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Abstract

We reexamine whether pre-Volcker U.S. fiscal policy was active or passive. To do so,

we estimate a DSGE model with monetary and fiscal policy interactions employing

a sequential Monte Carlo algorithm (SMC) for posterior evaluation. Unlike existing

studies, we do not have to treat each policy regime as distinct, separately estimated,

models. Rather, SMC enables us to estimate the DSGE model over its entire param-

eter space. A differentiated perspective results: pre-Volcker macroeconomic dynamics

were similarly driven by a passive monetary/passive fiscal policy regime and fiscal

dominance. Fiscal policy actions, especially government spending, were critical in the

pre-Volcker inflation build-up.
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1 Introduction

With the inevitable COVID-19 fiscal responses, the global sovereign debt level is set to rise

to a record high. The need to prevent situations in which debt becomes unsustainable puts

surprise inflation on the table as a policy option to reduce nominal debt. The preceding

financial crisis taught economists and policy makers alike that this is easier said than done.

Since 2009, for instance, the European Central Bank tries very hard to reach its inflation

target of close to two percent. Yet, euro-zone inflation is still lower. The looming recession

and the expected lower global aggregate demand due to the pandemic will apply additional

deflationary pressures. The fiscal theory of the price level (FTPL) suggests an alternative

way: in a situation in which the fiscal authority is not commited to stabilize debt by managing

the primary surplus and the monetary authority acts acommodatively, increasing government

spending could be an option to fight deflationary pressure (Leeper et al., 2017).1

Interestingly, for one historical episode, which is very instructive for all these aspects,

the debate about the monetary-fiscal policy mix is still unsettled. This episode is usually

referred to as the Great Inflation of the 1960s and 1970s in the U.S. In our study, we

revisit the role of fiscal policy for the Great Inflation to obtain insights for potential policy

options in the current economic crisis. We estimate a DSGE model with three distinct

monetary/fiscal policy regimes with a sequential Monte Carlo algorithm (SMC). Compared to

previous studies, which estimated each possible policy regime as a distinct model, employing

an SMC enables us to estimate the DSGE model over its entire parameter space. We find that

the macroeconomic dynamics during the pre-Volcker period were almost similarly driven by

a passive monetary/passive fiscal policy regime and fiscal dominance. Fiscal policy actions,

in particular government spending, played an important role in the build-up of pre-Volcker

inflation.

Meanwhile, the insight that monetary and fiscal policy are not independent from each

1Bianchi et al. (2020) propose a concrete policy that involves coordination between the monetary and
fiscal authorities in response to the COVID-19 pandemic.
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other and must be studied jointly has a long tradition in modern macroeconomics, going back

to Leeper (1991), Sims (1994), Woodford (1996), and Cochrane (2001). While an active pol-

icy authority is able to realize its agenda, the passive authority is reduced to accommodating

the actions of counterparts. The literature largely agrees that monetary policy in the pre-

Volcker period was passive. Clarida et al. (2000) and Mavroeidis (2010) estimate monetary

policy reaction functions. Lubik and Schorfheide (2004) consider a monetary DSGE model

that allows for indeterminacy, Boivin and Giannoni (2006) combine evidence from vector

autoregressive and general equilibrium analysis, while Coibion and Gorodnichenko (2011),

including the trend level of inflation in their study, arrive at a similar conclusion. However,

concerning the stance of fiscal policy, the evidence is mixed. Bhattarai et al. (2016), who

estimate a fixed-regime DSGE model with monetary and fiscal policy interactions, find that

the fiscal authority was passive and strongly increased taxes to debt. On the contrary, stud-

ies relying on regime-switching DSGE models like Davig and Leeper (2006), Bianchi (2012),

Bianchi and Ilut (2017), and Chen et al. (2019) mainly attribute the leading role in the

pre-Volcker period to the fiscal authority.

To shed more light on this classic debate, we revisit the role of U.S. fiscal policy during the

Great Inflation with a novel empirical toolkit. Specifically, the SMC algorithm, established

in the DSGE literature by Herbst and Schorfheide (2014, 2015), allows us to create new per-

spectives on an old question. Previous studies relying on Bayesian-estimated fixed-regime

DSGE models with distinct monetary/fiscal policy regimes, treated each regime as a differ-

ent model. To determine the prevailing policy mix, typically each regime was successively

imposed by estimating a restricted parameter space, draws from the corresponding posterior

density were generated by a Markov chain Monte Carlo (MCMC) algorithm, usually the

random walk Metropolis-Hastings algorithm (RWMH), and finally the fit of each model was

compared by a model selection criterion. We argue that employing an SMC algorithm for

drawing conclusions on the stance of monetary and fiscal policy is beneficial in three ways.

First, the SMC is able to deal with difficult posterior surfaces, an outcome that a priori can-
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not be excluded in the case of a DSGE model with monetary-fiscal policy interactions. Due

to this feature, the SMC enables us to estimate the DSGE model over its entire parameter

space such that the most likely policy regime is directly determined by the data. Second,

the SMC is amenable to parallelization and, thus computationally attractive, especially for

larger DSGE models. Third, the SMC can be easily initialized by taking independent draws

from the prior density. A time-consuming search for a mode is not necessary.

The remainder of this paper is as follows. Section 2 describes the DSGE model with

monetary-fiscal policy interactions. In Section 3, we outline how we estimate the model. We

iterate the status-quo in the empirical literature (RWMH posterior sampling) and explain

why SMC sampling is the superior approach for models with multiple regimes. In Section

4, we discuss the estimation results to determine the monetary-fiscal policy mix in the pre-

Volcker period. In the light of the estimation results, in Section 5 we examine what caused

the build-up of U.S.-inflation in the 1960s and 1970s. The final section concludes the study.

2 A DSGE model with monetary and fiscal policy in-

teractions

In this section, we outline the DSGE model with monetary-fiscal policy interactions, char-

acterize its distinct monetary-fiscal policy regimes, and present the solution method for the

model.

2.1 Model description

We use the DSGE model set up in Bhattarai et al. (2016). It features a complete description

of fiscal policy, a time-varying inflation and debt-to-output target, partial dynamic price

indexation, and external habit formation in consumption. Here, we only present the first-

order approximations of the model equations that determine equilibrium dynamics. For a

detailed analysis of the model’s characteristics, we refer the reader to the original study.
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Consumption behavior of households is given by the consumption Euler equation:

Ĉt =
ā

ā+ η
EtĈt+1 +

η

ā+ η
Ĉt−1 −

(
ā− η
ā+ η

)(
R̂t − Etπ̂t+1

)
+

ā

ā+ η
Etât+1−

− η

ā+ η
ât +

(
ā− η
ā+ η

)
d̂t,

(1)

where Ĉt is aggregate consumption, R̂t is the interest rate on government bonds, ât is the

growth rate of technology, π̂t is the inflation rate, and d̂t stands for preferences.2 The param-

eters ā and η denote the steady-state value of at and external habit formation, respectively.

The New Keynesian Phillips curve is denoted by

π̂t =
β

1 + γβ
Etπ̂t+1 +

γ

1 + γβ
π̂t−1 + κ

[(
ϕ+

ā

ā− η

)
Ŷt −

η

ā− η
Ŷt−1 +

η

ā− η
ât−

−
(

ā

ā− η

)(
1

1− ḡ

)
ĝt +

(
η

ā− η

)(
1

1− ḡ

)
ĝt−1

]
+ ût,

(2)

where Ŷt is aggregate output, ĝt represents the government spending-to-output ratio, and ût

can be interpreted as cost-push shock. The parameters β, γ, ϕ, and ḡ are, respectively, the

discount factor, the degree of price indexation, the inverse of the Frisch elasticity of labor

supply, and the steady-state value of government spending. Furthermore, κ := (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)
.

α stands for the degree of price rigidity in the economy and θ̄ for the steady-state value of

the elasticity of substitution between intermediate goods.

Monetary policy is characterized by the following rule:

R̂t = ρRR̂t−1 + (1− ρR)
[
φπ(π̂t − π̂∗t ) + φY (Ŷt − Ŷ ∗t )

]
+ εR,t. (3)

π̂∗t is the inflation target and Ŷ ∗t is potential output. The idiosyncratic monetary policy

2We define the log-linear deviation of a detrended variable from its corresponding steady state as X̂t =
lnXt − lnX̄. Only the fiscal variables b̂t = bt − b̄, ĝt = gt − ḡ, τ̂t = τt − τ̄ , and ŝt = st − s̄ are normalized by
output and linearized around their steady states.
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shock εR,t is assumed to evolve as i.i.d. N(0, σ2
R). The parameters ρR, φπ, and φY represent,

respectively, interest rate smoothing, responses to deviations of inflation from its target, and

responses to deviations of output from its natural level.

The fiscal authority sets lump-sum taxation by a rule:

τ̂t = ρτ τ̂t−1 + (1− ρτ )
[
ψb(b̂t−1 − b̂∗t−1) + ψY (Ŷt − Ŷ ∗t )

]
+ ετ,t. (4)

τ̂t stands for the tax-revenue-to-output ratio, b̂t is the debt-to-output ratio, and b̂∗t is the

debt-to-output ratio target. The non-systematic tax policy shock ετ,t is assumed to evolve

as i.i.d. N(0, σ2
τ ). The tax policy rule features tax smoothing (ρτ ), systematic reactions of

tax revenues to deviations of lagged debt from its target (ψb), and to deviations of output

from natural output (ψY ).

