated otherwise. This outcome is often called as the tragedy of the commons [1].

In reality, even though in any particular PGG defectors outperform cooperators in individual
games, it may be the case that cooperators may actually outperform defectors, when averaging
over all possible games. Such situation is an example of the Simpson’s paradox [16]. Additionally,
there are many ways in which a tweak to the PGG may promote cooperation [26–31]. For instance,
spatial selection [18,32] or more generally population structure [12,14,20,33–40], punishment of
defectors [13], signaling [23,41], and optional participation [15,16], and combinations of the latter
two mechanisms [24,42] have been used to promote cooperation. However, in the literature, a small
but realistic tweak to the PGG has yet to be addressed. Specifically, even if there is no punishment
of defectors or if players cannot opt-out, due to unforeseen circumstances, at times players simply
cannot participate in the PGG. For instance, an individual traveling to a hunting party may come
across a flooded road and be forced to turn back. Or, on a whim, an individual may decide to engage
in some activity other than the game. Further, a player could be late to the game, or fall ill, missing out
on the opportunity to participate entirely. Alternatively, the game could draw all individuals in a
given area, in which case we could define game size as the number of players that frequent that area.
In this case, we expect players that frequent the area to randomly choose not to pass through the area
when the PGG occurs. As a result, players participate in the PGG stochastically, unable to participate
independently of whether or not the player plans to cooperate or defect.

We investigate evolutionary dynamics of such PGGs with stochastic non-participation. We add a
fully analyzed stochastic model to the literature, thus improving the understanding of the evolution of
cooperation. Moreover, our model demonstrates that the evolution of cooperation can be promoted by
the stochasticity in participation. We conclude with an analysis of adaptive dynamics for simplified
two-person PGGs in finite populations, where we add rare and minute mutations to our basic model.
We identify the condition for non-participation to be favored in the coevolutionary dynamics of
cooperation and opting-out behavior. We also find that increasing the probability of non-participation
temporarily slows the rate at which the population tends to defection when participating given rare
mutations only minutely different from the resident population.
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2. Model and Methods

We consider a well-mixed finite population of n agents, human or not, and suppose that frequently
N ≤ n randomly selected agents receive the opportunity to participate in a PGG (Figure 1). In the
PGG, some participants cooperate, either by conscious choice or by their genetics, investing one unit
into a common pool, as in [15,16]. Every unit contributed by each cooperator is multiplied by some
factor r (return on investment or enhancement factor), 1 < r < N, and thus for each unit contributed
by a cooperator, the common pool increases by r units. At the end of the game, each PGG participant
obtains an equal share of the common pool. However, the participants who do not contribute (namely,
defectors) also receive a share from the common pool by free-riding. To simplify the model, we assume
that participants determine their strategies before the PGG has begun (that is, not dependent on group
composition), as in [15,16].

As stated, the preceding model of PGG interaction leads to domination by defectors for all games
where the return on investment r is smaller than the group size N and the game is thus a social
dilemma. To promote cooperation, we assume that due to unforeseen circumstances each selected
agent has a fixed probability α of being unable to participate in the PGG, instead obtaining a fixed
payoff σ > 0 (often called the loner’s payoff [16]). Indeed, in many games there is no good reason that
all N selected agents with the opportunity and desire to participate in the game should be guaranteed
to participate. Hence, by representing the probability that any selected agent will be unable to play
due to such unforeseen circumstances, introducing α makes our model more realistic (Figure 1).

Additionally, our model needs an “update mechanism” by which the population may change
its composition of agents that are cooperating or defecting. We use the pairwise comparison rule
as in previous studies [23,24,43], where two agents are randomly selected, and one agent, the focal
“updating agent”, will update his or her strategy by comparing his or her payoff to the other agent,
the “compared agent”. We may think of this “update” either as the conscious choice of the updating
agent to change strategy (social imitation) or as the death of the updating agent and subsequent
replacement by an offspring of the compared agent (death-birth process) [25].

Figure 1. Model schematic of stochastic opting-out. Cooperators (blue) and defectors (red) are
represented by dots. A fixed number of agents are randomly drawn from the population to participate
in a PGG, represented by the small tan rectangular area. While most selected agents are able to
make it to the game, some are not. Selected agents then return to the general populace, where no
game is occurring. The fitness of agents is determined by the average payoffs they obtain from
PGG interactions (cooperators vs. defectors) as well as from non-participation. Natural selection
drives the co-evolutionary dynamics of opting-out behavior (the probability of non-participation, α),
and cooperation (the probability to cooperate in the PGG, β).
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Then, let pi←j be the probability that the updating agent, i, adopts the strategy of the compared
agent, j. Specifically, we let the probability pi←j of adopting strategies be given by the Fermi function,
as in [23,24,43]:

pi←j =
1

1 + exp[−γ(πj − πi)])
, (1)

where πj represents the expected payoff of the compared agent j, πi represents the expected payoff
of the updating agent i, and γ ≥ 0 represents the selection pressure and corresponds to the inverse
temperature in statistics physics [43].

When it comes to adaptive dynamics in finite populations, for simplicity, we assume the PGG
size is two. Furthermore, applying adaptive dynamics to our model as done in Imhof and Nowak [44],
we assume that a single mutant who plays a different strategy but sufficiently close to the resident
population attempts to invade the population. Specifically, we suppose that every agent uses a
strategy in the prescribed strategy space (α, β), where α is the probability that due to unforeseen
circumstances the selected agent cannot participate, and β is the probability that the agent cooperates
if they participate. We let the original population be composed solely of agents with strategy (α, β),
and we suppose that the population is invaded by a single agent with strategy (α′, β′). Then, we let
α′ → α, and β′ → β. As in Imhof and Nowak [44], we also assume rare and minute mutations. That is,
we assume sufficient time passes between mutations that either fixation, or extinction, of the mutant
type occurs, and that the invading mutant population plays strategy only minutely different from the
resident population.

3. Results

3.1. Pairwise Invasion Dynamics in Finite Populations

To proceed with the analysis of the stochastic model, let us first calculate the expected payoffs
for cooperators and defectors, πc and πd, respectively. To calculate πd, we use the method presented
by Hauert et al. [15]. First, we observe that in a game with S players, defectors receive a benefit rnc/S,
where nc is the number of cooperators in the game, if S > 1. However, if S = 1, that player must be a
loner (because of excluding self-interactions), and will receive the loner’s payoff, σ. Then, noting that
any player does not play with probability α and plays with probability 1− α, and letting xc be the
proportion of cooperators in the population, we get

πd = ασ + (1− α)[rxc[1− (1− αN)/[N(1− α)]] + αN−1σ]. (2)

We defer the details of calculating πd to Appendix A. Employing a similar method (see details in
Appendix B), we obtain

πc = πd− r/(n− 1)[1− α− (1− αN)/N] + (1− α)[−1+(1− r)αN−1 +(r/N)(1− αN)/(1− α)]. (3)

Hence,

πc − πd =− r/(n− 1)[1− α− (1− αN)/N]

+ (1− α)[−1 + (1− r)αN−1 + (r/N)(1− αN)/(1− α)],
(4)

which is a constant with respect to the proportions of cooperators and defectors in the population.
Then, substituting πc − πd into Equation (1), we obtain the probability that a cooperator becomes

a defector or that a defector replaces a cooperator, given that a cooperator is selected for updating and
a defector is selected for comparison, is

pcd =(1 + exp[γ(−r/(n− 1)[1− (1− αN)/[N(1− α)]]+

(1− α)[−1 + (1− r)αN−1 + (r/N)(1− αN)/(1− α)])])−1.
(5)
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Thus the probability that the number of cooperators decreases by one in one iteration of the
pairwise comparison updating process given i cooperators is

T−i =
i
n

n− i
n

pcd. (6)

Likewise, the probability that a defector becomes a cooperator or that a cooperator replaces a
defector given that the defector is selected for updating and the cooperator is selected for comparison is

pdc =(1 + exp[−γ(−r/(n− 1)(1− α)[1− (1− αN)/[N(1− α)]]+

(1− α)[−1 + (1− r)αN−1 + (r/N)(1− αN)/(1− α)])])−1,
(7)

which is also a constant. Hence, the probability that the number of cooperators increases by one in one
iteration of the pairwise comparison updating process is

T+
i =

n− i
n

i
n

pdc. (8)

Of course, though, if the number of cooperators, i, is 0 or n, the probabilities that a cooperator will
change to a defector and that a defector will change to a cooperator are both zero, and the number of
cooperators remains at 0 or n. That is, i = 0 and i = n are absorbing states in the model (in the absence
of mutations in strategy updating).

