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The Social Cost of Contacts: 
Theory and Evidence for the COVID-19 Pandemic in Germany 

Abstract 

Building on the epidemiological SIR model we present an economic model with heterogeneous 
individuals deriving utility from social contacts creating infection risks. Focusing on social 
distancing of individuals susceptible to an infection we theoretically analyze the gap between 
private and social cost of contacts. To quantify this gap, we calibrate the model using German 
survey data on social distancing and impure altruism from the beginning of the COVID-19 
pandemic. The optimal policy reduces contacts drastically in the beginning, to almost eradicate 
the epidemic, and keeps them at around a third of pre-pandemic levels with minor group-specific 
differences until a vaccine becomes tangible. Private protection efforts stabilize the epidemic in 
the laissez faire, though at a prevalence of infections much higher than optimal. Impure altruistic 
behaviour closes more than a quarter of the initial gap towards the social optimum. Our results 
suggests that private actions for self-protection and for the protection of others contribute 
substantially toward alleviating the problem of social cost. 
JEL-Codes: I180, D620, D640. 
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1 Introduction

Reducing physical social contacts (‘social distancing’) has been a key measure to public

disease control in the COVID-19 pandemic all over the world. While social distancing reduces

the rates at which infected individuals infect others, it naturally comes at the cost of the

forgone benefits of physical social contacts. As the COVID-19 global death toll has already

surpassed 350,000 by the end of May, 2020, voluntary social distancing by risk averse and

(impurely) altruistic individuals is a key ingredient for containing the virus. In general

terms, the pandemic provides a natural experiment on private provision of a public good

under uncertainty. In this paper, we investigate socially optimal contact reductions and to

what extent contact reductions by risk averse and impurely altruisic individual susceptible

to an infection comes close the social optimum.

To address this question, we extend the susceptible-infected-recovered (SIR) model of

epidemiological dynamics (Kermack and McKendrick, 1927) by incorporating the behavior

of heterogeneous, forward-looking individuals, differing in rates of infection, recovery, and

mortality (implying heterogeneous basic reproductive numbers), and in their preferences.

We focus on the behavior of susceptibles, taking the behavior of infected and recovered indi-

viduals as fixed. This focus allows us to contrast a private (‘laissez-faire’) Nash equilibrium

with the Pareto-optimal social distancing policy targeting different population groups.

We provide analytical results on the gap between the private and social costs of contacts

due to an infection externality. We show what drives the gap between purely selfish and

socially optimal social distancing and that it declines with the degree of impure altruism.

We identify two channels of how the severity of the disease, differing across socio-demographic

groups, affects the optimal number of contacts. First, both the private and social costs of

infection increase for subjects suffering more severely by the virus. Second, if an individual is

less likely to infect others, which in our baseline model are those hit severely by the disease,

this reduces the infection externality and allows for a larger number of contacts in the social

optimum. Thus, according to theory, the overall effect is theoretically ambiguous.

To quantify the gap between private and socially optimal behaviour, we draw on a unique

data set from a large, representative sample of around 3, 500 individuals in Germany at the

beginning of the COVID-19 epidemic, and calibrate our model to official epidemiological

statistics for Germany. Our survey elicits reported reductions in physical social contacts

and the relative share of impurely altruistic motivation for social distancing, allowing us to

derive the social cost of contacts without relying on estimates of the value of a statistical

life (VSL) from other contexts, and to disentangle purely selfish from altruistic motivations.

We conducted the survey in late March, when almost all Germans were still susceptible.
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Our data collection period includes the introduction of the nation-wide contact ban, which

is roughly equivalent to shelter-in-place policies in the US. While many social distancing

policies aim at reducing mobility, the German contact ban focused specifically on reducing

physical contacts, while leaving considerable room for voluntary behavior. This allows us to

study private contributions to a public good for the case of social distancing, and to test for

robustness concerning the role of regulation.1 As the severity of COVID-19 differs with age

and gender, our application to Germany distinguishes groups along these dimensions.

Our calibrated model provides the following results. First, the optimal social distancing

policy reduces contacts drastically to bring infection numbers below 1 per 100, 000 individuals

in the beginning, and stabilizes contacts at 32 to 37 percent of pre-pandemic levels to keep the

basic reproduction number stable at one until a vaccine becomes tangible. Second, we find

only small differences in social distancing across groups both in the laissez-faire equilibrium

and in the social optimum. Our numerical analysis shows that more severely affected groups,

in particular old men, can be slightly more lenient in reducing contacts, as they are less likely

to infect others in our baseline model. A sensitivity analysis shows that this effect depends on

the specific way how infected individuals infect others. Third, we find that the social cost of

contacts exceeds the private cost by a factor of 5 at 10 infected per 100,000 individuals, and

by a factor of 25 at 1 infected per 100,000. Fourth, we find that impure altruistic behaviour

closes a substantial share of the gap towards the social optimum, with group-specific gap

reductions ranging from 28 percent for old males to 32 percent for young females. Finally,

we show that purely selfish protection reduces the number of contacts to a level that keeps

the basic reproduction number at one, although the prevalence of the disease will be much

higher than optimal. Accordingly, the death toll in the laissez faire Nash equilibrium is

about 16 times higher than in the social optimum. Our finding that behavioral feedbacks

will contain the spread of the virus also in the laissez-faire equilibrium without regulation of

contacts is in line with general theory according to which self-protection can contribute to

alleviating the problem of external effects (Bramoullé and Treich, 2009).

Our research adds to the rapidly growing literature on the economics of epidemics applied

to the ongoing COVID-19 pandemic, which builds on earlier contributions on the economics

of infectious diseases (e.g. Barrett 2003; Barrett and Hoel 2007; Fenichel et al. 2011; Fenichel

2013; Gersovitz and Hammer 2004; Gersovitz 2011; Greenwood et al. 2019; Morin et al.

2013; Rowthorn and Toxvaerd 2012). In particular, we extend upon Fenichel et al. (2011)

regarding socially optimal and impure altruistic behavior with heterogeneous groups.

1Neither our survey data nor cell-phone data on movements indicate a clear effect of the contact ban;
instead we find a continuous reduction of contacts highlighting the importance of voluntary action and softer
regulations. For the US, Yan et al. (2020) find that households voluntarily reduce contacts in response to
infection risk and that this voluntary behavior is partly crowded out by compulsory social distancing policies.
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Our contribution of studying the stylized purely selfish and impure altruistic private

versus social cost of contacts with heterogeneous groups is most closely related to recent work

by Farboodi et al. (2020) and Acemoglu et al. (2020). Farboodi et al. (2020) build an optimal

control model with a single agent to compare contacts for (i) a laissez-faire equilibrium, (ii) a

social planner model that fully internalizing the externality, and (iii) a model with imperfect

altruism. They calibrate their model based on the literature, including VSL estimates from

Greenstone and Nigam (2020), and find that a laissez-faire equilibrium comes close to the

decline in social activity as measured in US micro-data from SafeGraph. Their optimal

policy, which accounts for the infection externality, would stabilize contacts at about 60

percent of pre-pandemic levels. In comparison to our work, they do not disentangle selfish

and altruistic behavior and capture group heterogeneities. With a similar focus, Bethune and

Korinek (2020) study the infection externalities and compare individual behavior with the

social optimum in a SIR model calibrated using VSL estimates. For the US, they estimate the

social cost of infections to be 3.5 fold higher than the private cost. They find that, in contrast

to the laissez-faire equilibrium, the social planner would eradicate the disease, except if it’s

social cost is very small. Eichenbaum et al. (2020) use the SIR model in a representative

agent setting to show that the equilibrium of selfish individuals is not Pareto efficient, as

individuals take infection rates as given. Gerlagh (2020) studies the ratio of public and

private benefits of reducing contacts in a simplified SIR model and finds that public benefits

of optimal social distancing are an order of magnitude higher than the private benefits.

Acemoglu et al. (2020) extend the SIR model to heterogeneous groups and provide a

closed-form solution of the dynamic model. Specifically, their ‘Multi-Risk’ model considers

different age classes, which differ in their infection, hospitalization and mortality rates. In

their calibration for the US, they specify parameters based on the literature and account for

heterogeneity in some parameters across age groups, distinguishing young (20−44), middle-

aged (45 − 65) and old (> 65). They find that a targeted, group-specific social distancing

policy reduces economic cost and lives lost compared to a undifferentiated policy. Building

on this Multi-Risk SIR model, Gollier (2020) compares welfare effects of a ‘suppression’ pol-

icy, where the disease is eradicated, with a ‘flatten the curve’ policy, where infections are

only kept below the capacities of the health systems. The model is calibrated for France,

considering three age groups: young (0-18), middle-aged (19-64), and old (> 65). Gerlagh

(2020) considers heterogeneity in preferences about social contacts, health cost or transmis-

sion rates in a simplified SIR model. He shows that a group-specific optimal social distancing

policy sets tighter distancing policies for elderly when based on health characteristics, but

sets tighter distancing policies for the young when based on the transmission of the virus.

Grimm et al. (2020) extend the SEIR model for, among others, heterogeneous infectiousness
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parameters and solve it numerically with calibration from the literature for Germany.

Several other recent papers extend the SIR model to study social distancing behaviour

and optimal policy response in the COVID-19 pandemic with different foci (e.g. Alvarez

et al. 2020; Brotherhood et al. 2020; Chudik et al. 2020; Dasaratha 2020; Gonzalez-Eiras and

Niepelt 2020; Jones et al. 2020; Pindyck 2020; Toxvaerd 2020). Of these, Alfaro et al. (2020)

is most closely related to our paper. They use a homogenous SIR model to show that infected

individuals internalise part of the infection externality due to altruistic preferences. Yet, their

data does not allow for clearly disentangling to what extent altruistic motives narrow the gap

between selfish and socially optimal behavior. Finally, our microeconomic focus leaves aside

macroeconomic effects, such as fiscal consequences or income shocks related to the effects on

trade or supply chains (see, e.g., Bodenstein et al., 2020; Coibion et al., 2020; Guerrieri et al.,

2020; Rachel, 2020). In relation to income losses, which our surveyed households expect on

average, our empirical strategy assumes that—as far as income is dependent on physical

contacts—these income losses are captured by their individual reductions in contacts.

Finally our paper also relates to the literature on the private provision of a public good

under uncertainty (e.g. Barrett and Dannenberg, 2014; Bramoullé and Treich, 2009; McBride,

2006; Tavoni et al., 2011; Quaas and Baumgärtner, 2008) and public good provision by im-

purely altruistic individuals (e.g. Andreoni, 1988, 1990; Goeree et al., 2002; Ottoni-Wilhelm

et al., 2017), as it provides evidence for a more general theoretical hypothesis that uncertainty

can help to alleviate the problem of external effects.

To the best of our knowledge, our paper is the first in this literature to (i) combine a

heterogeneous, group-specific analytical model with survey data on adaptive behaviour to

quantify the gap between the social and the private (‘laissez-faire’) optimum; (ii) estimate

welfare effects based on empirical evidence, while disentangling purely selfish and altruis-

tic components of social-distancing behavior. While so far most economic-epidemiological

models are calibrated to US data, our application to Germany offers an interesting com-

plementary case study, as an advanced economy that has managed the first month of the

pandemic with relatively few deaths and relatively modest regulations.