The government spending rule is modeled as

ĝt = ρgĝt−1 − (1− ρg)χY
(
Ŷt−1 − Ŷ ∗t−1

)
+ εg,t. (5)

ĝt stands for the government spending-to-output ratio. The exogenous shock to government

spending εg,t is assumed to follow an i.i.d.-process with N(0, σ2
g). ρg represents smoothing in

government purchases and χY is the response of government spending to the lagged output

gap. Under the assumption of flexible prices, the natural level of government spending is:

ĝ∗t = ρgĝ
∗
t−1 + εg,t. (6)

The government budget constraint is given by:

b̂t =
1

β
b̂t−1 +

b̄

β

(
R̂t−1 − π̂t − Ŷt + Ŷt−1 − ât

)
+ ĝt − τ̂t + ŝt. (7)

ŝt is the ratio of government transfers to output and the parameter b̄ is the steady-state

value of the debt-to-output ratio.
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The aggregate resource constraint is given by:

Ŷt = Ĉt +
1

1− ḡ
ĝt. (8)

The natural level of output is:

Ŷ ∗t =
η

ϕ (ā− η) + ā
Ŷ ∗t−1 +

ā

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t −

η

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t−1−

− η

ϕ (ā− η) + ā
ât.

(9)

Finally, six additional exogenous shocks drive economic fluctuations. They are all as-

sumed to evolve according to univariate AR(1) processes.

Preferences evolve as

d̂t = ρdd̂t−1 + εd,t with εd,t ∼ i.i.d. N(0, σ2
d). (10)

Technology evolves as

ât = ρaât−1 + εa,t with εa,t ∼ i.i.d. N(0, σ2
a). (11)

Markup shocks are assumed to follow

ût = ρuût−1 + εu,t with εu,t ∼ i.i.d. N(0, σ2
u). (12)

Government transfers are given by

ŝt = ρsŝt−1 + εs,t with εs,t ∼ i.i.d. N(0, σ2
s). (13)

The inflation target evolves as

π̂∗t = ρππ̂
∗
t−1 + επ,t with επ,t ∼ i.i.d. N(0, σ2

π). (14)
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The debt-to-output ratio target follows

b̂∗t = ρbb̂
∗
t−1 + εb,t with εb,t ∼ i.i.d. N(0, σ2

b ). (15)

2.2 Model solution under different policy regimes

A unique equilibrium of the economy arises if either monetary policy is active while fiscal

policy is passive (regime M) or monetary policy is passive while fiscal policy is active (regime

F). If both monetary and fiscal policy are passive multiple equilibria exist (indeterminacy).

No stationary equilibrium exists if both authorities act actively (explosiveness). The bound-

aries of the four distinct policy regimes can be characterized analytically in Bhattarai et al.

(2016)’s model. In particular, monetary policy is active if

φπ > 1− φY

(
1− β̃
κ̃

)
, (16)

where β̃ = γ+β
1+γβ

and κ̃ = (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)

(
1 + ϕ+ χY

1−ḡ

)
, while fiscal policy is active if

ψb <
1

β
− 1. (17)

We collect the parameters of the loglinearized model in the vector ϑ with domain Θ and

solve the system of equations for its state-space representation.3 Under determinacy (regime

F, regime M), we employ the solution algorithm for linear rational expectations models of

Sims (2002) which expresses the model solution as

zt = Γ∗1(ϑ)zt−1 + Ψ∗(ϑ)εt, (18)

where zt is a vector of state variables, εt is a vector of exogenous variables, while both Γ∗1

and Ψ∗ are coefficient matrices that depend on the model parameters collected in the vector

3More details on the implementation of the model solution are given in Appendix A.
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ϑ. Under indeterminacy, we apply the generalization of this procedure suggested by Lubik

and Schorfheide (2003, 2004):

zt = Γ∗1(ϑ)zt−1 +
[
Γ∗0,ε(ϑ) + Γ∗0,ζ(ϑ)M̃

]
εt + Γ∗0,ζ(ϑ)Mζζt. (19)

Under indeterminacy, the transmission of fundamental shocks εt is no longer uniquely deter-

mined as it depends not only on the coefficient matrix Γ∗0,ε, but also on the matrices M̃ and

Γ∗0,ζ . Second, an exogenous sunspot shock ζt, unrelated to the fundamental shocks εt, poten-

tially affects the dynamics of the model variables zt. This effect depends on the coefficient

matrices Γ∗0,ζ and Mζ .

3 Estimation strategy - rethinking the status quo

In this section, we present the empirical estimation of the model. Not only do we describe the

prior distributions and the dataset, we also illustrate the procedure for posterior sampling we

choose that makes our study distinct. The existing empirical studies that aim to determine

the prevailing monetary-fiscal policy mix in a DSGE model, rely exclusively on the RWMH

algorithm for posterior sampling.4 One caveat of the RWMH sampler is that its efficiency

deteriorates as the DSGE model increases in size. The RWMH sampler is inherently serial

and, hence, very slowly to converge. It can also get stuck at a local mode and, hence, fails

to explore the parameter space in its correct proportions. To circumvent this drawback, the

literature adopts the following approach. First, the model’s parameter space is restricted to

impose a distinct policy regime (regime F, regime M, or indeterminacy). Second, each of

these regimes is treated as a distinct model and is estimated separately with the RWMH.

Last, the best fitting is determined by a model selection criterion, usually marginal data

densities (MDD).

4In short, the RWMH is an iterative simulator that belongs to the class of MCMC techniques. Herbst
and Schorfheide (2015), for instance, explain the sampler in detail.
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Due to the model’s size and complexity, applying the RWMH over the entire parameter

space in one step is simply not feasible in our application. In comparison, our preferred

posterior sampler, the SMC algorithm, sends out many thousand particles at the same time

to explore the entire parameter space. As these particles are independent of each other, the

SMC can take advantage of parallelization. All these features make the SMC sampler the

more efficient choice for models with multiple regimes.

3.1 Prior distributions and calibrated parameters

In line with Bhattarai et al. (2016), we fix a few model parameters. We calibrate the inverse

of the Frisch elasticity of labor supply to ϕ = 1 and the steady-state value of the elasticity

of substitution between goods to θ̄ = 8, since they cannot be separately identified from the

Calvo parameter α. We also fix the parameters measuring the persistence of the time-varying

policy targets to ρπ = ρb = 0.995.

Table 1: Prior distributions

Prior
Parameter Range Distribution Mean SD 90 percent int.
Monetary policy
φπ, interest rate response to inflation R

+ N 0.8 0.6 [0.14, 1.84]
φY , interest rate response to output R

+ G 0.3 0.1 [0.16, 0.5]
ρR, response to lagged interest rate [0, 1) B 0.6 0.2 [0.24, 0.9]

Fiscal policy
ψb, tax response to lagged debt R N 0 0.1 [−0.16, 0.16]
ψY , tax response to output R N 0.4 0.3 [−0.1, 0.9]
χY , govt spending response to
lagged output

R N 0.4 0.3 [−0.1, 0.9]

ρg, response to lagged govt spending [0, 1) B 0.6 0.2 [0.24, 0.9]
ρτ , response to lagged taxes [0, 1) B 0.6 0.2 [0.24, 0.9]

Preference and HHs
η, habit formation [0, 1) B 0.5 0.2 [0.17, 0.83]
µ := 100(β−1 − 1), discount factor R

+ G 0.25 0.1 [0.11, 0.44]

Frictions
α, price stickiness [0, 1) B 0.5 0.2 [0.17, 0.83]
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Table 1: Prior distributions - continued

Prior
Parameter Range Distribution Mean SD 90 percent int.
γ, price indexation [0, 1) B 0.6 0.2 [0.24, 0.9]

Shocks
ρd, preference [0, 1) B 0.6 0.2 [0.24, 0.9]
ρa, technology [0, 1) B 0.4 0.2 [0.1, 0.76]
ρu, cost-push [0, 1) B 0.6 0.2 [0.24, 0.9]
ρs, transfers [0, 1) B 0.6 0.2 [0.24, 0.9]
σg, govt spending R

+ Inv. Gamma 0.1 4 [0.65, 0.24]
σd, preference R

+ Inv. Gamma 0.3 4 [0.19, 0.72]
σa, technology R

+ Inv. Gamma 0.5 4 [0.32, 1.17]
σu, cost-push R

+ Inv. Gamma 0.04 4 [0.026, 0.094]
σs, transfers R

+ Inv. Gamma 0.08 4 [0.052, 0.188]
σR, monetary policy R

+ Inv. Gamma 0.15 4 [0.098, 0.353]
στ , tax R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
σπ, inflation target R

+ Inv. Gamma 0.003 4 [0.002, 0.007]]
σb, debt/output target R

+ Inv. Gamma 0.05 4 [0.033, 0.118]

Steady state
a := 100(ā− 1), technology R N 0.55 0.1 [0.38, 0.71]
π := 100(π̄ − 1), inflation R N 0.8 0.1 [0.63, 0.96]
b := 100b̄, debt/output R N 35 2 [31.71, 38.3]
τ := 100τ̄ , tax/output R N 25 2 [21.73, 28.27]
g := 100ḡ, govt spending/output R N 22 2 [18.81, 25.31]

Indeterminacy
σζ , sunspot shock R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
Mgζ R N 0 1 [−1.64, 1.64]
Mdζ R N 0 1 [−1.64, 1.64]
Maζ R N 0 1 [−1.64, 1.64]
Muζ R N 0 1 [−1.64, 1.64]
Msζ R N 0 1 [−1.64, 1.64]
MRζ R N 0 1 [−1.64, 1.64]
Mτζ R N 0 1 [−1.64, 1.64]
Mπζ R N 0 1 [−1.64, 1.64]
Mbζ R N 0 1 [−1.64, 1.64]

Note: The Inverse Gamma prior distributions have the form p(x|ν, s) ∝ x−ν−1e−νs
2/2x2 ,

where ν = 4 and s is given by the value in the column denoted as “Mean”.

