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Abstract 
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linked survey-administrative data, we explore the relationships between hiring and recruitment 
policies. Faster hiring goes along with higher search effort, lower hiring standards and more 
generous wages. To analyze the mechanisms behind these patterns, we develop a directed search 
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1 Introduction

Recent evidence documents substantial and systematic variation in job-filling rates across

firms. This is hard to reconcile with a standard aggregate matching function which stip-

ulates that the job-filling rate is a function of the vacancy-unemployment ratio (labor

market tightness) in the relevant labor market but is otherwise unrelated to the charac-

teristics of the firm. Differences in job-filling rates are particularly large with respect to

the firms’ employment growth and hiring rates; firms that hire more do so by filling their

vacant jobs faster (see Davis et al., 2013). Such variation matters for matching efficiency:

changes in aggregate recruiting intensity can account for a persistent shift of the Beveridge

curve in the aftermath of the Great Recession (see e.g. Gavazza et al., 2018). While there

is a great amount of work documenting the effectiveness of workers’ job search efforts,

relatively little is known about firms’ efforts to make their recruitment process more ef-

fective. As a consequence, standard labor market theories focus on the firms’ decisions to

create jobs, while taking recruitment behavior and its impact on matching efficiency as

exogenous model parameters. These limitations make it difficult to evaluate which hiring

practices are more sensitive to labor market interventions, leaving policymakers with little

guidance on how best to improve the effectiveness of their policies.

Different mechanisms can possibly explain why some firms hire faster than others.

Expanding firms may invest more in search or screening intensity and hence fill jobs more

quickly (e.g. Gavazza et al., 2018), they may pay higher wages (or offer more attractive

non-pecuniary job benefits) to attract more workers (e.g. Kaas and Kircher, 2015), or they

may reduce their hiring standards (e.g. Sedlacek, 2014). Other explanations, unrelated

to the choices of firms, can be measurement issues due to time aggregation (since the

vacancy stock is observed infrequently, some hiring occurs without a reported vacancy)

or composition effects (for instance, firms that grow faster may be those firms that create

jobs with lower skill requirements that are easier to fill). Without detailed information

about the recruitment process or about specific characteristics of the hired workers, it is

difficult to assess which of these channels are responsible for the observed variation in

job-filling rates and ultimately in matching efficiency.

In this paper we investigate the following aspects of recruiting intensity: (i) the extent

to which firms use search effort, wage generosity and hiring standards to hire faster; (ii)

the impact of these recruitment margins on matching efficiency; (iii) the impact that

labor market policy has on these recruitment margins and through them on job-finding

rates. We do this by first presenting new evidence on how search effort, wage generosity

and hiring standards vary with hiring and job-filling rates. In order to understand the
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economic mechanisms behind these relationships and their impact on matching efficiency,

we propose and quantitatively assess an equilibrium search-and-matching model of the

labor market where differential hiring rates are determined by vacancy creation, search

effort, wage generosity and hiring standards decisions. Our findings show an important

role of employers’ hiring standards for matching efficiency and labor market policies that

aim at increasing workers’ job finding prospects, whereas employers’ search effort and

wage generosity only play a minor role.

To describe the empirical patterns, we analyze data from the Job Vacancy Survey

(JVS), an annual survey of German establishments, which we link to administrative

matched employer-employee data (Integrated Employment Biographies, IEB) for the pe-

riod 2010–2017. The linking of these data is novel and crucial for our purposes. The JVS

contains information on the stock of vacancies at the day of interview, which is further

broken down into three skill levels. From the administrative data, we measure the hires

flow in the period after the interview. This permits us to calculate the vacancy yield

(hires per vacancy) as a proxy of the monthly job-filling rate, in a similar fashion as Davis

et al. (2013) do using the Job Openings and Labor Turnover Survey (JOLTS) for the U.S.

In line with the U.S. data, we verify that most of the observed variation in hiring rates

along the establishment growth distribution arises from the vacancy yields margin; that

is, establishment that grow faster hire more per vacancy. This is a robust relationship

that holds after controlling for establishment size, age and industry (see also Mongey and

Violante, 2020). We also examine whether the observed characteristics of new hires, such

as previous employment status, age or gender vary systematically with the establishments’

growth rates, which could potentially contribute to variation of vacancy yields. We find

little evidence in favor of composition effects on these dimensions.

Differently from the data used in the aforementioned contributions, the JVS contains

information about the establishment’s recruitment behavior and outcome for the last case

of a hire. This information can be connected to the factual hiring patterns of the estab-

lishment from the linked administrative data. We construct separate indices capturing

each establishment’s search effort, wage generosity and hiring standards. These indices

build on direct information from the survey, but also utilize wage information for all new

hires during the same period from IEB data. In this way we capture different aspects of

an establishment’s recruitment policies at a given point in time. We demonstrate that

establishments indeed make use of all three recruitment margins: All standardized indices

vary with the hiring rate of an establishment in a systematic way even after controlling for

a wide range of job and establishment characteristics. Concerning variation of vacancy

2



yields across local labor markets and over time to investigate aggregate labor market

outcomes, we find that together all three recruitment measures contribute in a similar

proportion as labor market tightness to the variation in vacancy yields, pointing to their

importance in determining matching efficiency.

To investigate the mechanisms behind these patterns, we build a tractable directed

search model similar to Moen (1997) and Garibaldi and Moen (2010) in which multi-

worker firms operate multiple projects with a constant-returns technology and adjust their

vacancy postings, wage policies, search effort and reservation match-specific productivity

(hiring standards) in response to idiosyncratic productivity shocks. We characterize the

unique equilibrium and show that firms with more productive projects post more vacan-

cies, exert more search effort, offer more generous wages and set lower hiring standards,

all of which contribute to larger hiring rates. Aggregating over firms, the model can then

generate the observed positive relationship between firm growth and vacancy yields where

the latter is an endogenous outcome of all three recruitment policies.

A key feature of our model is that it provides a novel structural decomposition of the

aggregate job-finding rate in terms of labor market tightness, on the one hand, and the

three recruitment policies on the other. This decomposition allows us to quantitatively

investigate how recruitment behavior contributes to matching efficiency. It also allows

us to evaluate the equilibrium effects of labor market policy on the firms’ recruitment

behavior and, thus, on the rate at which unemployed workers find jobs.

The model is calibrated using the evidence from the JVS and IEB data as well as data

on worker flows to inform the main structural parameters. We exploit cross-sectional vari-

ation in the data at the establishment level and by constructing 36 “local labor markets”

based on the cross-product of three skill levels and twelve regions for the 2010–2017 pe-

riod. The model is able to reproduce market-specific (average) wages, unemployment and

job-finding rates, as well as the cross-sectional relationships between vacancy yields and

establishment growth, and the relative responsiveness of search effort, wage generosity and

hiring standards to the variation in hiring rates across establishments that we document

empirically. The model is also consistent with the observed variation in vacancy yields,

labor market tightness, search effort and hiring standards across local labor markets.

Using the model-implied decomposition of the matching function, we find that most

of the variation of the job-finding rate across local markets comes from the creation of jobs

(market tightness) and from hiring standards. However, firms in tighter labor markets

are more selective which in turn reduces matching efficiency. This arises as in tighter,

more productive labor markets unemployed workers have higher reservation wages and
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hence firms must become more selective when they offer sufficiently high wages to fill their

positions. This feature matters when comparing labor markets both across the skill and

the geographic dimensions. It is also consistent with the observation that job-finding rates,

average wages and hiring standards are positively correlated across local labor markets in

the data.

Variation of search effort has a positive, but quantitatively less important effect on

job-finding rates, although we observe a more prominent impact of search effort in high-

skill labor markets. Since we consider segmented local labor markets, only the dispersion

of wages, but not the average wage level, contributes to matching efficiency. Indeed, wage

dispersion per se reduces matching efficiency, but the degree of wage dispersion does not

differ between markets in our model and hence does not contribute to the variation of

matching efficiency.1 This implication is consistent with the observation that in our data

wage dispersion (measured by the coefficient of variation) varies little across local labor

markets, particularly when controlling for skill levels.

Finally, to investigate the role of labor market policy for job-finding rates through its

effects on recruitment measures, we consider the impact of a reduction of unemployment

benefits, mimicking one aspect of the Hartz labor market reforms that were implemented

in the mid 2000s in Germany. Our calibrated model shows that job-finding rates increased

the most in low-skill labor markets. Similar to our findings for matching efficiency, the

creation of jobs (market tightness) and hiring standards are the two dominant forces that

shift the job-finding rate in response to the policy change. But this time the two factors

go in the same direction: As unemployment income is reduced and workers’ reservation

wages become lower, firms create more vacancies and reduce their hiring standards, both

of which contribute to an increase of the job-finding rate. The selectivity margin accounts

for about a quarter of the increase in the job-finding rate for the whole labor market. For

the low-skill labor market, this margin is even more prominent where it is responsible for a

third of the increase of the job-finding rate. On the other hand, changes of search effort or

wage dispersion do not matter much for the aggregate policy effects. The importances of

vacancy creation and the selectivity margin provide a natural explanation for the findings

of Carrillo-Tudela et al. (2020b), who show that job-finding rates increase the most in

low-skill labor markets after the implementation of the Hartz reforms.

1A higher wage level does not increase matching efficiency in our model essentially because workers’
search intensity is exogenous. The dispersion of wages reduces matching efficiency since it induces disper-
sion of job queues in different submarkets. If job queues are more dispersed, concavity of the matching
function implies that the number of aggregate matches is lower which follows from Jensen’s inequality.
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Related Literature. Our paper contributes to a large and growing literature that doc-

uments the several aspects of firms’ recruitment policies. Early examples are Barron and

Bishop (1985) and Barron et al. (1985), who investigate the determinants of the extensive

and intensive margins of employer search effort in the hiring process. They use informa-

tion from the Employer Opportunity Pilot Project (EOPP) in the U.S. about the number

of applicants, interviews, job offers, hours involved in processing and screening applica-

tions and several job and employer characteristics. Like the JVS, the EOPP data provides

information that arises from the last newly hired worker. Unlike the JVS, however, it is

much smaller, covers a much shorter time span, does not have information about the

usage of search channels or the geographic scope of search (which are direct measures of

search effort) and cannot be linked with matched employer-employee administrative data

or with the employers’ job or worker flow rates.

Several other studies also use EOPP data to explore the implications of hiring stan-

dards and offered wages on the probability of filling a vacancy. Burdett and Cunningham

(1998) find that as employers increase their hiring standards by requiring greater ex-

perience and education from their applicants, the probability of filling their vacancies

decreases.2 Faberman and Menzio (2017) relate the wage offered to the probability of

filling a vacancy, finding that higher wage offers go together with longer vacancy dura-

tions, seemingly contradicting the predictions of the standard competitive search model.

However, Marinescu and Wolthoff (2020) show using online U.S. vacancy data that a

positive relation arises between posted wages and the number of applicants (and hence

higher job-filling rates) when one controls for job titles as they reflect better hierarchy,

experience, and the level of specialization of jobs.3 Further, Kettemann et al. (2018) use

administrative data on Austrian job centres and link it to matched employer-employee

administrative data, finding a positive relation between vacancy filling rates and starting

wages. Our results complement these findings, showing that lower hiring standards, more

generous wage policies and higher search effort all go together with larger hiring rates.

Davis et al. (2012, 2013) using JOLTS micro data were the first who described the

“hockey stick” relationships between establishment growth, hiring rates and vacancy

yields. We verify that such relationships are similar in our German data and we in-

vestigate to what extent different recruitment policies help firms hire faster. Lochner

2See also Van Ours and Ridder (1992) for evidence on vacancy durations using Dutch data.
3Using online Chilean vacancy data, Banfi and Villena-Roldan (2019) find that a positive relationship

between offered wages and the number of applications holds even for job ads where wages are revealed
“implicitly” through wage-bracket filters. Belot et al. (2018) find a similar positive relationship between
posted wages and applications using a field experiment among job seekers.
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et al. (2020) also use the JVS and study how particular measures of employer search

effort and hiring standards vary across the establishment growth distribution. Our paper

links the JVS with matched employer-employee data which allows us to construct broader

measures of recruitment policies, including the effects of employers wage generosity, and

to relate them to the variation of vacancy yields and hiring rates. Further, we quantita-

tively assess the implications of wages, search effort and hiring standards for matching

efficiency and labor market policy within an equilibrium search-and-matching model.

