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Abstract: Game-theoretic models are a convenient tool to systematically analyze competitive
situations. This makes them particularly handy in the field of security where a company or a critical
infrastructure wants to defend against an attacker. When the optimal solution of the security game
involves several pure strategies (i.e., the equilibrium is mixed), this may induce additional costs.
Minimizing these costs can be done simultaneously with the original goal of minimizing the damage
due to the attack. Existing models assume that the attacker instantly knows the action chosen by
the defender (i.e., the pure strategy he is playing in the i-th round) but in real situations this may
take some time. Such adversarial inertia can be exploited to gain security and save cost. To this end,
we introduce the concept of information delay, which is defined as the time it takes an attacker to
mount an attack. In this period it is assumed that the adversary has no information about the present
state of the system, but only knows the last state before commencing the attack. Based on a Markov
chain model we construct strategy policies that are cheaper in terms of maintenance (switching costs)
when compared to classical approaches. The proposed approach yields slightly larger security risk
but overall ensures a better performance. Furthermore, by reinvesting the saved costs in additional
security measures it is possible to obtain even more security at the same overall cost.

Keywords: game theory; Stochastic Control; Mixed Strategy Equilibrium; Control of Expenses;
switching costs; incomplete information; Bounded Rationality; information delay; Perron-Frobenius

1. Introduction and Motivation

1.1. Playing a Mixed Strategy Causes Costs

Implementing a pure strategy equilibrium of a game is straightforward and the installation cost of
the strategy occur only once at the beginning of the game since the optimal strategy profile is pure and
will never be altered. When playing repeated games, however, it may occur that the optimal strategy
is mixed, i.e., the optimal strategy is obtained by assigning a positive probability to two or more pure
strategies. A mixed strategy is an assignment of probabilities, which declares a law for randomly
selecting the individual pure strategies in each round of game to ensure an optimal result regarding the
expected utility. In standard models it is assumed that players can switch strategies as frequently as
they want. Yet, in real life switching strategies will incur additional costs. For example if we consider
game-theoretic models in cybersecurity, strategies may include different configurations of servers,
firewalls or other system components. If switching strategies means changing configurations, the
change may be costly in terms of time or money (e.g., downtime of servers, hourly rates of staff, etc.).
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One possibility to consider switching costs is to compute multiple Nash equilibria and choose the
one with the smallest (Shannon) entropy. This approach yields the “purest” of all equilibria. Another
possibility is to model the problem in terms of dynamic games: the aim is to find the optimal Markov
chain, i.e., to find the best (mixed) strategy based on the current state and the cost of switching to new
states. Rass, König and Schauer have discussed these approaches in [1]. They point out that solely
considering “more pure” strategies (an thus reducing the frequency of action changes) or minimizing
the costs for the next choice is not sufficient: the implementation of a defense strategy needs to be done
in a way, such that the defender’s moves should not be predictable for an attacker, as this facilitates
security breaches. In other words, when employing a security strategy it should not be possible to get
a better forecast on the defender’s next action when considering the current state of the system and the
costs incurred by switching to another strategy. Thus, instead of calling for a dynamic optimization [1],
suggest a static framework, where all actions are taken stochastically independent of the current state
while still minimizing the switching costs. Despite their strong focus on security principles, there exist
even more efficient solutions if we take an “information delay” for the adversary into account, i.e.,
the time it takes the attacker to recognize a changed situation and adapt to it.

The concept introduced in this work incorporates the time it takes for an attacker to mount an
attack. It may happen that an attacker does not have complete information about the present state of
the attacked system (such as the current strategy of a defender), but only knows the state of the system
some rounds ago. This may happen, for example, if it takes the attacker some time to carry out the
attack, i.e., the adversary has some inertia. During this period, the attacker may not be able to keep
track of the system, and will not detect if the state of the system changes. Thus, his attack is performed
after some delay, during which no new information can be processed. As a vivid example, consider an
intruder who tries to gain unauthorized access to some critical infrastructure, that is surrounded by a
wall. Before he starts his attack, he knows the current position of a guard, as he can see him through a
window or compromised camera, but while he is entering the premises, the position of the guard may
change, without the attacker noticing.

In the following, we will refer to this scenario as an information delay. By taking into account the
average time the system is unobservable for an attacker prior to his attack, we can construct strategy
policies that are cheaper in terms of switching cost. This saving is traded for a slightly larger risk
in the primary security goal, but ultimately yielding a better performance overall. Security is never
only an economic matte of cost-benefit balance, and impractical security solutions are practically
worthless (say, if the optimal security strategy prescribes frequent changes in server configurations,
such a strategy would simply not be doable in practice). Taking into account the cost for “running”
an optimal defense as such is, in our opinion, an equally important aspect of defense as the security
precaution itself. This work aims at providing means to keep the running costs of a defense under
control and in balance to the security benefits therefrom.