Table 1 specifies the prior distributions. They extend over a broad range of parameter
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values. As we initialize the SMC algorithm from the prior, we carefully tailored a prior that

results in realistic model implications, but nevertheless remains agnostic about the prevailing

policy regime.5 In the following, we discuss only the key parameters of our analysis.

Specifically, the policy parameters in the monetary and fiscal policy rule φπ and ψb play a

central role in our analysis as they determine the policy regime. For φπ, we choose a Normal

distribution restricted to the positive domain with an implied 90% probability interval from

0.14 to 1.84, while for ψb the interval extends from -0.16 to 0.16. Our choice is motivated by

the consideration to construct prior distributions that yield more or less equal probabilities

for regime F and indeterminacy. In particular, as we initialize the SMC algorithm from

the prior, we do not want to impose artificially a certain policy regime before confronting

the model with the data. The implied prior probabilities of the policy regimes presented in

Table 2 support our choice. Regime F and the indeterminacy regime receive almost identical

support.

Table 2: Prior probability of pre-Volcker policy regimes

Regime M Regime F Indeterminacy Explosiveness

Probability 20.27 29.94 28.83 20.96

Note: The prior probabilities of the policy regimes are obtained from a prior

predictive analysis. We drew ϑ 20,000 times from the priors specified in Table 1,

solved the model with each draw and computed the shares of each policy regime.

A second group of parameters we want to discuss are those necessary to characterize the

indeterminacy model solution. For the parameters in the matrix M , representing agents’

self-fulfilling beliefs, we choose priors centered around zero in order to let the data decide if

and how indeterminacy changes the propagation mechanism of the fundamental shocks. The

prior of the sunspot shock’s standard deviation σζ is also identical to Lubik and Schorfheide

5In Appendix B we show results from a prior predictive analysis. In particular, we take 20,000 draws
from the prior, simulate the model’s observables and plot these simulated time series against the actual data
from 1960:Q1 to 1979:Q2 that we use for estimating the model.
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(2004).

3.2 Data

We use the dataset of Bhattarai et al. (2016).6 We fit the loglinearized DSGE model to

six quarterly U.S. time series and estimate the model for the pre-Volcker sample 1960:Q1

to 1979:Q2. The list of observables includes output, inflation, nominal interest rates, the

tax-revenue-to-output ratio, the market value of the government debt-to-output ratio, and

the government spending-to-output ratio.

3.3 Sequential Monte Carlo posterior sampling

We calculate the likelihood function of the model solution over the determinacy and inde-

terminacy region of the parameter space as

p(Y |ϑ,M) = {ϑ ∈ ΘD}pD(Y |ϑ) + {ϑ ∈ ΘI}pI(Y |ϑ,M),

where Y is the relevant data and h(x) = {x ∈ X} is the indicator function that is one if

x ∈ X and zero otherwise. We are interested in the posterior density p(ϑ,M |Y ), which is

given by

p(ϑ,M |Y ) =
p(Y |ϑ,M)p(ϑ,M)

p(Y )
, where p(Y ) =

∫
p(Y |ϑ,M)p(ϑ,M)dϑdM . (20)

p(ϑ,M) stands for the prior density and p(Y ) represents the marginal data density.

Posterior inference in DSGE models relies on sampling techniques as the moments of

p(ϑ,M |Y ) cannot be characterized in closed forms. For our application, we choose the SMC

algorithm introduced to the DSGE literature by Creal (2007) then further enhanced and

6The dataset is downloadable from the supplemental material of their study https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHUWKM. More details on the
data and the corresponding measurement equations are given in Appendix C.
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theoretically justified by Herbst and Schorfheide (2014, 2015).7 Three considerations make

the SMC algorithm our preferred choice. First, the SMC is able to deal with difficult posterior

surfaces, an outcome that a priori cannot be excluded in the case of the DSGE model with

monetary-fiscal policy interactions. Due to this feature, neither are we are obliged to estimate

the model separately nor must we compare model fit across regimes. Rather, we let the SMC

algorithm explore the entire parameter space such that the probability of each policy regime

is directly determined by the data. Second, the SMC is amenable to parallelization and,

thus computationally attractive, especially for larger DSGE models. Third, the SMC can

be easily initialized by taking independent draws from the prior density. A time-consuming

search for a mode is not necessary.

The basic concept of the SMC relies on importance sampling, which means that the

posterior p(ϑ,M |Y ) is approximated by an easy-to-sample proposal, or source density. How-

ever, in the high-dimensional parameter space of DSGE models, good proposal densities

are difficult to obtain. That is why the SMC constructs proposal densities sequentially.

More precisely, the algorithm draws from a sequence of bridge densities that link a known

starting distribution with the targeted posterior density. A meaningful starting distribution

constitutes the prior p(ϑ,M). The bridge distributions, in contrast, differ in the amount of

information from the likelihood they contain. At each stage of the algorithm, an increment

of the likelihood is added to the proposal density. At the moment the full information from

the likelihood has been released, an approximation of the posterior is obtained. In particular,

the sequence of n distributions is given by

pn(ϑ,M |Y ) =
[p(Y |ϑ,M)]δnp(ϑ,M)∫

[p(Y |ϑ,M)]δnp(ϑ,M)dϑdM
, n = 1, ..., Nδ. (21)

We follow Herbst and Schorfheide (2014) and choose the tuning parameter δn as an increasing

sequence of values such that δ1 = 0 and δNδ = 1. The length of this sequence coincides

7Chopin (2002), Del Moral et al. (2006), and Creal (2012), among others, provide further details on SMC
algorithms.

14



with the number of importance samplers. At the first stage of the algorithm, p1(ϑ,M |Y )

is the prior density p(ϑ,M). At the last stage, the final proposal density pNδ(ϑ,M |Y )

constitutes the posterior p(ϑ,M |Y ). In particular, our tempering schedule {δn}Nδn=1 is given

by δn = (n− 1/Nδ − 1)λ. The tuning parameter λ determines how much information from

the likelihood is incorporated in each proposal density.

In a nutshell, the SMC draws in Nδ stages sequentially N parameter vectors ϑi, i =

1, ..., N from the proposal densities and assigns them with importance weights W̃ i. Each of

the i pairs (ϑi, W̃ i) is known as a particle, and the set of particles {(ϑi, W̃ i)}Ni=1 approximates

the density in iteration. Each stage of the SMC consists of three steps. First, in the correction

step of stage n, the particles of the previous stage {(ϑin−1, W̃
i
n−1)}Ni=1 are reweighted to correct

for the difference between pn−1(ϑ,M |Y ) and pn(ϑ,M |Y ). The second step, the selection step,

controls the accuracy of the particle approximation. Whenever the distribution of weights

becomes too uneven, systematic resampling restores a well-balanced set of particles. In the

last step, the mutation step, the particle values are propagated around in the parameter

space by MMH iterations of a RWMH algorithm with Nblocks random blocks. The particles’

new location determines the updated density pn(ϑ,M |Y ).8

To estimate the model, we choose the following tuning parameters for the SMC. We use

N = 20, 000 particles, Nδ = 600 stages, λ = 2.4, Nblocks = 10, MMH = 2. As suggested

by Herbst and Schorfheide (2014), λ is determined by examining the particle degeneracy

after the first piece of information of the likelihood was added to the prior density in n = 1.

We increased λ until at least 80% of the total number of particles (16,000) was retained.

To choose Nblocks and MMH , we monitored the acceptance rate in the mutation step in

preliminary runs. Nblocks = 10 and MMH = 2 ensured a stable acceptance rate of 25%

without down-scaling the proposal variance too much.

8A more detailed description of the SMC algorithm is given in Appendix D.
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4 The monetary-fiscal policy mix in the pre-Volcker

period

In this section, we summarize the estimation results and determine the monetary-fiscal policy

mix in the pre-Volcker period. We show two sets of estimation results. First, we show results

of estimations in which we restrict the parameter space and apply SMC sampling to estimate

each policy regime sequentially. The purpose of this exercise is to show (i) that the SMC

sampler is able to replicate the RWMH estimation results of Bhattarai et al. (2016), our

reference study, and (ii) that our prior specification does not affect the probability of policy

regimes in the posterior. Hence, potential differences in findings are driven neither by the

prior specification nor the sampling technique, but rather induced by restricting or not

restricting the parameter space. In a second step, we show and discuss the results of the

unrestricted estimation, our preferred approach. In the final discussion, we argue that the

SMC approach is able to reconcile the empirical findings of the fixed-regime and regime-

switching DSGE model literature, while also providing some intuition why restricting or not

restricting the parameter space during estimation matters.