The remainder of the paper is structured as follows. In Section 2 we introduce our

economic-epidemiological model with heterogeneous groups (HetSIR), analytically charac-

terise the Nash equilibrium under purely selfish behaviour, the utilitarian optimum and

individual behaviour under imperfect altruism. We calibrate the full dynamic model in Sec-

tion 3. For this, we estimate the economic parameters with survey data, calibrate epidemio-

logical parameters and specify utility and behavioral parameters. We present our results in

Section 4, test their robustness and consider extensions in Section 5. Section 6 concludes.
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2 The economic-epidemiological model with heteroge-

neous groups (HetSIR)

2.1 Epidemiological dynamics

We draw on the canonical epidemological SIR model introduced by Kermack and McKendrick

(1927), augmented by an additional equation of motion to include death (SIRD), and set up

in discrete time. Total population in period t denoted by Nt splits up into susceptibles, St,

infected and infectious, It, recovereds, Rt, and additionally we recor the number of deads

Dt, such that Nt = St + It +Rt = N0 − (Dt −D0). Recovereds are assumed to be immune.

We set up a heterogeneous model (HetSIR) allowing for different population groups j

that differ in socio-demographic characteristics, for example in age and gender, and risk

exposure. Considering this heterogeneity addresses limitations of the aggregate SIR model

(Avery et al., 2020), and allows to study how incentives to choose frequencies of physical

contacts with others cjt differ with these characteristics.2 Different frequencies of physical

contacts result in heterogeneous effective infection rates. Individuals from different groups

may also differ in their clinical course of the infection, resulting in heterogeneous fatality or

recovery rates.

To keep the model tractable, we assume that individuals are homogeneous within a group

and do not switch groups. The epidemiological dynamics how individuals of all groups change

their health status are described by:

Sj,t+1 = (1− µj)Sjt − β(cjt)

∑
l Ilt
Nt

Sjt, (1a)

Ij,t+1 = (1− µj − αj − γj) Ijt + β(cjt)

∑
l Ilt
Nt

Sjt, (1b)

Rj,t+1 = (1− µj)Rjt + γj Ijt, (1c)

Dj,t+1 = Djt + µj (Sjt + Ijt +Rjt) + αj Ijt, (1d)

where β(cjt) is the infection rate given the frequency of physical social contacts cjt of suscep-

tibles of group j.3 Moreover, γj is the recovery rate, αj denotes the rate at which infected

individuals from group j die, and µj is the baseline, i.e., not corona-related, mortality rate for

individuals of group j. According to this model, the probability of infections is proportional

2Likewise one can study protection efforts which would simply be modelled as inversely related to cjt.
3In contrast to Farboodi et al. (2020) and Acemoglu et al. (2020) our focus is on the choice of contacts

by susceptible individuals, and thus we keep behavior of the other groups fixed. Farboodi et al. (2020)
differentiate contacts of susceptible versus infectious individuals, and self versus other contacts; Acemoglu
et al. (2020) use a single parameter for the functional form of the infection term.
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to the number of susceptibles, Sjt, which decreases over time. The infection probability is

also proportional to the total number of infectious from any group, It =
∑

j Ijt. It increases

until the peak of the pandemic and decreases thereafter. The basic reproduction number

R0, i.e. the number of people infected by one individual on average, is defined as

R0 =
∑
j

β(cj0)

µj + αj + γj

Sj0
Nj0

, (2)

calculated by the next generation method. Note that the basic reproduction number R0 is

a function of contacts and can thus be reduced by social distancing policies. In a similar

fashion, Rj0 = β(cj0)/(µj + αj + γj) are the group-specific basic reproduction numbers.

The current state of the epidemic is determined by the values of all state variables, i.e. the

number of susceptibles, infected, and recovered from all groups. In the following, we also use

St:=
∑

j Sjt, It:=
∑

j Ijt, Rt:=
∑

j Rjt and Dt:=
∑

j Djt to denote the number of susceptibles,

infected, recovered, and dead, aggregated over groups.

2.2 Equilibrium dynamics with private self-protection

A key interest of our paper is in the (forward-looking) choice of physical social contacts by

susceptibles who we model as expected utility maximizers. For both the individuals and the

society we assume a finite planning horizon of T weeks, where T is the expected time when a

vaccination will become available. We assume that all individuals have the same expectation

about T . After T weeks, group j individuals incur the present value utility level V n
j , with

superscript n denoting the no-epidemic situation.

Following the model of adaptive behavior suggested by Fenichel et al. (2011), each

individual takes as given the time paths of Sjt, Ijt, and Rjt, for all groups j. We use

V h
jt :=V

h
j (S1t, S2t, . . . , I1t, I2t, . . . , R1t, R2t, . . . , t) to denote the value function for an individ-

ual of group j in health state h ∈ {s, i, r, d} at time t, i.e. the expected present value of utility

the individual attaches to reaching health state h. As usual, the model is solved backwards,

starting with the final potential health states, recovered or dead.

The value function in the recovered health state r is given by

V r
jt = urj + δj

{
(1− µj)V r

j,t+1 + µj V
d
j

}
, (3)

where δj ∈ (0, 1) denotes the utility discount factor, urj the (Bernoulli) utility of recovereds,

and V d
j the present utility value of being dead. The term in curly brackets is the (von

Neumann–Morgenstern) expected utility of either remaining in the recovered health state

or non-corona related death. It directly follows that the value of being recovered V r
j is
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independent of the state of the epidemic and equal to

V r
jt =

urj + δj µj V
d
j

1− δj (1− µj)

(
1− (δj (1− µj))T−t

)
+ V n

j (δj (1− µj))T−t . (4)

It is a weighted average between the infinite time-horizon value function for recovereds, the

first fraction on the right-hand-side of (4), and the value of an individual in the no-epidemic

situation, V n
j . The weighting factor on the first component decreases, and the weighing factor

on the second component increases, as the arrival time T of the vaccination approaches.

An infected individual from group j will recover with probability γj and die with proba-

bility αj + µj, both of which are, by assumption, independent of the state of the epidemic,

but vary with individual characteristics, such as age and general health conditions. In the

following we use uij to denote a group j individual’s (Bernoulli) utility function in health

state i. Using (4), the corresponding value function is determined by

V i
jt = uij + δj

{
(1− µj − γj − αj) V i

j,t+1 + γj V
r
jt + (µj + αj) V

d
j

}
, (5)

which is the sum of the utility of being infected plus the discounted expected utility of staying

infected, recovering or dying.

Also V i
jt is independent of the state of the epidemic, i.e. independent of the number of

susceptible, infected, or recovered individuals. Solving (5), we obtain:

V i
jt =

uij + δj γj V
r
jt + δj (µj + αj) V

d
j

1− δj (1− µj − γj − αj)

(
1− (δj (1− µj − αj − γj))T−t

)
+ V n

j (δj (1− µj − αj − γj))T−t . (6)

Note that V i
jt can be interpreted in terms of quality-adjusted life years. It is increasing

in the quality of life, as measured by the utility levels uij and urj . The value V i
jt is also

monotonically increasing in the baseline survival rate 1−µj, and thus in the expected number

of remaining life years absent the pandemic. Moreover, V i
jt is monotonically decreasing with

the ‘severity’ of the disease, as captured by the mortality rate αj:

Proposition 1. The value an individual attaches to an infection is monotonically decreasing

in the COVID-19 mortality rate αj, and monotonically increasing in the (Bernoulli) utility

in the infected state, uij.
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Proof. Noting that V r
jt and V d

j are independent of αj, we get

dV i
jt

dαj
= −δj

ui − (1− δj)V d
j + δj γj

(
V r
jt − V d

j

)
(1− δj (1− µj − γj − αj))2

− (T − t) δj (δj (1− µj − αj − γj))T−t−1
(
V n
j −

uij + δj γj V
r
jt + δj (µj + αj) V

d
j

1− δj (1− µj − γj − αj)

)
< 0,

(7)

as individuals prefer to be infected over being dead, expressed in momentary utility as

ui > (1 − δj)V d
j . They prefer to be recovered over being dead, expressed in present values

as V r
jt > V d

j , and they prefer to be in the situation with no epidemic compared to being

infected, i.e. the last term in brackets on the right-hand-side of (7) is positive. The result

on uij follows immediately by differentiating (6) with respect to uij.

Differences in the Bernoulli utility functions, a susceptible individual attaches to the

different health states, capture the effect of risk aversion. The more averse against health

risk an individual is, the smaller will be uij relative to the utility in the susceptible health

state. Thus, the second statement in Proposition 1 shows that the present value an individual

attaches to an infection is decreasing with the individual’s (health-related) risk aversion.

Finally, we turn to the value of a susceptible individual, that is, in health state s. Recall

that β(cjt) It/Nt is the rate at which susceptibles get infected after having had physical

contacts with infected. This infection rate increases with the frequency cjt with which

susceptible individuals have physical contacts with others, i.e. β′(cjt) > 0. The value function

for the individual in state s is determined by the Bellman equation:

V s
jt = max

{cjt}

[
usj(cjt) + δj

{(
1− µj − β(cjt)

It
Nt

)
V s
j,t+1 + β(cjt)

It
Nt

V i
j,t+1 + µj V

d
j

}]
, (8)

with V i
jt given in (6) and where utility usj in state s is a concave function of contacts cjt.

In the absence of regulation, and given Sjt, Ijt, and Rjt, for all groups j and at each point

in time, a purely selfish individual chooses the frequency of physical social contacts, cjt, to

solve (8). The corresponding first-order condition is given by

usj
′(cjt) = δj β

′(cjt)
It
Nt

(
V s
j,t+1 − V i

j,t+1

)
. (9)

An individual reduces physical social contacts such that her private marginal costs (lost

marginal utility of cjt) equals the expected marginal benefit in terms of extending the time

enjoying utility V s
jt rather than V i

jt. The marginal benefit of reducing social contacts is the
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discounted additional utility of staying susceptible weighted by the decreased rate of getting

infected, β′(cjt) It/Nt, due to reductions in social contacts cjt. If utility is concave in contacts,

i.e. usj
′′(cjt) < 0, a decrease of usj

′(cjt) corresponds to an increase in cjt. It directly follows

from (9) that physical social contacts of susceptible individuals decrease with the current

rate of infected in the population It/Nt. Moreover, physical social contacts of susceptible

individuals cjt decrease with the difference of an individual’s present value utility of staying

susceptible rather than becoming infected, i.e. V s
j,t+1 − V i

j,t+1.

Whereas the individual present value of an infection V i
jt is independent of the state of

the epidemic, the individual present value in the susceptible state, V s
jt, and the individually

optimal number of contacts, cjt, depend on the fraction of infected in the entire population,

It/Nt. As epidemiological dynamics depend on the (aggregate) behavior of all members in

society, also the dynamics of cjt depends on the behavior of all others. Thus the choice of cjt

has to be determined as the equilibrium of a dynamic game. We consider the open-loop Nash

equilibrium, where all individuals take as given the epidemiological dynamics, resulting from

the behavior of all others. The Nash equilibrium is determined by the simultaneous solution,

for all groups j, of the individual optimality condition (9), the Bellman equations (8) for V s
jt;

equation (6) determining V i
jt, and the epidemiological dynamics (1).