There is also a growing theoretical literature interested in the role of firms’ recruiting

intensity on aggregate labor market outcomes and on the micro-level relationships un-

covered by Davis et al. (2013). Recent work extends the canonical Diamond-Mortensen-

Pissarides framework to feature multi-worker firms which chose search effort as in Gavazza

et al. (2018) and Leduc and Liu (2017) or wages as in the competitive-search models of

Kaas and Kircher (2015) and Schaal (2017). Selection cutoffs among heterogenous pools

of applicants (hiring standards) are also introduced in random search environments like

the ones proposed by Acharya and Wee (2020), Baydur (2017), Chugh and Merkl (2016),

Sedlacek (2014) and Villena-Roldan (2012). Our paper proposes a unified framework to

study these three different measures of recruiting intensity and to quantify them in ac-

cordance with our empirical findings. A competitive search environment is helpful as it

provides an intuitive and simple way through which changes in posted wages have a direct

effect on a firm’s hiring and job-filling rates.4 In this sense our model is close in spirit to

Wolthoff (2018) who also considers these different recruitment policies and uses EOPP

data for calibration of his model. The key differences are that we explicitly consider firm

dynamics, investigate how these policies affect job-filling rates in multi-worker firms and

how they matter for aggregate matching efficiency and labor market policy.

2 Empirical Findings

2.1 Data

Our primary data source is the Job Vacancy Survey (JVS) of the Institute for Employ-

ment Research (IAB) which is a representative cross-sectional survey of establishments

in Germany (for a data description, see Bossler et al., 2019). The main purpose of the

4Although this is also possible in an extended version of the random search environment with on-the-
job search proposed by Mortensen (1998), it would needlessly complicated the analysis. Further, we find
little evidence that establishments meaningfully change their hiring policies when they hire an employed
relative to an unemployed worker, suggesting that for our purpose adding on-the-job search is not of first
order.
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survey is to measure the number of vacancies at these establishments, over and above

those that are officially reported at the Federal Employment Agency, and to obtain in-

formation about the recruitment processes of these establishments. While the survey is

conducted annually since 1989, establishment IDs can be obtained and linked to adminis-

trative records only from the year 2010 onward. Given this matching restriction we focus

on the years 2010–2017, for which we observe around 13,000-15,000 establishments per

year.

The survey is conducted in the last quarter of a year and consists of two parts. The

first part contains general information about the establishment, including employment,

location, industry, and whether the establishment was facing financial, demand and/or

workforce restrictions. This part of the survey also contains the current stock of vacancies

(defined as “open positions to be filled immediately or to the next possible date”), broken

down by three levels of education requirements (no formal education, vocational training,

and university degree).

The second part of the survey contains detailed information about the recruitment

behavior of the surveyed establishment. For that purpose, information about the last case

of a successful hire within the last 12 months is collected. Not all surveyed establishments

hired a worker in the last 12 months (or did not fill this part of the survey for other

reasons). Thus we have information about the recruitment behavior for a subsample of

around 9,000-10,000 establishments per year. Besides several questions about the hiring

process that we further describe below, the survey includes information about the hired

person (age, education, previous employment status, monthly starting wage) and a few

general questions about the job (occupation, permanent/temporary, replacement hire).

It is important to note that in about 90% of the cases, the recorded information for the

last case of a hire corresponds to single vacancy job openings.5 Appendix A presents the

main summary statistics of our JVS sample. Note that by design of the survey, the search

event is finished before the date of interview.

We can link the JVS to the administrative records of individual employment spells

which are collected by the Federal Employment Agency (Integrated Employment Biogra-

5Carrillo-Tudela et al. (2020a) are able to identify the worker hired in the JVS in the IAB adminis-
trative data using the matching procedure developed in Lochner (2019). They are also able to identify
any additional hires that could arise from the same job opening by using the establishment identifier, the
job occupational code and the date in which these hires were recorded in the administrative data. This
procedure reveals that during the period 2010-2017 one can find additional hires in the administrative
data that share the same establishment identifier, 5-digit occupational code and calendar starting date
(day/month/year) with hires recorded in the JVS in only 3% of the cases. If one uses instead a 30-day
time interval around the recorded date of the JVS hire to allow for different starting dates, this proportion
increases to 13%. Further, nearly all of these multiple hires in many of the regressions discussed below.
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phies, IEB).6 Thus we can observe, for any particular day, all employed workers in JVS

establishments (with information about education, age, gender, nationality and daily

earnings), and thus infer their hires and separations during any arbitrary time interval.7

We measure vacancy rates, hiring rates and employment growth rates over intervals of 30

days after the day of interview. This allows us to calculate a measure of the vacancy yield

(hires divided by the stock of vacancies at the beginning of the period), hence analogously

to the monthly vacancy yield that Davis et al. (2013) consider using data from the Job

Openings and Labor Turnover Survey (JOLTS).

2.2 Variation in Hiring Rates and Vacancy Yields

Variation in the hiring rate (hires H divided by employment E) arises from variation in

the vacancy rate (vacancies V divided by E) and the vacancy yield (H divided by V ) as

implied by the decomposition
H

E
=
V

E
× H

V
. (1)

We present the variation of each of these components across employment growth bins.

This approach allows us to somewhat mitigate a common measurement problem in such

data: at the interview date many establishments report no vacancies, while in the 30 days

following the interview positive hires are recorded.8 We measure the employment growth

rate over 30-day intervals using average size at the beginning and at the end of the interval

in the denominator (cf. Davis et al., 1998). We partition these monthly employment

growth rates into 29 bins around zero.9 We remove those (typically small) establishments

which grow or shrink by more than 30 percent during the interval. Figure 1.a shows the

distribution of monthly employment growth, where 58.2 percent (38,767 observations) of

establishments exhibit zero growth, 24.4 percent (16,269 observations) exhibit negative

growth and 17.4 percent (11,564 observations) positive growth.

6The IEB data set encompasses the universe of establishments in Germany that have at least one
employee paying social security contributions. Summary statistics about worker characteristics in the
merged sample are presented in Appendix A.

7We exclude employer returns from hires and separations. That is, we do not count as part of hires or
separations all those workers whose employment spell is interrupted for a period less than three months
and who return to their previous employers.

8Aside from misreporting, this can arise, for example, as some establishments posted vacancies, had
their job offers accepted before the JVS interview date but the new hire started work after the interview
date. Another reason could be that a vacancy was posted after the interview date and was filled sufficiently
quickly within the 30-day interval after the JVS interview. Our data do not allow us to explore these
possibilities.

9Next to a mass point at zero, we use 28 symmetric bins with positive and negative growth rates
where intervals closer to zero are smaller.
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(a) Employment Growth Distribution
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Figure 1: Variation by 30-day establishment growth

Figure 1.b shows the variation of hiring rates across employment growth bins, where

the hiring rate is defined as hires in interval [t0, t1] divided by average employment.

Formally, the hiring rate of an establishment is Ht0,t1
0.5(Et0+Et1)

where t0 is the day of interview

and t1 is 30 days after that. Each point on the solid curve shows an employment-weighted

average in a particular growth bin. This graph exhibits a very similar pattern as related

graphs based on JOLTS data (e.g. Davis et al., 2013): the hiring rate is essentially flat

for shrinking establishments which still hire to replace some of its workers, but high and

steeply increasing in employment growth in expanding establishments. Note again that

we remove employer returns from hires and separations which gives rise to somewhat

smaller worker flow rates (and larger spikes at inaction) compared to other data sources.

In addition to the bin averages, the dashed curve shows the regression coefficients on

bin dummies where we include controls for industry and establishment size and age. We

do this in order to illustrate that these patterns are not merely induced by a changing

industry or establishment size/age compositions across bins of establishment growth.

Figure 1.c shows the variation of vacancy rates, defined as vacancies reported at the
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interview date Vt0 divided by average employment at t0 and t1, again as a weighted

average for each growth bin. Vacancy rates increase from around two percent for stable

establishments to over five percent for establishments that grow by more than 20 percent

when not using any controls. When using establishment size, age and industry controls,

however, vacancy rates appear much more similar, fluctuating between 3 and 4 percent

across shrinking, stable and expanding establishments.

Figure 1.d shows the variation of vacancy yields across employment growth bins where,

following (1), we define the vacancy yield for every growth bin as the ratio between the

hiring rate and the vacancy rate in that bin which is equivalent to dividing total hires of all

establishments in a particular growth bin by the total vacancies of these establishments.

As found in JOLTS data, there is considerable variation of vacancy yields across growth

bins in our data. While vacancy yields are flat in the negative growth range, they increase

steeply in the positive range, from values below one to over four (without controls) or six

(with controls). In conclusion, variation in hiring rates across growth bins is predominately

accounted for by the vacancy yield margin rather than differences in vacancy rates.

Investigating whether expanding employers tend to hire different groups of workers,

we find little evidence in favor of such composition effects. Faster-growing establishments

hire slightly more from unemployment (rather than from another employer) and relatively

more females. There is no evidence, however, that these establishments hire more workers

without German citizenship, above 50 years of age or from long-term unemployment,

groups which are considered to be disadvantaged in the labor market (see Figure 6 in

Appendix A).

2.3 Recruitment Policies and Hiring Rates

The previous findings indicate that larger employment expansions go along with higher

job-filling rates. In the following we shed light on how these establishments achieve faster

hiring. In particular, we are interested in the relationship between the establishment’s

hiring rate and its wage policy, hiring standards and the search effort exerted when filling a

position. We focus on these recruitment policies as they have been separately highlighted

elsewhere as the main instruments employers have at their disposal to increase their hiring

(see e.g. Gavazza et al., 2018; Kaas and Kircher, 2015; Sedlacek, 2014). We use questions

in the JVS about the last case of a hire that pertain to these aspects of the hiring policy, as

well as wage information obtained from the administrative IEB data to construct measures

relating to the employer’s wage and hiring standards policies.

To investigate the relation between hiring rates and recruitment policies, we measure
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the establishment’s hiring rate based on a 90-day period around the date of interview. We

choose a longer interval than for the calculation of vacancy yields (Figure 1) for two rea-

sons: First, in many establishments, especially in smaller ones, there are not enough hires

in administrative data during short time spans so that we cannot construct meaningful

measures for wage and hiring standards policies based on IEB data. Second, a longer in-

terval smoothes out short-term fluctuations and hence better reflects the establishment’s

actual hiring policies at the time the interview takes place.10

To analyze to what extent faster hiring goes along with specific recruitment policies

across establishments, we regress various recruitment policy variables on 15 bin dummies

for the establishment’s 90-day hiring rate, ranging from a mass point at zero to intervals up

to 25 percent. Next to these relationships, we also consider specifications where we control

for year, establishment characteristics (industry, five size categories, and establishment

age) and job characteristics (1-digit occupation, three levels of skill requirements, dummies

for long-term experience and leadership requirements, and a dummy for a newly created

job). We show in Appendix A that our results are similar when we remove the smallest

establishments (those with less than 20 employees) or observations with zero hires from

the sample. The presence of small establishments may be a concern because they can

never have small and positive hiring rates.11

A potential concern with the recruitment information obtained from JVS data is

that it reflects only the last case of a hire. Indeed, the underlying assumption is that the

reported recruitment behavior, especially after controlling for characteristics of the specific

job, is sufficiently representative of the establishment’s recruitment policy in the period

under consideration. Another potential concern is the extent to which measurement error

pollutes the JVS recruitment measures we use here.12 To somewhat temper these concerns,

we utilize the IEB data in order to obtain alternative measures of an establishment’s wage

generosity and hiring standards that are based on administrative data. With the IEB data

we can construct such measures on the basis of all new hires and existing workers at a

given establishment. Below we show that both data sets provide a very similar picture.

We then use these data sets to construct unified measures of wage generosity and hiring

standards. Our measure of search effort, however, must rely exclusively on information

drawn from the JVS.

10We also re-computed the relationships depicted in Figure 1 using 90-day intervals and find no
meaningful change in our conclusions.

11For instance, the lowest positive hiring rate of an establishment with 20 workers is 4.9%.
12Measurement error in the JVS could, for example, arise due to a recall error from the employee

responding the survey. Other potential problems can be associated to non-response issues for which
appropriate weights are provided (see Brenzel et al., 2016, for details).
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Figure 2: Wage generosity and hiring rates

Wage generosity

To measure the generosity of an employer’s wage policy at the hiring stage, the JVS

provides information on whether the employer had to pay more than expected to make

a hire. Let ŵJV Sjt denote this wage concessions variable which takes the value of one if

establishment j at time t had to pay more than expected and zero otherwise. Figure 2.a

shows the relationship (with and without controls) between ŵJV Sjt and the hiring rates. It

illustrates that establishments which hire more also had to make more wage concessions.