Moreover, now knowing pcd and pdc, and noting that pcd + pdc = 1, we can calculate the transition
matrix P for the Markov chain in which the pairwise comparison updating process is iterated repeatedly.
However, as the transition matrix itself is not vital for our analysis, we defer discussion of the
transition matrix to Appendix C. On the other hand, the fixation probability of cooperation, that is,
the probability that given i cooperators in a population of n− i defectors that every individual will
become a cooperator, is vital. Following the procedure outlined by [25], we show that the fixation
probability of cooperation given i ≥ 1 cooperators, xi, is

xi = (1 + Σi−1
j=1Πj

k=1 pcd/pdc)/(1 + Σn−1
j=1 Πj

k=1 pcd/pdc), (9)

where i = 1 implies the numerator is 1 and pcd and pdc should be indexed by the number of cooperators
k. However, since pcd and pdc are constants with respect to the number of cooperators k as shown
above, we have omitted the index k in Equation (9) for notational simplicity. Further simplifying,
denote pcd/pdc by G(α, γ, N, n, r), and observe that

G(α, γ, N, n, r) = (1 + exp(−γ(πc − πd)))/(1 + exp(γ(πc − πd)))

= exp[−γ(πc − πd)].
(10)

Since G is constant over i, we may expand the numerator and denominator of xi as geometric
series. So, if G 6= 1,

xi = (1− Gi)/(1− Gn). (11)

However, G = 1 means that pcd = pdc = 1/2, which implies neutral drift. We assume for now
that G 6= 1. Then, observing that pdc/pcd = G−1, the fixation probability of defection given i defectors
is simply xi with G replaced by G−1:

yi = [Gn−i − Gn]/[1− Gn]. (12)

Hence, the fixation probability given i cooperators is

yn−i = [Gi − Gn]/[1− Gn]. (13)
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Thus, the probability of fixation of cooperators or defectors given i cooperators satisfies

xi + yn−i = 1. (14)

In other words, the system always reaches an absorption state.
Furthermore, now knowing the probabilities of fixation of cooperation given i cooperators, xi,

and of defection given i defectors, yi, we can determine which strategy is favored by natural selection.
Moreover, as in Nowak [25], natural selection favors cooperation over defection if and only if x1 > y1

under pairwise invasion dynamics. Likewise, natural selection favors defection over cooperation if
and only if y1 > x1 Nowak [25]. Additionally, natural selection favors cooperation over neutral drift if
and only if x1 > 1/n, where 1/n is the probability of fixation given neutral drift Nowak [25]. Likewise,
natural selection favors defection over neutral drift if and only if y1 > 1/n. In fact,

x1 > 1/n⇔ G < 1. (15)

We defer the proof to Appendix D. Also, G = 1, implies neutral evolution, since G = 1 means
pcd = pdc = 1/2. Since G 6= 1 implies either pcd > pdc or vice-versa, there is neutral drift if and only if
G = 1. Thus, x1 < 1/n if and only if G > 1.

Hence, natural selection favors cooperation over neutral drift if and only if G < 1, and disfavors
cooperation if and only if G > 1. For G = 1 we have neutral evolution between cooperation
and defection.

On the other hand, we can show that

G < 1⇒ y1 < 1/n, (16)

and
G > 1⇒ y1 > 1/n. (17)

We defer proofs of the two preceding assertions to Appendix D.
Additionally if G = 1, then there is neutral drift, as we demonstrated above, so y1 = 1/n. Thus,

if G > 1, y1 > 1/n > x1; if G = 1, then y1 = 1/n = x1; and otherwise, i.e., 0 < G < 1, y1 < 1/n < x1.
Additionally, using Equation (10), it leads to

G > 1⇔ πc − πd < 0. (18)

Likewise,
G < 1⇔ πc − πd > 0. (19)

Also, G = 1 if and only if πc − πd = 0. Thus, there are three possibilities:

1. Natural selection favors cooperation over defection x1 > 1/n > y1, if πc − πd > 0;
2. Neutral evolution x1 = 1/n = y1, if πc − πd = 0;
3. Natural selection favors defection over cooperation x1 < 1/n < y1, if πc − πd < 0.

Thus, the sign of πc − πd, as given in Equation (4), which is a function of the probability that
a given player opts out α, the PGG size N, the population size n, and the return on investment by
cooperators, r, exclusively determines which strategies, cooperation or defection, natural selection
favors more and whether or not natural selection favors each strategy replacing the other (Figure 2).

Notably, as shown in Figure 2, the graphs for πc − πd < 0 (Figure 2c,d), may be obtained from
the graphs for πc − πd > 0 simply by relabeling cooperators as defectors and vice versa (Figure 2a,b).
This is because reversing the sign of πc − πd is equivalent to inverting pcd/pdc.

Based on these calculations of fixation probabilities as mentioned above, let us now identify
the critical condition in terms of the threshold value of r, denoted by R(α), for given PGG size N,
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above which cooperation will be favored by natural selection. It is easy to check that r > R implies
that πc − πd > 0, and r < R implies that πc − πd < 0.

(a) (b)

(c) (d)

Figure 2. Pairwise invasion dynamics in finite populations. Shown are the graphs of fixation
probabilities for πc − πd > 0, as in panels (a,b), and for πc − πd < 0, as in panels (c,d). If πc − πd > 0,
the fixation probability starting with one cooperator x1 is always larger 1/n (neutral drift) which is in
turn always larger than that of one defector, y1. On the other hand, if πc − πd < 0, then the situation is
reversed, that is, y1 > 1/n > x1. We confirm that the specific values chosen for πc − πd are admissible
for the given values of population size n.

Indeed, recalling that πc − πd = −r/(n − 1)(1− α)[1− (1− αN)/[N(1− α)]] + (1− α)[−1 +

(1− r)αN−1 + (r/N)(1− αN)/(1− α)] as given in Equation (4), it follows immediately that

πc − πd >0⇔ (20)

r >
(1− αN−1)

− 1
n− 1

(1− 1− αN

N[1− α]
) +

1− αN

N(1− α)
− αN−1

= R(α), (21)

provided of course that the denominator of the above expression is defined.
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Further simplifying, we obtain

R(α) = N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

. (22)

As shown in previous studies [25,39,42,43], population size has an impact on stochastic
evolutionary dynamics in finite populations. We note that Equation (22) above explicitly shows
how the conditions for cooperation to be favored depend on the population size n. We discuss the
limit of large populations in Section 3.2 below.

The critical threshold R(α), as shown in Appendix E, is in fact defined necessarily on [0, 1).
Specifically, R(α) is undefined at α = 0 if and only if n = N, in which case R → +∞ as α → 0,
as shown in Lemma 3 of Appendix D. On the other hand, if n > N (the PGG size N less than the
population size n),

R(0) =
N(n− 1)

n− N
, (23)

also as shown in Lemma 3 of Appendix D. Additionally, although R(α) is undefined at α = 1 because
there is essentially no game at α = 1 as everyone is opting out, we can show that it has a left-handed
limit at 1 as long as the population size n > 2:

lim
α→1−

R(α) =
2(n− 1)

n− 2
, (24)

In any case, πc − πd > 0⇔ r > R(α), wherever R is defined. By analogous proofs, πc − πd = 0
if and only if r = R(α) and πc − πd < 0 if and only if r < R(α). Moreover, as proven in Appendix E,
R(α) is strictly decreasing on (0, 1) (Figure 3). Thus, for a given investment return factor r, there exists
a threshold α0 satisfying r = R(α0), such that increasing the likelihood of opting-out α > α0 makes
natural selection favor cooperation.

