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Abstract 

Epidemiological models assume gravity-like interactions of individuals across space without 
microfoundations. We combine a simple epidemiological frame-work with a dynamic model of 
individual location choice. The model predicts that flows of people across space obey a structural 
gravity equation. By means of an application to data from Great Britain we show that our 
structural-gravity framework: provides a rationale for quarantines; offers a clear mapping from 
observed geography to the spread of a disease; and makes it possible to evaluate the welfare 
impact of (expected and unexpected) mobility restrictions in the face of a deadly epidemic. 
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1 Introduction

The Covid-19 epidemic has thrust epidemiological models into the limelight. The
“Imperial College study” (Ferguson et al., 2020) received widespread public atten-
tion, and is credited with having changed the UK Government’s stance on slowing
the spread of the disease. Economists have started to integrate macroeconomic and
epidemiological models in order to analyse jointly the economic and public-health
impacts of different government interventions.1

Disease transmission models such as the one used in Ferguson et al. (2020) assume
that people interact across space in inverse proportion to (relative) distance.2 The
epidemiological literature explicitly refers to this as a “gravity” assumption.3 However,
the functional forms assumed do not have a choice-theoretic microfoundation and are
calibrated from available mobility data in an ad hoc manner. This precludes a formal
welfare analysis of prominent interventions, such as mobility restrictions, on the basis
of these models. Meanwhile, the first economic models of the epidemic have combined
fully microfounded models of the macroeconomy with epidemiological frameworks
by introducing somewhat arbitrary assumptions about how the disease transmission
is affected by economic activity.4 This introduces new macro parameters that are
difficult to calibrate with any degree of confidence.

In the present paper, we show that economists already possess a toolkit for im-
proving on both approaches: structural-gravity modelling. Structural gravity models
are now common in international trade, where they are used to study the observed
pattern of economic interactions across space and to assess the impact of trade-policy
changes. They have provided simple microfoundations to explain why certain types
of data − such as trade, migration or commuting flows − exhibit “gravity” patterns.
There exist well-understood empirical approaches for estimating the impact of geo-
graphy on interactions consistently with these models. Moreover, such models share
convenient properties that make it easy to analyse the welfare impact of barriers that
restrict interactions across space.

By way of illustration, we combine a simple epidemiological framework − the SIR
model (Kermack and McKendrick, 1927) − with a basic dynamic model of individual
location choice. The model makes assumptions that ensure that flows of people across
space obey a structural gravity equation. To demonstrate the uses of our structural-
gravity SIR framework, we calibrate it to match regional mobility patterns from

1See Atkeson (2020), Beenstock and Dai (2020), Eichenbaum et al. (2020), González-Eiras and
Niepelt (2020).

2See the supplementary information of Ferguson et al. (2005) for a full description of the model,
and Ferguson et al. (2006) for a discussion of its calibration to UK data.

3A detailed discussion can be found in Xia et al. (2004).
4For example, both Eichenbaum et al. (2020) and González-Eiras and Niepelt (2020) simply

introduce the macro-level assumption that the infection rate of the disease is a positive function of
economic activity.
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British census data. We then use it to simulate the course of an epidemic, inspired
by the properties of Covid-19, under different regional quarantine scenarios.

In the model, temporary mobility restrictions reduce welfare but also slow the
spread of a disease. As a result, the model captures the welfare trade-off inherent
in the imposition of quarantines in a microfounded fashion. Moreover, it highlights
key parameters that govern this trade-off and could be estimated from micro data. A
suggestive welfare analysis shows that quarantines are welfare-enhancing for reason-
able parameter values. It also indicates that such quarantines may be more effective
if imposed early, and if they are not anticipated by the public.

Our work borrows a number of insights from the international-trade literature.
Anderson (1979) and Anderson and vanWincoop (2003) pioneered the use of structural-
gravity models in international trade. We estimate our model using the Poisson
Pseudo-Maximum Likelihood (PPML) estimator which was introduced by Santos-
Silva and Tenreyro (2006) and ensures a straightforward, theory-consistent estimation
of structural gravity models (Fally, 2015). Our structural mobility gravity equation
is microfounded using the same choice-theoretic assumptions that underpin the trade
gravity equation derived by Eaton and Kortum (2002). As a result, it shares the
common welfare properties of this class of models, first pointed out by Arkolakis et
al. (2012).

We are not the first to apply structural-gravity modelling in the context of regional
mobility. McFadden’s (1974) classic study of urban travel demand exploits assump-
tions that are closely related to the microfoundation of gravity by Eaton and Kortum
(2002). Anderson (2011) shows that structural-gravity models can be used in the con-
text of migration flows. Most recently, Monte et al. (2018) use a structural-gravity
model to analyse US commuting patterns. However, to the best of our knowledge,
ours is the first dynamic structural-gravity model that can be used to simulate re-
gional mobility patterns at high frequencies.