Next we use IEB data to determine whether an employer hired workers on wages that

were larger than those predicted by a standard wage equation. Specifically, we use data on

the employment spells of all workers that were employed in one of the JVS establishments

in our sample between 2005–2018. For all prime-age (age 23 to 55), male full-time workers,

we estimate

lnwit = fi + gj(i) + δt + βXit + ηit , (2)

where fi denotes a worker fixed effect, gj(i) an establishment fixed effect, δt a time trend,

Xit a vector of worker observable characteristics (quadratic on experience, quadratic on

tenure and dummies for education and occupational group) and ηit white noise. We

define our wage premium measure by the average residual wage of current hires in a given

establishment (Hjt):
13

ŵIEBjt =
1

Hjt

∑
i∈Hjt

η̂it .

The wage premium is the difference between the average wage paid to new hires at time

t and the predicted average wage that the very same workers (with the same observed

13Hjt are all hires during the 90-day interval around the last case of hiring in the JVS as described
above.
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and unobserved characteristics) would normally earn in the same firm. Figure 2.b shows

the relationship (with and without controls) between ŵIEBjt and the hiring rates. Here

we observe that establishments which hire more paid on average higher wages to their

new hires relative to these workers’ predicted wages. Given than ŵJV Sjt and ŵIEBjt might

measure different aspects of employers’ wage policies, we construct a combined wage

generosity measure ŵjt as the weighted average of the standardized values of ŵJV Sjt and

ŵIEBjt where we standardize ŵjt again so that it has unit variance. Figure 2.c shows the

positive relationship between ŵjt and establishment hiring rates.14

Hiring standards

The JVS provides information on two aspects that shed light on employers’ hiring stan-

dards. Employers are asked directly whether they eventually hired a worker whose (i)

qualification or (ii) experience is below the level usually expected for the vacant position.

These are indicator variables which take the value of one if the hired worker’s qualifica-

tion (or experience) matches the job requirements and zero otherwise. Figures 3.a and 3.b

show the relationship between the establishments’ hiring rates and the extent to which

the worker fits the job requirements in terms of qualification and experience. A negative

relation implies that lowering hiring standards goes together with higher hiring rates.

Relative to those establishments with low hiring rates, establishments with larger hiring

rates apply lower hiring standards.

To complement these measures, we use the wage equation (2) on IEB data and define

an alternative selectivity measure as the difference between the average fixed effect of

new hires (Hjt) and the average fixed effect among the rest of the workforce (Njt) in

establishment j at time t:

sIEBjt =
1

Hjt

∑
i∈Hjt

fi −
1

Njt

∑
i∈Njt

fi.

A higher value of sIEBjt implies stricter hiring standards: establishment j hires workers with

larger fixed effects in period t as compared to the fixed effects of the existing workforce

in this establishment. Figure 3.c shows the relationship between this measure and the

establishments’ hiring rates. If one interprets the fixed effects as worker ability, then

employers who hire more also hire relatively less able workers. Figure 3.d shows the

14In Appendix A we report the values of the estimated coefficients shown in Figures 2–4, many of
which are significantly different from zero at the 1 or 5 percent level. We take the reference category to
be the case of a zero hiring rate.
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(b) JVS - No qualification mismatch

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25Hiring rate

no controls
with controls

(c) IEB - Selectivity

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
0 0.05 0.1 0.15 0.2 0.25

Hiring rate

no controls

with controls

(d) IEB+JVS - Hiring Standards
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Figure 3: Hiring standards and hiring rates

combined effect of the standardized values of the qualification and experience mismatch

variables and the selectivity measure sIEBjt when averaged to derive a single, standardized

measure of employers’ hiring standards sjt.

Search effort

To measure employers’ search effort in the hiring process we rely exclusively on JVS data.

Employers are asked to report the number of search channels utilized in their attempts to

fill their (last) vacancies. They were also asked about whether their search was restricted

to the local or national labor market or they extended their search to the international

market. We use answers to these questions to construct our measures of employer search

effort, where the former is computed as the number of channels and the latter is an

indicator variable that takes the value of one if the search was international and zero

otherwise. Figure 4.a shows the relationship between the number of search channels used

by an establishment and its hiring rate; while Figure 4.b shows the relationship between
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the geographical extent of the establishment’s search and its hiring rate. Figure 4.c then

shows the combined effect of the standardised values of these two variables after averaging

them to obtain a single, standardized search effort measure, ejt. All these measures show

that larger hiring rates goes together with higher search effort.

(a) JVS - No. Search Channels
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(c) JVS - Search Effort
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Figure 4: Search effort and hiring rates

Relative responsiveness of the recruitment indices across establishments

The above results show clear relationships between establishments’ hiring rates and their

degree of (i) wage generosity (positive), (ii) hiring standards (negative) and (iii) search

effort (positive). Using the three standardized indices ŵ, s and e, shown in the last

graphs in Figures 2–4, we can compare their respective quantitative responses to hiring

rate variation. With the aforementioned controls taken into account, we find that the

slope of the wage generosity index to the hiring rate is 0.997, the slope of the hiring

standards index is -0.544, and the slope of search effort is 0.884. That is, when the

hiring increases by ten percentage points, wage generosity (search effort) goes up by

0.100 (0.088, resp.) standard deviations, and hiring standards decrease by 0.054 standard

deviations. Therefore, all three recruiting intensity measures respond to the hiring rate,

but wage generosity and search effort appear the more responsive measures to hiring rates

(in comparison to their respective overall variations across establishments).

2.4 Vacancy Yields Across Labor Markets

After exploring the micro-level relationships between recruitment policies and hiring, we

now examine to what extent recruiting intensity matters for aggregate labor market out-

comes. Specifically, we analyze how the three recruitment indices contribute to the varia-

tion of vacancy yields across labor markets and over time. To do so, we consider 36 labor
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markets segmented by geography and skill which are based on the aforementioned three

job skill requirements obtained from the JVS and on 12 German regions.15 Over the pe-

riod 2010–2017, these are 288 observations (region×skill×year). We regress the vacancy

yield (hires per vacancy) on market tightness (vacancy-unemployment ratio) and on the

mean values of each of the three standardized recruitment indices introduced above.

Table 1: Vacancy yields across labor markets

OLS (1) (2) (3) (4) (5) (6)
θ - Market tightness -0.948∗∗∗ -0.856∗∗∗ -0.894∗∗∗ -0.805∗∗∗ -0.835∗∗∗ -0.845∗∗∗

(0.230) (0.227) (0.224) (0.225) (0.228) (0.225)

Search Effort 0.812∗∗∗ 0.753∗∗∗

(0.266) (0.267)

Hiring Standards -1.014∗∗∗ -0.920∗∗

(0.376) (0.376)

Wage Generosity 0.250 0.002
(0.287) (0.288)

Constant 1.972∗∗∗ 2.574∗∗∗ 2.571∗∗∗ 2.572∗∗∗ 2.537∗∗∗ 2.570∗∗∗

R2 0.053 0.095 0.122 0.115 0.113 0.146
Year dum. N Y Y Y Y Y
N obs 288 288 288 288 288 288
∗∗∗ p < 0.001; ∗∗ p < 0.05; ∗ p < 0.10. Standard errors in parenthesis.

Table 1 shows the coefficients of OLS regressions. The first two columns report only

the correlations between labor market tightness and vacancy yields, with and without

year dummies. Columns (3) to (5) include in isolation the correlations between market-

specific averages of our three recruitment measures and the vacancy yields. Column (6)

then considers the impact of all recruitment measures together. We find that tighter labor

markets have lower vacancy yields, consistent with a standard matching function. The

coefficients for wage generosity and search effort are positive and the one for hiring stan-

dards is negative. They are statistically significantly different from zero for search effort

and higher standards, but not for the wage generosity index, suggesting little variation of

average wage generosity across local labor markets.

To investigate these measures’ relative impact in explaining the variation of vacancy

yields, we compare the fit of the OLS regression across columns (3) to (5) relative to col-

umn (2). We find that all three recruitment measures have a similar impact in increasing

the R2. Noting that θ on its own without the year dummies (column (1)) generates an

R2 = 0.053, column (6) then suggests that together our recruitment measures contribute

in explaining the variability of vacancy yields across local markets in a similar magnitude

15The regions are based on the 16 states (Bundesländer) where we merge the city states Berlin, Bremen
and Hamburg, as well as Saarland to their respective neighboring states.
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as labor market tightness. This shows a prominent role of recruiting intensity for match-

ing efficiency to which we return in Section 4. In Appendix A we also show that a similar

conclusion holds when controlling for market (i.e. skill×region) fixed effects.

3 The Model

We now develop a parsimonious search and matching model where firms have different

margins to fill vacancies. Consistent with our empirical patterns, these margins are wage

policies, search effort, and hiring standards. In the next section we use this model to

quantify the impact of these margins for the variation in matching efficiency and for the

effectiveness of labor market policy.

Environment

Time is continuous and the economy is in steady state. There is measure L̄ of risk-neutral,

infinitely-lived and identical workers. There is also a unit mass of risk-neutral firms which

exit the economy at exogenous rate δ. To keep the stock of firms constant, a mass δ of new

firms enter the economy per unit time. Both firms and workers maximize their respective

expected discounted value of payments, where they discount future income with common

interest rate r.

A firm is a collection of multiple projects, each of which employs multiple workers.

Labor productivity in a generic project is denoted by p and remains constant over time.

Firms face expansion opportunities as new projects become available at exogenous Poisson

rate χ. Firms then draw the new project’s productivity from finite set P ⊂ R+ with

probabilities πp, p ∈ P .16 Entrant firms draw initial project productivity from the same

distribution. Each project operates under a constant-returns-to-scale technology in which

labor is the only input.

A simplifying assumption is that firms only hire workers for their most recent project,

while they continue to operate their older projects with previously hired workers. Further,

workers in older projects cannot be shifted to newer projects in the same firm, possibly

due to the specificity of workers’ tasks in each project. This simplification captures

that expanding establishments (the focus of our paper) hire workers externally into new

16In principle the new draw of p could be correlated with the productivity of the last project to
capture possibly persistence of the firm’s management and/or innovation capabilities. To keep the theory
as parsimonious as possible, we assume uncorrelated productivity draws.
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positions.17 It also allows us to keep separations exogenous and hence permits a tractable

characterization of firm policies in the presence of firm-specific shocks.

At any point in time, firms decide how many workers to hire in their newest project

and hence how many vacancies to create. Opening a measure V ≥ 0 of vacancies involves

a flow cost cV (V ), where cV satisfies c′V > 0 and c′′V > 0. Additionally, for every posted

vacancy the firm chooses search effort e ≥ 0 at cost ce(.) with c′e > 0, c′′e > 0, ce(0) = 0.

Thus the total number of “effective vacancies” opened by a firm is eV and involves total

flow costs cV (V ) + V · ce(e).
We assume that only unemployed workers search for jobs.18 Upon meeting, the worker-

firm pair draws a match-specific productivity x ∼ G(.) with support X. If the worker

is hired at a firm with current project productivity p, the flow output of the match is

p · x for the duration of the match. In addition to firm exit at rate δ, employed workers

exogenously separate from firms into unemployment at Poisson rate s, hence the total

separation rate is s+ δ. While unemployed, workers receive flow income b.

Search is competitive as in Moen (1997). Workers search for long-term contracts

posted by firms. Workers and firms understand that contracts with a higher present value

of wages attract more job seekers, and hence have a higher job-filling rate and a lower

job-finding rate. Unemployed workers and firms with vacant jobs then meet in submarkets

that are differentiated by their present values of wage payments. In a given submarket,

a vacancy with search effort e meets a worker with flow probability e · m(λ), where λ

denotes the measure of workers per unit of effective vacancies in the submarket, and m(.)

is an increasing and concave reduced-form matching function satisfying m(0) = 0. Flow

consistency implies that a worker in this submarket meets a firm with flow probability

m(λ)/λ.

The contracts posted by firms entail a hiring threshold x̃ and constant wages (for each

realisation of x ≥ x̃) denoted by w(x).19 Workers observe these contract postings and

choose in which submarket to search.

17Evidence in favor of this assumption is the small extent to which we observe a vacancy being filled
by a worker already employed in the same establishment opening this vacancy. In the JVS we find that
the proportion of internal hires is 6%.

18This assumption is motivated by the JVS evidence showing no meaningful difference in the hiring
behavior of expanding establishments with respect to the previous employment status of its new hires
(see Figure 6.a).