We note that this threshold α0 is analogous to the threshold on the proportion of individuals
who choose to opt-out as suggested by Hauert et al. [15], which deals with an infinite rather than
finite population and with planned, rather than unplanned stochastic, non-participation. This is an
important insight from our present study about the impact of stochasticity in participation on the
evolution of cooperation. Moreover, because this threshold α0 satisfies r = R(α0), for increasing values
of α, the requirements on r such that natural selection favors cooperation become less and less stringent.
In other words, increasing the probability of non-participation facilitates cooperation (Figure 3).

3.2. Approximations of the Critical Threshold R(α) for Natural Selection to Favor Cooperation

In order to further gain an intuitive understanding of the critical threshold R(α), as given in
Equation (22), for natural selection to favor cooperation, let us consider some limiting cases. To this
end, we first suppose that the PGG size, N, is set as a fixed proportion of the population size, n. That is,
N = c(n− 1), where c is a constant ratio.

We first suppose n > N � 1, as in shown Figure 3b. Then, as detailed in Appendix F.1, we find that

R(α) ≈ N(1− α)/(1 + cα), (25)

which is an approximation more manageable than the true R(α) in Equation (22). Next, we consider
n� N � 1, as in shown in Figure 3d. Here we may let c→ 0 in Equation (25), obtaining

R(α) ≈ N(1− α). (26)
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Notably, we may lump these two limiting cases into the broader case in which N � 1 is required,
and as proven in Appendix F.3, we have

R(α)→ (n− 1)N(1− α)

n− N(1− α)
= Rexp(α), (27)

where we denote this approximation by Rexp(α).
Namely, Rexp(α) is the approximate threshold, which is required for natural selection to favor

cooperation, in the limit of large PGG size N. Interestingly, this approximation (27) can be intuitively
understood as the critical condition of πc > πd in a population of n agents playing the compulsory
PGG with the fixed group size N(1− α), which is equal to the expected PGG size with stochastic
opting-out. Hence, Rexp(α) can be obtained by using Equation (23) as α → 0 and then replacing N
by N(1− α).

(a) (b)

(c) (d)

Figure 3. Critical threshold R(α) of the PGG investment return (i.e., enhancement factor) r required for
cooperation to be favored. The shaded areas represent combinations of the PGG enhancement factor
r and the probability of non-participation (i.e., opting-out) α which promote cooperation for game
size N = 5 and n = 10 in (a), N = 500 and n = 1000 in (b), N = 5 and n = 7 in (c), and N = 500
and n = 1,000,000 in (d). The yellow line in each panel is the approximation Rexp(α) as given in
Equation (27).
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Lastly, we suppose n� N > 1 and let c = N/(n− 1)→ 0. Then, using Equation (22), we get

R(α) ≈ N
1− α− αN−1 + αN

1− αN−1N + αN(N − 1)
> N(1− α). (28)

The inequality above is proven in Appendix D. Interestingly, as α→ 1, by Equation (24), we know
that R tends to 2(n− 1)/(n− 2). Therefore, limα→1− ,n→∞ R(α)→ 2 (also see Appendix F.4).

3.3. Adaptive Dynamics in Finite Populations

Of particular interest is to study coevolutionary dynamics of cooperation (the probability to
cooperate if participating in the PGG, β) and opting-out (the probability of non-participation, α) in
finite populations using the approach of adaptive dynamics in the continuous strategy space (α, β),
represented by the unit square [0, 1] × [0, 1]. To obtain closed-form results, here we consider the
simplest possible case yet without loss of generality, that is, the two-person PGG (N = 2). In this case,
the game in fact becomes an optional Prisoner’s Dilemma (see Appendix G). (The more general PGGs,
N > 2, can also be analyzed analogously by the method given here.)

Let us consider a population consisting of two types of players, the invaders with the mutant
strategy y and the resident population with the original strategy x, whom we call the defenders
(also called the wild-type population), defined by their strategies (β′, α′) and (β, α), respectively.
Unless otherwise noted, we maintain the notation used in Section 3.1, and we find the expected payoff
for invaders is

πy(i) =
n− i
n− 1

(1− α′)(1− α)(rβ/2 + rβ′/2− β′) +
i− 1
n− 1

(1− α′)2β′(r− 1)+

σα′ + σ(1− α′)(
n− i
n− 1

α +
i− 1
n− 1

α′).
(29)

We defer the derivation of the expected payoff for invaders to Appendix G. Moreover, since
the game is symmetric, the expected payoff for defenders may be determined simply by replacing
the number of invaders, i, with the number of defenders, n − i, and by relabeling as appropriate.
Specifically, the expected payoff for defenders is:

πx(i) =
i

n− 1
(1− α)(1− α′)(rβ′/2 + rβ/2− β) +

n− i− 1
n− 1

(1− α)2β(r− 1)+

σα + σ(1− α)(
i

n− 1
α′ +

n− i− 1
n− 1

α).
(30)

Continuing to use the pairwise comparison updating process, the probability that the number
of invaders reduces by one, T−i , (where an invader is randomly chosen and adopts the strategy of a
defender or is replaced by the offspring of a defender) is

T−i = py←x(i) =
i
n

n− i
n

1
1 + exp[−γ(πx(i)− πy(i))]

, (31)

where γ is the selection pressure, just as in Section 3.1. Similarly, the analogous probability that the
number of invaders increases by one, T+

i , is

T+
i = px←y(i) =

n− i
n

i
n

1
1 + exp[−γ(πy(i)− πx(i))]

. (32)

Then, the fixation probability of an invader given i invaders in a population of defenders is
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xi = (1 + Σi−1
j=1Πj

k=1 py←x(k)/px←y(k))/(1 + Σn−1
j=1 Πj

k=1 py←x(k)/px←y(k)), (33)

where the backward-to-forward transition probability ratio is py←x(k)/px←y(k) = exp[γ(πx(k)−πy(k))].
To investigate the adaptive dynamics in finite populations [44], we consider

(
dα

dt
,

dβ

dt
) = ~f (α, β) = lim

(α′ ,β′)→(α,β)
(∂x1/∂α′, ∂x1/∂β′). (34)

The direction given by ~f for (α, β), plotting ~f as a vector field, is the direction in the strategy space
which maximizes the fixation probability of one single invading mutant, x1 (see Figure 4). Following
the directions which maximize x1 in the strategy space (α, β) starting at an initial (α0, β0), that is,
following the streamlines of ~f , indicates the most likely path in the strategy space that a population
will take as mutants with similar strategies eventually fixate in the population, as suggested by Imhof
and Nowak [44].

Substituting Equation (33) for i = 1, x1, into Equation (34), and further simplifying, we obtain:

dα

dt
= lim

(α′ ,β′)→(α,β)

∂x1

∂α′
= (1− α)γ(n− 2)[σ− (r− 1)β]/(2n), (35)

and
dβ

dt
= lim

(α′ ,β′)→(α,β)

∂x1

∂β′
= (1− α)2γ(2− 2n− 2r + nr)/(4n). (36)

We can see that increasing the likelihood of opting out, α, slows down the overall rate of
adaptation, which is given by the magnitude of the vector ~f = ( dα

dt , dβ
dt ). This is because dα

dt is linearly

dependent on (1− α), as shown in Equation (35) and dβ
dt is quadratic in terms of (1− α), as shown

in Equation (36). Moreover, Equation (36) indicates that increasing the probability of stochastic
opting-out, α, can diminish the rate at which individuals in the population tend towards complete
defection. We refer to Figure 4 for adaptive dynamics with various combinations of r and σ in a
population of finite size n.