2 Model

2.1 Pre-infection Economy

We begin with a description of the model economy before the arrival of an epidemic.

2.1.1 Assumptions

There are n = 1, ..., N locations. Let Lnt denote the mass of people who spend t in
location n. For simplicity, we will refer to it as the population of n in t. The total
population L =

∑
n Lnt is fixed, and there is no aggregate uncertainty. We will think

of a period t as representing one day.
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The decision problem of person in location n at the start of day t can be repres-
ented by the Bellman equation

Vt (n) = max
n′∈N

{
ln

[
un′

δnn′t
zn′t (n)

]
+ βEt [Vt+1 (n′)]

}
, (1)

where β ∈ (0, 1) denotes the discount factor; un′ > 0 is a location-specific, constant
flow of utility; δnn′t ≥ 1 represents the cost of moving from location n to location
n′, with δnnt = 1 for all n; and zn′t (n) is a preference shock realised prior to an
individual’s location choice each t.

The location parameter un is a shortcut to the inherent characteristics that make
a place attractive, such as its local labour market or the quality of local amenities.5

In our analysis, the moving cost δnn′t will reflect bilateral travel costs that vary across
places as a result of geography, but are normally constant across time. However, we
will consider scenarios in which this moving cost becomes temporarily prohibitive as
a result of expected or unexpected government interventions (“quarantines”).

The preference shock zn′t (n) captures idiosyncratic reasons why an individual may
want to move from n to n′ on any given day. It is drawn from the Fréchet distribution

Fnn′ (z) = e−ωnn′z
−θ
, (2)

where ωnn′ > 0, ωnn = 1 for all n, and θ > 0.

2.1.2 Bilateral Flows

The share of people in location n at the start of t who will find it optimal to move to
n′ is

mnn′t =
(τnn′t/vn′t)

−θ∑N
n′=1 (τnn′t/vn′t)

−θ , (3)

where τnn′t ≡ ω
− 1
θ

nn′δnn′t aggregates preferences and travel costs into an overall bilateral
mobility barrier, with τnnt = 1 for all n;

vnt ≡ un

[
eγ

N∑
n′=1

(τnn′t+1/vn′t+1)−θ
]β
θ

, (4)

and γ is the Euler-Mascheroni constant. A proof is provided in the online Appendix
Section A.1.1.

The share mnn′t depends negatively on the mobility barrier between n and n′

(relative to all bilateral barriers), and positively on the “place value” of n′, vn′t (relative
to all place values). In turn, the place value of any n comprises the fundamental flow

5For simplicity, we assume throughout that un is constant at short time horizons.
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utility offered by n, un, as well as an index of connectivity,
[∑

n′ (τnn′t+1/vn′t+1)−θ
]1/θ

,
reflecting the attractiveness of the locations to which n offers access going forward.

The functional form of mnn′t implies that we can write the flow of people between
locations n and n′ on day t as

mnn′tLnt−1 =

(
τnn′t
Pn′tOnt

)−θ
Ln′tLnt−1, (5)

where

Pn′t ≡

[
N∑
n=1

(
τnn′t
Ont

)−θ
Lnt−1

]− 1
θ

, Ont ≡

[
N∑

n′=1

(
τnn′t
Pn′t

)−θ
Ln′t

]− 1
θ

, (6)

and Pnt and Ont are the so-called inward and outward multilateral resistance terms
(MRTs) of a location n, respectively.6

Equation (5) highlights that the flow of people between n and n′ can be expressed
as proportional to the product of the origin and destination populations, and inversely
proportional to bilateral mobility barriers relative to the MRTs. The shape parameter
of the Fréchet distribution emerges as the elasticity of bilateral flows with respect to
mobility barriers.

2.1.3 Welfare

We assume that mobility barriers pre-infection are (expected to be) constant: τnn′t =

τnn′ for all t. In this case, vnt = vn and mnn′t = mnn′ for all t.
Equation (4) can be re-written as

vn = u
1

1−β
n

[(
e−γmnn

)− 1
θ

] β
1−β

. (7)

Hence, variations in the connectivity index across locations in the pre-infection eco-
nomy can be captured empirically by variations in the share of people who stay in
their origin locations each period: places that provide easy access to many attractive
locations will be characterised by a smaller share of “stayers”.