4.1 Restricted estimation

Prior distribution as in Bhattarai et al. (2016)

To understand how changing the posterior sampler influences the estimation results, we

apply the SMC algorithm and replicate, in a first step, the study of Bhattarai et al. (2016).

For this exercise, we follow strictly the approach of Bhattarai et al. (2016). We use the same

dataset, and the same prior distributions.9 Only in terms of posterior sampling, we do not

rely on RWMH sampling, but apply the SMC algorithm instead. We restrict the parameter

space and estimate each policy regime 50 times with the SMC sampler.

9Appendix E contains the results of a prior predictive analysis for the prior specification of Bhattarai
et al. (2016). For details on this prior specification, we refer the reader to the Online Appendix of the original
study.
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Looking at the estimated marginal data densities of each regime, presented in Table 3, we

come to the same conclusion as Bhattarai et al. (2016): the U.S.-economy in the pre-Volcker

period was in the indeterminacy regime. In this estimation, regime F and regime M receive

no support from the data.10

Table 3: Log marginal data densities for each policy regime from restricted estimation

Regime M Regime F Indeterminacy

Log MDD -541.85 -537.54 -521.41

Note: The log marginal data density is obtained as a by-

product during the correction step of the SMC algorithm, see

Herbst and Schorfheide (2014) for further details. For each

regime, its mean is computed over 50 independent runs of the

SMC algorithm.

Figure 1 shows plots of the posterior densities of the policy parameters for regime F and

the indeterminacy regime.11 The mean estimates for the Taylor-coefficient φπ (regime F:

0.71; indeterminacy: 0.31) and ψb (regime F: -0.08; indeterminacy: 0.05) are in line with the

findings of Bhattarai et al. (2016). Hence, using the SMC instead of the RWMH algorithm

for posterior sampling does not influence the estimation results.

10The finding that monetary policy in the pre-Volcker period was mainly passive, is widely established in
the literature. Therefore, in the following, we focus our discussion entirely on the still open role of fiscal
policy and look exclusively on regime F and the indeterminacy regime.

11Appendix F.1 contains density plots of the remaining parameters as well al tables with estimated means,
standard deviations, and credible bands for all parameters. It also incorporates the configuration details
of the SMC algorithm for the restricted estimation. To make the results of the restricted estimation more
comparable to the unrestricted estimation, we transformed the policy parameters φ∗π and ψ∗

b to φπ and ψb.
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(b) Indeterminacy

Figure 1: Posterior densities of the policy parameters φπ and ψb for regime F and the
indeterminacy regime.

Prior distribution as in Section 3.1

In a next step, we conduct the restricted SMC estimation with the prior specification as

outlined in Table 1. One exception is the prior specifications for the policy parameters φπ

and ψb. To ensure that we completely impose a particular policy regime during estimation,

we follow again Bhattarai et al. (2016) and estimate the model with the reparametrized

policy parameters φ∗π and ψ∗b .
12

Table 4 shows the estimated marginal data densities of each regime. Also, with our

preferred prior specification, we come to the conclusion that in the U.S. in the pre-Volcker

period the indeterminacy regime receives the best support from the data.

12Appendix E contains the prior specification of the reparametrized policy parameters.
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Table 4: Log marginal data densities for each policy regime from restricted estimation

Regime M Regime F Indeterminacy

Log MDD -548.72 -542.72 -523.17

Note: The log marginal data density is obtained as a by-

product during the correction step of the SMC algorithm, see

Herbst and Schorfheide (2014) for further details. For each

regime, its mean is computed over 50 independent runs of the

SMC algorithm.

Figure 2 shows plots of the posterior densities of the policy parameters for regime F and

the indeterminacy regime.13 The shapes of the posterior densities are comparable to the

findings in the previous subsection. The mean estimates for the Taylor-coefficient φπ(regime

F: 0.54; indeterminacy: 0.11) and ψb (regime F: -0.02; indeterminacy: 0.05) change only

slightly. Hence, using our preferred prior specification together with SMC posterior sampling

does not influence the estimation results.
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(b) Indeterminacy

Figure 2: Posterior densities of the policy parameters φπ and ψb for regime F and the
indeterminacy regime.

13Appendix F.1 contains density plots of the remaining parameters, as well as tables with estimated
means, standard deviations, and credible bands for all parameters. It also contains the configuration details
of the SMC algorithm for the restricted estimation. To make the results of the restricted estimation more
comparable to the unrestricted estimation, we transformed the policy parameters φ∗π and ψ∗

b to φπ and ψb.
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4.2 Unrestricted estimation
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Figure 3: Prior and posterior densities of the policy parameters from the unrestricted esti-
mation. The blue bold line depicts the posterior density, the black line the prior density.

Figure 3 shows prior and posterior density plots of the estimated policy parameters from

the unrestricted estimation.14 Estimating the model over its entire parameter space clearly

changes the picture. The posterior densities of φπ and ψb display pronounced bimodalities

around the policy regimes. For φπ, the mode to the left of one corresponds to a passive

monetary authority, while the mode on the right corresponds to an active central bank.

The boundary of fiscal policy (ψb) lies around zero. The mode to the left of the boundary

corresponds to an active fiscal authority, the mode to the right to a passive fiscal authority.

It is also noticeable that the probability mass below each mode is unequally distributed.

To shed more light on the estimated monetary-fiscal policy mix, we present the posterior

14Appendix F.2 contains the density plots of the remaining parameters as well as tables with estimated
means, standard deviations, and credible bands for all parameters.
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probabilities of the policy regimes in the pre-Volcker period. As Table 5 shows, the dominant

regime in the pre-Volcker period is, at 43.54 %, the indeterminacy regime. However, with

36.81 % probability, regime F scores only slightly worse. Regime M receives the least support

from the data, at 19.65 %.15

Table 5: Posterior probability of pre-Volcker policy regimes

Regime M Regime F Indeterminacy

Probability 19.65 36.81 43.54

Note: To obtain the posterior probabilities, we solved the

model with each of the 20,000 particles and computed the

shares of each policy regime over 50 independent runs of the

SMC algorithm.

4.3 Discussion

Although the unrestricted estimation in Section 4.2 confirms, on average, the finding of

Bhattarai et al. (2016) that indeterminacy is the most likely regime pre-Volcker, we argue in

the following that regime F also matters for the macroeconomic dynamics in the pre-Volcker

period. First, in our analysis, regime F receives, at 36.81 %, considerable probability that is

only seven percentage points less than the, on average, dominant indeterminacy regime. Due

to this significant empirical support, regime F should not simply be neglected. Second, many

existing studies already convincingly discuss quantitative or narrative evidence for a leading

fiscal authority during particular periods in the pre-Volcker era. Sims (2011), for instance,

refers to the emerging primary deficits in the U.S. related to President Ford’s tax cuts and

rebates in 1975. Bianchi and Ilut (2017), in a regime-switching DSGE model, even provide

empirical evidence for fiscal dominance in the U.S. during the 1960s and 1970s, outlining the

15The finding that regime M receives some support in the data is in line with the findings of the regime-
switching DSGE model literature. For instance, Bianchi (2012) finds that an active monetary policy regime
was in place in the early 1960s. As we estimate the model over the sample 1960:Q1 to 1979:Q2, we pick up
this period.
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fiscal expansion due to the Vietnam War and Lyndon B. Johnson’s Great Society reforms.16

Neglecting this evidence is not constructive for the debate.

Our chosen SMC approach’s merit is that it can create new perspectives in a fixed-regime

model environment. As we can estimate the model over its entire parameter space, we remain

agnostic and strictly let the data determine each policy regime’s probability. In contrast, in

our application, RWMH sampling works only for a subset of the parameter space and, hence,

would force us to take a zero-one decision. After having estimated each policy regime and its

corresponding MDD separately, we would conclude that the indeterminacy regime receives

the best support by the data. The other policy regimes would not be considered. Instead,

our analysis allows us to draw a more nuanced conclusion: although indeterminacy was the

dominant regime throughout the 1960:Q1 to 1979:Q2 sample, regime F also mattered.

Why do the results from the restricted and the unrestricted estimation bring us to dif-

ferent conclusions? Section 4.1 shows that our main result is driven neither by the sampling

algorithm per se nor our prior specification. The only difference of our study compared to

Bhattarai et al. (2016) is that employing the SMC allows us to estimate the model over

its continuous parameter space. A model comparison of different, discrete regimes is not

necessary as the policy regimes’ probabilities are directly determined during estimation.

The fact that Bayesian model comparison methods suffer from limitations is, for instance,

discussed by Sims (2003) and Gelman et al. (2013). The authors argue that Bayesian model

comparison results must be treated with caution when a discrete collection of models is used

as a proxy for an actual continuous parameter space. The results from the unrestricted

estimation, as well as the findings of the regime-switching literature, however, imply that,

pre-Volcker, all three policy regimes were in place, although of varying durations. This

suggests that the assumption of a continuous parameter space, is, in our application, more

suitable than estimating and comparing three discrete models.

16Further references that provide evidence for fiscal dominance in the U.S. in the pre-Volcker period
include, among others, Davig and Leeper (2006), Bianchi (2012), or Chen et al. (2019). All these studies
employ regime-switching model frameworks.
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5 Revisiting the Great Inflation

The estimation in the previous section shows that the macroeconomic dynamics in the pre-

Volcker period are similarly driven by indeterminacy and fiscal dominance. In the light of

these results, we revisit one of the most pressing macroeconomic questions of this episode,

namely, what caused the Great Inflation. In a first step, we use our findings to carry out

a historical shock decomposition of pre-Volcker inflation. In a second step, we conduct a

counterfactual analysis to quantify the importance of fiscal policy actions in the run up of

inflation.