If the return on investment r < (2n− 2)/(n− 2), for α < 1, we have

dβ

dt
= lim

(α′ ,β′)→(α,β)

∂x1

∂α′
< 0, (37)

which means that the level of cooperation β can be eroded gradually in the absence of complete
non-participation (α < 1), leading to complete defection in the long run.

Furthermore, if the payoff for non-participation σ < r − 1, there exists a critical threshold
β∗ = σ/(r− 1) ∈ (0, 1) dividing the strategy space into two parts (as shown in Figure 4, panels b2 and
c2): for β > β∗, we have dα

dt < 0, which suggests that adaptive dynamics can favor mutant strategies
with increasing the likelihood of participation (i.e., smaller values of α); in contrast, for β < β∗,
adaptive dynamics will favor opting-out as dα

dt > 0.
Altogether, these results imply a cyclic population dynamics of cooperation, defection, and

opting-out from the perspective of adaptive dynamics in finite populations. Complete opting-out
strategies (1, β) with high cooperativity β > β∗ are not evolutionarily stable and can be invaded
by these strategies (α, β) with smaller likelihood of opting out and lower cooperativity. However,
once cooperativity β drops below β∗ in the population, strategies with increasing probability of
non-participation will be favored. Going further, the population will either hit the edge β = 0 with
zero cooperation first and move along this edge towards complete opting-out, that is, the corner
(1, 0) as dα

dt > 0, or possibly the population will hit the edge α = 1 first and remain there with
zero participation yet having non-zero cooperativity 0 < β < β∗. We note that (1, 0) is the only
evolutionarily stable strategy (ESS) in this case. However, if staying on the edge α = 1 (complete
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non-participation), the population will be under neutral drift, allowing it to reestablish cooperation
with cooperativity β > β∗ and subsequently overcome the barrier of complete non-participation
with α < 1.

Lastly, if the return on investment r > (2n− 2)/(n− 2) > 2 and the payoff for non-participation
σ < r− 1, the only ESS is (0, 1), although the game is no longer a social dilemma in this scenario.

Figure 4. Coevolution of cooperation and stochastic opting-out. Shown in Panels (a–c) are the adaptive
dynamics using the StreamPlot function of Mathematica in a finite population of size n = 5 for the
selection pressure γ = 1 and various values of return on investment, r, and payoff for non-participants,
σ. Following the arrows leads to the most likely path the population will take in the strategy space.
Please note that if σ < r− 1, there exists a critical threshold of cooperativity β∗ = σ/(r− 1) such that
increasing likelihood of participation is more beneficial for agents with cooperativity β > σ/(r− 1)
whereas participating cooperators are always prone to exploitation by others as shown in Panels
(b.2) and (c.2). Hence, for r < (2n− 2)/(n− 2), the only evolutionarily stable strategy (ESS) is (1, 0).
However, if r > (2n− 2)/(n− 2) > 2 where the game is no longer a social dilemma, (0, 1) is an ESS.
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4. Discussion and Conclusions

In this work, we study and quantify the role of stochastic opting-out in the evolution of group
cooperation in PGGs and derive the exact condition for natural selection to favor cooperation in
finite populations. We find the threshold of return on investment r, denoted by R(α), above which
cooperation is favored is monotonically decreasing with α, suggesting that allowing prescribed
probabilistic participation can facilitate the evolution of cooperation. In the two extreme cases, we find
that R(0) = N(n− 1)/(n− N) and R(1−) = 2(n− 1)/(n− 2) where n is the population size and N is
the PGG size. Therefore, in the limit of large populations, increasing the likelihood of opting-out α can
greatly reduce the threshold from N to 2. This limiting result helps us to intuitively understand the
role of stochastic opting-out.

Moreover, it seems that the effect of allowing stochastic opting-out is solely reducing the
effective PGG size to N(1− α) on average, and thus one may expect the critical threshold of r to
be Rexp = N(1− α)(n− 1)/(n− N(1− α)). However, we show that R(α) > Rexp for some limiting
cases (see Figure 3). Such discrepancy is largely owing to the stochastic nature of the opting-out,
in which the PGG interaction groups are formed by sampling players in finite populations and thus
can be of varying size. Complementing prior studies of how group size affects cooperation [22,45],
our study provides analytical insights into understanding how stochastic opting out causes dynamic
PGG size and its effect on the evolutionary dynamics of group cooperation in finite populations.

All other things equal, whether it pays for players to switch from defection to cooperation,
if participating in the PGG, depends on the net return from one’s own contribution, that is, (r/S− 1),
where S is the actual PGG size which can be less than N due to stochastic opting-out by other players.
Averaging such payoff difference from switching, (r/S− 1), over all possible PGG sizes and taking
into account whether the focal individual is a cooperator or a defector, we can obtain the expected
payoff difference, πc − πd, which is in fact does not depend on σ but on α, as given in Equation (4).
Intuitively, stochastic non-participation can possibly lead to small PGG size S such that the return
on one’s own cooperation r/S− 1 > 0 is positive, and as a result, cooperation can be promoted if
the probability of non-participation α exceeds α0, such that the resulting PGG size S is likely to be
sufficiently small to sustain cooperation.

Here we consider the simplest possible opting-out behavior, that is, random non-participation
with a given probability α. As such, every player, either a cooperator or a defector, has the same
prescribed probability to abstain from the PGG. It is possible that the choice of opting-out may be
endogenously made by players with their knowledge of the composition of the population. Namely,
players are able to choose whether or not to participate based on their sensing of their potential
interaction groups, for example, via quorum sensing [5,23]. In addition, opting-out decision may be
conditional on whether there will be sufficient number of cooperators in the group such that the payoff
from participating in the PGG outweighs the payoff of non-participation. Clearly, cooperators should
be more picky than defectors when deciding whether or not to participate, because of their risk of
being exploited by defectors. It is likely that natural selection will favor conditional non-participation
strategies, for example, in scenarios qualitatively similar to what our adaptive dynamics analysis
(Equation (35)) has revealed: only if the cooperativity in the population is sufficient high, β > σ/(r− 1),
does it pay to participate. Therefore, it is of interest for future work to explore how these conditional
opting-out behavior emerge in the first place and its impact on the long-term evolution of cooperation.

In conclusion, we find that in situations where samples of individuals are repeatedly drawn
from a population for participation in PGGs, allowing for the possibility that members of a
population stochastically cannot participate in the game facilitates cooperation. Furthermore,
adaptive dynamics suggests that in the presence of small and minute mutations, introducing stochastic
non-participation slows the rate at which the population tends to defection. While the adaptive
dynamics also suggests that the population must tend to complete non-participation (i.e., α = 1)
when r < (2n − 2)/(n − 2), although we may see brief bursts of cooperation arising from the
upper part of the edge α = 1 with β > σ/(r − 1) due to neutral drift. Additionally, using the
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pairwise comparison updating rule [43,46], our results are valid both for games with behavioral
strategies and games with genetic strategies. Since PGGs are also found widely in nature,
(see Nadell et al. [5], Goryunov [6], Melis and Semmann [9] as examples), our results shed light on
the evolution of cooperation in many biological and social situations [2,7,8,19,24,45].

Author Contributions: A.G.G. & F.F. conceived the model, A.G.G. analyzed the model with contributions from
F.F., and A.G.G. & F.F. wrote the manuscript.

Funding: This research is supported by the Dartmouth Startup Fund, the Walter and Constance Burke Research
Initiation Award, and a Junior Faculty Fellowship to F.F.

Acknowledgments: The authors would like to thank the National Science Foundation and Dartmouth College
for funding the REU program at which the research was conducted. In particular, A.G.G. would also like to thank
Anne Gelb, Tracy Moloney, and Amy Powell, all of Dartmouth College, for personally overseeing the program.
Lastly, A.G.G. would like to thank Ignacio Uriarte-Tuero, George Pappas, Tsvetanka Tsendova, and Teena Gerhardt,
all of Michigan State University, for making sure he attended a program that fit his needs.