Let Vt/L denote average welfare. In the online Appendix Section A.1.2 we show
that

Vt
L

=
1

1− β
∑
n

Lnt−1

L

(
−1

θ
lnmnn + lnun +

γ

θ

)
. (8)

Suppose a government were to announce a permanent quarantine unexpectedly
on day t, setting τnnt′ → ∞ for all t′ ≥ t. This would imply mnnt′ = 1 for all t′ ≥ t.
Based on equation (8), the welfare impact of such a scenario could be evaluated using

6See Head and Mayer (2014) for a proof.
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only information on the distribution of the population across locations {Lnt−1/L}n,
the share of “stayers” in each location, {mnn}n, and the mobility elasticity, θ. This
mirrors well-established results from the trade literature.7

2.2 An Epidemic Outbreak

We now model the course of an epidemic that arrives as an “MIT shock” in the form of
some initial infections across locations. We let Ĩn0 denote the mass of newly infected
individuals on the initial day 0, with Ĩn0 ≥ 0 and Ĩn0 > 0 for at least one n. Infections
carry no inherent disutility, but for the duration of an infection, individuals face a
probability πd of death. For parsimony, the only private and social cost of death is
the forgone utility of life.8

The dynamics of the epidemic follow a discrete-time version of the SIR model
of Kermack and McKendrick (1927): individuals in location n during day t that
have not yet contracted the disease are susceptible (Snt); individuals in n that are
currently infected (Int) create new infections among the susceptible in their location;
and some infected probabilistically join the recovered (Rnt), whereupon they can no
longer contract the disease.9

2.2.1 New Assumptions

As a result of the probability of death arising from the epidemic, the aggregate pop-
ulation is no longer constant. The population of each location is now made up of the
susceptible, infected and recovered, such that

Lt =
∑
n

Lnt =
∑
n

(Snt + Int +Rnt) . (9)

Each day, the new sequence of events is as follows:

1. All survivors in t find themselves in their location n.

2. Preference shocks {zn′t (n)} are realised.

3. Agents choose in which n′ to spend t.

4. A mass Ĩn′t = πsSn′tIn′t/Ln′t of the susceptible in n′ become newly infected.

5. The non-newly infected recover with probability πr and die with probability πd.
7See Arkolakis et al. (2012), Costinot and Rodríguez-Clare (2014), and Ossa (2015).
8This assumption is discussed more thoroughly in Hall and Jones (2007).
9See Allen (1994) for an in-depth treatment of a one-location, discrete-time SIR model.
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2.2.2 Bilateral Flows Revisited

Let mnn′t (S), mnn′t (I) and mnn′t (R) denote the bilateral movement propensities of
the susceptible, infected and recovered in the post-outbreak economy. In the online
Appendix Section A.2.2, we show that if πd → 0,

mnn′t (S)→ mnn′t (I)→ mnn′t (R) = mnn′t. (10)

Therefore, for small πd, the susceptible, infected and recovered in location n post-
outbreak behave (approximately) like the average person in location n of the pre-
infection economy. From now on, we will restrict our attention to epidemic outbreaks
characterised by πd ≈ 0. This allows us to make inferences about the (approximate)
behaviour of agents in the wake of an epidemic outbreak from pre-infection mobility
data in a straightforward way.

2.2.3 The Geographic Spread of the Epidemic

Assuming πd ≈ 0, we obtain

Sn′t+1 =
∑
n

mnn′t

(
Snt − Ĩnt

)
, (11)

In′t+1 =
∑
n

mnn′t

[
(1− πr) Int + Ĩnt

]
, Ĩnt = πs

IntSnt
Ln

, (12)

Rn′t+1 =
∑
n′

mnn′t (Rnt + πrInt) , (13)

In0 = Rn0 = 0, Sn0 = Ln0, Ĩn0 ≥ 0. (14)

We consider two types of scenarios. In the first, people continue to expect that
τnn′t = τnn′ for all t ≥ 0, as in the pre-infection economy. As long as they do,
mnn′t = mnn′ . In the second scenario, people expect {τnn′t}n′ 6=n,t>0 to vary as a result
of government action. Given values for {un}n and {τn′n}n′ 6=n consistent with the
observed pre-infection mobility patterns, {mn′nt}n,n′,t≥0 in the post-infection economy
can then be derived conditional on mobility-barrier expectations using equations (3)
and (4).

2.3 Mobility Barriers and Disease Spread: Two Special Cases

We briefly explore two special cases of the model, characterising the spread of the
disease under extreme assumptions about bilateral mobility barriers. These special
cases offer some intuition about the impact of mobility barriers − due to geography

7
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or government policy − on the course of an epidemic. We impose πd = 0 for the
remainder of this section.

2.3.1 Perfect Mobility

Suppose there are no mobility barriers: τnn′t = 1 for all n, n′, t. It is easy to show
that in this case mnn′ = Ln′/L for all n, n′.