19Wage schedules are indeterminate in this model with risk-neutral workers and firms. This concerns
both the variation with tenure and variation with match productivity x. Limited commitment on either
side of the market restricts the set of feasible wage schedules. See Appendix B for further details.
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Firm and Worker Decisions

Given the stationarity of the environment, standard recursive arguments imply that the

expected profit value of a job with productivity p filled with a worker with match-specific

productivity x and earning a wage w(x) is

J(p, x, w(x)) =
px− w(x)

r + s+ δ
.

A firm with current project productivity p decides the vacancy stock V , search effort per

vacancy e, and contract posting (x̃, w(.)), for which it expects a flow meeting rate m(λ)

per effective vacancy eV . The objective of the firm is to maximize the expected flow profit

value of this recruitment policy which is given by

eV m(λ)

∫
x̃

J(p, x, w(x)) dG(x)− cV (V )− V ce(e) .

Per unit time, the firm meets eV m(λ) workers of which it hires all those whose match pro-

ductivity exceed x̃ in which case the firm realizes the discounted profit value J(p, x, w(x)).

The flow cost of this recruitment policy is cV (V ) + V ce(e). Since firms operate linear

production technologies, the optimal recruitment policy depends on current project pro-

ductivity p only and is independent of the size of the firm.

The firm understands that the meeting rate m(λ) varies with the terms of the posted

contract since workers choose search strategies optimally given the set of available con-

tracts offered by all firms. Let W e(w) denote the expected discounted income of an

employed worker earning wage w, and let W u be the expected discounted income of an

unemployed worker. The discounted surplus value of a worker can then be expressed by

W e(w)−W u =
w − rW u

r + s+ δ
.

The value of an unemployed worker searching in a submarket with posting (x̃, w(.)) and

meeting rate m(λ)/λ satisfies rW u = b+ ρ̄(x̃, w, λ) where the worker’s expected flow value

from search in this submarket is given by

ρ̄(x̃, w, λ) ≡ m(λ)

λ

∫
x̃

[W e(w(x))−W u]dG(x) . (3)

Workers decide in which submarkets to search. Given that workers are homogeneous, this

implies equal search values in all active submarkets.
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Equilibrium Definition and Properties

A stationary competitive search equilibrium describes vacancies Vp, search effort per va-

cancy ep, job postings (x̃p, wp(x)) ∈ Z ≡ X × RX
+ for all firms with current project

productivity p ∈ P , queue lengths (i.e., job seekers per effective vacancy) in submarkets

for different postings, defined by Λ : Z → R+, a search value of unemployed workers ρ,

and unemployment rate u such that

1. Firms maximize expected profits: For all p ∈ P , vacancies Vp, search effort ep and

job postings (x̃p, wp) solve the problem

max
V,e,x̃,w,λ

eV m(λ)

∫
x̃

px− w(x)

r + s+ δ
dG(x)− cV (V )− V ce(e) (4)

subject to λ = Λ(x̃, w).

2. Workers search optimally: For all postings (x̃, w) ∈ Z and λ = Λ(x̃, w),

ρ̄(x̃, w, λ) ≤ ρ , λ ≥ 0 , (5)

with complementary slackness (choice of submarkets). Furthermore,∑
p∈P

πpVpepλp ≤ uL̄ , ρ ≥ 0 , (6)

with complementary slackness (labor market participation).

3. Stationary unemployment (stock-flow consistency):

(1− u)L̄(s+ δ) =
∑
p∈P

πp(1−G(x̃p))m(λp)epVp . (7)

Optimal search requires that workers receive the same expected search value in all submar-

kets which they visit (λ > 0) which is entailed in the complementary-slackness condition

(5). It further necessitates that unemployed workers search in some submarket if they

can obtain positive surplus, ρ > 0; otherwise unemployed workers are indifferent between

search and inactivity. This is specified in the complementary-slackness condition (6)

where the left-hand side is aggregate unemployment (Vpepλp unemployed workers search

for employment in firms with current productivity p which constitute measure πp) and

the right-hand side is aggregate non-employment. Condition (7) says that unemployment
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inflows (= separations, left-hand side) are equal to outflows (= hires, right-hand side).

Conditions (6) and (7) can be combined to

∑
p∈P

πp

(
Hp

s+ δ
+ Vpepλp

)
≤ L̄ , (8)

where Hp = (1 − G(x̃p))m(λp)epVp is the flow of hires of firms with current project

productivity p. Hp/(s + δ) is aggregate employment in all projects with productivity

p, and Vpepλp are unemployed workers searching for jobs at firms with current project

productivity p. Hence inequality (8) says that employment and unemployment together

do not exceed the measure of workers L̄, and they are equal to L̄ if all non-employed

workers search which is the case if the expected value of search is positive, ρ > 0. In

this case, ρ is implicitly pinned down by equation (8), hence it depends on labor demand

(i.e., the distribution of vacancies, search effort and hiring standards) as well as on labor

supply L̄. Any change of aggregate market conditions, for instance a uniform increase of

productivity across all projects, changes the equilibrium values of Vp, ep, x̃p and λp, and

therefore impacts the search value ρ.20

Because of ce(0) = 0 = m(0), firms will either not hire and choose e = λ = 0, or

they aim to attract λ = Λ(x̃, w) > 0 job seekers per effective vacancy. In the latter case,

posted wages must satisfy

m(λ)

λ

∫
x̃

w(x)− b− ρ
r + s+ δ

dG(x) = ρ (9)

to make sure that unemployed workers are attracted to these vacancies, see condition (5)

together with (3).

The job-filling rate for a firm with project productivity p is

qp ≡
Hp

Vp
= ep ·m(λp) · (1−G(x̃p)) . (10)

Variation in job-filling rates are accounted for by three factors: search effort e, wages as

reflected through λ, and hiring standards as measured by the threshold x̃.

20Using standard arguments, it can be verified that the competitive search equilibrium is constrained
efficient. That is, vacancies, search effort, hiring thresholds and the allocation of workers and effective
vacancies across submarkets maximize the discounted value of aggregate output.
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Firm Dynamics

In the cross-section of firms, job-filling rates and recruitment policies vary by productivity

p. They can be related to firms’ employment growth and hiring rates, thus generating the

theoretical counterparts of the empirical relationships identified in the previous section.

The dynamics of firms is driven by two forces: (i) new firms enter with flow probability δ,

and (ii) existing firms draw new project productivities with flow probability χ. In both

cases firms adjust their workforce, but they do not do so instantaneously due to convex

vacancy and search effort costs.

While a firm’s hires flow depends on the productivity of the current project, the

separation rate is constant. Thus, employment in a firm with project productivity p and

size N adjusts according to

Ṅ = Hp − sN .

Therefore, the firm’s employment growth rate Ṅ/N varies with the hiring rate Hp/N

according to Ṅ/N = Hp/N − s. The cross-sectional relationships between firm growth

Ṅ/N , hiring rates Hp/N , vacancy rates Vp/N and job-filling rates qp depend on the joint

distribution of project productivity p and employment N . Write Ψp(N) for the cumulative

distribution of firms by employment size, conditional on current project productivity p,

and let Ψ(N) ≡
∑

p∈P πpΨp(N) be the mass of firms with employment less than or equal

to N . In steady state, these distributions satisfy

δ(1−Ψp(N)) + χ(Ψ(N)−Ψp(N)) = Ψ′p(N)(Hp − sN) , (11)

for all p ∈ P and N ≥ 0.21 This system of differential equations can be solved subject to

the boundary conditions Ψp(0) = 0 and Ψp(N̄) = 1, where N̄ = Hp̄/s is the employment

that a firm with maximal productivity p̄ = max{p ∈ P} would reach in the absence of

shocks.22

21Consider the mass of firms with employment up to N and project productivity p, which is πpΨp(N).
The inflow into this group is δπp+χπpΨ(N)+πpΨ

′
p(N) max(0, sN−Hp) (i.e. entrants plus firms drawing

new productivity p plus firms contracting in size just above N). The outflow of this group is δπpΨp(N)+
χπpΨp(N)+πpΨ

′
p(N) max(0, Hp−sN) (i.e. exits plus firms drawing new productivity plus firms growing

in size just below N). Equating inflows and outflows and canceling πp gives equation (11).
22Ψp(.) may not be differentiable at N = Hp/s which complicates the numerical solution of this system

of differential equations. We obtain a numeric solution by solving for the invariant distribution of the
Markov process describing the dynamics of firms over discrete time intervals dt on finite state space P×N
where N is a discrete grid of [0, N̄ ].
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Characterization of Recruitment Policies

Substitute (9) into (4) to rewrite the firm’s problem:

max
V,e,x̃,λ

V ·
{
em(λ)

∫
x̃

px− b− ρ
r + s+ δ

dG(x)− eλρ− ce(e)
}
− cV (V ) . (12)

The first-order conditions are

px̃ = b+ ρ , (13)

c′e(e) = m(λ)

∫
x̃

px− b− ρ
r + s+ δ

dG(x)− λρ , (14)

ρ = m′(λ)

∫
x̃

px− b− ρ
r + s+ δ

dG(x) , (15)

c′V (V ) = em(λ)

∫
x̃

px− b− ρ
r + s+ δ

dG(x)− eλρ− ce(e) . (16)

Equation (13) says that job surplus is zero for the worker who is hired at the margin.

This condition implies a negative relationship between the firm’s project productivity p

and the hiring threshold x̃. Combining (14) and (15) gives

c′e(e) = ρ
m(λ)− λm′(λ)

m′(λ)
, (17)

which implies that the queue length λ (and hence wage offers) and search effort e are

positively related in the cross-section of firms. Conditions (13) and (15) give rise to

ρ = m′(λ)
b+ ρ

r + s+ δ

∫
x̃

x

x̃
− 1 dG(x) . (18)

This equation says that across firms worker queues λ and hiring thresholds x̃ are negatively

related. In other words, firms which are less selective in hiring also pay higher wages to

workers with similar productivity. Finally, substitute (14) into (19) to obtain

c′V (V ) = ec′e(e)− ce(e) . (19)

This condition implies that search effort e and vacancies V are positively related across

firms.

Therefore, we can conclude that firms with higher current project productivity p (i)

post more vacancies, (ii) are willing to accept lower hiring standards, (iii) exert higher
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search effort, and (iv) set wages so as to attract more workers.23 To the extent that

project productivity p is the only source of heterogeneity between firms (as assumed in

this model), all three factors in equation (10) which contribute to job-filling rates qp are

positively correlated: Firms with more productive projects have higher search effort ep, a

higher meeting rate per effective vacancy m(λp) and a larger hiring probability conditional

on a meeting, 1 − G(x̃p).
24 The respective percentage contributions to the variation of

job-filling rates can be written

dq

q
=
de

e
+
m′(λ)λ

m(λ)
· dλ
λ
− G′(x̃)x̃

1−G(x̃)
· dx̃
x̃
. (20)

Using the policy functions derived above, this can be further decomposed

dq

q
=
dp

p
(1− εΨ,x̃)

{ 1

(1− εm,λ)εc′e,e︸ ︷︷ ︸
=search effort

+
(1− εΦ,x̃)εm,λ
−εm′,λ︸ ︷︷ ︸
=wages

+
G′(x̃)x̃

(1−G(x̃))(1− εΨ,x̃)︸ ︷︷ ︸
=hiring standards

}
, (21)

where εf,z denotes the elasticity of a function f with respect to variable z, and Ψ(x̃) ≡∫
x̃
x − x̃ dG(x). This decomposition shows how the functional forms of the matching

function m, the search cost function ce, and the distribution of match-specific productivity

G determine the respective contributions of search effort, wages and hiring standards for

the overall recruiting intensity of firms.

4 Quantitative Analysis

How does recruitment behavior contribute to the cross-sectional variation of matching

efficiency? Does recruiting intensity matter for the impact of labor market policy? To

answer these questions, we parameterize our model and calibrate its parameters to match

selected statistics of the German labor market and the evidence presented above.

We explore variation across different local labor markets which are segmented in the

same way as in Section 2. That is, we consider 12 regions (i.e. German states where

smaller states are merged to neighboring states) and three skill levels (no formal educa-

tion, vocational training, and college degree) which gives rise to 36 labor markets. We

believe that these labor markets are sufficiently segmented so that we can safely abstract

23This generalizes Kaas and Kircher (2015) who show that firms use both more vacancy postings and
higher wage offers when they hire faster.

24This feature is consistent with what we find in JVS data: Establishments that exert more search
effort also have lower hiring standards and pay more generous wages.
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from mobility across them.25 We further abstract from complementarities in production

between different skill groups. With these assumptions, our model describes a given local

labor market. Most of the model parameters are calibrated uniformly for all local markets,

while others are market-specific in order to capture the observed cross-sectional variation

in unemployment rates, job-finding rates and wages.