Conflicts of Interest: We have no competing interests. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish
the results.

Appendix A. Derivation of πd

We define the probability that an event E occurs be denoted by P(E), and let the probability that
E occurs given a second event F occurs be denoted by P(E|F). Then,

πd =ασ + ΣP(nc ∩ S ∩ plays) ∗ payo f f (A1)

=ασ + ΣP(plays)P(S|plays)P(nc|S ∩ plays) ∗ payo f f (A2)

=ασ + (1− α)ΣP(S|plays)P(nc|S ∩ plays) ∗ payo f f (A3)

=ασ + (1− α)[ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)rnc/S + P(S = 1|plays)σ] (A4)

=ασ + (1− α)[ΣN
S=2P(S|plays)/SΣS−1

nc=0P(nc|S ∩ plays)rnc + P(S = 1|plays)σ]. (A5)

Substituting the values of the desired probabilities and simplifying,

πd =ασ + (1− α)[rΣN
S=2(1/S)

(
N − 1
S− 1

)
(1− α)S−1αN−SΣS−1

nc=0

(
S− 1

nc

)
∗

(xcn/(n− 1))nc(1− (xcn/(n− 1)))S−1−nc nc + αN−1σ]

(A6)

=ασ + (1− α)[rΣN
S=2

(
N − 1
S− 1

)
(1− α)S−1αN−S(xcn/(n− 1))(S− 1)/SΣS−1

nc=1

(
S− 2
nc − 1

)
∗

(xcn/(n− 1))nc−1(1− (xcn/(n− 1)))S−1−nc + αN−1σ]

(A7)

=ασ + (1− α)[rΣN
S=2

(
N − 1
S− 1

)
(1− α)S−1αN−S(xcn/(n− 1))(S− 1)/SΣS−2

k=0

(
S− 2

k

)
∗

(xcn/(n− 1))k(1− (xcn/(n− 1)))S−2−k + αN−1σ].
(A8)

Continuing to simplify,
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πd =ασ + (1− α)[rΣN
S=2

(
N − 1
S− 1

)
(1− α)S−1αN−S(xcn/(n− 1))(S− 1)/S + αN−1σ] (A9)

=ασ + (1− α)[r(xcn/(n− 1))(ΣN
S=2

(
N − 1
S− 1

)
(1− α)S−1αN−S − ΣN

S=2

(
N − 1
S− 1

)
(1− α)S−1∗

αN−S/S) + αN−1σ]

(A10)

=ασ + (1− α)[r(xcn/(n− 1))(ΣN−1
k=1

(
N − 1

k

)
(1− α)kαN−k−1 − (1/N)ΣN

S=2

(
N
S

)
(1− α)S−1∗

αN−S) + αN−1σ]

(A11)

=ασ + (1− α)[r(xcn/(n− 1))((1− αN−1)− 1/(N(1− α))ΣN
S=2

(
N
S

)
(1− α)SαN−S) + αN−1σ] (A12)

=ασ + (1− α)[r(xcn/(n− 1))((1− αN−1)− [1− N(1− α)αN−1 − αN ]/[N(1− α)] + αN−1σ] (A13)

=ασ + (1− α)[r(xcn/(n− 1))(N − Nα− [1− αN ])/(N[1− α]) + αN−1σ] (A14)

=ασ + (1− α)[r(xcn/(n− 1))[1− (1− αN)/[N(1− α)]] + αN−1σ]. (A15)

We have verified via Mathematica and via Hauert et al. [15] that

ΣN
S=2P(S|plays)ΣN−1

nc=0P(nc|S ∩ plays)rnc/S + P(S = 1|plays)σ =

r(xcn/(n− 1))[1− (1− αN)/[N(1− α)]] + αN−1σ.
(A16)

Appendix B. Derivation of πc

πc =ασ + ΣP(nc ∩ S ∩ plays) ∗ payo f f (A17)

=ασ + (1− α)ΣP(S|plays)P(nc|S ∩ plays) ∗ payo f f (A18)

=ασ + (1− α)[ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)((r/S)(nc + 1)− 1)+

P(S = 1|plays)σ]
(A19)

=ασ + (1− α)[ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)rnc/S+

αN−1σ + ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)(r/S− 1)].
(A20)

Please note that

ασ + (1− α)[ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)rnc/S + αN−1σ] = πd, (A21)

where xcn/(n− 1) is replaced by (xcn− 1)/(n− 1). Indeed, xcn/(n− 1) is the probability that if a
player defects then another player will cooperate. Here, however, we consider the probability that
if a cooperator plays then a player will cooperate. Thus, to account for the cooperator we know to be
playing, we must consider (xcn− 1)/(n− 1). It follows that

πc =πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)ΣN
S=2P(S|plays)∗

ΣS−1
nc=0P(nc|S ∩ plays)(r/S− 1)

(A22)

=πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)ΣN
S=2P(S|plays)(r/S− 1) (A23)

=πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)∗

[rΣN
S=2(1/S)

(
N − 1
S− 1

)
(1− α)S−1αN−S − ΣN

S=2

(
N − 1
S− 1

)
(1− α)S−1αN−S].

(A24)
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Continuing to simplify,

πc =πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)∗

[(r/N)ΣN
S=2

(
N
S

)
(1− α)S−1αN−S − ΣN−1

k=1

(
N − 1

k

)
(1− α)kαN−k−1]

(A25)

=πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)[(r/[N(1− α)])∗

ΣN
S=2

(
N
S

)
(1− α)SαN−S − (1− αN−1)]

(A26)

=πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)[r/[N(1− α)]∗
(1− N(1− α)αN−1 − αN)− 1 + αN−1]

(A27)

=πd − (1− α)r/(n− 1)[1− (1− αN)/[N(1− α)]] + (1− α)[−1− rαN−1

+ αN−1 + (r/N)(1− αN)/(1− α)]
(A28)

=πd − r/(n− 1)[1− α− (1− αN)/N] + (1− α)[−1 + (1− r)αN−1+

(r/N)(1− αN)/(1− α)].
(A29)

Again, we have verified via Mathematica and via Hauert et al. [15] that

ΣN
S=2P(S|plays)ΣS−1

nc=0P(nc|S ∩ plays)(r/S− 1) = (A30)

− 1 + (1− r)αN−1 + (r/N)(1− αN)/(1− α). (A31)

Appendix C. Transition Matrix

We define P be the transition matrix for the Markov chain formed by repeatedly iterating pairwise
comparison. Then, Pi,i−1 = pcdi(n− i)/[n(n− 1)], and Pi,i+1 = pdci(n− i)/[n(n− 1)], for i = 2, 3, ...,
n − 1. Since the only other transition from i cooperators per iteration is the absence of transition,
Pi,i = 1− Pi,i−1 − Pi,i+1, and the remaining entries in the ith row are 0. Also considering that i = 0
cooperators and i = n cooperators are absorbing states, it follows that P is the tridiagonal (n + 1)×
(n + 1) matrix 

1 0 0 0 . . . 0
P2,1 P2,2 P2,3 0 . . . 0

0 P3,2 P3,3 P3,4
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 Pn−1,n−2 Pn−1,n−1 Pn−1,n
0 . . . 0 0 0 1


. (A32)

Fortunately, the calculation Pk as k→ ∞ is relatively straightforward. Indeed, the calculated the
fixation probabilities xi in Equation (11), and yn−i in Equation (13), represent, respectively, the last and
first entries in the ith row of limn→∞ Pn. Also considering that the entries in any given row of Pn must
sum to 1 as Pn is a stochastic matrix, and that xi + yn−i = 1, it follows that

lim
n→∞

Pn =



1 0 . . . 0 0
x1 0 . . . 0 yn−1

x2 0 . . . 0 yn−2
...

...
...