It follows immediately from (12) that, irrespective of the distribution of initial
infections across n on day 0, infections will be proportional to local populations
from day 1 onwards. As a result, the behaviour of St ≡

∑
n Snt, It ≡

∑
n Int and

Rt ≡
∑

nRnt can be characterised completely independently of {Ĩn0}n.10

2.3.2 No Mobility

Suppose now there are prohibitive mobility barriers: τnn′t → ∞ for all n 6= n′, t. In
this case, the behaviour of St, It and Rt will reflect the weighted sum of Snt, Int and
Rnt across N autarkic “islands”. The spatial distribution of initial infections is now
essential.

For different values of t, Figure 1 plots (Int +Rnt) /Ln − the share of the pop-
ulation in n that has contracted the disease by day t − against the share of initial
infections in the population, Ĩn0/Ln. As can be seen from the figure, that relationship
is concave for all t. Therefore, unless Ĩn0/Ln =

∑
n Ĩn0/L for all n, the share of infec-

tions in the total population, It/Lt, will be smaller or equal than it would have been
under perfect mobility. In the case in which Ĩn0/Ln = 0 for some n it will be strictly
smaller forever. This illustrates the case for quarantines: mobility restrictions gener-
ally slow the overall spread of a disease in an economy, and they may even prevent
some infections all together.11

3 Data and Calibration

3.1 Data

3.1.1 Population, Migration and Commuting Flows from 2011 UK Census

To illustrate how our structural-gravity SIR framework can be put into action, we use
it to analyse the spread of a disease across local authorities in Great Britain (England,
Scotland and Wales). The properties of the disease are inspired by the Covid-19

10More details on this special case can be found in the online Appendix Section A.3.2.
11The concavity on display in Figure 1 is crucial to this argument. While the graph in the figure

is drawn for particular disease parameters, we show in the online Appendix Section A.3.3 that the
concave relationship is generic.
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pandemic. Crucially, they include a relatively small average daily probability of death
for the infected (see Section 3.2.2).

We rely on information on population, migration and commuting from the latest
UK Census, conducted in 2011.12 The data can be aggregated to the local-authority
level using concordances provided by the UK’s Office for National Statistics (ONS).
The boundaries of local authorities circumscribe areas administered by a single local
government, typically a local council. After aggregation, we obtain data for 378 local
authorities covering all of Great Britain. The median local-authority district had a
population of 130,000 in 2018, with 90% of local-authority populations in the range
of 60,000 to 360,000.

The 2011 Census reports information on all regular residents of an area in 2011
who lived at a different address one year prior. It also reports the location of an
individual’s usual place of residence and place of work in 2011. After aggregation
this allows us to compute, for any two local authorities A and B, what share of
residents of A moved to B permanently in 2010-11 and what share of residents of
A commuted for work to B in 2011. As we show in online Appendix Section B.1.1,
the corresponding bilateral flows of migrants and commuters exhibit strong gravity
features: both “naive” and structural gravity regressions capture a large share of the
variation in bilateral flows observed in the data.

3.1.2 Daily Bilateral Flows of People Between Local Authorities

We combine the Census migration and commuting data to calculate a daily flow of
people between any two local authorities. For migrants, we divide the 2010-11 figures
by 365 to obtain the daily flow. For commuters, we first “balance” flows to reflect that
commuting represents gross flows that do not cause a net change in local populations.
For example, if 60 people report commuting from A to B in 2011, and 40 people report
commuting from B to A, we put the potential number of people from each place who
could spend the day in the other at (60+40)/2=50. We then adjust for the fact that
commuters will travel between A and B only for half of the average workday. In our
example, this implies that on the average day (5/7−34/365)×50/2 people go for work
from A to B, and from B to A, where we assume that the average work week is 5
days and the average annual number of holidays is 34.

Adding average daily migrant and commuter flows thus constructed, we obtain our
final measure of the daily bilateral flow of people − including the shares of resident
populations that tend to stay within their respective local authorities on the average
day. This data is described in more detail in Section B.1.2 of the online Appendix.
Unsurprisingly, the bilateral daily flows inherit the gravity features of the underlying
variables used to construct it. This can be seen in Table 1.