1.2. Related Work

This work essentially deals with convergence to a Nash equilibrium, which is a well studied
matter in the literature, but usually with a totally different goal as ours. Some work [2] indeed assumes
a certain “speed” of the attacker, and adapts the defense to it. However, this prior work (and related
follow-ups) disregard the potential of moving slightly faster than the adversary to gain an explicit
profit from this. Most studies of convergence relate to the speed at which behavior can be adapted
to become optimal in the long run [3–7], with some consideration spent on specific settings such as
congestion or load balancing. The cost borne in switching between configurations has been considered
in [8], where the authors use entropy as a measure to prefer certain strategies with less cost in the
change. In the context of password policy choice, [9] considered games about choosing passwords
that are (i) easy to remember, (ii) hard to guess, and (iii) easy to change (for the owner). The latter
aspect is a well known cause of passwords to follow certain patterns like having counters attached
to them or similar. Taking the password change (switching) cost into account can aid looking for a
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best password policy and prevent the issue to some extent. Related on different grounds is also [10,11],
where convergence to an (ε-approximate) equilibrium is studied using Markov chains. Our work
relates to this in the sense that we also design Markov chains to play a desired equilibrium, but use an
ε-approximation to the equilibrium as an area of trade-off to avoid costs from switching. In that sense,
we provide a novel use of ε-approximations to equilibria for the sake of security economics [12].

1.3. Contribution and Structure of the Article

This contribution aims at generalizing the switching cost model [1] for games where the attacker
has incomplete information that can be described by an information delay. By taking into account
information delay, the implementation costs can be reduced while still ensuring the security principle
that the opponent cannot forecast the next move more precisely. The resulting policy can be described
using a Markov chain model. We will show in fact that the switching cost model is a special case of
our information delay model.

The structure of the article is as follows: first, we introduce some preliminary concepts and
notations required to describe the game setup as well as the costs for switching strategies in Section 2.
In Sections 3 and 4, the theoretical framework is explained and all mathematical derivations stated.
A numerical example completes the Section 3. Finally, Section 5 summarizes the findings and highlights
some open questions that might be relevant for future research.

2. Preliminaries

In the following, we will use uppercase letters to define random variables and sets. Vectors
are printed in bold-face. We will write X∼F if a random variable X is distributed according to a
probability distribution F. Distributions on finite ordered sets are described using probability vectors
x = (x1, . . . , xn), ∑n

i=1 x1 = 1 which represent the probability mass function of the underlying random
variable. It is assumed that the random variable follows a discrete distribution, hence it has a density
w.r.t. the counting measure. We will use the notation d x← PS to express that an element d was sampled
from the set PS with distribution x; i.e., Pr(X = d) = xi if d is the i-th element in the ordered set PS.

2.1. Definitions and Game Setup

We consider a finite two-player game between player 1 and player 2 with pure strategy sets PS1

and PS2, respectively. Let |PS1| = n and |PS2| = m where n, m ∈ N. We write ∆(PS) to denote the
simplex over a strategy set PS that contains all probability distributions on PS. The extension to n > 2
players will be obvious so we only consider the case with two players. We assume a zero-sum situation,
i.e., the attacker (which is player two) has the payoff u2 = −u1. In our security game scenario let
us adopt the defenders perspective, i.e., we act as player 1 in the game. Throughout this work the
defender’s strategies are determined by the expected damage and the switching costs. We assume that
the defender is minimizing two objectives: the primary security goal is minimization of the damage
due to a risk and the second goal is reduction of the switching cost.

2.2. Costs for Playing Mixed Strategies

The damage that is minimized as the first objective is modeled by a utility function u(1)
1 :

∆(PS1)× ∆(PS2)→ R,
u(1)

1 (x, y) = xTAy

that descries the expected damage depending on both players actions. For simplicity we assume
A ∈ Rn×m is a constant matrix.

The second goal is switching cost minimization: by our definition, a switch from strategy i ∈ PS1

to strategy j ∈ PS1 will cause cost sij ∈ R+ for player 1. Note that the cost of switching strategies only
depends on player 1’s actions, i.e., on his past and present strategy which we denote by Xt−1 and Xt

respectively, and t ∈ N denotes the t-th gameplay. Thus, we can employ a first order Markov chain to
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describe the switching behavior. As the player’s switching costs, and therefore his next move, only
depend on the present state the switching process is a first order Markov process. As any stochastic
process is fully determined by its finite dimensional distribution, we can describe the switching
behavior by specifying the joint probability distribution (jpd) of Xt−1 and Xt, t ∈ N. As we assume the
switching costs are constant over time, the optimal jpd that determines the mode of changing strategies
will be constant over time as well. Thus, the resulting, optimal switching policy joint probability
distribution of Pr(Xt−1 = i, Xt = j) can be modeled as a time-homogeneous process, i.e., it holds
Pr(Xt+h−1 = i, Xt+h = j) = Pr(Xt−1 = i, Xt = j) ∀ h ∈ N. Homogeneity implies that expected
switching cost can be described by

u(2)
1 (Xt, Xt−1) =

n

∑
i=1

n

∑
j=1

sij · Pr(Xt−1 = i, Xt = j)

We now model the simultaneous optimization of damage and cost as a multi-objective game
(MOG). In a MOG, each player i can have di ≥ 2 utility functions u(k)

i , k ∈ {1, . . . , di} defined
over ∆(PSi) × ∆(PS−i), where ∆(PS−i) denotes the strategy space of the remaining players.
In our two-player zero-sum game we have 2 objectives and both players have vector-valued
payoffs u1,−u1 : ∆(PS1) × ∆(PS2) → R, which yields the two-player zero sum MOG Γ =

({1, 2}, {PS1, PS2}, {u1,−u1}). For this situation the following definition is convenient.

