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Structural Vector Autoregressive Models

with more Shocks than Variables Identified

via Heteroskedasticity
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Germany

email: hluetkepohl@diw.de

May 15, 2020

Abstract. In conventional structural vector autoregressive (VAR) models it
is assumed that there are at most as many structural shocks as there are vari-
ables in the model. It is pointed out that heteroskedasticity can be used to
identify more shocks than variables. However, even if there is heteroskedas-
ticity, the number of shocks that can be identified is limited. A number of
results are provided that allow a researcher to assess how many shocks can
be identified from specific forms of heteroskedasticity.
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1 Introduction

In traditional structural vector autoregressive (VAR) analysis, the number
of shocks is equal to the number of variables (see, e.g., Sims (1980) or a
number of models reviewed in Kilian and Lütkepohl (2017)). Even if only a
subset of shocks is of interest for some economic analysis, additional shocks
are typically specified and identified in some way such that all shocks are
contemporaneously uncorrelated. Also in some dynamic stochastic general
equilibrium (DSGE) models, the number of shocks is equal to the number of
variables (e.g., Smets and Wouters (2007)).

However, in recent years, economic models have been constructed, where
the number of shocks exceeds the number of observable variables. For ex-
ample, Christiano, Motto and Rostagno (2014) specify such a model, where
news shocks play an important role. Another example is Ireland (2011),
who constructs a small New-Keynesian DSGE model with more shocks than
observed variables. Plagborg-Møller and Wolf (2017) allow for more shocks
than variables in a nonparametric setting which extends the standard VAR
approach. In addition, Pagan and Robinson (2020) list a number of situa-
tions, where more shocks than observed variables appear for technical reasons
in the model. For example, such features may be implied by measurement
errors in some variables or they may be due to using unobserved component
models or time-varying parameter models.

Pagan and Robinson (2020) also point out that ignoring the fact that
the number of shocks exceeds the dimension of the VAR process can lead
to distorted impulse responses in a standard structural VAR analysis and to
severe problems in the interpretation of the evidence from these models.

In the present study, it is shown that heteroskedasticity can be used to
identify more shocks than there are observed variables in a VAR model. I
consider a VAR model where the volatility of the residuals changes during the
sample period and there are actually M different volatility regimes, where
M > 1 is some positive integer. An upper bound for the number of identi-
fiable shocks is given and conditions are presented that have to be satisfied
for identification. Moreover, a rank condition for identification is derived.

The following notation is used. The column vectorizing operator for
matrices is denoted by vec and vech signifies the operator that stacks the
columns of a (K × K) square matrix from the main diagonal downward
in a 1

2
K(K + 1)-dimensional column vector. The symbol DK denotes a

(K2 × 1
2
K(K + 1)) duplication matrix, D+

K is its Moore-Penrose generalized
inverse, and KKK denotes a (K2 ×K2) commutation matrix (see Lütkepohl
(1996) for precise definitions of these matrices and rules for working with
them). Moreover, diag(a1, . . . , aN) denotes an (N ×N) diagonal matrix with
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scalars a1, . . . , aN on the main diagonal and SN signifies an (N2 × N) di-
mensional matrix with elements 0 and 1 such that vec(diag(a1, . . . , aN)) =
SN(a1, . . . , aN)′, e.g., for N = 2,

SN =

[
1 0 0 0
0 0 0 1

]′
.

The structure of the remaining part of the paper is as follows. The model
setup is presented in the next section. The main results on identification
through heteroskedasticity are given in Section 3 and conclusions are drawn
in Section 4.

2 Model Setup

Suppose the K ≥ 2 observable variables yt = (y1t, . . . , yKt)
′ are generated by

the reduced-form VAR(p) process

yt = A1yt−1 + · · ·+ Apyt−p + ut,

where ut is a zero mean white noise process with nonsingular covariance
matrix Σu, i.e., ut ∼ (0,Σu). There are no deterministic terms because they
are not important in the following discussion. In practice, they may be added
without changing the essential results.

Suppose that there are N ≥ K structural errors, wt = (w1t, . . . , wNt)
′,

which are linearly related to the reduced form errors by

ut = Bwt. (1)

In other words, the structural matrix B is (K×N) and has rank K. Without
loss of generality, it is also assumed that none of the columns of B is zero
because if the nth column were zero, this would imply that the nth structural
shock has no impact on the reduced-form errors and, hence, on the observed
variables. Thus, it would be redundant.

Without loss of generality, it is also assumed that wt has identity covari-
ance matrix, i.e., wt ∼ (0, IK). Thus,

Σu = BB′.

Clearly, these K(K + 1)/2 linearly independent relations between reduced
form parameters Σu and structural parameters B cannot identify all K ·
N structural parameters. However, they can be identified under suitable
assumptions if the reduced form residuals are heteroskedastic, a case which
will be considered next.
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Because rk(B) = K, the impact effects of the shocks must be linearly
dependent if N > K. This feature also has implications for the impulse
responses of the structural shocks. As usual, the impulse responses are ob-
tained as ΦiB for i = 1, . . . , H, where the (K×K) matrix Φi =

∑i
j=1 Φi−jAj

can be obtained recursively from the VAR slope coefficients for i = 1, 2, . . . ,
using Φ0 = IK (Lütkepohl, 2005, Section 2.1.2).