All data targets are based on averages over the period 2010–2017 where we obtain

employment, unemployment, vacancies, the number of establishments (employing workers

of the given skill), monthly unemployment-to-employment (UE) flows and the mean wage

for all markets. We measure the job-finding rate as the monthly UE flow divided by

the unemployment stock. To have a model-consistent measure of the vacancy yield, we

define the vacancy yield as hires from unemployment (UE flow) divided by the vacancy

stock. Figure 5 shows the relationship between labor market tightness (vacancies divided

by unemployment), job-finding rates and vacancy yields across the 36 labor markets.

Labor markets for low-skilled workers are less tight than labor markets for medium- and

high-skilled workers, and these markets have lower job-finding rates and higher vacancy

yields. Likewise, there are increasing (decreasing) relationships between tightness and the

job-finding rate (vacancy yield) across regions. In principle, these patterns are consistent

with a standard reduced-form matching function uniformly applied for all labor markets

(plus noise). We use our model to explore to what extent variation in the recruitment

policies amplifies or mitigates these empirical relationships.
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Figure 5: Market tightness, job-finding rates and vacancy yields in 36 (region×skill) labor
markets in Germany (2010–2017)

25In particular, most metropolitan areas are contained one of the 12 regions. Moreover, the skill groups
are based on education acquired early in life so that workers usually do not move between them. The
reported vacancies in the JVS are differentiated according to the same classification.
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4.1 Calibration Strategy

We set a month as our unit time and let the matching function follow a Cobb-Douglas

specification, m0λ
µ with µ ∈ (0, 1). The recruitment and vacancy cost functions are given

by cee
γ and cV V

Φ with elasticity parameters γ > 1 and Φ > 1. Match-specific productivity

is assumed to be Pareto distributed, G(x) = 1− (x0/x)α for x ≥ x0, where α > 1, while

project productivities are distributed with cumulative distribution Π(p) = (p/p̄)η for

p ∈ [0, p̄], with η > 0.26 Our parameterization ensures that all firms face a non-trivial

selection decision. That is, the bounds on the two productivity distributions must be set

such that hiring thresholds are interior for all firms, which requires p̄x0 < b + ρ. These

functional forms are convenient as they imply that the firms’ policies x̃p, λp, Vp and ep, as

well as several aggregate model statistics (in particular, means and standard deviations of

various outcome variables) can be all obtained in closed form (see Appendix B for details).

We choose a calibration strategy where only few parameters are set specific for each

labor market, indexed by m = 1, . . . , 36, while the other parameters are shared by all

labor markets. Market-specific parameters are L̄m (labor force in relation to the number

of establishments), sm and δm (separations in continuing and exiting firms), p̄m (upper

bound of the productivity distribution) and bm (unemployment income). L̄m is set directly

to the corresponding data value. The total separation rate is set to match the steady-

state unemployment rate um in market m. If fm is the job-finding rate in this market,

stock-flow consistency implies sm + δm = um
1−umfm. In all markets, we attribute one-

third of separations to exits and two-thirds to separations for continuing establishments,

consistent with Fuchs and Weyh (2010) who find that one third of destroyed jobs in the

German labor market are at exiting establishments.

Given all other model parameters, p̄m and bm are set to match average wages and

job-finding rates in market m. Here we can utilize the closed-form expressions obtained

in Appendix B. Specifically, the mean wage in market m is

w̄m = (bm + ρm)
α + µ− 1

α− 1
, (22)

and the job-finding rate is

fm =
ρm(r + sm + δm)(α− 1)

µ(bm + ρm)
, (23)

26While a discrete distribution simplifies notation in the previous section, we assume a particular
functional form of a continuous distribution here in order to obtain closed-form expressions for many
outcome variables which simplifies the algebra.
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where ρm is the value of workers’ search, an endogenous variable defined in Section 3.

With (w̄m, fm) set to their data values, (22) and (23) are solved uniquely for bm and

ρm. Then, the closed-form expressions for aggregate unemployment Um and aggregate

employment Em = Hm/(sm + δm) in market m (see Appendix B) are used to solve the

aggregate resource condition Um + Em = L̄m for the upper bound of productivity p̄m in

market m. Intuitively, higher productivity p̄m increases the demand for labor in market m

(more vacancies and higher recruiting intensity) which raises the job-finding rate and the

workers’ search value. Formally, fm increases in ρm which itself increases in p̄m. Therefore,

job-finding rates and wages uniquely identify bm and p̄m.

The remaining parameters are shared by all labor markets. The interest rate r =

0.34% corresponds to an annual real interest rate of 4%. The matching function elasticity

µ (together with the Pareto parameter α) controls the level of wages relative to unemploy-

ment income, see equation (22). Given a value for α, µ can be set directly to match an

average replacement rate of 46%, consistent with the level of unemployment income after

the Hartz labor market reforms (cf. Krebs and Scheffel, 2013). Utilizing the functional

form for aggregate vacancies in Appendix B, the scale of the vacancy cost function cV can

also be set directly to match the average number of vacancies per establishments, given

all other model parameters.

Three further global parameters x0 (lower bound of match productivity), ce (search

effort scale parameter), and m0 (matching function scale parameter) cannot be identified

separately from the scale of productivity p̄m. This is because all model statistics (unem-

ployment, vacancies, hires, etc.) depend on the product c−1
e

(
m0x

α
0 p̄

α
m

) γ
1−µ

. This implies

that any change in the parameters x0, ce and m0 would scale up or down the productivity

parameters p̄m in the same proportion in all local markets. For the same reason, the

global values of x0, ce and m0 do not matter for any of the decomposition results that we

present below; hence their values can be normalised without impacting our results.27

This leaves five global parameters to be jointly estimated: the elasticities of search

costs and vacancy costs, γ > 1 and Φ > 1, the Pareto shape parameter α > 1 for match-

specific productivity, the shape parameter of the project productivity distribution η > 0,

and the arrival rate of project productivity shocks χ.

Parameters γ and α determine in which proportion firms use search effort, wages, and

hiring standards to increase their job-filling rate. This is a consequence of decomposition

(21) which shows how variation of job-filling rates (by project productivity) is decomposed

into the three recruiting margins. This decomposition crucially responds to the elasticities

27See Appendix B for details and further discussion.
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of match productivity, search costs, and the matching function. The latter elasticity is

already calibrated from (22) to match the average replacement rate. We calibrate γ and

α to reflect the relative variation of standardized recruitment indices ŵ, s and e, as shown

in the last graphs of Figures 2–4 in Section 2. To generate outcome variables comparable

to those in the data, we simulate the model for a sample of firms over a 90-day hiring

period in each of the 36 labor markets and then use the three factors in decomposition

(10), observed in the middle of this period, for the respective contributions of effort (ep),

wage generosity (m(λp)) and hiring standards (G(x̃p)). Then, we standardize all three

model-generated outcome variables (uniformly for all 36 markets) and calculate averages

of the standardized indices for each of 15 bins of 90-day hiring rates ranging from 0 to

30 percent. Based on those 15 model-generated data points for each index, we calculate

the slope of every index with respect to the hiring rate. Our empirical results suggest

that the standardized wage index reacts somewhat stronger than the standardized effort

index (with relative slope 1.127), whereas the standardized hiring index reacts less than

the effort index (relative slope -0.615). Our model targets these relative slopes.28

The convexity parameter of vacancy costs Φ controls to what extent firms use vacancy

postings to increase their hiring rate. Larger values of Φ make highly productive firms less

willing to post more vacancies and rather resort to increase their vacancy yield (cf. Kaas

and Kircher, 2015; Gavazza et al., 2018; Kettemann et al., 2018). That is, parameter Φ

controls the slope of the hockey-stick relationship between firm growth and the vacancy

yield. To obtain this slope in the model, we again simulate a cross-section of firms over

30-day intervals in all 36 labor markets and calculate averages of vacancy yields in each of

15 bins of firm growth rates ranging from 0 to 30 percent. The slope of the vacancy yield-

growth relation is then targeted to the one observed in the data as shown in Figure 1.d

based on the averages not controlled for firm size (11.5).

Finally, the two parameters for the productivity distribution η (shape of the density)

and χ (arrival rate of productivity shocks) matter for the frequency and size of the firms’

employment adjustments. We target that 80% of establishments have monthly employ-

ment growth rates in the interval [−0.01,+0.01] and 3.6% of establishments grow by more

than 10%.

28Given that all variation of recruitment indices and hires in the model comes from differences in firm
productivity (within a market) or from differences in market-specific parameters (across markets), our
model generates too much variability of the three indices with hiring rates as compared to those observed
in Figures 2–4. Therefore we cannot target the absolute slopes of the relationships between recruitment
indices and hiring rates. Nonetheless, most of the variation in the model (and in the data) takes place
within local labor market (see the comparison below).
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4.2 Fit of the Model

Table 2 shows the values of calibrated parameters and calibration targets. The bottom

five rows of the table compare how the model matches the data targets used for estimation

of the last five parameters. All other data targets are matched exactly since they identify

the corresponding parameters uniquely, as described above. The model fit is rather good,

with the exception of the share of monthly employment growth rates above 10% which is

somewhat underestimated by the model. Besides capturing the slope of the vacancy yield

with respect to employment growth, our model also generates the hockey-stick relation-

ships between hiring rates and establishment growth (Figure 1.b) and, by implication, a

moderate variation of the vacancy rate.

Table 2: Calibrated parameters and targets used for estimation

Market-specific parameters
Parameter Mean Value Explanation/Target
Labor force (normalized) L̄m 7.1 Workers per establishment
Separation rate sm 0.54% Unemployment rates
Exit rate δm 0.27% 1/3 of separations due to exit
Productivity upper bound p̄m 1045.5 Job-finding rates
Unemployment income bm 0.38 Wages (mean normalized to 1)

Global parameters (directly calibrated)
Parameter Value Explanation/Target
Interest rate r 0.34% 4% annual real rate
Vacancy cost scale cV 515,257 0.12 vacancies per establishment
Matching fct. elasticity µ 0.054 Average replacement rate 46%
Matching fct. scale m0 0.01 Normalized (see text)
Search effort scale ce 1.0 Normalized (see text)
Match prod. Pareto scale x0 0.01 Normalized (see text)

Global parameters (estimated)
Parameter Value Explanation/Target
Vacancy cost elasticity Φ 10.25 Slope vacancy yield wrt emp. growth
Search effort elasticity γ 7.86 Relative slope wages/effort
Match prod. Pareto shape α 1.97 Relative slope hiring standards/effort
Arrival rate prod. shocks χ 0.34 Employment growth [−0.01, 0.01]
Productivity shape η 0.15 Employment growth > 10%

Targets for estimation
Statistics Data Model
Relative slope wages/effort 1.13 1.13
Relative slope hiring standards/effort -0.62 -0.62
Slope vacancy yield wrt emp. growth 11.5 11.3
Share employment growth [−0.01, 0.01] 0.80 0.81
Share employment growth > 0.1 0.036 0.007

In terms of non-targeted moments, the model also does well in several dimensions.

Based on Monte Carlo simulations for each local labor market, we construct standardized

indices for search effort, wage generosity and hiring standards as described in the previous

subsection. Three key features stand out. First, similar to their empirical counterparts,
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we find that in the model most of the variation of these indices happens within local labor

markets. Precisely, a variance decomposition reveals that the between-market component

accounts for only 0.2% (effort), 1.0% (wage generosity) and (3.0%) of the total variance

in the model. In the data, the between-market variance is also rather small (0.4%–1.0%).

Table 3 shows how local-market averages of job-finding rates and vacancy yields cor-

relate with market tightness and the three standardized recruitment indices, all of them

averaged for each local labor market. Here the model shows that job-finding rates cor-

relate positively with labor market tightness, search effort and hiring standards, in line

with the data. Likewise, both in the data and in the model, the vacancy yield correlates

negatively with tightness and hiring standards while the correlation with search effort is

zero in the data and small in the model. On the other hand, the model does not reproduce

the weak correlations between wage generosity, job-finding rates and vacancy yields that

we observe in the data.29

Table 3: Cross-market correlations

Data Model
Job-finding rate Vacancy yield Job-finding rate Vacancy yield

Job-finding rate 1.0 -0.789 1.0 -0.593
Vacancy yield -0.789 1.0 -0.593 1.0

Tightness 0.808 -0.750 0.804 -0.843
Search effort 0.393 0.004 0.769 -0.215

Hiring standards 0.414 -0.369 0.627 -0.997
Wage generosity 0.042 0.129 -0.896 0.865

To compare to what extent all three recruitment indicators affect vacancy yields, we

regress the vacancy yield on tightness, search effort, hiring standards and wage generosity.