Definition 1 (Pareto-Nash Equilibrium). In game with a minimizing player 1, a Pareto-Nash equilibrium is
a strategy profile (x∗, y∗) ∈ ∆(PS1)× ∆(PS2) that fulfills

u1(x, y∗) ≥1 u1(x∗, y∗) ≥1 u1(x∗, y) ∀x ∈ ∆(PS1), y ∈ ∆(PS2). (1)

where x ≥1 y means that there exists at least one coordinate i for which xi ≥ yi holds, regardless of the
other coordinates.

Lozovanu, Solomon and Zelikovsky [13] have studied the computation of Pareto-Nash equilibria
by scalarizing the utility vector. To this end, each player i defines weights αααi > 0, ‖αααi‖1 = 1 to scalarize
his utilities via αααT

i · ui. In [13] it was proven that the Nash equilibria of so scalarized games are exactly
the Pareto-Nash equilibria in the original multi-objective game.

Letting the defender prioritize a set of two goals by assigning weights α and 1− α, the scalarized
payoff for the defender is

u1 = (1− α) · u(1)
1 + α · u(2)

1 .

For readability we will drop the coefficients (1− α) and α as we can just include them in the
constant matrices A and S = (sij)i,j=1,...,n.

2.3. The Switching Cost Model (SCM)

The model introduced in [1] assumes that the switching of strategies is performed independently
of the current strategy, i.e., Pr(Xt−1 = i, Xt = j) = Pr(Xt−1 = i) · Pr(Xt = j). Thus, any future change
in strategy is not predictable with more accuracy when the current system state is known. Hence the
utility function u(2)

1 can be written as

u(2)
1 (Xt−1, Xt) =

n

∑
i=1

n

∑
j=1

sij · Pr(Xt−1 = i, Xt = j) =
n

∑
i=1

n

∑
j=1

sij · xi · xj = xTSx = u(2)
1 (x).

This way, the whole behavior of the system can be described using only the marginal probability
vectors x :

u1 = u1(x, y) = xTAy + xTSx (2)
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with constant payoff matrices A as well as S = (sij)i,j=1,...,n. We stress the fact that S need not be a
symmetric matrix. As a simple example consider a security guard driving to different assets i and
j where j is on top of a mountains and i in the valley. The ascend from i to j will certainly take up
more resources (e.g., fuel) than the decent from j to i. Thus, sij > sji holds indeed. Yet, we assume that
sii = 0 (remaining in the current strategy does not incur any switching costs).

In absence of an accurate adversary model [14], we may strive for a worst-case analysis and
assume that the attacker will always try to cause as much damage as possible, i.e., they aim to maximize
over u1:

max
y∈∆(PS2)

(xTAy + xTSx).

Note that for player 2 the expression xTSx is constant. Thus arg maxy∈∆(PS2)
(xTAy + xTSx) =

arg maxy∈∆(PS2)
(xTAy) = arg maxi(xTAei), where ei ∈ Rm denotes the i-th coordinate unit vector.

By substituting v := maxi(xTAei + xTSx), the resulting problem can be described through the
following optimization problem.

v→ min subject to


v ≥ xTAei + xTSx for i = 1, . . . , m

∑n
j=1 xj = 1

xj ≥ 0, for j = 1, . . . , m

(3)

2.4. Extension of SCM–Taking into Account Information Delay

In this paper we extend the switching cost model by relaxing the independence assumption, i.e.,
we let the choice of the next pure strategy Xt depend on the current state Xt−1. Thus, we want to
model the switching behavior as a Markov process. In order to reduce the switching costs, we may
add some inertia to player 1 by increasing the conditional probability to remain in the current strategy
for each state. Will control the amount of inertia in a way that we can guarantee the distribution of
the system after a predetermined amount of gameplays k conditional on the last observed state to be
almost the same as the unconditional distribution.

· · · Xt−1 Xt · · · Xt+κ · · ·

Pr(Xt+κ = j | Xt = i) iid.
= xj ∀κ ≥ 1Xt = iXt−1 = ·

iid. iid. iid. iid. iid.

(a)

· · · Xt Xt+1 · · · Xt+k−1 · · · Xt+κ · · ·

Xt = i Pr(Xt+κ = j | Xt = i)
!≈ Pr(Xt+κ = j) ∀κ ≥ k

?

P P P P P P P

(b)

Figure 1. Comparison of switching cost optimization in [1] to our approach. (a) Model in [1] assumes
independent choice of next pure-strategy; (b) Our model allows for first-order dependence when
choosing next pure-strategy but controls the deviation from the independence assumption after k or
more subsequent gameplays.
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Hence, we demand the resulting marginal distribution after a fixed number k of consecutive
repetitions of the game to be “almost independent” of the initial state, i.e., the conditional and
unconditional probabilities after k or more steps need to be almost the same, that is we require

|P(Xt+κ = j | Xt = i)− P(Xt+κ = j)| ≤ ε ∀t ∈ N, κ ≥ k, ∀i ∈ PS1, ∀j ∈ PS1. (4)

where | · | is the sum of absolute deviations of the two probability vectors. We call k the information
delay that specifies the length of the period an attacker is not able to gain insight into a system prior to
attacking (see Figure 1). Furthermore we call ε the maximum deviation of independence. In a seemingly
alternative view, one could propose wrapping up a lot of κ rounds of the game that are interdependent
in a single “larger” round, yet such an approach could be flawed for two reasons: first, this would
impose an independence assumption between any two batch of round in the game. Second, the timing
of the game rounds may be naturally induced by the “periodicity” of the business as such (e.g., work
hours per day, shifts, or similar).