2.3 Utilitarian optimum

We now study the socially optimal number of physical social contacts. The social objective

is to maximize the sum of expected present value of individual utilities over the frequency

of contacts of all individuals and at all time periods, i.e. the utilitarian welfare function.

The function is based on the aggregation of unit comparable individual utility functions

(Roemer, 1996). To construct unit comparable utility functions for the individuals, we

normalize individual utility functions such that momentary utility prior to the COVID-19

pandemic is identical for all individuals, i.e. maxcj u
s
j(cj) = maxcl u

s
l (cl) for all j, l. Given

unit comparability, the utilitarian welfare function is a particularly appealing specification,

as it is consistent with the assumptions that social preferences satisfy the von Neumann

Morgenstern axioms (Harsanyi, 1955) and the Strong Pareto assumption, i.e., society prefers

one allocation over another one if all individuals weakly prefer it and at least one individual

strictly prefers it. As in Section 2.2, and in line with the standard approach in social welfare

functions (Roemer, 1996), we only consider the purely selfish part of individual utility:

Ŵ = max
{cjt}

∑
j

T∑
t=0

δtj
(
Sjt u

s
j(cjt) + Ijt u

i
j +Rjt u

r
j +Djt u

d
j

)
, (10)
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subject to the epidemiological dynamics given by (1). Whereas each individual faces risks

of changing their health status, at the societal level the epidemiological dynamics are deter-

ministic. Thus, the problem (10) to find the utilitarian optimum is a standard deterministic

dynamic optimization problem that can be solved by the Lagrangian method, using λhjt as

the Lagrangian multiplier for the number of individuals in health state h ∈ {s, i, r, d} in

period t + 1. These Lagrangian multipliers have the interpretation of the social value, in

units of utility, of an extra individual from group j in health state h. They are the social

equivalent to the value V h
j,t+1 an individual attaches to the health state h in period t+ 1.

The conditions characterizing the socially optimal physical social contacts c?jt under epi-

demiological dynamics can be written as follows, using It =
∑

l Ilt and δtj, Sjt > 0:

usj
′(c?jt) + δj β

′(c?jt)
It
Nt

(
λijt − λsjt

)
= 0 (11a)

usj(c
?
jt)− λsj,t−1 + δj λ

s
jt + δj β(c?jt)

It
Nt

(
λijt − λsjt

)
+ δj µj

(
λdjt − λsjt

)
= 0 (11b)

uij − λij,t−1 + δj λ
i
jt + δj γj

(
λrjt − λijt

)
+ δj (µj + αj)

(
λdjt − λijt

)
=
∑
l

δl β(c?lt)
Slt
Nt

(
λslt − λilt

)
(11c)

urj − λrj,t−1 + δj λ
r
jt + δj µj

(
λdjt − λrjt

)
= 0 (11d)

udj − λdj,t−1 + δj λ
d
jt = 0, (11e)

with transversality conditions λhjT = V n
j for all h ∈ {s, i, r}.

Conditions (11a) and (11b) for the social optimum are formally equivalent to condi-

tions (8) and (9) for the private optimum, except that the individual value of being in state

s (or i) at time t+1, V s
j,t+1 (or V i

j,t+1), is replaced by the social value of an extra individual in

state s (or i) at time t, λsjt (or λijt). The calculus for determining the optimal number of phys-

ical social contacts is the same for the utilitarian planner as for an individual. The marginal

utility of an extra contact is set equal to the marginal cost in terms of increased number

of individuals becoming infected. The difference, however, is that the planner considers the

social cost of one extra individual becoming infected, which is λsjt − λijt, and different from

the individual cost of becoming infected, V s
jt − V i

jt.

For the dead or recovered individuals, there is no difference between social and individual

values, as being dead or recovered does not effect the health of others. The social value of

an extra dead is constant over time, ∀t : λdjt = λdj,t−1 = V d
j , and we thus obtain from (11d):

λrjt = V r
jt =

urj + δj µj V
d
j

1− δj (1− µj)

(
1− (δj (1− µj))T−t

)
+ V n

j (δj (1− µj))T−t . (12)

11



The key difference between individual and social optimum is that (11c) differs from (5)

in that the condition for the social optimum includes the effect of a change in the number

of infected of type j on all susceptible individuals. Especially if there are many susceptible

individuals relative to infected individuals, this can make a substantial difference. Inserting

(12) and (6) in (11c) and solving establishes the following expression for the social value of

an extra infected individual from group j:

Proposition 2. The social cost of an infection in population group j at time t is given as

the private cost of the infection minus the net present value of the infection externality on

all others:

λijt = V i
jt −

T∑
τ=t+1

(δj (1− µj − αj − γj))τ−(t+1)
∑
l

δl β(c?lτ )
Slτ
Nτ

(
λslτ − λilτ

)
, (13)

where V i
jt is the individual value of being infected, given by (6); where δl β(c?lτ )

Slτ
Nτ

(λslτ − λilτ )
is the current-value external effect of the infection on individuals of population group l at

time τ and where δj (1− µj − αj − γj) is the population group-specific discount factor.

The difference between the value society attaches to an additional infected individual

and the value from the individual’s perspective—the second term on the right-hand-side

of (13)—is negative, since λslτ > λilτ . Society attaches a higher damage to an extra infection

than the individual. In other words, the social cost of an additional infection is higher than

the private cost. The reason is that getting infected has a negative external effect as it

increases the probability of an infection for all susceptibles in society. The second term on

the right-hand-side of (13) quantifies the negative external effect of physical social contacts,

defined as the difference between the social cost and the private cost. It is the present value

of the social costs of an extra infected individual for all individuals in society from now on

until the vaccination arrives.

The severity of the disease for group j, as measured by the mortality rate αj, does

not directly enter condition (11b) governing the dynamics of λsjt, and enters (13) via the

individual value of getting infected, V i
jt (cf. Proposition 1), and via the discount factor in

the second term on the right-hand-side of (13). Focusing on the second effect, we establish:

Proposition 3. For two groups j and j′ of individuals that have the same individual value

of getting infected, V i
jt = V i

j′t for all t, and have identical discount factors, baseline mortality

and recovery rates, δj = δj′, µj = µj′ and γj = γj′, the social value of an extra infected is

higher for the group with the higher mortality risk.

Proof. Under the given conditions, the difference in the social values of an extra infected

individual from the two groups j and l is
12



λijt − λilt =
T∑

τ=t+1

(
(δl (1− µl − αl − γl))τ−(t+1)

− (δj (1− µj − αj − γj))τ−(t+1)

)
δl β(c?lτ )

Slτ
Nτ

(
λslτ − λilτ

)
, (14)

which is positive if and only if µj + αj + γj > µl + αl + γl.

Ceteris paribus, the more severely a group of individuals is affected by the disease, the

lower is the risk that an extra infected from that group exerts on susceptibles from the same

and other groups. Thus, society can more extensively rely on self-protection by individ-

uals from relatively more affected groups. Similarly, ceteris paribus, the more quickly an

individual recovers, i.e. the higher γj, the smaller is the size of the external effects.

In terms of the optimal absolute number of physical social contacts, the effect of αj is

theoretically ambiguous. The private value of self-protection increases with αj (cf. Proposi-

tion 1), whereas the magnitude of the external effect decreases with αj (cf. Proposition 3).

Which of the two effects dominates depends in particular on the individual Bernoulli utility

functions for the different health states. It is thus an empirical question which group should

be more restrictive in terms of the number of physical social contacts.

For the empirical application, we utilize a property of the model that becomes obvious

in (13): For determining the optimal social distancing policy, the regulator does not need

to have detailed knowledge of the individual Bernoulli utility functions for the health states

of being infected, recovered, or dead. All relevant information is contained in the individual

present value of becoming infected, V i
jt, and conditions (11d) and (11e) can be ignored,

provided µj is small enough that it can be ignored in (11b). The only additional information

that the regulator needs to have of the individual preferences are the utility discount factors δj

and the momentary utility derived from physical social contacts, usj(cjt). Thus, we establish:

Proposition 4. If µj = 0 for all j, the first-best social distancing policy can be computed

from information on epidemiological parameters and on

• individual present values of becoming infected, V i
jt;

• utility discount factors, δj; and

• momentary utilities derived from physical social contacts, usj(cjt).

No separate information on individual Bernoulli utility functions for the health states y ∈
{i, r, d} is required.
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Given the information specified in Proposition 4, one has to solve the system of equa-

tions (1), (11a), (11b), and (13), along with initial conditions for the number of susceptibles,

infected, and recovered from all groups of individuals, and transversality conditions.

2.4 Individual behavior under imperfect altruism

We think of a perfectly altruistic individual as one who puts herself in the shoes of the social

planner, i.e. who chooses her individual contacts according to (11a), whereas a purely selfish

individual would choose contacts according to (9), as derived in Section 2.2.

An imperfectly altruistic individual is modeled as a hybrid between the two extremes,

and thus would choose her physical social contacts ĉjt according to

usj
′(ĉjt) = δj β

′(ĉjt)
It
Nt

(
(1− ϕj)

(
V s
jt − V i

jt

)
+ ϕj

(
λsjt − λijt

))
, (15)

where ϕj ∈ [0, 1] is the individual’s degree of altruism between zero, for the purely selfish

individual, and one, for the perfectly altruistic individual.

For a given degree of altruism, ϕj, we can use (9) and (11a) to alternatively write

usj
′(ĉjt) = (1− ϕj)usj

′(cjt) + ϕj u
s
j
′(c?jt), (16)

where cjt (c?jt) are the purely selfish individual (utilitarian optimal) contacts.

We further use ψj to denote the share of the marginal expected costs of social contacts

that are due to the purely selfish motivation, that is, we write

usj
′(cjt) = ψj u

s
j
′(ĉjt). (17)

The remaining fraction 1−ψj corresponds to the extra reduction effort the individual spends

for others. In our calibration to Germany (Section 3), we use observations on ĉjt and ψj

in (17) to estimate the number of physical social contacts a respondent would have chosen

for purely selfish reasons. We furthermore observe that there is a monotonic relationship

between ψj and the degree of altruism:

ψj =
usj
′(cjt)

usj
′(ĉjt)

=
usj
′(cjt)

usj
′(cjt) + ϕj

(
usj
′(c?jt)− usj ′(cjt)

) . (18)

The higher the degree of altruism, the lower is the share of marginal expected costs of social

contacts that are due to the selfish motivation. For ϕj = 0, we have ψj = 1 and ĉjt = cjt;

for ϕj = 1, ψj = usj
′(cjt)/u

s
j
′(c?jt), implying ĉjt = c?jt.
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3 Calibration for Germany

We are particularly interested in how behaviour of susceptible individuals depends on the

differential risk of a severe illness. Hence, we consider four population groups based on age

and gender. With regard to age, we differentiate between respondents younger than 60 years

of age (young) and those with an age of at least 60 years (old) as this threshold is also

commonly used to classify between epidemiological high- and low-risk groups. In total, we

consider the four groups of young men, young women, old men, and old women.