5.1 Shock decomposition

We partition the draws from the posterior according to the corresponding policy regimes

and conduct the historical decomposition for indeterminacy and regime F separately.

Figure 4 shows the results for the indeterminacy regime. In the indeterminacy regime,

pre-Volcker inflation was mainly driven by non-policy shocks, in particular, preference,

markup, and technology shocks.
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Figure 4: Contribution of each shock to inflation in the indeterminacy regime. The bold black
line shows observed inflation. The historical decomposition is conducted at the posterior
mean of the indeterminacy regime.

In regime F the picture looks different. Figure 5 summarizes the findings. Technology and

demand shocks played only a minor role in regime F. Instead, the mechanism of the FTPL

is clearly present: fiscal actions, government spending in particular, lead to the build-up of

inflation.
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Figure 5: Contribution of each shock to inflation in regime F. The bold black line shows
observed inflation. The historical decomposition is conducted at the posterior mean of regime
F.

5.2 Counterfactual analysis

To further elaborate the role of government spending for pre-Volcker inflation, we carry out

a counterfactual analysis. We set the contribution of government spending shocks in each

regime to zero and simulate inflation with the remaining shocks. Figure 6 shows the result.

In regime F, counterfactual inflation lies considerably below the observed time series. In the

indeterminacy regime, on the other hand, the difference between actual and counterfactual

inflation is almost negligible.

These results are instructive to evaluate policy measures that effectively brought down

pre-Volcker inflation . The Volcker action surely was one possible way to go. By raising

interest rates drastically, the central bank credibly signaled that it will take the lead role.
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Reagan complied and backed the monetary policy actions. As a result, the monetary-fiscal

policy mix switched to regime M. However, conditional on the results in Figure 6, an al-

ternative policy response crystallizes. Less consumption on the part of the fiscal authority

during the 1970s would have also reduced the government spending-to-output ratio and,

hence, countered the rising inflation.

Translating the experience of the Great Inflation to the ongoing economic disruption caused

by the coronavirus, we learn that monetary and fiscal policy actions have to be determined

jointly, independent of a looming deflationary or inflationary period.
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Figure 6: Evolution of inflation (in percentage points) without government spending shock in
indeterminacy regime and regime F. The counterfactual analysis is conducted at the posterior
mean of each policy regime.
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6 Conclusion

Was U.S. fiscal policy in the pre-Volcker period active or passive? We revisit this classic

question of modern macroeconomics with a novel empirical toolkit. Using an SMC algorithm,

we estimate a DSGE model with monetary-fiscal policy interactions over its entire parameter

space. Due to this methodological flexibility, our empirical findings are able to reconcile two

opposing strands in the literature: Similar to studies that rely on fixed-regime DSGE models,

we find that the indeterminacy regime dominates throughout the 1960:Q1 to 1979:Q2 sample.

However, in line with the regime-switching literature, we also find strong evidence for pre-

Volcker periods in which regime F was in place. Our analysis attributes fiscal policy an

essential role in the build-up of U.S. inflation. Drawing economic lessons for the current

COVID-19 pandemic, our analysis suggests that cleverly designed and coordinated active

fiscal policy actions could be an effective tool in mitigating the crisis.
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Appendix A Model solution

Appendix A.1 Implementation of the model solution

The linear rational expectation form of the DSGE model presented in Section 2 is given by

Γ0(ϑ)zt = Γ1(ϑ)zt−1 + Ψ(ϑ)εt + Π(ϑ)ηt. (22)

z is the vector of state variables, the vector ε includes the exogenous variables, and η is a

vector of expectation errors. To apply the solution algorithm of Sims (2002), we define, for

a generic variable x̂t, the corresponding one-step-ahead rational expectations forecast error

as ηx,t = x̂t −Et−1[x̂t]. In our application, the vectors of the general model form are defined

as:

zt = [ĉt π̂t ât R̂t d̂t Ŷt ĝt ût π̂
∗
t Ŷ

∗
t τ̂t b̂t b̂

∗
t ŝt ĝ

∗
t ĉt−1 π̂t−1 ĝt−1 Ŷt−1]′,

εt = [εg,t εd,t εa,t εu,t εs,t εR,t ετ,t επ,t εb,t]
′, and

ηt = [ηc,t ηπ,t]
′.

Appendix A.2 Transmission mechanism around the regime bound-

aries

Equation 19 illustrates that indeterminacy changes the nature of the solution in two dimen-

sions. First, the transmission of fundamental shocks εt is no longer uniquely determined as it

additionally depends on the matrix M̃ . Second, an exogenous sunspot shock ζt, unrelated to

the fundamental shocks εt, potentially affects the dynamics of the model variables zt. Thus,

indeterminacy introduces additional parameters.

We denote the standard deviation of the sunspot shock as σζ and normalize as Lubik and

Schorfheide (2004) Mζ to unity. Also in accordance with Lubik and Schorfheide (2004), we
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replace M̃ with M̃ = M∗(ϑ) + M to prevent that the transmission of fundamental shocks

changes drastically when the boundary between the determinacy regimes and the indeter-

minacy regime is crossed. Around this boundary, small changes in ϑ should rather leave

the propagation mechanism of structural shocks unaffected. That is why we choose M∗(ϑ)

such that the impulse responses ∂zt/∂ε
′
t become continuous on the boundary. Vector M , in

contrast, which determines the relationship between fundamental shocks and forecast errors,

is estimated. It can be interpreted to capture agents’ self-fulfilling beliefs and consists of the

following entries: M =
[
Mgζ ,Mdζ ,Maζ ,Muζ ,Msζ ,MRζ ,Mτζ ,Mπζ ,Mbζ

]
. For the parameters

in M , we choose priors centered around zero and, thus, strictly let the data decide how

indeterminacy changes the transmission mechanism of structural shocks.

To compute the matrix M∗(ϑ) that guarantees continuous model dynamics on the bound-

ary, we proceed in several steps. First, we construct for every parameter vector ϑ ∈ ΘI

(indeterminacy) a reparametrized vector ϑ∗ = g∗(ϑ) that lies on the boundary between

the indeterminacy and the determinacy regimes. Then, M∗(ϑ) is chosen by a least-squares

criterion such that the impulse responses ∂zt
∂ε′t

(ϑ,M) conditional on ϑ resemble the impulse

responses conditional on the vector on the boundary ∂zt
∂ε′t

(g∗(ϑ)). However, the DSGE model,

with monetary-fiscal policy interactions presented in subsection 2, gives rise to two different

determinate solutions (regime F and regime M) that are generally characterized by different

transmission mechanisms. To deal with this ambiguity, we proceed as follows:

1. For every ϑ ∈ ΘI we construct a vector ϑM = gM(ϑ) that demarks the boundary

between regime M and the indeterminacy regime and a vector ϑF = gF (ϑ) that lies

on the boundary to regime F. The function gM(ϑ) is obtained by replacing φπ in the

vector ϑ with

φ̃π = 1− φY

(
1− β̃
κ̃

)
. (23)
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The function gF (ϑ) is obtained by replacing ψb in the vector ϑ with

ψ̃b =
1

β
− 1. (24)

2. We solve the model successively with the reparametrized vectors ϑM and ϑF and com-

pute

MM(ϑ) =
[
ΓM0,ζ(ϑ)′ΓM0,ζ(ϑ)

]−1
ΓM0,ζ(ϑ)′

[
ΓM0,ε(g

M(ϑ))− ΓM0,ε(ϑ)
]

, and (25)

MF (ϑ) =
[
ΓF0,ζ(ϑ)′ΓF0,ζ(ϑ)

]−1
ΓF0,ζ(ϑ)′

[
ΓF0,ε(g

F (ϑ))− ΓF0,ε(ϑ)
]

. (26)

3. To choose the M∗(ϑ) that minimizes the discrepancy between ∂zt
∂ε′t

(ϑ,M) and ∂zt
∂ε′t

(g∗(ϑ)),

we compute the distances to the respective boundaries as

DM =
[
ΓM0,ε(g

M(ϑ))− ΓM0,ε(ϑ)
]
− ΓM0,ζ(ϑ)MM(ϑ), and (27)

DF =
[
ΓF0,ε(g

F (ϑ))− ΓF0,ε(ϑ)
]
− ΓF0,ζ(ϑ)MF (ϑ). (28)

4. As, in our model, all fundamental shocks are assumed to be independent from each

other, we compute the Euclidean norm of each column in D∗, sum them up, and,

finally, choose the M∗(ϑ) that corresponds with17

min

[
9∑
j=1

||dMj ||2,
9∑
j=1

||dFj ||2

]
.

Here, we show plots to demonstrate that our approach delivers effectively continuous

impulse response functions on the boundary between policy regimes. We draw 20,000 times

from the prior distribution and solve with each draw the model. If a draw lies in the

17For matrix D∗ = (d∗ij), its i-th row and j-th column are denoted by d∗i and d∗j , respectively.
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indeterminacy region, we first determine with the least-square criterion if it is closer to the

monetary (regime M) or the fiscal boundary (regime F) of the determinacy region. Then we

conduct the following steps:

If the draw’s position in the parameter space is closer to the monetary boundary, we

reparametrize the parameter vector to lie on the monetary boundary.