In this dynamic framework we need to redefine the objective function u1. Obviously, there is a
conflict in notation and conceptualization here when optimizing over u(1)

1 plus u(2)
1 , as u(1)

1 is a function
with arguments x and y, i.e., the arguments are the marginal distributions each players assign to his
set of pure strategies, but u(2)

1 (in contrast to the formulation in (3)) is a function of the joint probability
distribution of player 1’s strategies. Yet, there is a direct connection between x and Pr(Xt−1 = i, Xt = j):
as we are dealing with mixed strategies, the defender will often switch pure strategies and by law
of large numbers the distribution over pure strategies PS1 will converge to x after an infinitude of
gameplays. Accordingly, the dynamic (i.e., switching) behavior of player 1, which is described using a
homogeneous discrete Markov chain (HDMC) needs to have x as a stationary as well as the unique
limiting distribution in order for the two objective goals to be consistent.

Bearing in mind that the limiting behavior of any HDMC can be described using a one-step
transition matrix P of dimension |PS1| × |PS1| and an initial distribution πππ0 that describes the starting
state of the process, we will make use of the following theorems for our results:

Theorem 1. (Limit [15]) Every aperiodic irreducible HDMC with finite state space has a unique limiting
state πππ.

So if we are dealing with aperiodic irreducible homogeneous discrete Markov chains with finite
state space E = {1, . . . , `} we can ensure the existence of a unique limiting state πππ = (π1, . . . , π`)

T ,
which is always a stationary state. Additionally, it can be shown that the limiting distribution πππ of
a such a stochastic process is independent of the initial distribution πππ0. Moreover, by the following
ergodic theorem, it is possible to specify the speed of convergence to the limit state for an aperiodic
irreducible HDMC with finite state space E = {1, . . . , `} and transition matrix P. Let Pk(i, j) denote
the transition probability from state i ∈ E to j ∈ E after k steps. Note that the following theorem is a
consequence of the Perron-Frobenius Theorem. 1

Theorem 2. (Geometric Ergodicity [16]) Let P the transition matrix of an irreducible, aperiodic Markov chain
with finite state space E = {1, . . . , `}. Then for all probability vectors πππ0 if holds

lim
n→∞

πππT
0 · Pn = πππT

πππ = (π1, . . . , π`)
T , πj > 0 for all j ∈ E and πππ is the only solution to

1 Note that by Perron-Frobenius Theorem for aperiodic irreducible HDMCs with finite state space the largest eigenvalue of
the transition matrix is always 1 and its eigenvector is the steady state distribution. Further, the second largest eigenvalue
that determines the speed of convergence to the steady state.
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πππT · P = πππT , ∑
i∈E

πi = 1. (5)

Moreover, the speed of convergence to the limiting state π is geometric, i.e., there exists a constant c > 0
(that depends on P only) such that

|Pk(i, j)− πj| ≤ c · |λ2|k (6)

∀i, j ∈ E is the row vector with all ones, λ2 denotes the second largest eigenvalue of P in terms of
absolute values.

The following proof is from [17]. We will limit ourself tho the case when P is diagonalizable,
which is the case for our construction of P(θ).

Proof. An irreducible aperiodic Markov chain has a positive transition matrix P. Let hi, i ∈ E,
hi ∈ R`×1 denote the right eigenvectors of P and gT

i , i ∈ E, gi ∈ R`×1 the left eigenvectors of P.
By Perron-Frobenius Theorem the largest eigenvalue λ1 is unique and possesses a strictly positive

left eigenvector. For stochastic matrices like P it additionally holds that the largest eigenvalue is λ1 = 1,
the right eigenvector to λ1 is 1 and its left eigenvector is the one that fulfills (5). Thus, gT

i = πππT .
Now we can write P in its spectral representation P = λ1B1 + · · ·+ λ`B` where Bi = hi · gT

i . As
Bi · Bj = Bi if i = j and Bi · Bj = 0 if i 6= j, we have ∀k ∈ N

Pk = (λ1B1 + · · ·+λ`B`)
k = λn

1 B1 + · · ·+λn
` B` = B1 +λn

2 B2 + · · ·+λn
` B` = 1 ·πππT +λn

2 B2 + · · ·+λn
` B`.

As 1 > λ2 ≥ · · · ≥ λ` we have
lim
k→∞

Pk = 1 ·πππT .

Now for all initial states i and resulting states j the absolute difference of the components of Pk

and the corresponding entries in 1πππT (i.e., |Pk(i, j)− πj|) is bounded by

|Pk(i, j)− πj| = |λn
2 B2(i, j) + · · ·+ λn

` B`(i, j)| ≤ |λ2|n|B2(i, j)|+ · · ·+ |λ`|n|B`(i, j)|,

where Bl(i, j) denotes the respective entry of Bl , l ∈ {2, . . . , `}.
Finally λ2 ≥ · · · ≥ λ` yields

|Pk(i, j)− πj| ≤ |λ2|n (|B2(i, j)|+ · · ·+ |B`(i, j)|) .

Finally, taking
c := sup

i,j
|B2(i, j)|+ · · ·+ |B`(i, j)| (7)

we get the Expression (6).