The regression coefficients that we obtain are smaller than those obtained in the data (see

specification (6) in Table 1), but the relative order is similar. Hiring standards have

the strongest (negative) relation to the vacancy yield (−0.437 compared to −0.920 in

Table 1), followed by search effort (0.148 compared to 0.75). Wage generosity has the

smallest impact on vacancy yields in the data and in the model (0.056 compared to

0.002).

29Note again that our model only targets (and perfectly matches) the job-finding rates in all labor
markets, but it does not target the cross-market variation of any of the other variables specified in Table 3.
However, all model-generated variables correlate positively with their data counterparts, with the only
exception of search effort where the correlation is zero.
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4.3 Variation of Matching Efficiency

We now analyze how recruiting intensity contributes to the variation of matching efficiency

across local labor markets. We do not explore variation over time because our model is

set in steady state and the period in which our data are obtained (2010-2017) is rather

short.

Our calibrated model permits an exact decomposition of matching efficiency. Since

aggregate hires in a labor markets are H =
∫
Hp dΠ(p) =

∫
(1−G(x̃p))m(λp)epVp dΠ(p),

the job-finding rate in this market can be decomposed as follows:30

H

U
= m0

( V̄
U

)1−µ

︸ ︷︷ ︸
Tightness

· ē1−µ︸︷︷︸
≡ mE

Search effort

· m̄

m(λ̄)︸ ︷︷ ︸
≡ mW

Wage dispersion

·
∫

(1−G(x̃p))
m(λp)epVp
m̄ēV̄

dΠ(p)︸ ︷︷ ︸
≡ mS

Selectivity

(24)

where

V̄ ≡
∫
Vp dΠ(p) , ē ≡

∫
ep
Vp
V̄
dΠ(p) , m̄ ≡

∫
m(λp)

epVp
ēV̄

dΠ(p) and λ̄ ≡ U

ēV̄
.

V̄ are aggregate vacancies, ē is a vacancy-weighted aggregate measure of search effort,

and m̄ is an average of the worker-firm meeting rate weighted by effective vacancies eV .

λ̄ is the inverse of effective labor market tightness (i.e. unemployment divided by effective

vacancies).

Equation (24) shows how the job-finding rate depends on four factors. The first one

is the standard matching function which links labor market tightness (i.e. the vacancy-

unemployment ratio) to matches per job seeker, an increasing and concave relationship.

The other three factors contribute to matching efficiency: mE measures the contribution

of search effort to matching efficiency, mS captures the contribution of selectivity and

mW is a “wage dispersion” term which reflects different wage policies in heterogenous

firms.31 The numerator m̄ is a weighted measure of worker-firm meetings, whereas the

30Multiplication of this equation by U/V̄ delivers an equivalent decomposition of the vacancy yield in
the definition of this section (hires from unemployment per vacancy). We report the decomposition of
the job-finding rate since our model targets this outcome variable and since it is especially of interest for
the policy experiment of the next subsection.

31Note that the three terms mE , mW and mS are different from the recruitment indices that we
construct earlier (based on Monte-Carlo simulations mimicking their data counterparts, see subsection
4.1). However, mE correlates positively with the search effort index, and mS correlates negatively with the
hiring standards index (i.e. there are less matches if hiring standards are stricter). Since the cross-market
variance of mW is zero, it does not correlate with the wage generosity index.
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denominator m(λ̄) is the meeting rate at average effective market tightness λ̄. If wage

policies in all firms were identical (λp = λ̄), mW would be exactly equal to one. If wage

policies differ, this term is smaller than one due to the strict concavity of the matching

function (Jensen’s inequality). Thus, dispersion of wages (in a competitive search model)

reduces matching efficiency (cf. Kaas and Kircher, 2015). In our calibrated model, only

mE and mS vary across local labor markets, but mW is constant and equal to 0.93. That

is, wage dispersion reduces matching efficiency, but it does so uniformly across labor

markets. This implication is to a large extent consistent with our data, where we find

little cross-market variation of measured wage dispersion.32

We can now explore to what extent labor market tightness, search effort and selectivity

contribute to variation of job-finding rates across labor markets. The variance of the (log)

job-finding rate is 0.184. Table 4 shows the covariance matrix of all (log) terms in (24)

with the exception of mW as it is constant across markets. Most of the variation of the

total job-finding rate comes from labor market tightness and from selectivity. Variation

of search effort plays only a minor role. Note that the selectivity term mS correlates

negatively with tightness. In other words, firms in tighter labor markets are more selective

which reduces matching efficiency.

Table 4: Covariances across local labor markets

Total variance 0.184 Tightness Search effort Selectivity

Tightness 0.689 0.018 -0.395
Search effort 0.018 0.002 -0.006
Selectivity -0.395 -0.006 0.259

Note: Covariance matrix of logged variables. Summation over all terms adds up to the variance of the

logged job-finding rate (0.184).

These observations are also reflected in Table 5 whose first row shows the contribution

of the three terms to the total cross-market variance of the job-finding rate. Across all

36 labor markets, market tightness and hiring selectivity are the two dominant forces in

accounting for the variation of job-finding rates. However, these two forces work against

each other: tighter labor markets have more selective firms, which then dampens the job-

finding rate. Note that this finding is consistent with Table 3 which shows that job-finding

32When computing the coefficient of variation for (log) wages in each market we find that cross-market
differences in this coefficient are small. The standard deviation of the distribution of market-specific
coefficients of variation is 0.03. When controlling for skill levels we find that among the low-skill markets
the standard deviation is 0.01, while for medium- and high-skill markets the standard deviation is 0.0045
and 0.0068, respectively.
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rates and the hiring-standards index are positively correlated (both in the data and in

the model). Finally, search effort mE has a positive, but quantitatively small impact on

variation of job-finding rates.

The intuition why hiring standards reduce matching efficiency in tighter markets is as

follows: Local labor markets essentially differ in their (maximum) firm productivity p̄m

and in the reservation wages of workers, bm + ρm, which are calibrated to match wages

and job-finding rates. Labor markets with higher job-finding rates (such as high-skill

ones) tend to have higher productivity p̄m, and this is the reason why firms create more

vacancies and hence market tightness is larger. However, these more productive markets

also have higher reservation wages and the ratio between the two objects, p̄m/(bm + ρm),

is lower in tighter markets. By optimality condition (13), this implies that firms must

become more selective as they offer sufficiently high wages to fill their positions, which

ultimately reduces matching efficiency.

Table 5: Relative contributions to the variation of job-finding rates across local labor
markets

Variance JFR Tightness Search effort Selectivity

Total 0.184 169.6% 7.3% -76.9%

Low skill 0.059 150.1% 2.4% -52.5%
Medium skill 0.038 233.4% -1.1% -132.3%
High skill 0.015 175.0% 10.3% -85.3%

Effort plays a rather small quantitative role compared to the other two margins be-

cause of the relatively large estimated value of the effort cost elasticity γ. However, even

when we reduce this parameter substantially to γ = 2, the contribution of search effort to

the variation of job-finding rates increases to 29%, while tightness and selectivity remain

the two most important margins for the variation of job-finding rates across markets.

We further explore to what extent variation across regions or across skill groups is

driven by the different margins. Regarding variation across the 12 regional labor markets,

the bottom three rows in Table 5 report the percentage contributions of the three channels

to the variance of job-finding rates, separate for each of the three skill groups. Evidently,

the cross-regional variance of the job-finding rate for each skill group is smaller than the

total variance (first column of the table). Again, tightness and selectivity account for the

lion share in cross-regional differences in job-finding rates, and they work in opposite di-

rections: regions with tighter markets have more selective firms. Search effort contributes

to matching efficiency mostly in high-skill labor markets.
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Variation across skill groups is reported in Table 6. Medium- and high-skill labor

markets have job-finding rates which are around 123 percent (80 log points) larger than

those in low skill labor markets. Much of this gap is accounted for by differences in labor

market tightness, especially for high-skilled workers (2nd column). But also in high-skill

labor markets, firms are considerably more selective, which reduces matching efficiency

as compared to markets for low-skilled workers (4th column). Search effort accounts for

a small but positive difference in job-finding rates across skill groups.

Table 6: Average log differences to low-skill labor markets

JFR Tightness Search effort Selectivity

Medium skill 0.76 0.81 0.08 -0.13
High skill 0.85 1.74 0.06 -0.95

4.4 The Role of Recruiting Intensity for Labor Market Policy

Because recruiting intensity responds to the economic environment, it is important to

understand how the different margins of firms’ hiring policies react to changes in labor

market policy. It is well known that the German labor market experienced a major

transition in the last two decades during which the harmonized unemployment rate de-

clined from over eleven percent in 2005 to just over three percent in 2019. There is quite

some literature discussing the role of different economic events and policy reforms for

this transition. Particularly the Hartz labor market reforms, which consist of different

policy measures, and their impact on the decline of unemployment have been analyzed

extensively in the academic literature (see Krause and Uhlig, 2012; Krebs and Scheffel,

2013; Dustmann et al., 2014; Hochmuth et al., 2019; Carrillo-Tudela et al., 2020b, among

others).

A major part of these reforms concerns a significant reduction of government transfers

to the unemployed, especially for long-term unemployed workers (Hartz IV). There are

different ways how changes in unemployment income (UI) affect the labor market. Besides

potential implications for the job-separation rate (see Hartung et al., 2018), most of the

literature focuses on the role of the UI system on the job-finding rate which operate either

via the search intensity margin of workers or via the job-creation decisions of firms.

Although our model, with exogenous separations and with no search intensity margin

on the side of workers, cannot comprehensively analyze these various channels, it is well-
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suited to explore to what extent the different margins of recruiting intensity, in addition

to the creation of jobs, contribute to changes in job-finding rates in response to changes

of UI. To this end, we conduct a simple experiment where we compare the stationary

equilibrium of our calibrated model with a UI replacement rate of 46 percent (post-

Hartz period) to the stationary equilibrium of our model with a higher pre-Hartz reform

replacement rate of 57 percent (cf. Krebs and Scheffel, 2013). For the latter economy we

increase unemployment income levels bm in all local labor markets in the same proportion

to market-specific wages, leaving all other parameters unchanged.

Table 7 shows how job-finding rates change between the two scenarios. The first

column shows the log change of the job-finding rate in response to the decline of unem-

ployment income from 57 to 46 percent. On average, the job-finding rate increases by 27.4

log points (32 percent). Across skill groups, the increase is strongest for the low-skilled

(43.2 log points, 54 percent) and weakest for the high-skilled (16.1 log points, 17 percent).

The larger increases in job-finding rates in low-skill labor markets is consistent with the

findings in Carrillo-Tudela et al. (2020b), whose data work implies that in low-skill labor

markets the job-finding rate increased by 30.3%, while the job finding rates in medium

and high skill markets increased by 25.1% and 9.8%, respectively, when comparing the

2000-2005 to the 2010-2014 period.

Table 7: Impact of a decrease of the replacement rate from 57 to 46 percent

JFR Tightness Search effort Selectivity

Total 0.274 0.211 0.002 0.063

Low skill 0.432 0.290 0.007 0.135
Medium skill 0.229 0.198 0.001 0.031
High skill 0.161 0.146 0.000 0.015

Note: The table shows the changes of the reported variables in log points. The first row is averaged over

all local labor markets, the bottom three rows are averaged over regions, separately for each skill group.

The remaining columns of the table build again on equation (24) which gives an exact

decomposition of the log change of the job-finding rate (in each local market) into the

sum of log changes of four components: market tightness plus three margins of recruiting

intensity. The wage dispersion term mW does not contribute to policy changes. While the

level of wages falls on average by 3.1 percent with lower UI, the dispersion across firms

within the local labor markets is unchanged.

Table 7 shows that the job-creation margin (tightness) is responsible for about three

quarters of the increase of the job-finding rate (21.1) log points, while the rest is accounted
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for by the selectivity margin (6.3 log points). Search effort plays only a negligible role.

With lower UI and firm productivity unchanged, hiring thresholds are lower (see condition

(13)). At the same time, it becomes more attractive to create jobs and exert higher

search effort. This is the reason why tightness and effort increase, while firms become less

selective.

Across skill groups, job creation remains the strongest contributor, but the selectivity

margin is relatively more important for the low skilled where it accounts for about a

third of the increase in the job-finding rate and less relevant for the high skilled where

it accounts for less than ten percent of the increase of the job-finding rate. Especially in

low-skill labor markets, firms reduce their hiring standards in response to a decrease of

unemployment income which has a quantitatively significant impact on the job-finding

rate.