...
...

xn−1 0 . . . 0 y1

0 0 . . . 0 1


. (A33)

Thus, limn→∞ XPn converges to a vector of the form (a, 0, ..., 0, b). Namely, the set of vectors of
the form (a, 0, . . . , 0, b) is the set of eigenvectors of limn→∞ Pn, which in turn is the set of eigenvectors
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of P with eigenvalue 1. Moreover, if X = (Prob(i = 0), Prob(i = 1), ..., Prob(i = n)), then limn→∞ XPn

converges to a vector of the form (α, 0, ..., 0, β), where α + β = 1. Since the set of vectors of the form
(α, 0, ..., 0, β) with α + β = 1 is the set of stochastic eigenvectors of P with eigenvalue 1, it follows that
depending on the initial probability vector for the system, X = (Prob(i = 0), Prob(i = 1), ..., Prob(i =
n)), the system can potentially converge to any stochastic eigenvector.

Appendix D. Inequalities

Appendix D.1. Proof of (15)

x1 > 1/n⇔
[1− G]/[1− Gn] > 1/n⇔
[1− Gn]/[1− G] < n⇔
Σn−1

k=0 Gk < Σn−1
k=0 1⇔

G < 1. �

(A34)

Appendix D.2. Proof of (16)

y1 < 1/n⇔ (A35)

[Gn−1 − Gn]/[1− Gn] < 1/n⇔ (A36)

[1− G]/[1− Gn] < 1/(nGn−1)⇔ (A37)

[1− Gn]/[1− G] > nGn−1 ⇔ (A38)

(1/n)Σn−1
k=0 Gk > Gn−1 ⇔ (A39)

(1/n)Σn−1
k=0 Gk > (G(n−1)(n)/2)2/n ⇔ (A40)

(1/n)Σn−1
k=0 Gk > ((Πn−1

k=0 Gk)1/n)2. (A41)

Moreover, if G < 1, then (Πn−1
k=0 Gk)

1
n > ((Πn−1

k=0 Gk)

1
n )2. Hence, if G < 1, applying the

arithmetic-mean-geometric-mean (AM-GM) inequality demonstrates that

(1/n)Σn−1
k=0 Gk > ((Πn−1

k=0 Gk)1/n)2. (A42)

Thus, G < 1 implies that y1 < 1/n. �

Appendix D.3. Proof of (17)

If G > 1 and n > 1, note that

y1 > 1/n⇔ (A43)

[Gn−1 − Gn]/[1− Gn] > 1/n⇔ (A44)
G− 1

G− 1/Gn−1 > 1/n⇔ (A45)

G− G1−n < nG− n. (A46)

Then, observe that
d2

d2G
(G− G1−n) = −n(n− 1)G−n−1 < 0, (A47)
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for n > 1. Thus,
d

dG
(G− G1−n) = 1− (1− n)G−n (A48)

is decreasing whereas
d

dG
(nG− n) = n (A49)

is constant. Also considering that

d
dG

(G− G1−n)|G→1 = n =
d

dG
(nG− n)|G→1, (A50)

it follows that
d

dG
(G− G1−n) <

d
dG

(nG− n), (A51)

for n > 1. Since it is also true that as G → 1, G− Gn−1 → 0 and nG− n→ 0,

G− G1−n < nG− n. (A52)

Therefore, if G > 1, y1 > 1/n. �

Appendix D.4. Lemma 1: 1− αN−1N + αN(N − 1) > 0

For α = 0, 1− αN−1N + αN(N − 1) = 1. Then, if α ∈ (0, 1) and N > 1,

1− αN−1N + αN(N − 1) >0⇔ (A53)

[1− αN ]/[N(1− α)]− αN−1 >0⇔ (A54)

(1/N)(ΣN−1
k=0 αk)− αN−1 >0⇔ (A55)

(1/N)(ΣN−1
k=0 αk) >(α(N−1)N/2)

2
N ⇔ (A56)

(1/N)(ΣN−1
k=0 αk) >((ΠN−1

k=0 αk)1/N)2. (A57)

However, since ((ΠN−1
k=0 αk)1/N)2 = αN−1 < 1,

((ΠN−1
k=0 αk)1/N)2 < ((ΠN−1

k=0 αk)1/N), (A58)

and since by the AM-GM inequality,

(1/N)(Σk=N−1
k=0 αk) > ((ΠN−1

k=0 αk)1/N) (A59)

The inequality 1− αN−1N + αN(N − 1) > 0 must be valid. �

Appendix D.5. Lemma 2: 1− [1− αN ]/[N(1− α)] > 0

Suppose α ∈ [0, 1). Then,

[1− αN ]/[N(1− α)] = 1/NΣN−1
k=0 αk (A60)

< 1/NΣN−1
k=0 1 (A61)

< 1 (A62)

Hence, 1− [1− αN ]/[N(1− α)] > 0. �
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Appendix D.6. Proof that as N/n→ 0, R(α) > N(1− α) ≈ Rexp(α)

As N/n→ 0, R(α)→ N
1− α− αN−1 + αN

1− αN−1N + αN(N − 1)
. Hence,

N(1− α) <N
1− α− αN−1 + αN

1− αN−1N + αN(N − 1)
⇔ (A63)

(1− α)(1− αN−1N + αN(N − 1)) <1− α− αN−1 + αN ⇔ (A64)

1− αN−1N + αN(N − 1) <1− αN−1 ⇔ (A65)

αN(N − 1) <αN−1(N − 1)⇔ (A66)

αN < αN−1, (A67)

which is true for α ∈ (0, 1). Therefore, the inequality (A63) holds if and only if the denominator
of the right-hand-side of (A63) is positive. This is true by Lemma 1. Additionally, as N/n → 0,
n− N(1− α)→ n ≈ n− 1, so

Rexp(α) =
(n− 1)N(1− α)

n− N(1− α)
(A68)

= N(1− α). (A69)

�

Appendix D.7. Lemma 3: Behavior of R(α) as α→ 0

As α→ 0,

R(α) = N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

(A70)

→ N
1− (N − 1)/(n− 1)

(A71)

=
N(n− 1)

n− N
(A72)

> 0, (A73)

provided that N 6= n. On the other hand, if N = n, then,

R(α) = N
1− α− αN−1 + αN

N
n− 1

α− NαN−1 + αN(N − 1− 1
n− 1

)
(A74)

→ N
1− α

N/(N − 1)α
(A75)

→ (N − 1)
1− α

α
(A76)

→ +∞. (A77)

Hence, as α→ 0, R(α) is positive.

Appendix E. Proof that R(α) Is Strictly Decreasing on [0, 1)

Let
F(α) = r([1− αN ]/[N(1− α)]− αN−1)− (1− αN−1). (A78)
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As shown in Hauert et al. [15], F on (0, 1) has no root for r ≤ 2. The preceding result does not
hold, though, if N = 2. We address the case for which N = 2 at the end of the following proof.
For now, we suppose N > 2. Then, for every r > 2 there exists exactly one α such that F = 0, as shown
in Hauert et al. [15]. We consider

Q(α) =
1− αN−1

[1− αN ]/[N(1− α)]− αN−1 . (A79)

Q gives the values of r given α for which F is zero. Hence, Q is injective where it is defined.
Since [1− αN ]/[N(1− α)]− αN−1 is positive on [0, 1) by Lemma 1 in Appendix D, Q is defined and
thus injective on (0, 1). Thus, Q is either strictly decreasing or strictly increasing on (0, 1). However,

lim
α→0

Q(α) = N, (A80)

and
lim
α→1

Q(α) = 2, (A81)

applying L’Hospital’s rule twice. Since Q is continuous on (0, 1) there exist δ1 < 1/2 and δ2 < 1/2 such
that for α1 ∈ (0, 0+ δ1) and for α2 ∈ (1− δ2, 1), |Q(α1)−N| < 1/3 and |Q(α2)− 2| < 1/3, respectively.
Choosing arbitrary c1 ∈ (0, 0 + δ1) and c2 ∈ (1− δ2, 1), it follows that for N > 2, Q(c1) > Q(c2) and
c1 < c2. Hence, Q must be strictly decreasing on (0, 1). Moreover, Q(0) = N. Also considering that
Q < N on (0, 1), which can be proven using Lemma 2, Q is strictly decreasing on [0, 1).