Geometric ergodicity means that the absolute difference of the steady state to the marginal
distribution after k steps given any initial distribution is bounded by c · |λ2|k. Subsequently, λ2

determines the speed of convergence to the steady state distribution given an arbitrary initial
distribution πππ0: The smaller λ2, the faster the convergence to the steady state. Considering Equation (4)
it is obvious, that if we want the distributions of Xt+κ and Xt+κ | Xt for an arbitrary instantiation of Xt

to differ by ε at maximum ∀κ ≥ k, we need to control the second largest eigenvalue of P, i.e.,

c · |λ2|k ≤ ε =⇒ |Pr(Xt+κ = j | Xt = i)− Pr(Xt+κ = j)| ≤ ε (8)

∀i, j ∈ E, ∀t ∈ N, ∀κ ≥ k.
Now we want construct an irreducible aperiodic HDMC described by a transition probability

matrix of a for which it holds
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• ε-Convergence: the resulting conditional probabilities after k or more repetitions of the game
given an initial are approximately the ergodic state (i.e., they satisfy (4))

• Equilibrium: the limiting as well as the marginal distribution of the process equal the
Nash-Equilibrium-solution from (3)

• Cost reduction: the total costs are reduced.

In (8) have seen that ε-convergence can be achieved by controlling the second largest eigenvalue
of the conditional probability matrix. The following result will help construct the sought transition
matrix for the intended convergence control:

Theorem 3. (Sklar [18]) Every cumulative distribution function FX(X) of a random vector X = (X1, . . . , Xn)T

can be expressed by its marginal distributions FX1(x1), . . . , FXn(xn) and a copula C : [0, 1]n → [0, 1] such that
FX(x1, x2, . . . , xn) = C

(
FX1(x1), . . . , FXn(xn)

)
.

Note that we are dealing with first order HDMCs and that the whole behaviour of the
chain is determined by one single two-dimensional joint distribution function for all (Xt−1, Xt),
i.e., ∀t. For brevity, we will abbreviate FXt−1,Xt(i, j) by Fij. As we require both the marginal
probabilities of Xt and Xt−1 to equal the Nash-Equilibrium-solution from (3), the joint distribution
of the random vector (Xt−1, Xt) can be constructed using the marginal distribution of Xt only, i.e.,
Fij = C

(
(FXt−1(i), FXt(j))

)
= C (FXt(i), FXt(j)).

Using Sklar’s Theorem and the fact that we are only considering absolutely continuous discrete
random variables Xt with σ-finite measures FXt , the first order Markov Process has not only a joint
cdf, but also a discrete density Pr(Xt−1 = i, Xt = j). Thus, there exists an f ∈ [0, 1]n×n, for which it
holds that for all 1 ≤ i, j ≤ n: fij = Pr(Xt−1 = i, Xt = j), ∑n

i=1 fij = xj for all j and ∑n
j=1 fij = xi for all

i. Therefore, the discrete density, which is represented by ( fij)i,j=1,...,n, has marginals prescribed by x
and we hereafter write fij(x) to denote this dependency. As such fij(x), i, j ∈ PS1 is not necessarily a
function of x, but rather chosen in a way constrained by x regarding the marginals.

Under the above-mentioned prerequisites, we are able to redefine u(2)
1 so that it only depends

on x:

u(2)
1 (Xt−1, Xt) =

n

∑
i=1

n

∑
j=1

sij · Pr(Xt−1 = i, Xt = j) =
n

∑
i=1

n

∑
j=1

sij · fij(x) = u(2)
1 (x)

for the just defined joint probability matrix f = ( fij)i,j=1,...,n : PS1 × PS1 → [0, 1]n×n, 1 ≤ i, j ≤ n.
Note that it is necessary to specify parametric functions f (x, θ) to model the jpd, as n2 parameters

are not estimable given the number of constraints. It is not possible to directly optimize the individual
fij over [0, 1]n×n. Therefore, we need to constrain f to a parametric family of functions, i.e., f =: f (θθθ, x),
where the optimization is performed by adjusting the parameter vector θθθ ∈ Θ. Then, given f (θθθ, x)
which represents, the respective one step transition matrix P can directly be computed via

P = diag(x)−1 · f (θθθ, x) (9)

where diag is a diagonal matrix. Unfortunately, even when using parametric families of functions for f
in most cases controlling the value of λ2 from diag(x)−1 f (θθθ, x) will be difficult. For reversible Markov
chains one could compute upper bounds via Cheeger’s and Poincare’s inequality [19], yet we will
work with a direct construction scheme for f (θθθ, x) for which it is possible to obtain exact control of λ2.

3. Efficient Switching by Considering Information Delay

In the defined framework it is possible to construct an aperiodic irreducible HDMC with state
space E ⊆ PS1 that satisfies ε-convergence as well as the equilibrium condition while reducing costs at
the same time.

To do so, we first set the parameters
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• k ∈ N: the information delay
• ε > 0: the maximum deviation from the steady state distribution after k rounds of game play

when an arbitrary initial state X0 is given.