3.1 Survey data

For the economic parameters we predominantly rely on survey data that we elicited from

a representative sample of 3,501 Germans from March 20 to 27, 2020, and combine this

with estimates on time preferences from the literature.4 In Table 1, we report the main

variables of interest for the overall sample as well as for each population group individually

(for additional summary statistics please refer to Table 5 in the Appendix).5

To elicit behavioral responses and to quantify reductions in the number of physical social

contacts (cjt), we asked respondents: “Compared to the same week last year, by what percent-

age have you reduced or increased your physical, social contacts this week?”. In the survey,

we defined “physical, social contacts” as situations in which the respondent came closer than

two metres to others. We collected responses on a 15-point log-scale ranging from “reduction

to zero” to “increasing by 10%” which corresponds to a range of cjt, relative to normal, in the

interval [0; 1.1].6 Converting the responses to actual values, the mean response corresponds

to a frequency of physical social contacts of ĉjt = 0.25 relative to normal. At the same time,

we observe some heterogeneity between population groups (see Table 1).

4The survey respondents are representative for the German population in terms of gender, age, education,
and income. We excluded 112 respondents that answered the survey in less [more] than 3 [60] minutes
due to concerns regarding fast-clicking or inattention as well as 3 respondents with a diverse gender as this
population group would be too small for our analysis. We pre-registered the survey at the AEA RCT Registry
(https://doi.org/10.1257/rct.5573-1.1) and provide further details on the study in the Appendix.

5Besides the main inputs to our model, the survey included, among others, questions to elicit expectations
regarding income losses, and expectations of getting infected or getting into acute danger due to an infection,
which we analyze in a companion paper (Bos et al., 2020). At the time of our data collection, respondents
expected on average only slight reductions by 1 percent in their annual household income for 2020 relative
to 2019. Regarding the expectations about infections and the severity of the disease, we find that around
38 percent expect to get infected with the coronavirus over the course of the pandemic. When examining
group heterogeneity, we find in particular that the younger groups have a significantly higher expectation
to get infected and to get slightly ill, while the older groups have a significantly higher expectation to get
into acute danger once infected (see Table 1). Finally, we find that the majority of respondents in all groups
state that they changed their behavior more than what has been required.

6The answer items were: “reduction to zero, ..., reduction to one hundredth, ..., reduction to one tenth,
..., halving, .., reducing by 10%, ..., reducing by 1%, unchanged, increasing by 1%, ..., increasing by 10%”.
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Our survey provides some evidence that respondents behave in an imperfectly altruistic

manner, as modeled in Section 2.4. From another question in the survey, we know that

defense measures can only in part be attributed by pure selfish behavior.7 We observe that

respondents, on average, attach a weight of only ψj = 52 percent to protect themselves when

considering private defense measures. Thus, a considerable share of the reduction in contacts

is not attributable to pure selfish behavior, but is due to impure altruistic motives, relating

to the protection of family members and close friends (with a mean weight of 30 percent),

as well as to others (18 percent). Although the motivation to contribute to the public good

does not differ across gender, respondents older than 60 years attach a significantly higher

‘selfish’ weight on themselves when considering defense efforts. While young women (men)

attach a weight of 49.2 (50.1) percent on impure altruistic motives, this altruistic weight is

only 45.0 (43.7) percent for old women (men). We explain in Section 3.3 how we use this

information to specify the hypothetical benchmark case of pure selfish behavior.

Besides the intrinsic motivation to engage in defense measures, external factors like gov-

ernmental regulations could also affect private defense measures and potentially crowd out

some of the intrinsic motivation (see, e.g., Yan et al., 2020). We test for this by comparing

differences in responses for those who participate in the survey before and after a contact

ban for Germany has been announced on Sunday, March 22, 2020. While the announcement

took place roughly in the middle of our data collection period, this leaves approximately

half of the respondents unaffected by the contact ban, and at least some share of the week

in question subject to regulation for the other half. We report the results of this analysis

in Section 5.2, which indicates that the contact ban had no clear effect on both defense

measures and impure-altruistic motives.

Second, to calibrate time preferences (δj), we rely on a mix of evidence from the literature

and data from our survey. As far as we know, there is no study that directly elicits utility

discount rates from individuals. The most common approach to estimate time preferences

is to use incentivized ‘money earlier or later’ designs (see Cohen et al., 2020, for a recent

summary). These approaches include a variety of elaborate designs trying to disentangle

time preferences from utility curvature or to circumvent utility measurement altogether (see,

e.g., Andreoni and Sprenger, 2012; Attema et al., 2016; Harrison et al., 2002). Annual time

preference rates in these experiments on individual (financial) discount rates usually vary

between 25 and 35 percent. For the German population, Dohmen et al. (2010) estimate

a median estimate from an incentivized elicitation of time preferences that is right within

7In question no. 19 we ask: “As far as you reduce physical, social contacts or take protective efforts such
as intensive hand washing, in what proportions (in percentage points that sum up to 100%) do you do this in
order to (i) Protect yourself and members of your household [x%]; (ii) Protect your family and close friends
[y%]; Protect other people [100-x-y%].”

16



Table 1: Descriptive statistics of relevant survey responses.

All Population Group

Young
men

(j=1)

Young
women
(j=2)

Old
men

(j=3)

Old
women
(j=4)

Change in contacts 4.81 5.31 ∗∗∗ 4.35 ∗∗∗ 5.16 ∗∗ 4.51 ∗

(15-point Likert scale) (3.48) (3.48) (3.41) (3.35) (3.61

Reason for defense efforts (in %)
To protect me 51.96 49.89 ∗∗∗ 50.76 ∗ 56.31 ∗∗∗ 55.00 ∗∗∗

(21.75) (22.26) (20.74) (21.83) (22.14)
To protect family & friends 30.03 29.94 31.14 ∗∗ 28.87 28.58 ∗

(15.90) (16.33) (15.36) (16.53) (15.37)
To protect others 18.01 20.18 ∗∗∗ 18.10 14.82 ∗∗∗ 16.43 ∗∗

(14.37) (16.24) (13.39) (12.97) (12.92)
Expectations

Expected income change 6.98 6.97 6.44 ∗∗∗ 7.85 ∗∗∗ 7.45 ∗∗∗

(15-point Likert scale) (2.41) (2.49) (2.50) (1.89) (2.10)
P(get infected) (in %) 38.10 41.29 ∗∗∗ 40.16 ∗∗∗ 32.33 ∗∗∗ 31.78 ∗∗∗

(22.40) (23.33) (23.15) (19.27) (18.74)
P(get slightly ill) (in %) 50.65 54.00 ∗∗∗ 53.42 ∗∗∗ 44.76 ∗∗∗ 42.34 ∗∗∗

(21.71) (21.75) (21.57) (20.10) (20.26)
P(get in acute danger) (in %) 34.65 31.74 ∗∗∗ 30.48 ∗∗∗ 42.52 ∗∗∗ 43.27 ∗∗∗

(20.88) (19.62) (18.92) (21.58) (22.73)
Contacts wrt. regulation (in %)

Less than required 0.07 0.10 ∗∗∗ 0.06 0.07 0.03 ∗∗∗

(0.26) (0.29) (0.25) (0.25) (0.17)
According to regulations 0.30 0.34 ∗∗∗ 0.32 ∗ 0.21 ∗∗∗ 0.24 ∗∗

(0.46) (0.47) (0.47) (0.41) (0.43)
More than required 0.63 0.57 ∗∗∗ 0.62 0.72 ∗∗∗ 0.73 ∗∗∗

(0.48) (0.50) (0.49) (0.45) (0.44)
General preferences

Patience 8.11 8.12 8.23 ∗∗ 8.06 7.81 ∗∗∗

(2.12) (2.08) (2.10) (2.15) (2.22)

Observations 3501 1137 1312 561 491

Notes: The table shows mean values and standard deviations in parentheses. Change in contacts was
elicited with a logarithmic Likert scale as described in the main text. Expected income changes from
2019 to 2020 were elicited using a 15-point Likert scale ranging from 1 (reduction to 10 percent) to 15
(tenfold increase) with a value of 8 representing unchanged income. Patience was elicited using the Likert
scale question from Falk et al. (2018). Stars indicate the significance of the mean values to the average
mean values of the other groups (t-tests). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Parameters of the HetSIR model for individuals in the respective population groups.
All rates are in units of 1/week.

All Population group

Young
men

(j=1)

Young
women
(j=2)

Old
men

(j=3)

Old
women
(j=4)

µj 0.000235 0.000028 0.000016 0.000844 0.000721
αj 0.0306 0.00285 0.000863 0.125 0.0849
β0 2.16 2.16 2.16 2.16 2.16
γj 0.689 0.689 0.689 0.689 0.689
R0 3.00 3.12 3.13 2.65 2.79
IFRj (%) 3.86 0.41 0.13 15.36 10.95

this interval.8 In following our revealed preference approach, we rely on these best available

estimates of individual utility discount rates, but note that these are orders of magnitudes

higher as compared to social utility discount rates as used by governments or recommended

by economic experts (Drupp et al., 2018). While our parsimonious survey did not include an

incentivized measure of δ, we elicited preferences for patience using the 11-point Likert scale

question from Falk et al. (2018), where a 1 indicates ‘very impatient’ and an 11 ‘very patient’,

to obtain an indication of potentially heterogeneous time preferences across our groups. For

our four population groups, we find some heterogeneity in patience levels ranging from a high

level of impatience for old women (7.81) to a low level for young women (8.23). We find no

difference between young and old men (with patience levels of 8.12 and 8.06, respectively).

For our main calibration we take a central estimate from the literature and use a 30 per-

cent annual discount rate, i.e. δ = 1.3−1/52 = 0.995 per week. We show in Section 5.1 that

our results are not sensitive to substantially different assumptions on time preference rates.

3.2 Calibration of epidemiological parameters

We calibrate group-specific estimates for the COVID-19 mortality rate, αj, and the back-

ground mortality rate, µj. In the baseline calibration, we assume that the baseline infection

rate, β0, and the recovery rate, γj, is identical for all groups j. This means that differences

in infection rates are captured exclusively by differences in social physical contacts between

groups. We summarize our resulting group-specific epidemiological parameters in Table 2.

8Dohmen et al. (2010) use a representative sample of 500 Germans and employ a multiple price list offering
100 Euros ‘today’ versus amounts that increased from 100 to 156.2 Euros in 12 months. Assuming locally
linear utility and semiannual compounding, they compute a median discount rate of 27.5 to 30 percent,
which is likely a conservative estimate due to a large fraction of respondents that never switched.

18



Our estimate for γj is obtained from the time period that an infected individual is in-

fectious, based on He et al. (2020). This study analyzes viral load over time and finds that

infectiousness starts two days before symptom onset and declines quickly thereafter, such

that the density was less than 5 percent on day 4. We thus assume an infectious period of

6 days, which corresponds to an exponential recovery rate of 1/6 days in a continuous time

model. In our discrete time model the recovery rate is γj = 1− e−7/6 per week.

The background mortality rates, µj, are computed based on official mortality tables of the

Federal Statistical Office Germany (2020) for the most recent years 2016/2018. We estimate

COVID-19 mortality rate αj for each population group j as follows:9 We use the daily

number of new infections and new deaths in Germany reported by the Robert Koch Institut

(2020b)10 and aggregate them to the weekly level. We use (1) and replace β(cjt)
∑
l Ilt
Nt

Sjt

and αj Ijt with the time series of reported new infections ∆Ij,t+1 and new deaths ∆Dj,t+1

respectively, and assume µj = 0 as natural mortality is negligible on a weekly time scale

(cf. Table 2). We suppose Ij,1 = 0, since the estimation relies on data ∆Ij,t, making Ij,1

unimportant and because reported cases in January and early February were probably still

affected by imported cases (Pinotti et al., 2020; Rothe et al., 2020). We then estimate αj by

min
{αj}

4∑
j=1

15∑
t=1

(Ij,t αj −∆Dj,t+1)
2 , (19)

subject to Ij,t+1 = (1 − γ) Ijt + ∆Ij,t+1 − ∆Dj,t+1. This gives αj and IFRj =
αj

αj+γ+µj
as

shown in Table 2.11 (Baud et al., 2020). The estimated mean IFR of 3.86 percent for the

German population is close to the fatality rates reported by the WHO (Baud et al., 2020).