1. We solve the model on the boundary and compute impulse responses.

2. We step numerically from the boundary into the indeterminacy region, solve the model

and compute impulse responses.

3. To check if the transmission mechanism changes when crossing the boundary, we com-

pute the difference between the impulse responses on the boundary, and the impulse

responses from the indeterminacy region.

We repeat the three steps for the draws that are located closer to the fiscal boundary. Figures

7 and 8 show that the impulse responses are nearly congruent.
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Figure 7: Difference of IRFs computed in the determinacy and the indeterminacy region
around the monetary boundary. The bold line shows posterior means and the solid line 90%
credible sets.
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Figure 8: Difference of IRFs computed in the determinacy and the indeterminacy region
around the fiscal boundary. The bold line shows posterior means and the solid line 90%
credible sets.
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Appendix B Prior implications

Here, we show results of a prior predictive analysis for the prior specification outlined in

Section 3.1. In particular, we take 20,000 draws from the prior and simulate with these

draws 20,000 times the model’s observables.
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Figure 9: Simulated model observables vs. real data for 1960:Q1 to 1979:Q2. The bold
yellow line shows the actual time series we use for estimating the model. The blue and the
red line show the 90% intervall of the simulated time series.
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Appendix C Data description

We use the dataset of Bhattarai et al. (2016). Unless otherwise noted, the data is retrieved

from the National Income and Product Accounts Tables published by the Bureau of Economic

Analysis. All time series in nominal values are converted to real values by dividing them by

the GDP deflator.

Per capita output: Per capita output is the sum of personal consumption of nondurables

and services, and government consumption divided by civilian noninstitutional pop-

ulation. Civilian noninstitutional poulation is taken from the FRED database of the

Federal Reserve Bank of St. Louis.

Inflation: The gross inflation rate is the annualized GDP deflator.

Interest rate: The annualized nominal interest rate is the effective federal funds rate from

the FRED database of the Federal Reserve Bank of St. Louis.

Tax revenues: The tax-revenues-to-output ratio is defined as the sum of current tax re-

ceipts and contributions for government social insurance divided by output.

Government debt: Government debt corresponds to the market value of privately held

gross federal debt, retrieved from the Federal Reserve Bank of Dallas. The government

debt-to-output ratio is obtained by dividing the series by output.

Government spending: The government spending-to-output ratio is defined as govern-

ment consumption divided by output.
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The relationship between observables and model variables is given by



100×∆ln Productiont

Inflationt (%)

Interestt (%)

TaxRevt (%)

GovtDebtt (%)

GovtPurcht (%)


=



a

4π

4(a+ π + µ)

τ

b

g


+



Ŷt − Ŷt−1 + ât

4π̂t

4R̂t

τ̂t

b̂t

ĝt


. (29)
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Appendix D SMC algorithm

This appendix completes the technical description of the implemented SMC algorithm. In

terms of exposition and notation it draws heavily on Herbst and Schorfheide (2014, 2015)

and Bognanni and Herbst (2018).

Appendix D.1 SMC with likelihood tempering

1. The SMC is initialized by drawing the particles of the first stage (n = 1; δ1 = 0) from

the prior density.18

ϑi1
i.i.d.∼ p(ϑ) i = 1, ..., N .

In the first stage, each particle receives equal weight such that W i
1 = 1.

2. Recursions:

for n=2:Nδ

1. Correction: Reweight the particles from stage n − 1 by defining the incremental

and normalized weights as

w̃in =
[
p(Y |ϑin−1)

]δn−δn−1 , W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, ..., N .

2. Selection: Check particle degeneracy by computing the effective sample size

ESSn =
N

1
N

∑N
i=1(W̃ i

n)2
.

The ESS monitors the variance of the particle weights. The larger this variance,

the more inefficient runs the sampler. If the distribution of particle weights be-

comes too uneven, resampling the particles helps to improve accuracy.

if ESSn < N/2

18To ease notation in Appendix D, we assume that the parameters in M are part of ϑ.
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Resample the particles via systematic resampling and set the weights to uniform

W i
n = 1, ϑ̂in ∼ {ϑ

j
n−1, W̃

j
n}j=1,...,N i = 1, ..., N .

else

W i
n = W̃ i

n, ϑ̂in = ϑin−1, i = 1, ..., N

end if

3. Mutation: Propagate each particle {ϑ̃iN ,W i
n} via MMH steps of a RWMH with

Nblocks random blocks. See Appendix D.2 for further details.

end for

3. Process posterior draws.

Appendix D.2 Mutation step

In this section, we specify the RWMH sampler we use for particle mutation. In accordance

with Herbst and Schorfheide (2014) and Bognanni and Herbst (2018) the RWMH steps in

our application are characterized by two features. First, we reduce the dimensionality of the

parameter vector ϑ by spliting it into Nblocks blocks, thus making it easier to approximate

the target density in each of the RWMH’s MMH steps.19 Second, we scale the variance of

the proposal density adaptively. Let Σ̂n be the estimate of the covariance of pn(ϑ|Y ) after

the selection step and cn be a scaling factor. We set cn as a function of the previous stage’s

scaling factor cn−1 and the average empirical acceptance rate of the previous stage’s mutation

step Ân−1. We target an acceptance rate of 25 % and, hence, increase cn if the acceptance

rate in stage n− 1 was too high or decrease cn if it was too low. In particular, the functional

form is given by ĉn = ĉn−1f(Ân−1), where f(x) = 0.95 + 0.1 e16(x−0.25)

1+e16(x−0.25) .

19Chib and Ramamurthy (2010) and Herbst (2012) provide evidence that parameter blocking is benefical
for estimating DSGE models.
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1. In every n stage after the selection step, create a random partitioning of the param-

eter vector ϑ into Nblocks. b denotes the block of the parameter vector such that ϑib,n

refers to the b elements of the ith particle, and ϑi<b,n denotes the remaining partitions.

2. Compute an estimate of the covariance of the parameters as

Σ̂n =
N∑
i=1

W i
n(ϑ̂in − µ̂n)(ϑ̂in − µ̂n)′ with µ̂n =

N∑
i=1

W i
nϑ̂

i
n.

The covariance for the bth block is given by

Σ̂b,n = [Σ̂n]b,b − [Σ̂n]b,−b[Σ̂n]−1
−b,−b[Σ̂n]−b,b,

where [Σ̂n]b,b refers to the bth block of Σ̂n.

3. MH steps:

for m=1:MMH

for b=1:Nblocks

1. Draw a proposal density ϑ∗b ∼ N(ϑim−1,b,n, c
2
nΣ̂b,n).

ϑ∗ = [ϑim,<b,n, ϑ
∗
b , ϑ

i
m−1,>b,n] and ϑim,n = [ϑim,<b,n, ϑ

i
m−1,≥b,n].

2. With probability

α = min

{
[p(Y |ϑ∗)]δnp(ϑ∗)

[p(Y |ϑim,n)]δnp(ϑim,n)
, 1

}
,

set ϑim,b,n = ϑ∗b . Otherwise, set ϑim,b,n = ϑim−1,b,n.

end for

end for
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Appendix E Prior specification of Bhattarai et al. (2016)

Here, we show results of a prior predictive analysis for the prior specification employed in

Bhattarai et al. (2016). To ensure that we completely impose a particular policy regime

during estimation, we follow the authors and reparameterize the model by introducing new

parameters φ∗π and ψ∗b , which measure the distance from the boundary of active and passive

policies. The boundary for monetary policy and fiscal policy is denoted by φ̃π and ψ̃b,

respectively (see Equation 23 and 24 in Appendix A.2.). Then, set

φπ = φ̃π + φ∗π; ψb = ψ̃b + ψ∗b

φπ = φ̃π − φ∗π; ψb = ψ̃b − ψ∗b

φπ = φ̃π − φ∗π; ψb = ψ̃b + ψ∗b

for regime M, regime F, and the indeterminacy regime, respectively. φ∗π and ψ∗b are assumed

to have a Gamma prior distribution. φ∗π has a mean of 0.5 and a standard deviation of 0.2.

ψ∗b has a mean of 0.05 and a standard deviation of 0.04. Bhattarai et al. (2016) estimate

for each regime φ∗π and ψ∗b and compute the implied value for φπ and ψb, respectively. We

follow them in this approach. More details can be found in the original study.

For each policy regime we take 20,000 draws from the prior and simulate with these draws

20,000 times the model’s observables. As can be seen in Figures 10 to 12, the prior choice

of Bhattarai et al. (2016) leads to simulated model observables with a very broad range.