W.l.o.g. we assume X0 is the last instantiation of the process which is known to the attacker. In
the next step we compute the optimal solution x∗ for x from (3). Then, using x∗ we will only include
those pure strategies i ∈ PS1 in our framework for which x∗i > 0 holds in Theorem (3). Excluding zero
probability states is necessary, as otherwise the transition Matrix that we will construct is not positive,
which is a necessary condition in Theorem 2. W.l.o.g. denote the included strategies E = {1, . . . , `},
1 ≤ ` ≤ n and their probability vector x̃ = (x̃1, . . . , x̃`)T . For the class of functions f we choose the
following family that depends on one parameter θ ∈ (0, 1] and the probability vector x̃∗:

f : [0, 1)× (0, 1]` → [0, 1]`×`, f (θ, x̃∗) = θ · diag(x̃∗) + (1− θ) · x̃∗ · (x̃∗)T (10)

W.l.o.g. let the 0 entries of x∗ be x∗`+1, . . . , x∗n. For f we can easily prove the following:

1. fij(x̃∗, θ) := Pr(Xt−1 = i, Xt = j)

2. ∑`
i=1 fij(x̃∗, θ) = x∗j for all j ∈ PS1 with x∗j 6= 0, θ ∈ [0, 1)

3. ∑`
j=1 fij(x̃∗, θ) = x∗i for all i ∈ PS1 with x∗i 6= 0, θ ∈ [0, 1)

Now observe that by the definition of f in (10) statement (9) is equivalent to

P = θ · diag(x̃∗)−1 · diag(x̃∗) + (1− θ) · diag(x̃∗)−1 · x̃∗ · x̃∗T

which yields
P = P(θ) = θ · I + (1− θ) · 1 · (x̃∗)T . (11)

where I denotes the identity matrix and 1 ∈ R` is the vector of all 1s. Note that by strict positivity
of (1− θ) the constructed HDMC with one step transition matrix P(θ) is aperiodic and irreducible.
Furthermore, the so constructed Markov chain has the limiting state x̃∗, i.e., the limiting marginal
distribution of the chain is the Nash-equilibrium solution from (3).

In this setting it can easily be verified that the largest eigenvalue of P(θ) is 1 and that all remaining
eigenvalues are θ:

Theorem 4. The second largest eigenvalue λ2 of P(θ) = θ · I + (1− θ) · 1 · (x̃∗)T is −θ and has algebraic
multiplicity `− 1.

Proof. The characteristic polynomial of P(θ) is

|P(θ)− λI| = |θ · I + (1− θ) · x̃∗ · 1T − λ · I| = | (1− θ) · x̃∗ · 1T︸ ︷︷ ︸
:=Q

− (λ− θ)︸ ︷︷ ︸
:=λ̃

·I| = |Q− λ̃ · I|

Thus, in order to determine the eigenvalues λi of P(θ) we need to determine the eigenvalues λ̃i of
Q and it holds2:

λi = λ̃i + θ ∀i ∈ {1, . . . , `}.

As Q consists of equal rows (1− θ) · (x̃∗1 , x̃∗2 , . . . , x̃∗` ) the rank of Q is one. Thus, there exists
only one eigenvalue λ̃1 of Q which is not 0. As the trace of Q is the sum of its eigenvalues, and
λ̃2 = · · · = λ̃` = 0, it holds

λ̃1 = (1− θ)x̃∗1 + (1− θ)x̃∗2 + · · ·+ (1− θ)x̃∗` = 1− θ.

2 Note that the eigenvectors of P(θ) and x̃∗ · 1T are equal, as rescaling and adding a multiple of I does not alter the eigenvalues.
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Thus, λ1 = 1 and λ2 = · · · = λ` = θ.

Thus, we have proven that by proper choice of f and θ we can control the switching of policies in
the way we need it. Furthermore, as we remain in the current position more often, the costs of switching
are reduced while it is ensured that the marginal distribution converges after a predetermined number
of rounds k at a given accuracy ε.

By construction of P(θ) and the fact that sii = 0 for all i ∈ E it furthermore holds

u(2)
1 (x̃∗, θ) =

`

∑
i=1

`

∑
j=1

s̃ij · fij(x̃∗) =
`

∑
i=1

`

∑
j=1

s̃ij · P(i, j) · x̃∗i = ∑
i 6=j

s̃ij · (1− θ) · x̃∗i · x̃∗j

= (1− θ) · (x̃∗)TS̃x̃∗ = (1− θ) · (x∗)TSx∗ = (1− θ) · u(2)
1 (x∗)

(12)

Thus, we can reduce the initial switching costs by a proportion of θ.
This way using a homogeneous discrete Markov chain we can describe a policy that employs

lower average switching cost, while still controlling the damage caused by adversaries. Of course (11)
is not the only construction scheme for P(θ) that allows for a direct control of λ2. There certainly exist
other ones employing different copulae with similar characteristics. We chose the upper construction
due to its simplicity and elegant properties regarding its second largest eigenvalue.

We will now prove a sufficient condition, when the general cost can be reduced while obtaining
almost the same security. In the following it is again assumed that the scalarization constants are
already included in the payoff matrices. Furthermore, assume that the information delay k is given.
As mentioned before, in the information delay model we only include those strategies ∈ PS1, where
x∗j > 0, that is we consider x̃∗ = (x̃∗1 , . . . , x̃∗` )

T , E = {1, . . . , `}, ` ≤ n.