The initial basic reproduction number R0 was estimated to be between 2 and 3 (Boldog

et al., 2020; Ferretti et al., 2020; an der Heiden and Buchholz, 2020; Read et al., 2020),

although higher values with a range of 3 to 12 (Maier and Brockmann, 2020) or up to 14.8

(Rocklöv et al., 2020) have been suggested. We calibrate our model to the more conservative

and widely accepted value of R0 = 3 for the German population during the initial phase of

the pandemic. Using the weighted mean rates of recovery and mortality, we estimate the

9A number of studies have compared mean case fatalities across countries (Dorigatti et al., 2020) or
corrected values for time lags in symptom onset, case detection, death and presumed number of unknown
cases (Famulare, 2020), but fatality estimates remain uncertain (Dowd et al., 2020; Li et al., 2020).

10The Robert Koch Institute, supervised by the German Federal Ministry of Health, is responsible for
a continuous health monitoring and reports officially confirmed data on cumulative incidence and deaths
(corresponding to I +R+D in our model), and for the daily number of new infections (I) and deaths (D).
Here, we consider the time period from January 6 to April 26, 2020 (calendar weeks 1− 16).

11Targeting fatality by age, Verity et al. (2020) find infection fatality ratios (IFR) of 0.145% (< 60) and
3.28% (≥ 60) and 0.657% overall. Note, that the age-group specific mortality rates employed by Acemoglu
et al. (2020) also go back to this source.
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infection rate β0 = 2.16 at the beginning of the epidemic. Assuming an equal infection rate

across groups at the start of the pandemic, we then calculate the group-specific R0 values.

3.3 Specification of utility and behavioral parameters

We assume that individuals have no systematic differences in their preferences over physical

social contacts. By comparing the reported number of family members and friends between

population groups, we can indirectly test this assumption for our survey data. While the

number ranges between 13.76 (old women) and 14.55 (old men), differences across population

groups are not significant. This provides evidence that the motivation to get in contact is

homogeneous across our four population groups. We specify the utility function as

usj(cjt) =
1

1− ε
(
cεjt − ε cjt

)
. (20)

This normalizes the ‘normal’, i.e. utility-maximizing, number of contacts to c0jt = 1, and the

maximum of utility to one, uj(1) = 1, both independent of the specification of ε. For cjt < 1,

the specification of ε has an effect on the marginal utility of social contacts, however. The

smaller ε, the higher marginal utility, i.e. the more strongly an individual wants to maintain

at least some physical social contacts. In particular, for ε > 1, marginal utility is bounded

for cjt → 0, whereas it is infinite for ε ≤ 1 when cjt → 0. We specify a value moderately

below one, i.e. ε = 0.7.12

To estimate cjt for the period of the survey, we use reported changes in the number of

physical social contacts in the past week (variable “Change in contacts”, see Table 1). We

map the original responses, recorded on a 15-point Likert scale ranging from “reduction to

zero” to “increase by 10%” (see Footnote 6 for the full specification), to numerical values,

interpolating the non-specified values. We further use the reasons for defense efforts (variable

“To protect me”, see Table 1) as an estimate for ψ defined in (17). From this we estimate

the number of contacts a respondent would have chosen for purely selfish reasons as

cj0 =
(
1 + ψj

(
ĉεj0 − 1

)) 1
ε . (21)

The observations for ĉj0 and the estimates for the choice of physical social contacts under

purely selfish behavior cj0 are shown in Figure 1. For ĉj0, i.e. the observed imperfect altruistic

behavior, the mean is 0.25 and for cj0, i.e. the estimated purely selfish behaviour, the mean

12The results are robust against alternative specifications of ε, except if one specifies a value ε > 1. For
a specification ε > 1, marginal utility of physical social contacts is bounded, and a complete lockdown of
contacts, cjt = 0, becomes optimal.
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Figure 1: Histograms of surveyed impure altruistic physical social contacts (left), and esti-
mated contacts under purely selfish behavior (right) compared to normal.

is 0.33. Mean reductions are thus to about a third of normal and reductions are more pro-

nounced for altruistic behaviour. We use this estimated behavior to calculate the individual

present value of getting infected, V i
jt. To this end, we approximate the dynamic expectations

under which the susceptible individual decides on physical social contacts given in (9) by a

quasi-steady state, where Ijt, Sjt, and Nt are constant. Whereas this is only an approxima-

tion of the epidemiological dynamics, our survey data was collected during a phase where

the number of infected individuals was by and large constant in Germany (see Figure 2).

Under the assumption that Ijt, Sjt, and Nt are fixed at their initial (t = 0) levels Ij0,

Sj0, and N0, we obtain the following private cost of a susceptible individual from group j

becoming infected (by solving (8) for V s
j and subtracting both sides of the equation by V i

j ):

V s
j0 − V i

j0 =
usj(cj0)− (1− δj (1− µj))V i

j0

1− δj
(

1− µj − β(cj0)
I0
N0

) . (22)

Using the assumption of constant V s
jt in (9), we get the following first-order condition for the

individually optimal physical social contacts:

usj
′(cj0) = δj β

′(cj0)
I0
N0

(
V s
j0 − V i

j0

)
(22)
= δj β

′(cj0)
I0
N0

usj(cj0)− (1− δj (1− µj))V i
j0

1− δj
(

1− µj − β(cj0)
I0
N0

) . (23)

For the remainder we follow Fenichel et al. (2011) by specifying β(cj) = β0 cj, which

means that the probability of getting infected is proportional to the number of physical social
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Figure 2: Dynamics of the COVID-19 pandemic in Germany in spring 2020, based on data
from Robert Koch Institut (2020a). Cumulative infections and deaths are officially recorded,
and the number of recovered is estimated by the Robert Koch Institute. We estimate the
number of infected as the difference between cumulative cases and the estimated number of
recovered. Our survey was conducted from calendar day 80 (March 20) to 87 (March 27).

contacts. Using individual utility in (20), as well as β(cj) = β0 cj in (23) and rearranging,

we obtain the individual present value of (dis-)utility of being infected (‘private cost’):

V i
j0 =

1

1− δj (1− µj)

(
cεj0 −

ε

1− ε
1− δj (1− µj)

δj β0
I0
N0

cε−1j0 +
ε

1− ε
1− δj (1− µj)

δj β0
I0
N0

)
. (24)

We calibrate these values for the four groups based on the estimated individual choice of

physical social contacts (see Figure 1) and the epidemiological parameters in Table 2.

Table 3: Estimates for individual present values of getting infected for the four groups, V i
j0.

Young
men

(j=1)

Young
women
(j=2)

Old
men

(j=3)

Old
women
(j=4)

Mean -5,780 -7,117 -6,360 -7,522
SD 5,201 5,480 5,840 6,113
Median -3,620 -3,991 -3,631 -6,072
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Results are reported in Table 3. Generally we observe substantial heterogeneity of values

within population groups, indicated by relatively large standard deviations. Moreover, distri-

butions are skewed, as for most groups the (absolute value) median is much larger (smaller)

than the mean. The mean values show patterns that are in line with our theory. As stated

in Proposition 1 the individual damage of an infection should increase with the COVID-19

mortality risk. Consistent with the pattern of COVID-19 mortality rates (cf. Table 2), we

find that the individual cost of being infected is larger for old than for young men and it is

larger for old than for young women. Proposition 1 also states that the individual damage

of an infection increases if uij is small, which is the case especially for risk averse individuals.

We find that the expected dis-utility of an infection is larger for women than for men, which

is consistent with the observation that women are less willing to take health risks than men.

4 Results

We present quantitative results for Germany in three steps. First, we focus on the utilitarian

optimum, as studied in Section 2.3. Here, we compute socially optimal epidemiological

dynamics starting at the initial infection rates mid March, i.e. at the time of our survey,

and then vary initial infection rates to study how socially optimal frequency of physical

social contacts depends on the number of infected. Second, we compare these results to

equilibrium dynamics with purely selfish individuals, as studied in Section 2.2. Finally, we

also consider the social distancing behavior of imperfectly altruistic individuals, as modeled

in Section 2.4. We implement our dynamic optimization HetSIR model, and the solution

of equilibrium dynamics, in the state-of-the art nonlinear programming solver Knitro with

AMPL (Byrd et al., 1999, 2006). Programming codes are provided in the Appendix.

4.1 Utilitarian optimum

Figure 3 shows the socially optimal epidemiological dynamics, starting at the initial infec-

tion rates in Germany in mid March 2020, and the corresponding social distancing policy.

Infection numbers follow a U-shaped pattern. It is optimal to drastically reduce infection

numbers at the beginning, so that the disease is close to eradicated, with less than one

infected per 100, 000 individuals (cf. Figure 3, left panel).

Infection numbers are kept below one infected per 100, 000 individuals until a few weeks

before the vaccine arrives. To attain this optimal trajectory, contacts are drastically reduced

initially compared to pre-pandemic numbers, and during the quasi-steady state with minimal

infection numbers they are kept stable between 32 and 37 percent (see Figure 3, right panel).
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Figure 3: Dynamic optimization results. Parameter values as specified in the main text. We
assume a planning horizon until a vaccination will become available of 104 weeks.
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Figure 4: Optimal social distancing policy (left panel) and social cost relative to private
cost of infection, λijt/V

i
jt (right panel) as a function of current infected. Parameter values as

specified in the main text.
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These values correspond to a basic reproduction rate of one, Rj0 = 1, i.e. one infected, on

average, infects another individual. Using parameter values from Table 2 in equation (2),

we obtain that the group-specific basic reproduction rate would be equal to one for the

epidemiological parameters of young women or men if c̄1t = c̄2t = 32 percent, old men if

c̄3t = 37 percent, or old women if c̄4t = 35 percent (the bar indicating the quasi steady state).

Contact allocations to specific groups show the largest differences in the phase of sta-

bilisation (the ‘new normal’), where old men are allowed to have the largest share of their

normal contacts while young men and women face the largest contact reductions. This

shows that differentiation of socially optimal distancing policy across groups is driven to a

greater extent by the effect that older infected individuals, who tend to be more seriously

hit by COVID-19, impose a lower risk on others (cf. Proposition 3) than by the effect that

the expected present value of an infection is larger for these individuals (cf. Proposition 1).

However, the differences between the groups are only in the range of single-digit percentage

points and only of second order compared to overall contact reductions.