3 Identification via Heteroskedasticity

Suppose that a sample y1, . . . , yT of size T is available and there are M
different volatility regimes such that covariance changes occur at prespecified
dates throughout the sample,

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (2)

where Tm = {Tm−1 + 1, . . . , Tm}, m = 1, . . . ,M , are M given volatility
regimes, for simplicity associated with consecutive time periods. The volatil-
ity changes occur at time periods Tm, for m = 1, . . . ,M −1, with T0 = 0 and
TM = T .

It is assumed that the structural shocks are contemporaneously uncorre-
lated and that a time-invariant transformation ut = Bwt exists such that the
regime dependent covariance matrices are of the form

Σu(m) = BΛmB
′, m = 1, . . . ,M, (3)

where Λm = diag(λm) with λm = (λ1,m, . . . , λN,m)′ (m = 1, . . . ,M) are di-
agonal matrices with strictly positive diagonal elements. Without loss of
generality, I assume that the variances of the structural errors wt are nor-
malized to unity in the first volatility state, i.e., Λ1 = IK . This normalization
implies that the λm, m = 2, . . . ,M , represent the variances of the structural
shocks relative to the first regime. I collect them in the (N×(M−1)) matrix
Λ = [λ2, . . . ,λM ].

Under suitable conditions, the structural parameters B and Λ can be re-
covered uniquely from the reduced-form parameters Σu(m), m = 1, . . . ,M .
The following proposition spells out necessary conditions for the structural
parameters to be identified.

Proposition 1. (Counting Rule)
The following conditions have to be satisfied for the structural parameters B
and Λ to be solved uniquely from the relations (3):

(1) N < 1
2
K(K + 1)
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Table 1: Minimal Number of Necessary Volatility States M for Selected
Numbers of Variables K and Shocks N

No. of variables No. of shocks N
K 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 - - - - - - - - - - - -
3 2 4 10 - - - - - - - - -
4 2 3 5 7 12 27 - - - - -
5 2 3 4 5 6 8 11 16 26 56

Note: A dash indicates that condition (1) of Proposition 1 is not satisfied.

(2) M ≥ 2(K − 1)N/(K2 +K − 2N) �

Proof: Given the symmetry of Σu(m), the sets of relations in (3) each
provide at most 1

2
K(K + 1) independent equations. Thus, to solve for all

KN + (M − 1)N unknown structural parameters in B and Λ, we need M to
be such that

1

2
MK(K + 1) ≥ KN + (M − 1)N. (4)

This inequality can only be satisfied if N < 1
2
K(K+ 1) which proves (1) and

rewriting the inequality (4) gives condition (2) of the proposition. �

Table 1 shows the minimal number of volatility states, M , for selected
values of K and N . For example, in a bivariate model (K = 2), the impact
effects of no more than two shocks can be recovered by heteroskedasticity.
For larger values of N , the conditions of Proposition 1 cannot hold. For a
3-dimensional VAR process, the impact effects of up to N = 5 shocks can be
identified through heteroskedasticity and estimated consistently. To estimate
unique impact effects of 5 shocks, at least 10 volatility regimes are needed,
however. If there are 5 observable variables in the VAR, it is even possible
to identify the impact effects of up to 14 shocks. That requires 56 volatility
states, however, which is not a typical situation in macroeconomic models.

The next proposition spells out another condition that has to be satisfied
for B to be (locally) identified.

Proposition 2. (Necessary Condition for Identification)
The matrix B is unique up to column sign and column permutation only if
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∀ l, n ∈ {1, . . . , N} with l 6= n, ∃ m ∈ {2, . . . ,M} such that λlm 6= λnm. �

Proof: We show that the lth and nth column of B are not identified if
λlm = λnm for m = 2, . . . ,M . Since the columns of B can be permuted
arbitrarily, we assume that, without loss of generality, λ1m = λ2m = λ0 for
m = 2, . . . ,M , and we define the orthogonal (N ×N) matrix

Q =

[
Q1 0
0 IN−2

]
,

where

Q1 =

[
cos θ − sin θ
sin θ cos θ

]
is an orthogonal (2 × 2) matrix for θ ∈ [0, 2π]. Clearly, if B satisfies the
relations in (3) and λ1m = λ2m = λ0, for m = 2, . . . ,M , then

Σu(m) = BQΛmQ
′B′, m = 1, . . . ,M,

because BQQ′B′ = BB′ = Σu(1) due to the orthogonality of Q and

BQ


λ0 0 0 . . . 0
0 λ0 0 . . . 0
0 0 λ3m 0
...

...
. . .

...
0 0 0 . . . λNm

Q′B′ = B


λ0Q1Q

′
1 0 . . . 0

0 λ3m 0
...

. . .
...