Let x̃κ
j denote the conditional probability vector after κ steps, i.e., x̃κ

j is the jth colum of the positive
transition matrix:

x̃κ
j = (Pκ(1, j), Pκ(2, j), . . . , Pκ(`, j))T

Now assume it takes an attacker κ ≥ k steps to carry out an attack. Then, by the law of total
probability and (12), the total utility for player one when considering information delay is given by

u1(x∗, y, θ, κ) =
n

∑
j=1

(
Pr(X∗t+κ |X∗t = j)TAy

)
Pr(X∗t = j) + (1− θ)(x∗)TSx∗ (13)

=
`

∑
j=1

(
(x̃κ

j )
TÃy

)
x̃∗j + (1− θ) · (x̃∗)TS̃x̃∗ (14)

=: u(1)
1 (x̃∗, y, θ, κ) + u(2)

1 (x̃∗, θ) (15)

where Ã ∈ R`×` denotes the payoff matrix A where all rows of states j ∈ PS1 with x∗j = 0 were deleted,

and S̃ ∈ R`×` is defined analogously. Setting ` = n, θ = 0, k = 1 yields (2).
Now by loosening the independence assumption to lower the switching costs, we deviate from

the optimal (under independent sampling of strategies) solution x∗, which might increase the value of
the first objective function u(1)

1 . The total cost incurred after κ ≥ k steps is reduced if the reduction of

switching costs u(2)
1 is higher than the increase in the value of the first objective function u(1)

1 , i.e., if

u1(x∗, y, 0, 1)− u1(x∗, y, θ, κ) ≥ 0

which yields

x∗TAy−
`

∑
j=1

(
(x̃κ

j )
TÃy

)
x̃∗j + θ · x∗TSx∗ ≥ 0
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or by deletion of the zero-entries in x∗ and the correspronding rows in A:

θ · (x∗)TSx∗ ≥
(

`

∑
j=1

(x̃κ
j )

T x̃∗j − (x̃∗)T

)
Ãy (16)

Expression (16) states that the total cost can be guaranteed to be reduced if the switching cost
reduction is larger than the costs incurred by deviating from x∗. We will now show, how θ can be
chosen with respect to a given maximum deviation of independence ε > 0 in order to ensure a total
cost reduction. First, assume that (4) holds; a sufficient criterion for this to hold is c · |θ|k ≤ ε. By (7)
|c| ≤ supi,j |B2(i, j)| + · · · + |B`(i, j)|. Then, for the resulting conditional probability vector with
information delay, it holds for all j ∈ E and for all κ ≥ k:(

`

∑
j=1

(x̃κ
j )

T x̃∗j − (x̃∗)T

)
Ãy ≤ max

j∈{1,...,`}
|(x̃∗ − x̃κ

j )
TÃy|

and as the maximum deviation from independence is ε we have

|(x̃∗ − x̃κ
j )

TÃy| ≤ max
i
|(x̃∗ − x̃κ

j )
TÃei| = ‖ÃT · (x̃∗ − x̃k

j )‖∞
(8)
≤ ε · ‖ÃT‖∞ = ε · max

j=1,...,`

n

∑
i=1
|ãij| (17)

Thus, we have proven the following theorem:

Theorem 5 (Cost reduction).

(ε · max
j=1,...,`

n

∑
i=1
|ãij| ≤ θ · x∗TSx∗) ∧ (c · |θ|k ≤ ε) =⇒ u1(x∗, y, 0, 1)− u1(x∗, y, θ, κ) ≥ 0︸ ︷︷ ︸

lower cost

(18)

This implies that, if θ and ε satisfy the condition (18), then the total costs are reduced. The
following example illustrates the results.

3.1. Example and Sensitivity Analysis

Consider the following two-player zero-sum Matrix-game with switching costs. We define
the parameters

A =

4 8 6
9 3 8
7 6 3

 , S =

0 1 1
2 0 1
1 3 0

 .

For simplicity it is assumed that the scalarization constants are already included in the payoff
matrices. Furthermore, assume that the information delay is k = 3.

The standard equilibrium (we will denote it as x̂), if we only consider A, is x̂ =

(0.511, 0.311, 0.178)T with a value 6.0889. The cost of switching strategies independently, as it is
assumed in standard models, however, would incur an extra cost of 0.88 per round, which yields
6.9689 in total.

Now, computing x∗ from (3) yields x∗ = (0.2, 0, 0.8)T . The switching costs are 0.32 and the
maximum damage caused by the adversary is 6.4. This yields average costs of 6.72 in each repetition
of the game. Note that this strategy only includes the first and the last strategy ∈ PS1.

We will lower this average cost by taking into account the adversaries inertia, which is represented
by the information delay of k = 3 rounds. As mentioned before, in the information delay model we
only include those strategies j, where x∗j > 0, hereafter denoted as x̃∗ = (0.2, 0.8)T , E = {1, 3} and
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` = 2. By (7), |c| ≤ supi,j |B2(i, j)|. In our case the matrix x̃∗ · 1T has left eigenvectors f1 = (1, 1)T , f2 =

(−4, 1)T and right eigenvectors gT
1 = (0.2, 0.8), gT

2 = (−0.2, 0.2). Thus,

B2 =

(
−4
1

)
· (−0.2, 0.2) =

(
0.8 −0.8
−0.2 0.2

)
and therefore |c| ≤ 0.8

Solving the inequalities ε · maxj=1,...,` ∑n
i=1 |ãij| ≤ θ · x∗TSx∗ and c · |θ|k ≤ ε from (18) for

Ã =

(
4 8 6
7 6 3

)
yields 0.8 · θ3 ≤ ε ≤ 4·θ

225 . Replacing the inequalities by equalities we obtain

θ = 1
3
√

5
≈ 0.149 and ε = 4·θ

225 ≈ 0.00265, i.e., if the adversary knows the initial state, the individual

conditional probabilities Pk(i, j) after 3 or more steps will differ from each component x̃∗ by about a
quarter of a percent point at maximum.