A question of particular interest is, how the socially optimal distancing policy depends

on the initial number of infected. The left panel of Figure 4 shows that the optimal social

distancing policy is a decreasing, convex function of current infection numbers. Already

at one infected per 100, 000 individuals it is optimal to reduce physical social contacts to

10 to 15 percent of the level prior to the pandemic. At 10 infected per 100, 000 individuals

contacts are reduced to 1.5 to 3.5 percent and at around 100 infected per 100, 000 individuals

a complete lockdown is optimal.13 Irrespective of the infection numbers, a utilitarian social

planner would reduce the contacts of the young women and young men more than of the old

women and old men, with the maximum difference in group-specific contact reductions being

less than six percentage points. Note again, that differences in contact reduction between

population groups are only of second order importance relative to the contact reductions over

the pre-pandemic level, with the first order effect being the response to infection numbers.

Social costs relative to private costs, λijt/V
i
jt, are particularly high at low infection num-

bers (cf. Figure 4, right panel). At one infected per 100, 000 individuals the social cost is 20

to 27 times higher than the private cost. The ratio of social relative to the private cost is

decreasing with current infection numbers, reflecting that the individual risk of an infection

increases relative to the size of the external effect. This shows that higher the private risk,

the more would risk-averse, rational individuals contribute to the public good of preventing

the epidemic from spreading. To study this in more detail, we next compare equilibrium

dynamics with purely selfish individuals to the utilitarian optimum.

13It is thus not optimal in our model to stop the pandemic by ‘herd immunity’, highlighting the importance
of vaccines to minimise the time and social cost of epidemics.
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4.2 Equilibrium dynamics with purely selfish individuals versus

utilitarian optimum

Figure 5 compares the epidemiological dynamics (infected per 100, 000 individuals, top left

panel) and contacts (as percent of normal) for (a) the open-loop Nash equilibrium of purely

selfish individuals and (b) the utilitarian optimum, i.e. the same as shown in Figure 3. In

Nash equilibrium, the reduction in contacts is initially much smaller than optimal. Also

in Nash equilibrium a quasi-steady state is reached, and contacts are reduced to the levels

between 32 to 37 percent that keep the basic reproduction rate of the epidemic at one. This

suggests that the selfish interest of rational, risk averse individuals to protect themselves

from the disease may be sufficient to contain the virus. However, infection numbers in the

quasi steady state differ by two orders of magnitude in the equilibrium and in the social

optimum. As a result, much more individuals die from COVID-19 in the Nash equilibrium

than in the optimum (Figure 5, bottom panel). Whereas in the utilitarian optimum, the total

number of COVID-19 fatalities is 1,009 individuals, sixteen times more (16,352) individuals

die from the disease in the Nash equilibrium with selfish individuals over the period of two

years. Regarding differences across groups (Figure 5, top right panel), in Nash equilibrium,

young men have most contacts, followed by old men, following the individual valuation of an

infection, as shown in Proposition 1. The effect that more individuals who are more severely

affected by the disease impose less risks on others, which plays the more important role in

the social optimum (cf. Section 4.1), is irrelevant for equilibrium dynamics.

4.3 Social distancing behavior of imperfectly altruistic individuals

versus selfish individuals versus utilitarian optimum

Table 4 compares the contact reductions at the beginning of the pandemic for three scenarios:

The Nash equilibrium with purely selfish individuals, the Nash equilibrium with imperfectly

altruistic individuals, and the utilitarian optimum. Selfish individuals would reduce their

contacts already to between 29 percent (young women) and 40 percent (young men) of pre-

pandemic levels. Altruistic behaviour, as observed in the survey, leads to even stronger

contact reductions ranging, down to between 21 percent (young women) and 29 percent

(young men). This closes the gap between contact reductions in the social optimum and the

purely selfish Nash equilibrium by around 30 percent.

Figure 6 compares the number of contacts for a varying numbers of infected per 100, 000

individuals for the same three scenarios. The comparison shows that the difference between

equilibrium and optimal distancing becomes small in absolute numbers if the number of

infected gets large, as the substantial individual risk of infections is then sufficient to spur
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Table 4: Number of physical social contacts (all in % of normal) in the different scenarios
(for initial conditions as in Figure 3; mid March in Germany) and degree of altruism (in %).

Young
men
(1)

Young
women

(2)

Old
men
(3)

Old
women

(4)
Physical social contacts

utilitarian optimum c?j0 2.59 2.22 5.22 3.51
selfish laissez-faire cj0 40.00 29.27 36.82 30.70
altruistic (observed) ĉj0 29.17 20.73 27.30 22.77

altruistic contribution
cj0−ĉj0
cj0−c?j0

28.95 31.57 30.31 29.17

degree of altruism ϕj 7.80 9.34 11.78 10.23
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Figure 6: Comparison of physical social contacts (% of normal) in the Nash equilibrium with
purely selfish individuals, in the Nash equilibrium with imperfectly altruistic individuals
(actual), and in the utilitarian optimum.
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private contributions to the public good by risk-averse individuals. The difference between

the frequency of physical contacts between the equilibrium, both with selfish and with im-

perfectly altruistic individuals, increases considerably as the number of infected decreases.

In other words, policy intervention is particularly necessary when there are few infected

individuals, whereas rational individuals will sufficiently self-protect and thus voluntarily

contribute to the public good if the number of infected individuals is already large.

5 Robustness checks and potential extensions

We perform a number of checks to study the sensitivity of our results to key parameters,

examine whether the contact ban has altered the voluntary reductions in contacts, and

discuss how results might change with possible model extensions.

5.1 Sensitivity analysis

We begin with a detailed sensitivity analysis regarding epidemiological parameters, discount

rates or the time until a vaccine arrives. Figure 7 shows the results on the optimal dynamics

in terms of the number of physical social contacts.

We first focus on the sensitivity regarding epidemiological parameters. In our baseline

calibration, the effective time an infected individual can infect others decreases with mortality

rate. We interpret this more generally as the effect that an individual hit severely by COVID-

19 is less likely to infect others, also because severely infected individuals are detected earlier,

are hospitalised or self-quarantined and therefore their effective infectious time is lower. Yet,

it may also be that less severely affected individuals recover more quickly from the disease.

One possible specification capturing this effect is to set αj + γj constant across individuals.

The top left panel of Figure 7 shows the results from this model specification. The main effect

is that differences across groups in the socially optimal number of contacts are negligible in

this alternative calibration. This shows that the results how to optimally differentiate social

distancing policies across individuals depend on the exact way how individuals are affected

by COVID-19 and how this translates into infection risks for others. The first-order effects

of optimal social distancing, which are similar across groups, are robust, however.

Second, we study sensitivity with respect to preference parameters. Our baseline cali-

bration assumes a weekly utility discount rate of 0.5 percent, corresponding to an annual

discount rate of around 30 percent. We find, however, that the results are very robust

against alternative specifications of the discount rate. Even for a very high discount rate of

5 percent per week, the general pattern of optimal dynamics remain similar, except that the
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Figure 7: Results of the sensitivity analysis on the time path of physical social contacts in
the utilitarian optimum. Panel (a), top left: the recovery rates for the three groups have
been adjusted such that γj +αj is identical for all groups and equal to the value of γj in the
baseline calibration; for panel (b), top right, the time horizon is shortened to T = 52 weeks;
for panel (c), bottom left, the discount rate is increased to δj = 0.95 per week; for panel
(d), bottom right, the model is calibrated using survey data only for the period before the
contact ban, i.e. using observations from the period March 20 to 22.
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quasi steady-state is approached more quickly and the final phase of opening shortly before

the vaccination arrives is shortened (Figure 7, top right panel). We also compute optimal

dynamics when individual expected present values of an infection would be at the median

instead of mean values reported in Table 3, and if we re-calibrate these values assuming

ε = 0.5 in the utility function (24), instead of ε = 0.7, as in the baseline calibration. The

optimal policy is also robust against these alternative specifications (not shown in the figure).

Third, we assume that once a vaccination becomes available the pandemic is stopped (cf.

Acemoglu et al., 2020; Farboodi et al., 2020). Hence, we modelled the arrival of a vaccine

by a finite time horizon. The timing of the arrival of a vaccine is, however, highly uncertain,

with experts expecting a vaccine to become available in between 1 and 2 years Acemoglu

et al. (2020). It the vaccine would become available already after one year (52 weeks) instead

of two years (104 weeks), the optimal policy response in the beginning of the pandemic and in

the quasi-steady state remain largely unchanged (Figure 7, bottom left panel), but obviously

the time during which society suppresses the pandemic in the quasi-steady state is reduced.

Finally, we re-calibrate the model considering only a sub-sample of survey respondents

(Figure 7, bottom right panel). We turn to this in the next subsection.

5.2 Effects of the contact ban and other distancing policies

During our data collection, the German government announced a nation-wide contact ban

on March 22, 2020. This regulation did not allow meeting more than one other person at a

time, except for members of the same household, but it did not constrain the total number

of daily meetings. This regulation could have affected both the reduction in contacts and

the motivation to engage in defense efforts. Table 6 shows the result of the statistical test

if there is a difference in the responses collected before and after the introduction of the

contact ban. We do not find evidence that the contact ban affected the weights attached to

the different reasons for individual protection efforts. This indicates that a crowding out of

intrinsic motivation seems unlikely. With regard to the reported change of contacts during

the past week, we observe a negative impact: after the contact ban, survey respondents tend

to report stronger protection efforts, on average 0.442 points less on the 15-point Likert scale.

However, we do not see a clear shift after the contact ban. To the contrary, we observe a

continuous downward trend in contacts, as Figure 8 shows.

To study if our main results are affected by the different in social distancing behavior by

early and late participants in the survey, we re-calibrate the model using data for the period

March 20 to 22 only, ignoring all responses after the contact ban has been in force. This

results in mean individual expected present values of an infection of V i
1t = −5, 435 for young
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Figure 8: Reduction of contacts over the data collection period.

calendar day of the year 2020

p
h
y
si

ca
l

so
ci

a
l

co
n
ta

ct
s

[%
o
f

n
or

m
a
l]

87868584838281

45

40

35

30

25

20

15

10

Notes: The graph shows the mean reduction in contacts, measured in percentage reduction from the same
week in the last year, grouped by day and daytime (before and after 12pm) of the data collection. The
shaded area indicates deviations by two standard errors, and the red line the announcement of the contact
ban in the evening of March 22, 2020.

men, V i
2t = −7, 475 for young women, V i

2t = −6, 208 for old men and V i
4t = −8, 573 for old

women. The main effect is that the difference in mean values for men and women become

more pronounced. Whereas the values for V i
jt for men in the early-respondent subsample are

larger (smaller in absolute value) than for the whole sample, the values are smaller (larger

in absolute values) for women. Overall the values are similar for both subsamples, however.

Accordingly, the socially optimal frequency of physical social contacts is very similar for

the re-calibrated model, shown in Figure 7, panel on the bottom right, and for the baseline

calibration using the full sample, shown in Figure 3, right panel.