As we initialize the SMC algorithm from the prior, we carefully tailored a prior that results

in more realistic model implications, but nevertheless remains agnostic about the prevailing

policy regime (see Section 3.1 and Appendix B.).
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Figure 10: Simulated model observables vs. real data for 1960:Q1 to 1979:Q2 for regime M.
The bold yellow line shows the actual time series we use for estimating the model. The blue
and the red lines show the 90% intervall of the simulated time series.
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Figure 11: Simulated model observables vs. real data for 1960:Q1 to 1979:Q2 for regime F.
The bold yellow line shows the actual time series we use for estimating the model. The blue
and the red lines show the 90% intervall of the simulated time series.
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Figure 12: Simulated model observables vs. real data for 1960:Q1 to 1979:Q2 for the inde-
terminacy regime. The bold yellow line shows the actual time series we use for estimating
the model. The blue and the red lines show the 90% intervall of the simulated time series.
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Appendix F Posterior estimates

Appendix F.1 Restricted estimation

Here, we show plots of the prior and posterior densities for the remaining parameters from

the restricted estimation with the SMC sampler and tables that summarize the estimation

results for regime F and the indeterminacy regime. In a first step, we show the results of the

restricted estimation with the prior specification, as in Bhattarai et al. (2016). In a second

step, we show the results of the restricted estimation, with our prior specification and the

reparametrized policy parameters φ∗π and ψ∗b as in Bhattarai et al. (2016).

Restricted estimation - prior as in Bhattarai et al. (2016)
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Figure 13: Prior and posterior densities of the estimated model parameters for regime F.
The blue bold line depicts the posterior density, the black line the prior density. The prior
densities are specified as in Bhattarai et al. (2016).
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Table 6: Posterior distributions for estimated parameters (Regime F)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.71 0.13 [0.53, 0.9]
φ∗π, distance to monetary boundary 0.27 0.13 [0.09, 0.46]
φY , interest rate response to output 0.13 0.06 [0.04, 0.21]
ρR, response to lagged interest rate 0.93 0.07 [0.9, 0.99]

Fiscal policy
ψb, tax response to lagged debt -0.08 0.04 [-0.14, -0.02]
ψ∗b , distance to fiscal boundary 0.08 0.04 [0.02, 0.14]
ψY , tax response to output 0.87 0.3 [0.49, 1.33]
χY , govt spending response to
lagged output

0.63 0.31 [0.24, 1.11]

ρg, response to lagged govt spending 0.91 0.04 [0.85, 0.97]
ρτ , response to lagged taxes 0.68 0.08 [0.55, 0.82]

Preference and HHs
η, habit formation 0.81 0.07 [0.71, 0.91 ]
µ := 100(β−1 − 1), discount factor 0.17 0.07 [0.06, 0.27]

Frictions
α, price stickiness 0.79 0.04 [0.72, 0.86]
γ, price indexation 0.15 0.08 [0.03, 0.27]

Shocks
ρd, preference 0.63 0.18 [0.35, 0.91]
ρa, technology 0.58 0.21 [0.24, 0.9]
ρu, cost-push 0.21 0.09 [0.05, 0.35]
ρs, transfers 0.69 0.07 [0.57, 0.8]
σg, govt spending 0.21 0.02 [0.18, 0.25]
σd, preference 1.71 0.89 [0.41, 3.03]
σa, technology 0.54 0.25 [0.19, 0.89]
σu, cost-push 0.18 0.02 [0.14, 0.22]
σs, transfers 1.01 0.09 [0.87, 1.15]
σR, monetary policy 0.22 0.02 [0.19, 0.25]
στ , tax 0.7 0.07 [0.59, 0.81]
σπ, inflation target 0.09 0.05 [0.3, 0.15]
σb, debt/output target 0.65 0.49 [0.17, 1.44]

Steady state
a := 100(ā− 1), technology 0.43 0.08 [0.31, 0.56]
π := 100(π̄ − 1), inflation 1.1 0.1 [0.94, 1.26]
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Table 6: Posterior distributions for estimated parameters (Regime F) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 36.63 2.01 [33.33, 39.93]
τ := 100τ̄ , tax/output 24.92 0.42 [24.26, 25.6]
g := 100ḡ, govt spending/output 24.4 0.4 [23.78, 25.05]

Note: Means, and standard deviations are over 50 independent runs of the SMC al-
gorithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We
compute 90% highest posterior density intervals.
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Figure 14: Prior and posterior densities of the estimated model parameters for the indeter-
minacy regime. The blue bold line depicts the posterior density, the black line the prior
density. The prior densities are specified as in Bhattarai et al. (2016).
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Table 7: Posterior distributions for estimated parameters (Indeterminacy)

Posterior
Parameter Mean SD 90 percent credible set
Monetary policy
φπ, interest rate response to inflation 0.31 0.15 [0.06, 0.56]
φ∗π, distance to monetary boundary 0.71 0.05 [0.66, 0.79]
φY , interest rate response to output 0.28 0.02 [0.25, 0.31]
ρR, response to lagged interest rate 0.7 0.03 [0.66, 0.74]

Fiscal policy
ψb, tax response to lagged debt 0.05 0.02 [0.008, 0.08]
ψ∗b , distance to fiscal boundary 0.05 0.01 [0.039, 0.055]
ψY , tax response to output 0.71 0.03 [0.66, 0.77]
χY , govt spending response to
lagged output

0.44 0.07 [0.33, 0.54]

ρg, response to lagged govt spending 0.96 0.004 [0.957, 0.967]
ρτ , response to lagged taxes 0.5 0.03 [0.44, 0.54]

Preference and HHs
η, habit formation 0.23 0.02 [0.21, 0.28 ]
µ := 100(β−1 − 1), discount factor 0.16 0.01 [0.14, 0.18]

Frictions
α, price stickiness 0.68 0.02 [0.65, 0.72]
γ, price indexation 0.4 0.08 [0.3, 0.49]

Shocks
ρd, preference 0.85 0.02 [0.82, 0.88]
ρa, technology 0.37 0.06 [0.27, 0.44]
ρu, cost-push 0.33 0.05 [0.27, 0.41]
ρs, transfers 0.75 0.02 [0.73, 0.77]
σg, govt spending 0.23 0.002 [0.226, 0.23]
σd, preference 0.29 0.02 [0.26, 0.32]
σa, technology 0.52 0.07 [0.42, 0.61]
σu, cost-push 0.21 0.006 [0.2, 0.21]
σs, transfers 1.02 0.008 [1, 1.03]
σR, monetary policy 0.18 0.006 [0.17, 0.19]
στ , tax 0.62 0.01 [0.6, 0.64]
σπ, inflation target 0.06 0.004 [0.05, 0.06]
σb, debt/output target 0.36 0.02 [0.32, 0.39]

Steady state
a := 100(ā− 1), technology 0.41 0.01 [0.39, 0.42]
π := 100(π̄ − 1), inflation 1.06 0.02 [1.03, 1.07]
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Table 7: Posterior distributions for estimated parameters (Indeterminacy) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 36.4 0.31 [35.97, 36.77]
τ := 100τ̄ , tax/output 25.06 0.09 [24.94, 25.17]
g := 100ḡ, govt spending/output 24.13 0.08 [24.04, 24.28]

Indeterminacy
σζ , sunspot shock 0.26 0.05 [0.22, 0.3]
Mgζ -0.29 0.11 [-0.43, -0.13]
Mdζ 0.6 0.2 [0.42, 0.92]
Maζ -0.2 0.08 [-0.34, -0.1]
Muζ -0.44 0.15 [-0.59, -0.25]
Msζ 0.08 0.03 [0.03, 0.12]
MRζ 0.43 0.18 [0.22, 0.68]
Mτζ -0.3 0.1 [-0.46, -0.2]
Mπζ -0.05 0.16 [-0.28, 0.26]
Mbζ -0.006 0.13 [-0.18, 0.12]

Note: Means, and standard deviations are over 50 independent runs of the SMC algo-
rithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We compute
90% highest posterior density intervals.
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Appendix F.1.1 Restricted estimation - prior as in Section 3.1 with renormal-

ized policy parameters

To ensure that we completely impose a particular policy regime during estimation, we again

follow Bhattarai et al. (2016) and estimate the model with the reparameterized policy

parameters φ∗π and ψ∗b . φ
∗
π follows a Gamma distribution with a mean of 0.5 and a standard

deviation of 0.2. ψ∗b is also Gamma-distributed and has a mean of 0.05 and a standard

deviation of 0.04. The prior densities of the remaining parameters are specified as in Section

3.1.
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Figure 15: Prior and posterior densities of the estimated model parameters for regime F. The
blue bold line depicts the posterior density, the black line the prior density. The densities of
φ∗π and ψ∗b are specified as in Bhattarai et al. (2016), the remaining parameters as in Section
3.1.