12See Office for National Statistics (2015).
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[Insert Table 1 here]

Column (1) of Table 1 reports the results of a “naive” gravity regression of bilateral
flows on only size variables, distance measures and a constant term. Column (2)
reports the results of a structural gravity regression of the form

mnn′Ln = eΠn′+Ωn+φ1 ln distnn′+φ2contignn′εnn′ , (15)

where Πn′ is a place-n′-as-destination fixed effect, Ωn is a place-n-as origin fixed effect;
distnn′ and contignn′ are measures of geographic distance; and εnn′ is an error term.
Note that the sets of origin and destination fixed effects are not of full rank, so we
impose the restriction ΠN = 0 for an arbitrary benchmark local authority N . Both
the “naive” and structural gravity regressions are estimated in levels using Poisson
Pseudo-Maximum Likelihood (PPML). This makes it possible to accommodate the
fact that approximately 12% of daily bilateral flows between local authorities are zero.
It also allows us to leverage some convenient properties of the PPML estimator in
the context of structural gravity models, as discussed in subsection 3.2.1.

Columns (1) and (2) in Table 1 show that gravity-style regressions can account
for a large share of the observed variation in bilateral flows of people between local
authorities: both columns report very high values of R2. Moreover, column (2) reveals
a distance elasticity of −1.9 and shows that daily bilateral flows between contiguous
places are approximately (e.971 =) 2.6 times as large as between non-contiguous places.

3.2 Calibration

3.2.1 Bilateral Mobility Barriers and Relative Place Values

As shown in Fally (2015), the estimated fixed effects in a PPML specification of
equation (15) are consistent with the definition of the inward and outward MRTs in
equation (5) and the equilibrium constraints that these need to satisfy.13 In turn, this
implies that our structural gravity regression supplies us with two sets of parameter
restrictions of the form

v−θn
v−θN

= e−Π̂n , (16)

τ−θnn′ = (distnn′)
φ̂1
(
econtignn′

)φ̂2 . (17)

13Crucially, in our setting the estimation of (15) by PPML with place-destination and place-origin
fixed effects implies:

N∑
n=1

m̂nn′Lnt−1 = Ln′t, and
N∑

n′=1

m̂nn′Lnt−1 = Lnt−1.
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Equation (16) pins down the place value of any local authority n relative to the
benchmark local authority N , as a function of the destination fixed effects and the
benchmark’s population, and up to the value of θ. Equation (17) yields the level of
bilateral mobility barriers as a function of distance, the contiguity indicator, and the
coefficient estimates φ̂1, φ̂2, up to the value of θ.

These parameter restrictions imply daily bilateral movement propensities

m̂nn′ =
(distnn′)

φ̂1 (econtignn′ )
φ̂2 e−Π̂n′∑N

n′=1 (distnn′)
φ̂1 (econtignn′ )φ̂2 e−Π̂n′

. (18)

Note that m̂nn′ combines model-consistent estimates of the impact of geography on
bilateral mobility with model-consistent estimates of the relative attractiveness of
different destinations. This constitutes one of the key advantages of our structural-
gravity SIR framework: it provides a clear mapping from geographic observables and
regional mobility data into bilateral movement propensities that have choice-theoretic
microfoundations and ultimately shape the spread of a disease across space. Using
(7), (16) and (18), we can also back out the relative flow utilities associated with
different places for a given values of β and θ.

Descriptive statistics for the relative place values, mobility barriers and relative
flow utilities derived from our structural gravity regression can be found in the online
Appendix Section B.2.1.

3.2.2 Disease Parameters, Initial Infections and Initial Populations

We base our calibration of the disease parameters on the “Imperial College Study”
(Ferguson et al., 2020) that assessed the likely spread of the Covid-19 pandemic in the
UK and the US in the absence of public intervention as of 16 March 2020. Ferguson
et al. (2020) assume that the disease is characterised by a 6.5 day generation period,
with an average probability of death of 0.9% among the infected. In line with this, we
impose πd = .009/6.5 and πr = .991/6.5. In our model πs/πr represents the so-called
“r zero” of the disease. Based on initial evidence from the spread of the pandemic in
Wuhan, Ferguson et al. (2020) examine values of the “r zero” between 2.0 and 2.6.
We choose a value close to the middle of this range, setting πs = 2.2πr.

Official statistics on Covid-19 cases in the UK have been released since 9 March
2020. For our simulations, we seed initial infections at the local-authority level con-
sistent with the pattern of Covid-19 cases reported by the UK, Scottish and Welsh
Governments on 10 March 2020. The sources of this data, and distribution of cases,
are detailed in the online Appendix Section B.2.2. Ferguson et al. (2020) cite evid-
ence from China and repatriation flights suggesting that 40-50% of infections are not
identified as cases. To reflect this, and the relative initial scarcity of Covid-19 testing

11

http://www.zymek.eu/papers/C19SG_OA.pdf
http://www.zymek.eu/papers/C19SG_OA.pdf
http://www.zymek.eu/papers/C19SG_OA.pdf


in the UK, we assume that the number of cases reported at the local-authority level
on 10 March reflected 30% of actual infections, and set initial infection levels {Ĩn0}n
accordingly.