0 . . . λNm

B′

= BΛmB
′ = Σu(m)

for m = 2, . . . ,M , because Q1 is an orthogonal matrix. Thus, if B satisfies
(3), then BQ also satisfies the relations in expression (3). In other words, B
is not identified. �

The proposition states that some heterogeneity in the variance changes
is required to solve uniquely for B and, hence, the shocks. If the variances
of two or more shocks change but they change in the same proportion so
that the relative changes are identical, then some columns of B will not be
identified even if there are sufficiently many volatility changes to satisfy the
counting rules. In principle, the data are informative about the variance
heterogeneity. A formal statistical test for a special case was proposed by
Lütkepohl, Meitz, Netšunajev and Saikkonen (2020).
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The following proposition gives a sufficient condition for B to be (locally)
identified.

Proposition 3. (Rank Condition)
The matrix B is unique up to column sign and column permutation and the
matrix Λ is unique up to row permutation if the following matrix has rank
(K +M − 1)N :

2D+
K(B ⊗ IK) 0 . . . 0

2D+
K(BΛ2 ⊗ IK) D+

K(B ⊗B)SN 0
...

. . .
...

2D+
K(BΛM ⊗ IK) 0 . . . D+

K(B ⊗B)SN

 ,
( 1
2
K(K+1)M×(K+M−1)N)

(5)

where DK and SN are the matrices specified in Section 1. �

Proof: Let

ϕ(B,Λ) =


vech(BB′ − Σu(1))

vech(BΛ2B
′ − Σu(2))

...
vech(BΛMB

′ − Σu(M))

 (
1
2
K(K + 1)M × 1

)

be a function from the (K + M − 1)N -dimensional Euclidean space to the
1
2
K(K + 1)M -dimensional space. According to Theorem 6 of Rothenberg

(1971), ϕ(B,Λ) = 0 can be solved uniquely in a neighbourhood of a point
(B0,Λ0) if and only if the matrix of first partial derivatives at the point
(B0,Λ0) has rank (K +M − 1)N (see Lütkepohl (2005, Proof of Proposition
9.1) for a related argument). Thus, the proposition follows by noting that

∂vech(BΛmB
′ − Σu(m))

vec(B)′
= D+

K(IK2 + KKK)(BΛm ⊗ IK)

= 2D+
K(BΛm ⊗ IK)

and

∂vech(BΛmB
′ − Σu(m))

λ′m
= D+

K(B ⊗B)SN

(see the rules in Chapter 10 of Lütkepohl (1996) and the derivation on p.
361 of Lütkepohl (2005)). In other words, the matrix in expression (5) is just
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the matrix of partial derivatives of ϕ(B,Λ). �

Note that the rank condition in Proposition 3 globally identifies B and
Λ if the ordering of the rows of Λ and the column signs of B are fixed
uniquely. In some situations suitable standardisations are easy to establish.
For example, if there are just two volatility states (M = 2) and, hence, Λ
consists only of one column, then the elements in the column could be ordered
in some way, e.g., from largest to smallest. Moreover, the column signs of B
can be chosen such that the first nonzero element in each column is positive.
Recall that none of the columns of B is zero under our assumptions.

However, the proposition may not be very operational because it involves
the unknown structural parameters. Of course, in some cases an inspection
of the matrix in (5) may provide a clear indication of the rank condition to
be satisfied. In other cases that may not be obvious, however. A possible
way out in such a situation may be to replace the unknown parameters by
random choices from the feasible parameter space and check the resulting
rank. Such a check of identification makes sense because the matrix is rank
deficient everywhere in the parameter space or it has rank (K + M − 1)N
almost everywhere. Thus, if a rank of (K +M − 1)N is found for a random
set of parameter values, this indicates identification (see also the discussion
on p. 361 of Lütkepohl (2005)).

The volatility model assumed so far is restrictive in some respects and can
be extended easily. The discussion assumes that there are M volatility states.
That structure is also available if the volatility changes are generated endoge-
nously by a Markov-switching process, for example, as assumed in some of
the related literature (see, e.g., Lanne, Lütkepohl and Maciejowska (2010),
Herwartz and Lütkepohl (2014)). The previous discussions and results also
cover such models.

Having identified the impact effects matrix B through heteroskedasticity
provides unique shocks. These shocks are not necessarily shocks of economic
interest, as pointed out in the related literature (e.g., Kilian and Lütkepohl
(2017, Chapter 14)). Further features of the shocks of interest must be taken
into consideration to locate the shocks with economic interpretations in the
set of identified shocks. Of course, in some cases one may not even expect
all identified shocks to have economic interpretations. For example, Pagan
and Robinson (2020) consider shocks that are due to measurement errors.
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4 Conclusions

In some economic models the variables may be driven by more shocks than
there are observable variables. In traditional structural VAR models such a
situation is not foreseen. However, if there is heteroskedasticity, this feature
can potentially be used to identify more shocks than there are variables.
For specific types of heteroskedasticity, this study provides conditions for
identification and it also presents upper bounds for the number of shocks that
can be identified through heteroskedasticity. The conditions can be useful
in applied work to assess, at an early stage, whether sufficient indentifying
information can be obtained from heteroskedasticity to identify all potential
shocks underlying a specific model setup.
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