Then, we let the numerator of Q be d

S(α) = 1− αN−1, (A82)

and note that S is strictly decreasing but positive on [0, 1). Next, we let the denominator of Q be

T(α) = [1− αN ]/[N(1− α)]− αN−1, (A83)

which is positive in (0,1) by Lemma 1 in Appendix D. Lastly, we let

U(α) = − 1
n− 1

(1− 1− αN

N[1− α]
), (A84)

which is negative on (0, 1) by Lemma 2. Also, [1− αN−1]/[1− α] = ΣN−2
k=0 αk for N ≥ 2, a strictly

increasing function of α for α ≥ 0 if N > 2 and constant if N = 2. Hence, 1− [1− αN−1]/[1− α]

is strictly decreasing, and hence U(α) = − 1
n− 1

(1− 1− αN

N[1− α]
) is strictly increasing for N ≥ 2 and

constant for N = 2.
Next, note that

R(α) = S(α)/[T(α) + U(α)], (A85)

and suppose for contradiction that T(α) + U(α) has zeroes in (0, 1) which form some set W.
Since T(α) + U(α) is a polynomial, W must be finite. Then, we may choose w0 = min{w ∈ W}.
Thus, throughout the interval (0, w0), T(α) + U(α) must be either positive or negative but not both.
Moreover, since S(α) is positive on (0, 1), R(α) cannot change sign on (0, 1). Also considering that by
Lemma 3, R(α) is positive as α→ 0, it follows that R(α) and T(α) + U(α) are positive on (0, w0). Next,
consider any αinv, α ∈ (0, w0) such that αinv < α. Then,

R(αinv) > R(α)⇔ (A86)

S(αinv)/[T(αinv) + U(αinv)] > S(α)/[T(α) + U(α)]⇔ (A87)

S(αinv)T(α) + S(αinv)U(α) > S(α)T(αinv) + S(α)U(αinv). (A88)
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We can show that
S(αinv)U(α) > S(α)U(αinv). (A89)

Details of proof is deferred to the end of Appendix E.
Furthermore, since Q is strictly decreasing and T is positive,

S(αinv)T(α) > S(α)T(αinv). (A90)

Equation (A89) and Equation (A90) together imply that Equation (A88) is valid on (0, 1). Thus,
R is strictly decreasing on (0, w0) for N > 2. Moreover, since S and T(α) + U(α) are both polynomials,
and since S is nonzero on (0, 1), it follows that R must have an asymptote at w0. However, R is positive
and strictly decreasing on (0, w0), so R cannot tend to ±∞ at w0 and thus cannot have an asymptote
at w0. This is a contradiction! It must thus be false that T(α) + U(α) has any zeroes on (0, 1). Hence,
since R and S are both positive as α→ 0, T(α) + U(α) must also positive as α→ 0. We may then show
that R(α) is strictly decreasing on (0, 1) by applying an argument analogous to the argument used to
show that R(α) was strictly decreasing on (0, w0) in the preceding proof by contradiction. Namely,
we have already established that Equation (A88) holds on (0, 1). Since T(α) +U(α) is positive on (0, 1)
Equation (A88) still implies Equation (A86). Therefore, R(α) is strictly decreasing on [0, 1) for N > 2.

However, if N = 2, then the only change from the above proof is that Q is constant rather than
strictly decreasing. Then, Equation (A89) still holds, and we replace Equation (A90) by

S(αinv)T(α) = S(α)T(αinv). (A91)

Thus, Equation (A88) still holds. Hence, R is strictly decreasing on [0, 1) for N ≥ 2. �

Proof S(αinv)U(α) > S(α)U(αinv) for αinv < α

It will now be very useful to show that

S(αinv)U(α) > S(α)U(αinv). (A92)

To demonstrate the preceding relations holds, note that since S is strictly decreasing, S(αinv) >

S(α). Also considering that U is strictly increasing, U(α) > U(αinv), and considering that S is positive
and U is negative, it follows that

S(αinv)U(α) > S(α)U(αinv)⇔ (A93)

S(αinv)U(α)/U(αinv) < S(α)⇔ (A94)

S(αinv)/U(αinv) > S(α)/U(α). (A95)

In other words, S(αinv)U(α) > S(α)U(αinv) if and only if S(α)/U(α) is strictly decreasing. Indeed,
to see why S(α)/U(α) is strictly decreasing, observe that

S(α)/U(α) = (1− αN−1)/(
−1

n− 1
[1− 1− αN

N(1− α)
]) (A96)

= −(n− 1)(1− αN−1)/(1− 1− αN

N(1− α)
) (A97)

= −(n− 1)(1− αN−1)/
N(1− α)− (1− αN)

N(1− α)
(A98)

= −N(n− 1)
1− α− αN−1 + αN

N − 1− Nα + αN . (A99)
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Also considering that since S is positive but U is negative, −N(n− 1) is negative, so S(α)/U(α)

is strictly decreasing if and only if

X(α) =
1− α− αN−1 + αN

N − 1− Nα + αN (A100)

is strictly increasing. Now, to establish that X(α) is strictly increasing, we will show X′(α) is positive.
Indeed, observe that

0 < X′(α)⇔ (A101)

0 < [(−1− [N − 1]αN−2 + NαN−1)(N − 1− Nα + αN)

− (1− α− αN−1 + αN)(−N + NαN−1)]/[N − 1− Nα + αN ]2 ⇔
(A102)

0 < [(−1− [N − 1]αN−2 + NαN−1)(N − 1− Nα + αN)

− (1− α− αN−1 + αN)(−N + NαN−1)]⇔
(A103)

0 < −(N − 1) + Nα− αN − (N − 1)2αN−2 + N(N − 1)αN−1−
(N − 1)α2N−2 + N(N − 1)αN−1 − N2αN + Nα2N−1 − (−N+

Nα + NαN−1 − NαN + NαN−1 − NαN − Nα2N−2 + Nα2N−1)⇔
(A104)

0 < 1 + αN(−1− N2 + 2N)− αN−2(N − 1)2 + αN−1(N(N − 1)+

N(N − 1)− 2N) + α2N−2(N − (N − 1))⇔
(A105)

0 < 1− αN(N − 1)2 − αN−2(N − 1)2 + αN−1(2N2 − 4N) + α2N−2. (A106)

However, it is not at all clear that the preceding function, X1(α) = 1− αN(N − 1)2 − αN−2(N −
1)2 + αN−1(2N2 − 4N) + α2N−2, is positive on (0,1). Testing the endpoints, we see that X1(0) = 1, but

X1(1) = 1− (N − 1)2 − (N − 1)2 + 2N2 − 4N + 1 (A107)

= 1− 2N2 + 4N − 2 + 2N2 − 4N + 1 (A108)

= 0. (A109)

Thus, if we can show that X1(α) is strictly decreasing on (0, 1), we have that X1(α) > 0 on (0, 1).
To that end, we will attempt to show that X′1(α) < 0 on (0, 1):

0 > X′1(α)⇔ (A110)

0 > −αN−1N(N − 1)2 − αN−3(N − 1)2(N − 2)+

αN−22N(N − 1)(N − 2) + 2(N − 1)α2N−3 ⇔
(A111)

0 > −α2N(N − 1)− (N − 1)(N − 2) + α2N(N − 2) + 2αN . (A112)

Still, it is not clear whether the preceding function, X2(α) = −α2N(N − 1)− (N − 1)(N − 2) +
α2N(N − 2) + 2αN , is negative on (0, 1). Testing endpoints again, we see that X2(0) = −(N − 1)(N −
2) < 0 since N > 2, and that