For expositional convenience, we set initial local-authority populations {Ln0}n to
equal the steady-state populations implied by {m̂nn′}n,n′ . However, these steady-state
populations are almost perfectly correlated with 2018 mid-year population estimates
for local authorities published by ONS.

3.2.3 Discount Factor, Mobility Elasticity and Value of Life

We set the discount factor to β = .961/365, implying an approximately 4% annual
discount rate as in Eichenbaum et al. (2020). Since θ is a crucial parameter in our
welfare analysis, we experiment with different values. However, in our baseline calib-
ration, we impose θ = 3.3 to reflect evidence on heterogeneity in location preferences
from US commuting data (see Monte et al., 2018).

Finally, equations (7) and (16) only pin down place values and flow utilities in
relative terms. We are thus free to select uN to determine the absolute values of
{vn, un}n. This “level” choice has no impact on individuals’ location decisions in
the model, but it translates into the average daily utility received by agents. By
assumption, the only utility consequence of an infection is the risk of death, and the
only cost of death is the forgone utility of life. Therefore, uN emerges as another
crucial parameter for the welfare trade-off between mobility restrictions and disease
control.

We perform our welfare analysis under two different calibrations of uN . In the
first, we make the conservative assumption that un′zn′t (n) /δnn′ reflects only the real
consumption of an agent from n who spends period t in n.14 We then set uN such that
average daily consumption is equal to $126, which corresponds to 2018 UK daily GDP
per capita in purchasing-power-adjusted US dollars. In the second calibration, we
assume that un′zn′t (n) /δnn′ reflects a broader notion of value of life, and set its average
daily value across the pre-infection population to $1040. Under the assumption of
a 4% annual interest rate, the latter calibration translates into an average value of
life of $9.3m − the economic value of life used by US public authorities, such as the
Environmental Protection Agency.

14This would be true under the following narrow interpretation of our model assumptions: all
agents produce a homogenous, perfectly tradable good and choose locations to maximise their pro-
ductivity in in t, given by un′zn′t (n) /δnn′ .
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4 Simulations

4.1 Baseline: “Do Nothing”

We first simulate the course of the epidemic in the absence of any public intervention:
a “do nothing” scenario. The resulting evolution of the shares of the susceptible,
infected and recovered in the total population of Great Britain, as well as the number
of deaths per day, are shown in Figure 2 (black lines). The share of the infected
peaks at 18,500 per 100,000 population on day 67. The number of deaths per day
peaks at 26 per 100,000 population on day 68. Over the entire course of the epidemic
494,000 people die, equivalent to 0.77% of the total population. 85% of the population
ultimately contract the disease.

While our model is considerably simpler than the model used in Ferguson et al.
(2020), it replicates the aggregate evolution of the Covid-19 epidemic envisaged in
their baseline scenario fairly closely. In Ferguson et al. (2020), British infections
and deaths in a “do nothing” scenario peak in late-May 2020, around day 70 in our
model. The number of deaths per day peaks at 22 per 100,000 population, with a total
number of deaths of 510,000 overall. In the long run, 81% of the British population
contract the disease.15

There is also a short time window during which the model can be evaluated
against actual data. After adopting a fairly light-touch approach to the containment
of Covid-19 initially, the UK Government imposed a lockdown on 23 March 2020.
In the online Appendix Section C.1, we compare the growth of infections reported
across the 9 main administrative areas of the British National Healthcare System
(NHS) during the 10-23 March period with the model-predicted growth of infections
in this regions during days 0-13. We find that model-predicted and observed growth
rates are strongly but by no means perfectly correlated.

4.2 Quarantine Scenarios

We now consider 3 regional-quarantine scenarios. In each scenario, the UK Govern-
ment requires the public not to leave their local-authority districts for 120 days.16

We choose 120 days because this period is sufficiently long for new infections to have
dropped to (almost) zero by its end in each simulation. In all cases, the government
commits publicly and credibly to the length of the quarantine. The scenarios only dif-
fer as to the date in which the quarantine is introduced, and whether the introduction
is expected by the public or not.

15See Ferguson et al. (2020), pp. 6-8 and Figures 1 and 2.
16However, people may continue to move freely within local authorities. This is much less restrict-

ive than the lockdown actually imposed by the UK Government on 23 March 2020.
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4.2.1 120-Day Regional Quarantine from t = 0

We first assume the quarantine is introduced as an “MIT shock” along with the
original outbreak on day 0. The resulting dynamics of the epidemic are shown in
Figure 2 (blue line). It is clear that the course of the epidemic is considerably milder.
Infections and deaths peak around the same time as in the baseline scenario, but at
much lower levels. In the long run, only 60% of the population contract the disease,
and a quarter of the baseline-scenario deaths are avoided.