More generally, we consider the ‘selfish’ part of the individual reduction in the frequency

of physical social distancing as the voluntary and unconstrained choice of the individual

respondent, resulting in frequencies of contacts between 29.27 and 40.00 percent of normal

(cf. Table 4). Our analysis has consistently shown that also in the Nash equilibrium with

purely selfish individuals, eventually the epidemic will enter a quasi steady state where

individuals choose contacts c̄jt such that their group-specific basic reproduction number

would be equal to unity, Rj0 = β0 c̄jt/(µj +αj +γj) = 1.14 We now turn to the question how

robust this result is and in particular to what extent it would be changed if the voluntary

part of social distancing would be less (or more) than according to our estimates. To this

14The corresponding frequencies of physical social contacts, c̄1t = c̄2t = 32 percent for young men or
women; c̄3t = 37 percent for old men, and c̄4t = 35 percent for old women, are given in section 4.1.
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end, we study how the prevalence of infections, I/N , at which individuals choose the quasi

steady state frequencies of contacts, changes with the input data on the individually optimal

number of physical social contacts at the beginning of the epidemic. We use equation (24)

that determines the individual expected present value of an infection which must be the

same in the assumed quasi steady state during the survey and in the quasi steady state that

would result in the laissez-faire Nash equilibrium with purely selfish individuals:

(1− δj (1− µj))V i
j0 = cεj0 −

ε

1− ε
(
cε−1j0 − 1

) 1− δj (1− µj)
δj β0 I0/N0

= c̄εj −
ε

1− ε
(
c̄ε−1j − 1

) 1− δj (1− µj)
δj β0 I/N

. (25)

From this we obtain the share of infected individuals in quasi steady state in the Nash

equilibrium as

I/N =
(1− δj (1− µj)) ε

1−ε

(
c̄ε−1j − 1

)
δj β0

(
c̄εj − cεj0 + ε

1−ε

(
cε−1j0 − 1

) 1−δj (1−µj)
δj β0 I0/N0

) . (26)

Using the epidemiological data reported in table 2, the values for c̄j reported in footnote 14,

and the calibrated preference parameters δj and ε, we obtain the results shown in figure 9.

This analysis reveals that the general result is robust over a wide range of alternative

input data on physical social contacts at the beginning of the pandemic. Even if the average

contacts would have been much higher than our estimates (up to 70% higher for young

men, 200% higher for young women), still a quasi steady state at moderate infection levels

would result from Nash equilibrium dynamics of selfish individuals. Thus, our results are

robust against a large share of regulation-driven contact reductions that may contaminate

our interpretation of voluntary behavior.

5.3 Measuring physical distancing using cell-phone data

We furthermore compare the results of our model with observed movements from cell phone

data. We use data from the COVID-19 Mobility Project (2020), which provides informa-

tion on the number of cell phone movements at the county level in Germany. These cell

phone movements capture switches in cell phone tower areas for users of the mobile phone

providers Telekom and Telefónica, who account for a combined market share of around two-

thirds (Bundesnetzagentur, 2020).15 In contrast to other studies that use mobility data from

15While a trip can lead to multiple switches in cell phone tower areas, the data combines multiple switches
to a single movements once a person becomes stationary again.
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Figure 9: The figure shows how the number of infected individuals in quasi steady state
of the Nash equilibrium dynamics would change if the model was not calibrated on the
estimated actual number of physical social contacts chosen by selfish individuals at the
infection rates prevailing during the time of the survey (shown as vertical lines), but on
some other, hypothetical values of cj0.

SafeGraph (Farboodi et al., 2020), Baidu (Kraemer et al., 2020), Apple (Alfaro et al., 2020),

or Google, there are two major distinctions to highlight. First, the data we use are retrieved

from mobile phone providers. Hence, they capture movements of cell phone users regardless

of their installed apps, operating systems, or devices.16 Second, these cell phone movements

reflect the number of trips instead of the number of devices at a specific location, like Point

of Interest, or the time spend at home as provided by SafeGraph. While the latter is espe-

cially relevant for a US-style shelter-in-place policy, the German government introduced a

contact ban but did not impose a nationwide curfew. Hence, the actual number of trips is

the appropriate data to use for the case of Germany.

Figure 10 shows cell phone movements in 2020 relative to the corresponding weekday in

March 2019 over time. We observe are sharp reduction in cell phone movements of 40 to 50

percent starting from the beginning of March, but no clear reduction following the contact

ban. During April, however, there is a steady convergence back to previous levels such that

there are 20 percent fewer cell phone movements at the beginning of May. The right panel

in Figure 10 shows the same data, for the period March 30 to May 6, 2020, plotted over

16Individuals in the SafeGraph dataset, for example, need to opt-in and their location data is collected
through third-party applications. Similarly, datasets on mobility patterns, as provided by Apple, Google,
and Baidu, rely on the users of their navigation applications.
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Figure 10: Reduction in cell phone movements in Germany during the COVID-19 spread

week of the year 2020
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Notes: The graphs show reduction in cell phone movements over the week of the year 2020 relative to the
average corresponding weekday in 2019, but excluding public holidays, aggregated to the county level (left
panel), and over the fraction of infected, starting on March 30, 2020 (week 13), where estimates of the
number of recovered became available. In the left panel, the blue line indicates the median county in
Germany, the grey band the 10 – 90 percent interval, and the yellow band the time period of our survey.
The red line indicates the announcement of the contact ban. Data is based on COVID-19 Mobility Project
(2020), using data from mobile phone providers Telekom and Telefónica. A cell phone movement indicates
a switch in cell phone tower areas after a person becomes stationary again.

the estimated number of COVID-19 infections. Consistent with the model, cf. (9), there is

a negative correlation between the reduction of cell phone movements, as a proxy for the

reduction in the number of physical social contacts, and the number of infected individual.

5.4 Discussion of potential extensions

As any model analysis, ours abstracts from a number of potentially interesting issues. In

the following, we discuss potential extensions of the analysis and the likely effects on results,

based on the existing literature.

We do not consider limits to the health care system and thus a ‘health care externality’ in

addition to the infection externality (see, e.g., Farboodi et al., 2020; Bethune and Korinek,

2020), as it does not seem to be of practical relevance for our German case study. Yet, in

principle, the model could be readily extended along these lines by making transition rates

γj, and αj dependent on It. This would likely have the effect that the social cost of an elderly

infection will rise, due to longer stay in hospitals. For instance, Farboodi et al. (2020) find

that considering in addition to the infection externality also a health care externality, i.e.
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that the quality of health care decreases as more individuals get infected due to capacity

constraints and congestion of the health care system, leads to an even stronger ‘flattening of

the curve’ in the social optimum.

Secondly, we did not consider issues of detecting infectious individuals and optimal test-

ing. To do so, one would extend our HetSIR model to include a state in which individuals

are infectious, but show no or only light symptoms. Such a model could be used to study

optimal population group-specific testing (with imperfectly altruistic preferences) in a situa-

tion where testing is costly with increasing marginal costs. For instance, Brotherhood et al.

(2020) augment the SIR model to include an additional health state at which individuals

show symptoms, but uncertainty about whether they have COVID-19 or a common flu only

resolves after some time. In their model testing reduces this time of uncertainty.

Third, the HetSIR model used here can facilitate any number of population groups and

our empirical analysis can also be extended accordingly. For instance one could consider

age classes of 10-years, distinguish by income or pre-existing illnesses. We have limited our

analysis to four population groups (distinguished by age and gender) that show significant

differences in their contact reductions and in other key characteristics in our German case

study for expositional purposes. As the virological literature on more fine-grained differences

across population groups is still in flux, such extensions would be worthwhile retrospectively

when sufficient clarity has been achieved.

Finally, we have taken a standard Utilitarian welfare function as the social objective,

thereby following a widespread approach in both economics and moral philosophy. However,

it would be interesting to compare this to alternative objectives, such as Prioritarianism

(Adler et al., 2019), or approaches that specifically value individual freedom of movement or

choice of contacts, for instance.

6 Conclusion

Drawing on the epidemiological SIR model we have developed an economic-epidemiological

model (HetSIR) with forward-looking heterogeneous individuals susceptible to virus infec-

tion. Imperfectly altruistic subjects choose their number of contacts balancing current utility

from physical social contacts with the expected present value of the infection risk. We have

characterized private behavior of individuals susceptible to a virus infection, and socially

optimal social distancing. We have quantified the model with unique data on social distanc-

ing behavior and impure altruistic motivations from a large, representative survey among

around 3,500 Germans conducted at the beginning of the COVID-19 epidemic, and we have

calibrated our model to official epidemiological data.
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We find that the optimal policy reduces contacts drastically in the beginning of the

pandemic to virtually eradicate the virus and to stabilize the spread at a quasi-steady state

until a vaccine becomes tangible. Moreover, we find a substantial gap between private and

social costs of contacts. Specifically, we find that the social costs of an infection are around

5 times higher than the private costs at the selfish Nash equilibrium, and more than 25

times higher at the socially-optimal level of infected for the main part of the pandemic.

Pure selfish behavior does not lead to such a drastic initial reduction in contacts, but also

reaches a quasi-steady state at infection levels of around 10 infected per 100,000 individuals.

This is very moderate compared to a potential peak without behavioral adjustments, but

far higher than in the social optimum. Whereas all socio-demographic groups should and do

reduce physical social contacts to roughly similar extents, our results suggests a tendency

that more severely affected groups need to be constrained less, as they tend to impose less

of a risk on others in case they get infected. Moreover, the impure altruistic behavior of our

respondents closes around a third of the gap between the selfish ‘laissez-faire’ and socially

optimal contact reductions. This contributes new evidence to a long-standing literature by

pointing towards an important role of impure altruism for the private provision of a public

good—in a setting in which both the externality and the number of people profiting from

an externality reduction is very large (e.g. Andreoni, 1988, 1990, 2007; Goeree et al., 2002;

Ottoni-Wilhelm et al., 2017).

Overall, we show that while there is a sizable gap between the private and social cost of

contacts, private actions for self-protection and for the protection of others can contribute

substantially toward alleviating the problem of social cost. Our paper thus also contributes

a high-stakes case study to the literature on the private provision of a public good under

uncertainty (e.g. Barrett and Dannenberg, 2014; Bramoullé and Treich, 2009; McBride, 2006;

Tavoni et al., 2011; Quaas and Baumgärtner, 2008).

Naturally, our study is subject to a number of limitations. First, our survey responses on

contact reductions are based on reported rather than observed behavior. The comparison

with contacts based on cell-phone data showed, however, that both approaches of observing

social distancing behavior were by and large consistent. Moreover, stated contact reductions

can contain effects of milder regulations before the contact ban came in place via reduced

contact opportunities, such as the cancellation of large-scale events. Our survey data reveal

that the majority of respondents in all groups reduce contacts more than as was prescribed.

Thus, while it seems elusive to cleanly disentangle voluntary action from reactions to regu-

lations, our interpretation of the selfish Nash equilibrium may be too optimistic concerning

what private actions can achieve in containing the pandemic. Our analysis, however, reveals

that our results are qualitatively robust to considerable misinterpretations of this kind.
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Second, we have not explicitly studied income losses due to social distancing in the

pandemic. Rather, we have assumed that individuals factor in their contact-dependent

income losses as part of their internal calculation on contact reduction, as our survey question

did not distinguish between work or leisure related contacts. Future work should include

utility depending on health status, (social) contacts and income that derives from work

contacts, and examine how production depends on contacts, and to what degree jobs can be

performed remotely (e.g. Dingel and Neiman, 2020; Fadinger and Schymik, 2020).

Finally, we have assumed that the marginal utility of physical social contacts is decreasing,

implying that some types of social contacts are more important than others. However, while

individuals have a priority order of contacts and would choose their contracts differently from

what governments prescribe, there is an additional value loss from contact bans as compared

to voluntary choice. As our data do not disentangle different kinds of contacts, we are not

able to offer recommendations on which types of contacts should be prohibited or allowed,

and can also not speak to potential ‘social contact-budget’ mechanisms, such as individually

transferable quotas for contacts or liability rules.