5 Conclusions

In this paper we use novel survey and administrative data for Germany and document

that different dimensions of recruiting intensity, namely wage policies, search effort and

hiring standards, vary systematically with an establishment’s hiring rate. This result is

robust after controlling for a wide range of employer and job characteristics. Further,

across local labor markets, defined as the cross-product between three skill groups and 12

geographic regions, we find that these three recruitment margins contribute significantly to

the variation of vacancy yields. We propose a directed search model with heterogeneous

multi-worker firms in order to analyze the mechanisms behind these patterns and to

evaluate the role of recruitment policies for matching efficiency and for the impact of

labor market policy.

In our quantitative analysis, we calibrate the model such that it replicates the main mi-

croeconomic relationships that we document in our empirical analysis, in particular about

the relative sensitivities of search effort, wage generosity and hiring standards across hir-

ing establishment. Then we verify that the model fits several facts about the cross-market

variation of job-finding rates, vacancy yields and aggregate indicators of recruitment poli-

cies. A key feature of our model is that it provides a structural decomposition of the

aggregate job-finding rate in terms of labor market tightness and the three recruitment

policies. Most of the variation of the job-finding rate across local labor markets is driven

by market tightness and hiring standards which turn out to operate in opposite direc-

tions: Tighter markets go together with stricter hiring standards which reduces matching
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efficiency. This feature occurs both across the skill and geographic dimensions. Search

effort only plays an important quantitative role for matching efficiency in high-skill labor

markets, whereas it does not matter much in lower- or medium-skill markets.

These features suggest heterogenous effects when considering the impact of labor

market policies on employers’ recruiting intensity and ultimately on the re-employment

chances of the unemployed. To investigate this further we propose a simple exercise

that mimics the drastic change in unemployment benefits as implemented in Germany

during the Hartz labor market reforms. We find that the increase of the job-finding

rate can be attributed mainly to two factors: higher vacancy creation and reductions in

hiring standards where the latter response is particularly stark in low-skill labor markets.

This result supports the finding of Carrillo-Tudela et al. (2020b) who document that the

reduction in unemployment after the Hartz reforms was largely due to workers moving

from non-employment into low-skill part-time jobs which, as part of the reforms, also

became much cheaper for employers to set-up and offer.
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Appendix

A. Data Appendix

For our analyses we use survey and administrative data of the Institute for Employment

Research (IAB). The administrative data are processed and kept by IAB according to

German Social Code III. There are certain legal restrictions due to the protection of

data privacy. The data contain sensitive information and therefore are subject to the

confidentiality regulations of the German Social Code (Book I, Section 35, Paragraph

1).33

A.1 Summary Statistics

Table 8 presents the main characteristics of our sample. In particular, the vast majority

of the establishments in the JVS are small with less than 20 employees and about 50%

of them are in the trade and retail sector or provide commercial or social services.34

Establishments are also more likely to report they face workforce or demand restrictions

than financial restrictions.

In terms of the last filled job the majority of establishments require a vocational

training, while long-term experience is also a common job requirement. These vacancies

are typically filled in two months. Table 9 reports variation in average vacancy durations

across skill categories, where low skill represents jobs for workers who have not completed

post-school education, medium skill represents jobs which require vocational training; and

high skill are jobs that require a university degree. Low-skill vacancies are filled in about a

month and a half and high-skill vacancies in about two-and-a-half months. Table 8 shows

that establishments end up receiving an average of 13 applications for their vacancies,

but Table 9 shows there is large variation across skill categories where low-skill vacancies

receive on average 10 applications and high-skill ones receive on average 20 applications.

Employers end up interviewing on average about only one quarter of these applicants.

Once again we observe large variation across skill categories such that establishments

33The data are held by the Institute for Employment Research (IAB), Regensburger Str. 104, 90478
Nuremberg, Germany. To access the data for replication purposes, please get in contact with Hermann
Gartner (hermann.gartner@iab.de).

34The manufacturing category encompasses (i) Nutrition, textiles, clothing, furniture; (ii) Wood, pa-
per, printing, publishing; (iii) Chemistry, plastics, glass, construction materials; and (iv) Machines, elec-
tronics, vehicles industries. The natural resources category encompasses the (i) Agriculture, forestry,
fishing; (ii) Metal, metal products; and (iii) Energy, mining industries. The other services category
encompasses (i) Finance, insurance; and (ii) Public administration industries.
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Table 8: Sample characteristics (JVS and IEB)

No. Obs Mean Std. Dev. No. Obs Mean Std. Dev.
Establishments (JVS)
Age (years) 68,440 17.366 12.473 Industry distribution 68,681
Size distribution 68,681 Manufacturing 0.083 0.139

< 20 0.698 0.459 Natural Resources 0.060 0.131
20− 49 0.176 0.381 Construction 0.107 0.309
50− 199 0.103 0.304 Trade and retail 0.184 0.388
200− 499 0.016 0.126 Hospitality 0.075 0.264
500+ 0.007 0.084 Commercial services 0.173 0.378

Restrictions 68,681 Transport, communication 0.059 0.235
Demand 0.117 0.322 Other private & public services 0.063 0.244
Financial 0.046 0.209 Social services 0.160 0.367
Workforce 0.169 0.375 Other services 0.158 0.186

Jobs (JVS)
Qualification requirements 57,432 Number of applications 50,356 13.333 19.741

Unskilled 0.168 0.374 Number of suitable applicants 47,773 3.839 4.479
Vocational training/Tech College 0.639 0.480 Number of interviews 22,767 3.517 3.051
Bachelor/Master/PhD 0.194 0.395 Paid higher wage than expected 72,709 0.116 0.321

Experience 59,785 Accepted lower experience 72,709 0.095 0.293
Long-term exp. 0.360 0.480 Accepted lower qualification 72,709 0.079 0.270
Leadership exp. 0.084 0.278 Number of channels 68,945 2.965 1.974

Vacancy duration (days) 49,049 59.503 59.273 Recruitment international 63,005 0.038 0.191

Workers (IEB)
Education 54,519,822 Labor market experience 54,519,822

Unskilled 0.103 0.304 Potential exp. (years) 17.741 10.856
Vocational training/Tech College 0.710 0.454 Establishment tenure (years) 7.424 8.590
Bachelor/Master/PhD 0.187 0.390

end up interviewing about 40% of the applicants for low-skill vacancies but only 20% of

applicants for high-skill ones.

Table 9: Sample characteristics by skill group (JVS)

Low skill Medium skill High skill
Mean St. dev. N Mean St. dev. N Mean St. dev. N

Vacancy duration (days) 43.915 54.167 5,874 59.387 59.145 32,986 73.173 60.248 9,127
Number of applicants 9.793 16.278 5,917 12.392 18.506 34,214 19.562 24.663 9,296
Number of suitable applicants 3.459 4.381 5,533 3.628 4.213 32,487 4.856 5.217 8,928
Number of interviews 3.750 3.688 3159 3.330 2.863 15,131 3.849 2.921 4,069
Paid higher wage than expected 0.075 0.263 7,798 0.152 0.359 41,746 0.155 0.362 10,952
Accepted lower experience 0.096 0.294 7,798 0.110 0.313 41,746 0.083 0.276 10,952
Accepted lower qualification 0.089 0.284 7,798 0.098 0.298 41,746 0.048 0.215 10,952
Number of search channels 3.414 2.389 7,534 3.405 2.123 40,321 3.611 2.015 10,709
Recruitment international 0.085 0.279 7,142 0.039 0.195 36,118 0.088 0.283 9,261

In terms of the usage of recruitment policies, Table 8 shows that about 10% of all

establishments in our sample report using wages and/or lowering hiring standards to fill

their jobs with large variation across skill categories, where 20% of employers end up

offering a higher wage when filling high-skill jobs but only 7% of them when filling low-
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skill ones. Although not shown in these tables, we find that about 80% of establishments

that report hiring a worker with lower qualifications also report hiring a worker with

lower experience than expected. Among those establishments who report reducing hiring

standard about 20% of them also report paying more than expected. Establishments use

about three search channels on average with little variation across skill categories. The

more search channels they use, the more frequently they report to pay more than expected

(the fraction increases monotonically from 9% for establishments using only one channel

up to 55% for those that use 12 channels). A similar relationship holds for reducing hiring

standards (6% in establishments using one channel and 36% in establishments using 12

channels).

Worker information from the IEB is presented at the bottom of Table 8. It refers to

the education and experience characteristics of those workers who were employed in JVS

establishments during the sample period. Overall, this information suggests that workers

employed in JVS establishments exhibit education and experience characteristics that are

similar to those found in the general labor force.

A.2 Composition of Hires

Figure 6 shows to what extent the composition of hires changes when the establishment’s

employment growth rate varies from zero to 30 percent. Fast-growing establishments hire

slightly more unemployed workers and more females. There is no evidence, however, that

these establishments hire more foreign workers, workers above 50 years of age or from

long-term unemployed.

A.3 Relationship Between Hiring Rates and Recruitment Policies in the JVS

Regression coefficients. Table 10 presents the regression coefficients of the hiring

rate that are behind Figures 2-4. The first column of each regression reports the hiring

rate coefficients without further controls; the second column reports the coefficients also

controlling for year dummies, establishments’ industry, (five) size categories, age, the job’s

1-digit occupation, three levels of skill requirements, dummies for long-term experience

and leadership requirements, and a dummy for whether this was a newly created job or

not. In all cases we use the zero hiring bin as the baseline category.

Excluding zero hires and removing the smallest establishments. Figure 7 and

Figure 8 show the relationships between the establishment hiring rate and the three main

recruitment indices ŵ, s, e as defined in Section 2, where we either exclude all observations
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Figure 6: Shares of hires by 30-day establishment growth

with zero hires or where we remove the smaller establishments with less than 20 workers.

The main insights presented in Figures 2-4 remain: Establishments with larger hiring

rates exert more effort, pay more generous wages and reduce their hiring standards.

(a) Wage generosity
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Figure 7: Variation of the main recruitment indices (with zero hires observations removed).

A.4 Vacancy Yields Across Labor Markets

The results presented in Table 1 show using OLS regressions of vacancy yields across

labor markets that coefficients on wage generosity and search effort are positive while

the one on hiring standards is negative. These relationships are statistically significant
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Table 10: Recruitment policies and hiring rates - Regression coefficients

Wage concessions IEB - Wage premium Wage generosity Number of channels Geographic Search
Hiring bin (max)
0.015 -0.036∗∗∗ -0.0094 0.0036 -0.003 0.018 0.0026 0.7869∗∗∗ 0.0625 -0.0056 -0.0149∗∗∗

0.02 -0.0308∗∗∗ -0.0112 -0.0014 -0.0065 0.037 0.0193 0.7512∗∗∗ 0.0557 -0.0019 -0.0065
0.03 -0.0199∗∗∗ -0.0042 0.0008 -0.0109 0.0523 0.0162 0.6479∗∗∗ 0.1454∗∗∗ 0.005 -0.0007
0.04 -0.0077 0.0091 0.0117 -0.0032 0.0897∗∗∗ 0.0561∗ 0.6078∗∗∗ 0.1574∗∗∗ 0.0035 -0.0042
0.05 -0.0026 0.0095 0.0151 -0.0028 0.1045∗∗∗ 0.0515 0.6348∗∗∗ 0.2096∗∗∗ 0.0108∗∗∗ 0.0032
0.075 0.004 0.0118∗∗∗ 0.0239∗∗ 0.0023 0.135∗∗∗ 0.0682∗∗ 0.5945∗∗∗ 0.281∗∗∗ 0.0157∗∗∗ 0.0088∗∗∗

0.1 0.017∗∗∗ 0.0266∗∗∗ 0.0371∗∗∗ 0.0122 0.1799∗∗∗ 0.1116∗∗∗ 0.5782∗∗∗ 0.2905∗∗∗ 0.017∗∗∗ 0.0095∗∗∗

0.125 0.0275∗∗∗ 0.0291∗∗∗ 0.0366∗∗∗ 0.0133 0.2181∗∗∗ 0.1299∗∗∗ 0.6091∗∗∗ 0.3878∗∗∗ 0.0229∗∗∗ 0.0118∗∗∗

0.15 0.0176∗∗∗ 0.0223∗∗∗ 0.049∗∗∗ 0.0212∗ 0.2122∗∗∗ 0.1258∗∗∗ 0.6725∗∗∗ 0.4256∗∗∗ 0.034∗∗∗ 0.0214∗∗∗