The relative effectiveness of the day-0 quarantine stems from the fact that a consid-
erable number of local authorities are virus-free on day 0. With an instant quarantine,
residents of these local authorities never contract the virus. This can be seen in Fig-
ure 3 which compares the regional spread of the disease on day 30 of our simulations
across different scenarios. A comparison between panels A and B reveals the local
authorities which are “spared” infection as a result of the quarantine. The long-run
effect is a smaller share of the recovered and of deaths in the population.

4.2.2 Unexpected 120-Day Regional Quarantine from t = 13

We then assume that the quarantine is introduced as an “MIT shock” on day 13,
roughly corresponding to the timing of the UK Government’s lockdown. Figure 2
(maroon line) illustrates that this delayed quarantine is considerably less effective
than the day-0 quarantine: the long-run number of infections and deaths is the same
as in the baseline scenario. However, even the delayed quarantine achieves some
“flattening of the curve”: the peak of deaths and infections occurs later than in the
baseline, and the peak number of infections and deaths are somewhat lower.

Unlike on day 0, by day 13 the virus has reached all local authority districts.
However, the share of infections in local populations still varies considerably. As
shown in Section 2.3.2 mobility restrictions can still slow the spread of a disease in
such a setting. This gives rise to the “flattened” maroon curves in Figure 2. It is also
evident from a comparison of panels A and C of Figure 3: by day 30, the epidemic
has spread more evenly across local authorities if the government does nothing than
if a quarantine is unexpectedly introduced on day 13.

4.2.3 Expected 120-Day Regional Quarantine from t = 13

Finally, we assume that a quarantine is introduced on day 13, but that the public
expects its introduction from day 0. The green line in Figure 2 traces the resulting
course of the epidemic. However, it is obscured by the black line, since the course of
the disease is virtually the same as in the “do nothing” baseline.

The anticipation of a 120-day regional quarantine on day 13 undoes all “flattening”
benefits that would arise if the quarantine were introduced unexpectedly. The reason
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is that individuals re-optimise their locations during days 0-13. For the duration of the
quarantine, in which all movements across local-authority boundaries are ruled out,
locations with a low connectivity index in normal times gain in utility value relative
to locations with a high index. Therefore, there is some reshuffling of populations
from the latter to the former before day 13. With the initial conditions we impose
in Section 3.2.2, the incidence of infections in period 0 is relatively high in high-
connectivity places. Agents’ responses in anticipation of the quarantine thus spread
the epidemic around the country more quickly.

Panel D of Figure 3 gives some sense of the impact: 30 days into the simulation,
and 17 days after the imposition of a regional quarantine, the disease is spread more
evenly around the country than in any of the other three scenarios.

4.3 Welfare Comparison

In the wake of an epidemic outbreak, the introduction of a quarantine presents a
clear welfare trade-off: while mobility restrictions reduce social welfare in the short
run, they may delay − or even prevent − infections and deaths. An advantage of our
structural-gravity SIR framework is that it provides a tool to explore this trade off in
a parsimonious manner, conditional on the values of a well-specified set of parameters.

Here we proceed with a suggestive welfare assessment of the three quarantine
scenarios from Section 4.2 against the “do nothing” baseline. Needless to say, these
scenarios do not span the full set of conceivable policy interventions. Moreover, the
model we have outlined captures the fundamental trade-off between mobility and
disease control in a bare-bones fashion. For these reasons, our welfare analysis should
not be taken as the definitive assessment of plausible (or even likely) interventions
in the face of a Covid-19-style epidemic. Instead, they only serve to illustrate that
structural-gravity SIR can serve as a useful building block upon which to base such
assessments.

Table 2 reports log changes in welfare relative to baseline from introducing the
three quarantines described in Section 4.2. We report results for two different average
values of life (values of uN): $126 and $1040 per day, as discussed in Section 3.2.3.
We also vary the value the mobility elasticity, θ, between 2 and 10 with a baseline
value of 3.3. All other parameters are held constant.

Across different parametrisation, the table presents a consistent ranking of the
alternative scenarios: the instant quarantine significantly improves welfare relative to
“doing nothing”, while the delayed quarantine constitutes a marginal welfare improve-
ment. The expected delayed quarantine reduces welfare, as it introduces temporary
mobility restrictions without controlling the spread of the disease. If agents value
mobility less (higher values of θ), the welfare improvements from the instant and
delayed quarantines are larger. The same is true if the value of life is higher.
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5 Conclusion

We set out to show that insights from structural-gravity modelling may prove useful
in the emerging economics of epidemics. To this end, we build a bare-bones model
in which flows of people across space are governed by a structural gravity equation,
and contribute to the spread of a deadly disease. We demonstrate that the model can
be readily applied to real-world data, and captures the fundamental welfare trade-off
between mobility restrictions and disease control in a fully microfounded fashion.