Inserting θ = 0.149 into Pk(θ) =
(
θ · I + (1− θ) · x̃∗ · 1T)k for k = 3 it can be seen that the

maximum deviation to the components of x̃∗ is indeed no more than ε:

P =

(
0.3192 0.6808
0.1702 0.8298

)
, P3 =

(
0.202646 0.797354
0.199338 0.800662

)

For θ = 0.149 the switching costs are ∑`
i=1 ∑`

j=1 sij · f (x̃∗)ij = (1− 0.149) · 0.32 = 0.27232 and the

value for u(1)
1 is obtained using Expression (13):

0.2 · max
i∈{1,2,3}

(0.202646, 0.797354) ·
(

4 8 6
7 6 3

)
· ei

+ 0.8 · max
i∈{1,2,3}

(0.199338, 0.800662) ·
(

4 8 6
7 6 3

)
· ei

= 0.2 ·max{6.39206, 6.40529, 3.60794}+ 0.8 ·max{6.40199, 6.39868, 3.59801}
= 0.2 · 6.40529 + 0.8 · 6.40199

= 6.40265.

Thus, the total average cost incurred is 6.67497. The switching costs were reduced by 14.9% in
each round, while the maximum damage caused by an adversary was only increased by 0.04140625%.
Henceforth, taking into account the adversaries inertia can cause a dramatic cost reduction, while still
ensuring almost the same security.

Remark 1. Another possibility to find admissible θ is to apply the bisection method to θ until the maximum
deviation of the entries of P3 to x̃∗ is smaller than a predetermined ε. As an example we chose ε = 0.005 and
obtained θ = 0.187, which yields even lower switching costs (0.26016). We obtained

P =

(
0.3496 0.6504
0.1626 0.8374

)
, P3 =

(
0.205231 0.794769
0.198692 0.801308

)
.

In this case, the average value of u(1)
1 is 6.405228 and the total cost per round is 6.665388.

4. Minimizing the Total Cost

If one wishes not only to find a way to efficiently implement the Nash-equilibrium solution x∗

from (3), but also allows for other ergodic states πππ 6= x̃∗ to minimize the total cost while still ensuring
ε-convergence after k steps, one can rewrite the utility function (13) using the transition matrix P:
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u1(πππ, y, θ, κ) =
`

∑
j=1

πππTPκÃy + (1− θ) ·πππTS̃πππ (19)

Here, k is is the information delay (an input parameter), and πππ ∈ R` is an `× 1 probability vector
over E = {1, . . . , `} ⊆ PS1, that only includes non-0-probability strategies from PS1. Ã, S̃ likewise
denote the cleaned from zeros payoff and switching cost matrices only including the strategies from E.
For πππ, the transition matrix is defined as P = θ · I + (1− θ) · 1 · (πππ)T . The global optimum can then be
found by solving the following optimization problem:

min
πππ,θ

max
i

`

∑
j=1

πππTPkÃei + (1− θ)πππTS̃πππ (20)

subject to c · θk ≤ ε, θ ∈ [0, 1), πj > 0 ∀j ∈ E, ∑j∈E πj = 1. The optimization is performed in the
following way: first, it is decided which stategies from PS1 to include in E. i.e., we choose a subset
of stategies from PS1 and w.l.o.g denote them {1, . . . , `}. Then, the matrix A is reduced to Ã ∈ R`×m,
which obtained by deleting all rows of stategies that are not included in E. Analogously, S̃ ∈ R`×` is
obtained by deleting all columns and rows of strategies /∈ E. Having obtained Ã and S̃ and using the
spectral representation of Pk we can reformulate (20):

min
πππ,θ

max
i

`

∑
j=1

πππT
(

1 ·πππT + θk(B2 + · · ·+ B`)
)

Ãei + (1− θ) ·πππTS̃πππ (21)

subject to c · θk ≤ ε, θ ∈ [0, 1), πj > 0 ∀j ∈ E, ∑j∈E πj = 1. Note that all Bi, i = 2, . . . , ` depend
continuously on πππ.

5. Discussion

It is interesting to note that despite optimality-by-design, some short-term deviations from an
equilibrium can indeed be rewarding. Extending the concepts put forth in this work to dynamic
games (e.g., leader-follower scenarios) is a natural next step. The methods used here lend themselves
also to a treatment of perhaps continuous time chains, as limits of sequences of discrete chains with
vanishing pauses in the limit. For practical matters, our work can provide a tool to fix implausible or
impractical equilibria, by avoiding “hectic” changes if the equilibrium is mixed, while retaining a good
security-investment trade-off. In the end, reinvesting the saved cost in additional security measures
will yield even more security at the same cost.

At first glance our result seem to contrast earlier findings. For example, Reference [20] states
that a defending player may actually benefit from revealing information about the defense strategy to
the adversary and Reference [21] suggest that centrally allocating resources and publicly announcing
the defensive allocation yields higher success probabilities for a defender. Both approaches deal
with publicly announcing defense strategies to influence alleged attackers. This is different from our
situation as we do not consider influencing the attacker (neither by providing potentially misleading
information nor by hiding information). Rather we investigate how players behave if an information
delay is part of the setting of the game, i.e., if it needs to be taken into account due to the situation
at hand.
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Abbreviations

The following abbreviations are used in this manuscript:

SCM Switching Cost Model
jpd Joint Probability Distribution
HDMC homogeneous discrete Markov chain
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