0.175 0.0246∗∗∗ 0.0258∗∗∗ 0.0672∗∗∗ 0.0434∗∗∗ 0.2667∗∗∗ 0.1862∗∗∗ 0.6198∗∗∗ 0.4234∗∗∗ 0.02∗∗∗ 0.007
0.2 0.0282∗∗∗ 0.0302∗∗∗ 0.0615∗∗∗ 0.0378∗∗∗ 0.2964∗∗∗ 0.2241∗∗∗ 0.6595∗∗∗ 0.4332∗∗∗ 0.0372∗∗∗ 0.0182∗∗∗

0.25 0.0436∗∗∗ 0.0425∗∗∗ 0.07∗∗∗ 0.0393∗∗∗ 0.2944∗∗∗ 0.186∗∗∗ 0.5891∗∗∗ 0.4422∗∗∗ 0.046∗∗∗ 0.0309∗∗∗

Controls X X X X X
Constant 0.1108∗∗∗ 0.0442∗∗∗ -0.0995∗∗∗ -0.0557∗∗∗ -0.1578∗∗∗ -0.1237∗∗ 2.5305∗∗∗ 0.9029∗∗∗ 0.0255∗∗∗ 0.0527∗∗∗

R2 0.003 0.0515 0.0097 0.0206 0.0152 0.0471 0.0217 0.1033 0.0054 0.0406
N obs 68,681 59,268 29,637 22,626 25,788 22,626 65,209 57,347 59,365 51,242

Search effort Qualification Mismatch Experience Mismatch IEB - Selectivity Selectivity (JVS+IEB)
Hiring bin (max)
0.015 0.2083∗∗∗ -0.0098 -0.0435∗∗∗ -0.0075 -0.0433∗∗∗ -0.0124 -0.0027 -0.0194 -0.0405 -0.0426
0.02 0.2∗∗∗ -0.0037 -0.0377∗∗∗ -0.0031 -0.0374∗∗∗ -0.0096 -0.0024 -0.0138 -0.0476 -0.0367
0.03 0.1932∗∗∗ 0.0402∗∗∗ -0.0388∗∗∗ -0.0113∗∗ -0.0396∗∗∗ -0.0145∗∗∗ -0.0103 -0.0215∗ -0.0517∗ -0.0345
0.04 0.1781∗∗∗ 0.0364∗∗∗ -0.0265∗∗∗ -0.0013 -0.0224∗∗∗ -0.0004 -0.0209∗∗ -0.0339∗∗∗ -0.0937∗∗∗ -0.0739∗∗

0.05 0.2048∗∗∗ 0.0712∗∗∗ -0.016∗∗∗ 0.0052 -0.0203∗∗∗ -0.0003 -0.0267∗∗∗ -0.0403∗∗∗ -0.114∗∗∗ -0.0872∗∗∗

0.075 0.1972∗∗∗ 0.0947∗∗∗ -0.0133∗∗∗ 0.0015 -0.0073∗∗ 0.0052 -0.0134 -0.0294∗∗∗ -0.1223∗∗∗ -0.0861∗∗∗

0.1 0.1939∗∗∗ 0.0979∗∗∗ -0.0039 0.0098∗∗∗ -0.0083∗ 0.0036 -0.0157 -0.0326∗∗∗ -0.1522∗∗∗ -0.1103∗∗∗

0.125 0.2219∗∗∗ 0.1382∗∗∗ 0.0072 0.0209∗∗∗ 0.0045 0.0151∗∗∗ -0.0187∗ -0.0364∗∗∗ -0.1794∗∗∗ -0.1369∗∗∗

0.15 0.255∗∗∗ 0.1607∗∗∗ 0.0019 0.0135∗∗ -0.0012 0.0085 -0.0191∗ -0.0347∗∗∗ -0.1501∗∗∗ -0.0954∗∗∗

0.175 0.2162∗∗∗ 0.1322∗∗∗ 0.017∗∗∗ 0.0256∗∗∗ 0.0138∗∗ 0.0184∗∗ -0.0105 -0.0327∗∗ -0.1877∗∗∗ -0.1525∗∗∗

0.2 0.2643∗∗∗ 0.1621∗∗∗ 0.0173∗∗ 0.0227∗∗∗ 0.0334∗∗∗ 0.0384∗∗∗ -0.0121 -0.0265∗ -0.1882∗∗∗ -0.1268∗∗∗

0.25 0.27∗∗∗ 0.1931∗∗∗ 0.0248∗∗∗ 0.0256∗∗∗ 0.0246∗∗∗ 0.0266∗∗∗ -0.0094 -0.0335∗∗ -0.221∗∗∗ -0.1578
Controls X X X X X
Constant -0.1796∗∗∗ -0.5947∗∗∗ 0.0854∗∗∗ 0.0773∗∗∗ 0.1010∗∗∗ 0.0888∗∗∗ -0.0449∗∗∗ -0.0009 0.1458∗∗∗ 0.1103∗

R2 0.0182 0.1007 0.0039 0.0199 0.0031 0.0149 0.0003 0.007 0.0056 0.0158
N obs 65,209 57,347 68,681 59,268 68,681 59,268 29,144 22,343 25,446 22,343
Note: ∗-significant at a 10%, ∗∗-significant at a 5%, ∗∗∗-significant at a 1%.

(a) Wage generosity
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Figure 8: Variation of the main recruitment indices (only establishments with 20+ work-
ers).

for search effort and higher standards, but not for wage generosity. Table 11 shows that

a similar conclusion arises when controlling for market (i.e. skill×region) fixed effects.

Here, however, the relationship between search effort and vacancy yields across markets

is somewhat less strong. Further, comparing the coefficients of determination across
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columns, a similar picture arises as with the OLS regressions, where all three measures

improve the fit of the fixed effects regression in a similar magnitude as labor market

tightness which on its own generates an R2 = 0.056.

Table 11: Vacancy yields across labor markets

Fixed effects
θ - Market tightness -1.637∗∗∗ -1.427∗∗∗ -1.406∗∗∗ -1.411∗∗∗ -1.435∗∗∗ -1.396∗∗∗

(0.335) (0.338) (0.326) (0.337) (0.339) (0.329)

Search Effort 0.550∗∗∗ 0.406
(0.246) (0.249)

Hiring Standards -1.237∗∗∗ -1.140∗∗∗

(0.376) (0.329)

Wage Generosity 0.388 0.165
(0.250) (0.254)

Constant 2.238∗∗∗ 2.754∗∗∗ 2.737∗∗∗ 2.767∗∗∗ 2.710∗∗∗ 2.734∗∗∗

R2 0.056 0.113 0.136 0.134 0.132 0.151
Year dum. N Y Y Y Y Y
N obs 288 288 288 288 288 288
∗∗∗ p < 0.001; ∗∗ p < 0.05; ∗ p < 0.10. Standard errors in parenthesis.
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B. Closed-Form Model Solutions

For the parameterization used in Section 4, there are closed-form expressions for the firms’

policy variables:

x̃p = (b+ ρ)p−1 ,

λp =
[µm0(b+ ρ)1−αxα0p

α

(r + s+ δ)ρ(α− 1)

]1/(1−µ)

,

ep =
[ρ(1− µ)

ceγµ

]1/(γ−1)

· λ1/(γ−1)
p ,

Vp =
[ce(γ − 1)

cV Φ

]1/(Φ−1)

· eγ/(Φ−1)
p .

We can further obtain closed-form expressions for a number of cross-sectional statistics

where we make use of the following result.

Lemma: Let Xp = Apβ, for some parameters A, β, and let p be distributed with cdf

Π(p) = (p/p̄)η. Then the mean and the variance of Xp are

E(Xp) =
Aη

β + η
p̄β , var(Xp) =

β2

(2β + η)η
E(Xp)

2 .

Using this lemma and the above expressions, we obtain cross-sectional statistics for
the means of vacancies Vp, hires Hp = m(λp)(1 − G(x̃p))epVp and vacancy yields Hp/Vp
(all within a given local labor market):

E(Vp) =
(ce(γ − 1)

cV Φ

) 1
Φ−1 ·

(ρ(1− µ)

µceγ

) γ
(Φ−1)(γ−1) ·

( m0µ(b+ ρ)1−αxα0
ρ(r + s+ δ)(α− 1)

) γ
(Φ−1)(γ−1)(1−µ) ·

η

η + αγ
(Φ−1)(γ−1)(1−µ)

· p̄
αγ

(Φ−1)(γ−1)(1−µ) ,

E(Hp) =m0(
x0

b+ ρ
)α ·

(ce(γ − 1)

cV Φ

) 1
Φ−1 ·

(ρ(1− µ)

µceγ

) Φ+γ−1
(Φ−1)(γ−1) ·

( m0µ(b+ ρ)1−αxα0
ρ(r + s+ δ)(α− 1)

) γΦ
(Φ−1)(γ−1)(1−µ)

−1

·

η

η + αγΦ
(Φ−1)(γ−1)(1−µ)

· p̄
αγΦ

(Φ−1)(γ−1)(1−µ) ,

E(Hp/Vp) =m0(
x0

b+ ρ
)α ·

(ρ(1− µ)

µceγ

) 1
γ−1 ·

( m0µ(b+ ρ)1−αxα0
ρ(r + s+ δ)(α− 1)

) 1−µ+µγ
(γ−1)(1−µ) · η

η + αγ
(γ−1)(1−µ)

· p̄
αγ

(γ−1)(1−µ) .

Integrating over Vpepλp for all firms, we further obtain an expression for aggregate un-

employment

U =
(ce(γ − 1)

cV Φ

) 1
Φ−1 ·

(ρ(1− µ)

µceγ

) Φ+γ−1
(Φ−1)(γ−1) ·

( m0µ(b+ ρ)1−αxα0
ρ(r + s+ δ)(α− 1)

) γΦ
(Φ−1)(γ−1)(1−µ) ·
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η

η + αγΦ
(Φ−1)(γ−1)(1−µ)

· p̄
αγΦ

(Φ−1)(γ−1)(1−µ) .

The above expressions make clear that parameters ce, m0, x0 and p̄ affect the means of

these variables in the same way, so that they cannot be separately identified from aggregate

statistics. Indeed, all four expressions above depend on these parameters through the term

c−1
e

(
m0x

α
0 p̄

α
) γ

1−µ
.

Hence, parameters ce, m0, x0 and p̄ influence the vacancy yield, aggregate vacancies,

aggregate unemployment and aggregate hires with the same log-linear proportions, so

that only one of these parameters can be identified from the above data targets. To obtain

intuition for this result, a lower value of x0 (less productive workers on the job) requires

a higher productivity of firms p̄ to generate the same number of hires, unemployment,

vacancy yield etc. A lower matching efficiency m0 requires a higher value of (x0p̄)
α to

compensate for a lower meeting rate with a higher selection probability so as to end up

with the same number of hires, unemployment, vacancy yield, etc. The reason why ce

cannot be separately identified is that a higher value of ce reduces recruitment effort e,

and thus hires, unemployment etc. in the same proportion as a decrease of either m0 or

(x0p̄)
α would do.

Because employment in projects of productivity p is Hp/(s+δ), aggregate employment

is simply E(Hp)/(s+ δ). The job-finding rate is given by aggregate hires per unemployed

worker which simplifies to

E(Hp)

U
=
ρ(r + s+ δ)(α− 1)

µ(b+ ρ)
.

Regarding wages, the model neither pins down wage-tenure profiles nor the variation of

wages across workers within the same firm. Assuming that individual wages are constant

over time, they need to satisfy (see (9) and (15))

ρ(r + s+ δ) =
m(λp)

λp

∫
x̃p

w(x)− b− ρ dG(x) = m′(λp)

∫
x̃p

px− b− ρ dG(x) .

One wage schedule which is compatible with this condition and which also satisfies the

limited commitment constraint that neither the firm nor the worker would dissolve the

contract ex-post is

wp(x) = (1− µ)(b+ ρ) + µpx ,
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where µ is the constant matching function elasticity.35 Because expected match-specific

productivity is E(x|p) = αx̃p/(α− 1), the mean wage in projects with productivity p is

E(w|p) = (b+ ρ)
α + µ− 1

α− 1
.

Output per worker (productivity) in such a project is

E(px|p) = (b+ ρ)
α

α− 1
.

Because more productive projects employ less productive workers, average productivity

and wages in all projects (and all firms) are identical.

35If the firm would provide perfect insurance to its applicants against realization of x, it would offer
the same wage to all workers which is then w(x) = w = (b + ρ)(α + µ − 1)/(α − 1). Alternatively, the
log-linear schedule w(x) = px(α + µ − 1)/α also satisfies the above condition. Both alternatives either
violate limited-commitment constraints on either the worker (who prefers to quit when w < b+ ρ) or the
firm (which prefers to layoff the worker ex-post if w > px).
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