Our simple framework could be generalised in a variety of ways to explore this
welfare trade-off more thoroughly. Such generalisations may include the incorporation
of a formally modelled production side (as in Eichenbaum et al. 2020), heterogeneous
agents (as in Acemoglu et al., 2020), or broader welfare costs of infections and hospital-
capacity constraints (as in Ferguson et al, 2020). With suitable modifications and the
right data, it may also form the basis of an analysis of mobility restrictions and disease
spread at the level of neighbourhoods and households, or at the level of countries.
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Dep. variable:

(1) (2)# persons from origin going to

destination on the average day

Ln distance (km) -1.925*** -1.907***

(0.015) (0.013)

= 1 if contiguous 0.977*** 0.971***

(0.057) (0.053)

Ln population in origin 0.502***

(0.029)

Ln population in destination 0.502***

(0.029)

Observations 142,884 142,884

Places 378 378

Adjusted R2 .997 .996

Fixed effects:

- Constant term Yes No

- Place-origin No Yes

- Place-destination No Yes

* p < .10; ** p < .05; ***p < .01;

Table 1: Gravity regressions on daily bilateral flows of people between GB local authorities

Regressions estimated with Poisson Pseudo-Maximum Likelihood (PPML). Robust standard errors
in parentheses. The dependent variable is the daily bilateral flow of people from the origin local
authority to the destination local authority. This flow is calculated on the basis of UK 2011 Census
data (see text for details). “Ln distance (km)” is the natural logarithm of the kilometre distance
between the geographic mid-points of the origin and destination local authorities; “= 1 if contiguous”
represents a dummy which takes value 1 if two local authorities share a common border, 0 otherwise;
“Ln population in origin/destination” is the natural logarithm of the resident population in the
origin/destination local authority.

Avg. value of life = $126 per day Avg. value of life = $1040 per day

θ

Quarantine in

θ

Quarantine in

t = 0 t = 13 t = 13 t = 0 t = 13 t = 13

(unexp.) (exp.) (unexp.) (exp.)

2 1.028 .021 -.017 2 1.489 .042 -.020

3.3 1.039 .032 -.013 3.3 1.500 .056 -.015

10 1.050 .043 -.008 10 1.51 .064 -.010

Table 2: Welfare assessments of different quarantine scenarios

The table shows the permanent log change in daily consumption the average agent would require from
day 0 to be compensated for the “do nothing” baseline being adopted over a particular quarantine
scenario. The required compensations are shown for different values of the mobility elasticity, θ,
and different values of the reference local authority’s utility flow, uN (resulting in different average
values of life). For details on the calibration, see Section 3.2. For details on the different scenarios,
see Sections 4.1-4.3.
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Figure 1: Share of population that has contracted disease in t against share of initial infections
The horizontal axis measures the infections seeded in a(n autarkic) location on day 0, as a percentage
of the location’s population. The vertical axis measures the number of people who have contracted
the disease by day t in that location, Int +Rnt, as a percentage of the location’s population. Graph
drawn using equations (11)-(14) for t = 5, 10, 30, 100, imposing πd = 0, πr = 1/6.5, πs = 2.2πr.
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Figure 2: Susceptible, infected, recovered and deaths per day under different scenarios
The top-left panel plots the susceptible per 100,000 population against time in days. The top-right
panel plots the infected per 100,000 population against time in days. The bottom-left panel plots
the recovered per 100,000 population against time in days. The bottom-right panel plots deaths per
day against time in days. All reported output represents Great Britain totals. Black line: baseline
“do nothing” scenario (see Section 4.1). Blue line: quarantine in t = 0 (see Section 4.2.1). Maroon
line: unexpected quarantine in t = 13 (see Section 4.2.2). Green line: expected quarantine in t = 13
(see Section 4.2.3).
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Figure 3: Infections per 100,000 population in t = 30 under different scenarios

Total number of infections at the local authority-level (Int) per 100,000 population in t = 30 for four
different scenarios. Panel A: baseline “do nothing” scenario (see Section 4.1). Panel B: quarantine
in t = 0 (see Section 4.2.1). Panel C: unexpected quarantine in t = 13 (see Section 4.2.2). Panel D:
expected quarantine in t = 13 (see Section 4.2.3). Note: Shetland Islands excluded.
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