X2(1) = −N(N − 1)− (N − 1)(N − 2) + 2N(N − 2) + 2 (A113)

= −N2 + N − N2 + 3N − 2 + 2 (A114)

= 0. (A115)
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Thus, if we can show that X2(α) is strictly increasing on (0,1), we have that X2(α) < 0. To do so,
observe that

0 < X′2(α)⇔ (A116)

0 < −2αN(N − 1) + 2N(N − 2) + 2NαN−1 ⇔ (A117)

0 < −α(N − 1) + (N − 2) + αN−1. (A118)

Even still, we need to do more work to show the preceding equation, X3(α) = −α(N− 1) + (N−
2) + αN−1, is positive. Namely, testing endpoints one last time, we see that X3(0) = N − 2 > 0 and
that X3(1) = −(N − 1) + N − 2 + 1 = 0. Therefore, if we can show that X3(α) is strictly decreasing on
(0, 1), then X3(α) > 0. One last time, note that

X′3(α) = −(N − 1) + (N − 1)αN−1 (A119)

< 0. (A120)

Thus, X3 is positive on (0, 1). Employing the logic outlined above, we then have X′2(α) > 0,
so X2(α) < 0. This in turn implies that X′1(α) < 0, so X1(α) > 0. Hence, X′(α) > 0 and X(α) is strictly
increasing. Finally, we then have that S(α)/U(α) is strictly decreasing, yielding the desired result that
S(αinv)U(α) > S(α)U(αinv).

Appendix F. Justification of Approximations

Appendix F.1. Approximation for R(α) as N → ∞, N
n−1 = c

We let c be a real number in [0,1]. As N → ∞, αN−1N, αN(N − 1− N/(n− 1)), αN−1, αN , αN+1

→ 0, as long as α 9 1. Hence, for α 9 1,

R(α) =N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

(A121)

≈N(1− α)/(1 + c− cα). (A122)

However, applying L’Hospital’s rule twice yields limα→1 R(α) = 0, which is limα→1 N(1 −
α)/(1− c + cα). �

Appendix F.2. Approximation for R(α) for n� N � 0

As n→ ∞, N → ∞, N/n→ 0, for α 9 1,

R(α) =N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

(A123)

≈N(1− α). (A124)

However, as in the preceding proof, applying L’Hospital’s rule twice yields limα→1 R(α) = 0,
which is limα→1 N(1− α). �
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Appendix F.3. Approximation for R(α) as N → ∞

As N → ∞, NαN−1, NαN → 0 for α 9 1, so for α 9 1,

R(α) = N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

(A125)

→ N
1− α

1− N − 1
n− 1

+
N

n− 1
α

(A126)

→ N
1− α

1− N
n
+

N
n

α
(A127)

→ nN(1− α)

n− N(1− α)
(A128)

→ (n− 1)N(1− α)

n− N(1− α)
(A129)

= Rexp(α) (A130)

Additionally as in the preceding two proofs, applying L’Hosptal’s rule twice yields limα→1 R(α) =
0, which is limα→1 Rexp(α). �

Appendix F.4. Approximation for R(α) as N/n→ 0 and α→ 1

As N/n→ 0, (N − 1)/(n− 1), N/(n− 1), 1/(n− 1)→ 0, thus

R(α) = N
1− α− αN−1 + αN

1− N − 1
n− 1

+
N

n− 1
α− NαN−1 + αN(N − 1− 1

n− 1
)

(A131)

→ N
1− α− αN−1 + αN

1− NαN−1 + αN(N − 1)
. (A132)

Then, as α→ 1 we arrive at the indeterminate form 0/0, and employ L’Hospital’s rule for the case
N > 2. Now,

R(α)→ N
1− α− αN−1 + αN

1− NαN−1 + αN(N − 1)
(A133)

→ N
−1− (N − 1)αN−2 + NαN−1

−N(N − 1)αN−2 + αN−1(N − 1)N
. (A134)

However, this still yields 0/0, so we apply again L’Hospital’s rule, obtaining

R(α)→ N
−1− (N − 1)αN−2 + NαN−1

−N(N − 1)αN−2 + αN−1(N − 1)N
(A135)

→ N
−(N − 1)(N − 2)αN−3 + N(N − 1)αN−2

−N(N − 1)(N − 2)αN−3 + αN−2(N − 1)2N
(A136)

→ N
−(N − 1)(N − 2) + N(N − 1)
−N(N − 1)(N − 2) + (N − 1)2N

(A137)

= 2 (A138)

On the other hand, if N = 2, then R(α)→ N(1− α)2/(1− α)2 = N = 2. Hence, as N/n→ 0 and
α→ 1, R(α)→ 2.
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Appendix G. Derivation of πy

The payoff matrix for a two person public goods game in which cooperators invest 1 unit which
is then multiplied by r and distributed equally among all players is

c d
c r− 1 r/2− 1
d r/2 0

(A139)

Then, we suppose that there are i invaders in a population of n − i defenders, and that the
remaining individuals all play the same strategy. We let the invader be one of the players invited to
play in the two person PGG and call that player “player A”. Next, we let Ac, Ad, An, and Ac

n represent
the events where player A cooperates, defects, does not participate, and participates, respectively.
We suppose “player B” is the other individual invited to play. We let Bc, Bd, Bn be the events where
player B cooperates, defects, and does not participate, respectively. Lastly, we let E′ and E be the events
where Player B invades and defends respectively. Denoting the intersection of any two events F and G
by FG, and the probability that an event F occurs by p(F),

πy =(r− 1)[p(AcE′Bc) + p(AcEBc)] + (r/2− 1)[p(AcE′Bd) + p(AcEBd)]

+ r/2[p(AdE′Bc) + p(AdEBc)] + σ[p(An) + p(Ac
nE′Bn) + p(Ac

nEBn)]
(A140)

=(r− 1)[p(Ac)p(E′|Ac)p(Bc|AcE′) + p(Ac)p(E|Ac)p(Bc|AcE)]

+ (r/2− 1)[p(Ac)p(E′|Ac)p(Bd|AcE′) + p(Ac)p(E|Ac)p(Bd|AcE)]

+ r/2[p(Ad)p(E′|Ad)p(Bc|AdE′) + p(Ad)p(E|Ad)p(Bc|AdE)]

+ σ[p(An) + p(Ac
n)p(E′|Ac

n)p(Bn|Ac
nE′) + p(Ac

n)p(E|Ac
n)p(Bn|Ac

nE)]

(A141)

=(r− 1)β′(1− α′)[p(E′|Ac)β′(1− α′) + p(E|Ac)β(1− α)]

+ (r/2− 1)β′(1− α′)[p(E′|Ac)(1− β′)(1− α′) + p(E|Ac)(1− β)(1− α)]

+ r/2(1− β′)(1− α′)[p(E′|Ad)β′(1− α′) + p(E|Ad)β(1− α)]

+ σ[α′ + (1− α′)[p(E′|Ac
n)α
′ + p(EE|Ac

n)α]

(A142)

πy =(r− 1)β′(1− α′)[
i− 1
n− 1

β′(1− α′) +
n− i
n− 1

β(1− α)]

+ (r/2− 1)β′(1− α′)[
i− 1
n− 1

(1− β′)(1− α′) +
n− i
n− 1

(1− β)(1− α)]

+ r/2(1− β′)(1− α′)[
i− 1
n− 1

β′(1− α′) +
n− i
n− 1

β(1− α)]

+ σ[α′ + (1− α′)[
i− 1
n− 1

α′ +
n− i
n− 1

α]

(A143)

=
n− i
n− 1

(1− α′)(1− α)(rβ/2 + rβ′/2− β′) +
i− 1
n− 1

(1− α′)2β′(r− 1)

+ σα′ + σ(1− α′)(
n− i
n− 1

α +
i− 1
n− 1

α′)
(A144)
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