In the context of the COVID-19 pandemic, our results imply that the ‘flattening of

the curve’ observed in several Western societies, and in Germany in particular, may be

explained as a Nash equilibrium outcome and not necessarily as a particular success of

policy intervention. While we can attribute the bulk of observed contact reductions to

voluntary behavior—in line with evidence for COVID-19, for instance, by Yan et al. (2020)

and for the A/H1N1 swine flu by Bayham et al. (2015)— this certainly does not imply that

governmental actions are superfluous. Even without strict contact regulations, public actors

can play important roles in appealing to social norms and in making the risks of infection

salient. Nevertheless, our results show that the social cost of contacts is up to orders of

magnitude larger than the private cost. Thus, given the size of the externality, there is

indeed “no reason why [...] governmental administrative regulation should not lead to an

improvement in economic efficiency”, as Coase (1960, p.18) put it in his problem of social

cost. We show that decisive governmental action is, in particular, crucial to contain the virus

directly at the beginning of a pandemic to reduce the number of fatalities.
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Appendix

Table 5: Summary statistics of the survey data.

N Mean Median Std. Dev. Min. Max.

Change in contacts 3495 4.81 4 3.48 1 15
Age 3501 50.05 51 15.40 18 97
Female 3501 0.51 1 0.50 0 1
Family members and friends 3495 14.10 10 13.02 0 100
Reason for defense efforts (in %)

To protect me 3499 51.96 50 21.75 0 100
To protect family & friends 3499 30.03 30 15.90 0 100
To protect others 3499 18.01 20 14.37 0 100

Expectations
Expected income change 3494 6.98 8 2.41 1 15
P(get infected) (in %) 3486 38.10 40 22.40 0 100
P(get slightly ill) (in %) 3404 50.65 50 21.71 0 100
P(get in acute danger) (in %) 3404 34.65 30 20.88 0 100

Change wrt. regulation (in %)
According to regulations 3501 0.30 0 0.46 0 1
Less than required 3501 0.07 0 0.26 0 1
More than required 3501 0.63 1 0.48 0 1

General preferences
Patience 3499 8.11 9 2.12 1 11

Observations 3501
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Table 6: Effects of the contact ban announcement.

Motivation Contacts

Protect
me

Protect
family & friends

Protect
others

Past
week

Less than
required

As
required

More than
required

(1) (2) (3) (4) (5) (6) (7)

Post ban announcement 0.976 -0.875 -0.101 -0.442∗∗∗ -0.016 0.086∗∗∗ -0.070∗∗∗

(0.825) (0.613) (0.570) (0.138) (0.012) (0.018) (0.019)

Age 0.218∗∗∗ -0.107∗∗∗ -0.110∗∗∗ -0.012∗∗ -0.002∗∗∗ -0.003∗∗∗ 0.005∗∗∗

(0.028) (0.021) (0.020) (0.005) (0.000) (0.001) (0.001)

Female 0.961 0.697 -1.658∗∗∗ -0.966∗∗∗ -0.054∗∗∗ -0.027 0.081∗∗∗

(0.839) (0.625) (0.582) (0.137) (0.012) (0.018) (0.019)

Education

University degree -2.277 10.760∗ -8.483 0.909 0.061 -0.018 -0.043
(4.506) (6.460) (6.026) (1.682) (0.068) (0.155) (0.167)

A-levels/ -2.650 11.943∗ -9.292 0.840 0.037 -0.051 0.015
vocational training (4.478) (6.449) (6.007) (1.682) (0.068) (0.155) (0.167)

Secondary school 1.460 10.378 -11.838∗∗ 0.819 0.052 -0.054 0.002
(4.442) (6.435) (5.987) (1.679) (0.068) (0.154) (0.167)

Secondary general school 0.473 10.688∗ -11.161∗ 1.114 0.045 -0.032 -0.013
(4.474) (6.443) (5.988) (1.682) (0.068) (0.154) (0.167)

Household income

1,500 – 3,000 0.000 0.579 -0.579 0.013 -0.043∗∗ -0.008 0.051∗

(1.203) (0.879) (0.771) (0.201) (0.019) (0.027) (0.028)

3,000 - 4,000 -0.940 1.044 -0.104 -0.277 -0.081∗∗∗ -0.027 0.107∗∗∗

(1.286) (0.949) (0.877) (0.221) (0.019) (0.030) (0.031)

≥ 4,000 0.350 0.201 -0.551 -0.624∗∗∗ -0.057∗∗∗ -0.070∗∗ 0.127∗∗∗

(1.433) (1.040) (0.949) (0.233) (0.021) (0.031) (0.033)

Observations 3481 3481 3481 3478 3483 3483 3483

Notes: OLS estimations for a weighted sample. Respondents before the ban are reweighted to
match the mean values in age, gender, education, and income of those after the ban. Standard
errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 11: Correlation between survey responses and cell phone movements.
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Numerical approach and AMPL programming code

Numerically, the problem to solve the set of dynamic equations that describe epidemiological

dynamics, and the optimality conditions, (1), (11a), (11b), and (13), along with initial con-

ditions for the number of susceptibles, infected, and recovered from all groups of individuals,

and transversality conditions, is usually a more difficult task than solving an optimization

problem. In our approach to compute the utilitarian optimum, we thus use the following

corollary to Proposition 4:

Corollary 1. If µj = 0 for all j, the social optimization problem (10) is equivalent to

Ŵ = max
{cjt}

∑
j

T∑
t=0

δtj
(
Sjt u

s
j(cjt) + Ijt V

i
jt

)
subject to (1), (27)

where individual present values of becoming infected, V i
jt, is given by (6).

Proof. The optimality conditions for (27) can be written as

usj
′(c?jt) + δj β

′(c?jt)
It
Nt

(
λijt − λsjt

)
= 0 (28a)

usj(c
?
jt)− λsj,t−1 + δj λ

s
jt + δj β(c?jt)

It
Nt

(
λijt − λsjt

)
= 0 (28b)

V i
jt − λij,t−1 + δj (1− αj − γj)λijt =

∑
l

δl β(c?lt)
Slt
Nt

(
λslt − λilt

)
(28c)

−λrj,t−1 + δj λ
r
jt = 0 (28d)

−λdj,t−1 + δj λ
d
jt = 0, (28e)

with transversality conditions λhjT = V n
j for all h ∈ {s, i} and λhjT = 0 for h ∈ {r, d}. We

can ignore (28d) and (28e), as neither λrjt nor λdjt affect c?jt. Equations (28a) and (28b) are

identical to (11a) and (11b). Equation (28c) is equivalent to (13).

In the following we provide the AMPL code for computing the utilitarian optimal epi-

demiological dynamics, as shown in Figure 3. The codes used for computing the results for

the other figures are all based on this code and are available upon request.
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run file ”EconEpi.run”, call with ”ampl EconEpi.run”

reset;

model EpiEcon.mod;

data EpiEcon.dat;

option solver ”knitroampl”; # use Knitro to solve the nonlinear optimization problem

option knitro options ”feastol 10e-13 xtol 10e-13”;

let {j in 1..n} delta[j] := 0.9; # set discount factors at rather low values, to obtain an initial

guess for the optimal solution

solve; # compute optimal solution

option knitro options ”xtol 10e-13 algorithm 3”; # change to other optimization algorithm

let {j in 1..n} delta[j] := 0.95; # increase discount factor to the calibrated level

solve;

let {j in 1..n} delta[j] := 0.99;

solve;

let {j in 1..n} delta[j] := 0.995; # here we are

solve; # final solution

# write output to file ”out.csv”

for {t in 0..T} {
printf ”%d\t”, t >out.csv; # current week

printf {j in 1..n} ”%f\t”, 100*c[j,t]>out.csv; # physical social contacts in percent of normal

printf {j in 1..n} ”%f\t”, 100000*I[j,t]>out.csv; # infected per 100,000 individuals

printf {j in 1..n} ”%f\t”, infected[j,t]>out.csv; # lamdba jˆi

printf ”\n”>out.csv; # new line

}
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model file “EconEpi.mod”

param T; # time horizon

param n; # number of groups

param delta {j in 1..n}; # discount factor

param mu {j in 1..n}; # baseline mortality

param alpha {j in 1..n}; # COVID mortality

param gamma {j in 1..n}; # recovery rate

param beta0 {j in 1..n}; # baseline transmission rate

param epsilon; # parameter of utility function

param Viinf {j in 1..n}; # individual expected present value of an infection, infinite time

horizon

param Vi {j in 1..n, t in 0..T+1}=(1-(delta[j]*(1-mu[j]-alpha[j]-gamma[j])ˆ(T-t+1)))*Viinf[j];

# individual expected present value of an infection, finite time horizon

param I0 {j in 1..n}; # initial fraction of infected

param S0 {j in 1..n}; # initial fraction of susceptible

var S {j in 1..n, t in 0..T+1}>=0; # susceptible

var I {j in 1..n, t in 0..T+1}>=0; # infected

var R {j in 1..n, t in 0..T+1}>=0; # recovered

var N {t in 0..T+1}=sum {j in 1..n} (S[j,t]+I[j,t]+R[j,t]); # total alive

var c {j in 1..n, t in 0..T}>= 0 <= 1; # physical social contacts

maximize utilitarian: sum {j in 1..n, t in 0..T} (delta[j] ˆ (t)*(S[j,t]*(epsilon/(1-epsilon))*(

(1/epsilon)*c[j,t]ˆ(epsilon)-c[j,t])+I[j,t]*Vi[j,t])); # objective, as characterized in Corollary 1

# epidemiological dynamics

subject to susceptible {j in 1..n, t in 0..T}: S[j,t+1]=(1-mu[j])*S[j,t]-beta0[j]*c[j,t]*(sum {l
in 1..n} I[l,t])/N[t]*S[j,t];

subject to infected {j in 1..n, t in 0..T}: I[j,t+1]=(1-mu[j]-alpha[j]-gamma[j])*I[j,t]+beta0[j]*c[j,t]*(sum

{l in 1..n} I[l,t])/N[t]*S[j,t];

subject to recovered {j in 1..n, t in 0..T}: R[j,t+1]=(1-mu[j])*R[j,t]+gamma[j]*I[j,t];

# initial conditions

subject to initialS {j in 1..n}: S[j,0]=S0[j]-I0[j];

subject to initialI {j in 1..n}: I[j,0]=I0[j];

subject to initialR {j in 1..n}: R[j,0]=0;
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model file “EconEpi.dat” param T:=104; # weeks

param mu:=

1 0.000028

2 0.000016

3 0.000844

4 0.000721;

param alpha:=

1 0.00285

2 0.000863

3 0.125

4 0.0849;

param n:=4; # ym, yf, om, of

param beta0:=

1 2.16

2 2.16

3 2.16

4 2.16;

param gamma:=

1 0.689

2 0.689

3 0.689

4 0.680;

param epsilon:=0.7;

param Viinf:=

1 -5780

2 -7117

3 -6360
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4 -7522;

param I0:=

1 0.00013138

2 0.0001056

3 0.00002957

4 0.00002219;

param S0:=

1 0.3248

2 0.3748

3 0.1602

4 0.1402;
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