Table 8: Posterior distributions for estimated parameters (Regime F)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.54 0.12 [0.33, 0.73]
φ∗π, distance to monetary boundary 0.35 0.05 [0.31, 0.43]
φY , interest rate response to output 0.44 0.06 [0.4, 0.54]
ρR, response to lagged interest rate 0.56 0.09 [0.38, 0.63]

Fiscal policy
ψb, tax response to lagged debt -0.02 0.01 [-0.04, -0.005]
ψ∗b , distance to fiscal boundary 0.027 0.007 [0.02, 0.04]
ψY , tax response to output 0.58 0.39 [-0.25, 0.86]
χY , govt spending response to
lagged output

0.38 0.36 [-0.38, 0.63]
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Table 8: Posterior distributions for estimated parameters (Regime F) - continued

Posterior
Parameter Mean SD 90 percent credible set
ρg, response to lagged govt spending 0.93 0.02 [0.9, 0.95]
ρτ , response to lagged taxes 0.66 0.07 [0.61, 0.79]

Preference and HHs
η, habit formation 0.69 0.1 [0.49, 0.78 ]
µ := 100(β−1 − 1), discount factor 0.17 0.01 [0.16, 0.19]

Frictions
α, price stickiness 0.85 0.02 [0.83, 0.86]
γ, price indexation 0.13 0.06 [0.09, 0.22]

Shocks
ρd, preference 0.86 0.03 [0.82, 0.9]
ρa, technology 0.33 0.04 [0.26, 0.37]
ρu, cost-push 0.77 0.17 [0.45, 0.88]
ρs, transfers 0.72 0.03 [0.65, 0.74]
σg, govt spending 0.22 0.006 [0.21, 0.23]
σd, preference 0.87 0.14 [0.58, 1.03]
σa, technology 0.56 0.01 [0.55, 0.58]
σu, cost-push 0.06 0.03 [0.04, 0.12]
σs, transfers 1 0.003 [0.997, 1.01]
σR, monetary policy 0.15 0.01 [0.13, 0.16]
στ , tax 0.68 0.03 [0.66, 0.72]
σπ, inflation target 0.004 0 [0.0036, 0.0039]
σb, debt/output target 0.06 0.001 [0.059, 0.064]

Steady state
a := 100(ā− 1), technology 0.47 0.007 [0.46, 0.48]
π := 100(π̄ − 1), inflation 0.81 0.02 [0.79, 0.83]
b := 100b̄, debt/output 35.5 0.16 [35.28, 35.62]
τ := 100τ̄ , tax/output 25.26 0.12 [25.05, 25.36]
g := 100ḡ, govt spending/output 24.31 0.09 [24.24, 24.45]

Note: Means, and standard deviations are over 50 independent runs of the SMC al-
gorithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We
compute 90% highest posterior density intervals.
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Figure 16: Prior and posterior densities of the estimated model parameters for the indeter-
minacy regime. The blue bold line depicts the posterior density, the black line the prior
density. The densities of φ∗π and ψ∗b are specified as in Bhattarai et al. (2016), the remaining
parameters as in Section 3.1.
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Table 9: Posterior distributions for estimated parameters (Indeterminacy)

Posterior
Parameter Mean SD 90 percent credible set
Monetary policy
φπ, interest rate response to inflation 0.11 0.19 [-0.18, 0.42]
φ∗π, interest rate response to inflation 0.86 0.05 [0.83, 0.95]
φY , interest rate response to output 0.39 0.02 [0.36, 0.41]
ρR, response to lagged interest rate 0.71 0.02 [0.69, 0.73]

Fiscal policy
ψb, tax response to lagged debt 0.05 0.02 [0.02, 0.09]
ψ∗b , distance to fiscal boundary 0.06 0.004 [0.05, 0.06]
ψY , tax response to output 0.73 0.03 [0.7, 0.78]
χY , govt spending response to
lagged output

0.37 0.05 [0.29, 0.45]

ρg, response to lagged govt spending 0.97 0.002 [0.962, 0.969]
ρτ , response to lagged taxes 0.45 0.03 [0.4, 0.49]

Preference and HHs
η, habit formation 0.19 0.02 [0.16, 0.21 ]
µ := 100(β−1 − 1), discount factor 0.17 0.01 [0.16, 0.19]

Frictions
α, price stickiness 0.77 0.02 [0.74, 0.79]
γ, price indexation 0.31 0.04 [0.22, 0.35]

Shocks
ρd, preference 0.85 0.01 [0.83, 0.87]
ρa, technology 0.26 0.02 [0.22, 0.29]
ρu, cost-push 0.48 0.07 [0.38, 0.59]
ρs, transfers 0.74 0.01 [0.73, 0.76]
σg, govt spending 0.22 0.001 [0.219, 0.222]
σd, preference 0.31 0.01 [0.29, 0.33]
σa, technology 0.69 0.05 [0.63, 0.73]
σu, cost-push 0.16 0.01 [0.15, 0.18]
σs, transfers 1.01 0.006 [0.99, 1.01]
σR, monetary policy 0.16 0.003 [0.155, 0.163]
στ , tax 0.59 0.01 [0.57, 0.6]
σπ, inflation target 0.004 0 [0.003, 0.004]
σb, debt/output target 0.06 0.004 [0.056, 0.068]

Steady state
a := 100(ā− 1), technology 0.45 0.008 [0.44, 0.46]
π := 100(π̄ − 1), inflation 0.77 0.01 [0.75, 0.79]
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Table 9: Posterior distributions for estimated parameters (Indeterminacy) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 35.4 0.26 [35.02, 35.75]
τ := 100τ̄ , tax/output 24.01 0.06 [24.82, 24.99]
g := 100ḡ, govt spending/output 23.99 0.05 [23.93, 24.08]

Indeterminacy
σζ , sunspot shock 0.22 0.01 [0.21, 0.23]
Mgζ -0.28 0.06 [-0.37, -0.2]
Mdζ 0.67 0.13 [0.48, 0.85]
Maζ -0.26 0.07 [-0.35, -0.19]
Muζ -0.41 0.09 [-0.54, -0.4]
Msζ 0.07 0.02 [0.04, 0.09]
MRζ 0.34 0.08 [0.24, 0.47]
Mτζ -0.35 0.08 [-0.46, -0.25]
Mπζ -0.02 0.1 [-0.18, 0.15]
Mbζ 0 0.03 [-0.11, 0.14]

Note: Means, and standard deviations are over 50 independent runs of the SMC algo-
rithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We compute
90% highest posterior density intervals.
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Appendix F.2 Unrestricted estimation

Here, we show plots of the prior and posterior densities for the remaining parameters from

the unrestricted estimation with the SMC sampler and tables that summarize the estima-

tion results. Here, the prior specification and the estimation approach corresponds to the

description in Section 3.
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Figure 17: Prior and posterior densities of the estimated model parameters from the unre-
stricted estimation. The blue bold line depicts the posterior density, the black line the prior
density.
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Table 10: Posterior distributions for estimated parameters (Unrestricted)

Posterior
Parameter Mean SD 90 percent credible set
Monetary policy
φπ, interest rate response to inflation 0.4 0.22 [0.13, 0.73]
φY , interest rate response to output 0.53 0.1 [0.4, 0.67]
ρR, response to lagged interest rate 0.61 0.11 [0.38, 0.74]

Fiscal policy
ψb, tax response to lagged debt 0.026 0.04 [-0.05, 0.08]
ψY , tax response to output 0.62 0.5 [-0.51, 1.05]
χY , govt spending response to
lagged output

0.38 0.35 [-0.25, 0.86]

ρg, response to lagged govt spending 0.95 0.02 [0.91, 0.97]
ρτ , response to lagged taxes 0.66 0.11 [0.5, 0.81]

Preference and HHs
η, habit formation 0.45 0.23 [0.20, 0.81 ]
µ := 100(β−1 − 1), discount factor 0.19 0.04 [0.14, 0.22]

Frictions
α, price stickiness 0.84 0.04 [0.8, 0.92]
γ, price indexation 0.31 0.12 [0.12, 0.44]

Shocks
ρd, preference 0.73 0.11 [0.52, 0.87]
ρa, technology 0.33 0.08 [0.22, 0.41]
ρu, cost-push 0.41 0.2 [0.15, 0.71]
ρs, transfers 0.72 0.04 [0.64, 0.77]
σg, govt spending 0.23 0.01 [0.22, 0.24]
σd, preference 0.88 0.61 [0.31, 1.78]
σa, technology 0.62 0.09 [0.52, 0.72]
σu, cost-push 0.15 0.05 [0.09, 0.22]
σs, transfers 1.04 0.02 [1, 1.06]
σR, monetary policy 0.16 0.02 [0.13, 0.18]
στ , tax 0.7 0.05 [0.64, 0.77]
σπ, inflation target 0.006 0.006 [0.008, 0.02]
σb, debt/output target 0.15 0.05 [0.11, 0.2]

Steady state
a := 100(ā− 1), technology 0.42 0.03 [0.39, 0.45]
π := 100(π̄ − 1), inflation 0.8 0.05 [0.74, 0.87]
b := 100b̄, debt/output 35.62 0.79 [34.74, 36.44]
τ := 100τ̄ , tax/output 24.97 0.18 [24.68, 25.2]
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Table 10: Posterior distributions for estimated parameters (Unrestricted) - continued

Posterior
Parameter Mean SD 90 percent credible set
g := 100ḡ, govt spending/output 24.12 0.21 [23.82, 24.48]

Indeterminacy
σζ , sunspot shock 0.49 0.14 [0.27, 0.68]
Mgζ -0.58 0.58 [-1.43, 0.03]
Mdζ -0.11 0.35 [-0.69, 0.33]
Maζ -0.41 0.43 [-0.94, 0.17]
Muζ -1.09 0.98 [-2.37, 0.03]
Msζ -0.04 0.14 [-0.28, 0.16]
MRζ 0.5 0.64 [-0.21, 1.22]
Mτζ -0.13 0.38 [-0.7, 0.22]
Mπζ 0 0.45 [-0.54, 0.46]
Mbζ -0.07 0.29 [-0.34, 0.45]
Log Marginal data density -558.84

Note: Means, standard deviations, and estimates of the log marginal data density are
over 50 independent runs of the SMC algorithm with N = 20, 000, Nδ = 600, λ = 2.4,
Nblocks = 10, and MMH = 2. We compute 90% highest posterior density intervals. The
log marginal data density is obtained as a by-product during the correction step of the
SMC algorithm, see Herbst and Schorfheide (2014) for further details.
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