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Technology Policy and Market Structure:

Evidence from the Power Sector

Moritz Bohland Sebastian Schwenen∗

March 31, 2020

Abstract

We show how policies to trigger clean technologies change price competition and

market structure. We present evidence from electricity markets, where regulators have

implemented different policies to subsidize clean energy. Building on a multi-unit

auction model, we show that currently applied subsidy designs either foster or attenuate

competition. Fixed, price-independent output subsidies decrease firms’ mark-ups. In

contrast, designs that subsidize clean output via a regulatory premium on the market

price lead to higher mark-ups. We confirm this finding empirically using auction data

from the Spanish power market. Our empirical results show that the design choice for

technology subsidies significantly impacts pricing behavior of firms and policy costs for

consumers.
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1 Introduction

Governments across the globe have implemented policies to limit climate change. Typically,

these policies rely on pricing carbon, awarding R&D grants, or subsidizing the deployment

of “clean” technologies (e.g., Goulder et al., 1999; Acemoglu et al., 2012). While previous

research has focused on the market impact of carbon prices and R&D support (e.g., Johnstone

et al., 2010; Fabra and Reguant, 2014; Aghion et al., 2016; Calel and Dechezlepretre, 2016),

relatively less is known on how subsidies for clean technology change market outcomes and

welfare. In this paper, we address this question by studying the impact of subsidies for clean

energy on market outcomes in the power sector.

Targeted technology policy is omnipresent in power markets, where many governments

have rolled out large-scale programs to subsidize renewable energy.1 To better understand

the consequences of subsidies on competition and market structure, we contribute by offering

a model of pricing behavior under different policy designs. By exploiting detailed firm-level

data from the Spanish power market, we also investigate welfare effects empirically and find

that support mechanisms can affect market prices, rents, and as such overall policy costs.

Our model formalizes pricing decisions by firms that produce with “clean”, i.e., low-

carbon and “dirty” carbon-intensive inputs. The regulator implements a mechanism that

establishes an output subsidy for the clean technology. Motivated by existing real-world

mechanisms in electricity markets, we investigate two standard designs to reward this sub-

sidy. These two mechanisms are common and, in 2017, were employed by more than 80

countries worldwide (Murdock et al., 2018). First, subsidies may come as a linear tariff

per unit produced from clean assets. Alternatively, subsidies are often implemented via a

regulatory premium that clean production earns on top of the market price. In the former

mechanism (“tariff”), clean production is rewarded independently of the market price and

yields profits equal to its output times the per-unit subsidy. In essence, this mechanism

constitutes a forward contract for producing with clean technologies between producers and

the regulator.2 In the alternative mechanism (“premium”), profits from clean production

depend on the equilibrium market price and are topped up by the regulatory premium. Our

model investigates pricing behavior under these two regimes and allows for both perfect and

imperfect competition.

1Next to the power sector, technology-specific subsidies are increasingly used to support low-emission
vehicles in the automobile market (e.g., Huse and Lucinda, 2013; Adamou et al., 2014; Gulati et al., 2017).

2Also the contracts for differences currently applied in the UK represent schemes that rely on fixing
output prices. For a more detailed taxonomy of subsidy mechanisms see Batlle et al. (2012).
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We find that under perfect competition, the design of the support mechanism is irrelevant.

However, when firms are able to charge mark-ups, the design of the support mechanism

changes market prices and rents. In particular, our results highlight the critical role of

market size effects on pricing incentives. Fixed per-unit tariffs decrease market size, as only

conventional, carbon-intensive capacity is sold on the market. Consequently, firms that own

conventional capacity only face demand left unsatisfied from clean production. When firms

charge strategic mark-ups, they hence face a smaller market, resulting in lower equilibrium

market prices. In contrast, when the support mechanism rewards clean production by a

premium on top of the market price, the market size remains large. In this case, profits for

both clean and conventional technologies are a function of the equilibrium market price, and

firms have ample incentives for charging higher mark-ups.

We empirically test this prediction on pricing and mark-up strategies under different

support designs. Next to detailed bidding data from Spanish electricity wholesale auctions,

we exploit an institutional change in the support design. In Spain, both the tariff mechanism

and the premium mechanism have been applied, where the latter successively replaced the

former (Batlle et al., 2012). We conjecture that, following the transition to the premium

mechanism, we observe higher equilibrium mark-ups and thus market prices.

We investigate this effect using hourly observations on price-quantity decisions by Span-

ish power producers. Our empirical findings show that the mark-up significantly increases

under the premium mechanism as compared to the tariff mechanism. The magnitude of this

effect is economically significant. Counterfactual calculations show that during our period

of observation the premium-based design redistributes rents to producers that accumulate

to 3% of market revenue, hence increasing the overall policy costs for consumers.

We also document this effect when focusing on the two largest firms in the market.

Especially larger firms with high shares of clean production increase their mark-ups. In

addition, we illustrate how the policy change impacts market concentration. Specifically, we

show that mark-ups increase despite a decrease in market concentration. As such, we find

that measuring the competitive benefits of different support designs by market concentration

indicators can be misleading.

Our paper contributes to the vast literature on policy designs to control and limit climate

change. One strand within this literature has focused on carbon pricing and its effect on

electricity prices (e.g., Fabra and Reguant, 2014), as well as its effect on investment incen-

tives for clean technologies (e.g., Calel and Dechezlepretre, 2016). A second strand, to which

we more closely relate, examines targeted subsidies for clean energy. Reguant (2019) investi-

3



gates the interaction between carbon taxes, feed-in tariffs, and renewable portfolio standards

in California, and shows trade-offs between efficiency and distributional concerns. Dressler

(2016), Acemoglu et al. (2017), and von der Fehr and Ropenus (2017) analyze the market

impact of support mechanisms and costs to consumers theoretically. They propose oligopoly

or dominant firm models to analyze pricing decisions when firms hold a portfolio of conven-

tional and subsidized wind and solar capacity. Focusing on the Texas power market, Cullen

(2013) evaluates both costs and benefits of renewable support and estimates that the value

of emission offsets from wind power outweighed its subsidies. Furthermore, Gowrisankaran

et al. (2016) develop a method to quantify the economic value of large-scale solar energy and

apply their method to the Arizona power market, highlighting the social costs of intermittent

renewable production. Indeed, while the literature has thus far mostly evaluated the costs

and benefits of subsidy mechanisms, their optimal design and consequences for firms’ pricing

decisions have not been empirically documented yet.

Furthermore, our paper adds to the literature in industrial economics on strategic pricing

in multi-unit auctions for electricity (e.g., Green and Newbery, 1992; von der Fehr and

Harbord, 1993; Wolfram, 1998; Fabra et al., 2006; Reguant, 2014). More specifically, our

model draws from the share auction framework in Wilson (1979) and multi-unit auction

models that explore bidding strategies in power markets (e.g., Hortaçsu and Puller, 2008).

We rely on this modeling approach as it aids us in tailoring our model to renewable energy

in power markets. We amend the model by adding different support mechanisms for clean

generation. The mechanism through which our model demonstrates the effect of subsidies on

equilibrium market prices is similar to the one outlined in the literature on forward markets

(e.g., Allaz and Vila, 1993; Wolak, 2003a; Bushnell et al., 2008; Van Koten and Ortmann,

2013; Eijkel et al., 2016; Ito and Reguant, 2016). Equivalent to forward contracts, clean

generation that is rewarded by a fixed tariff reduces spot demand and thus prices. With a

premium, this effect vanishes and prices increase.

The remainder of this article is organized as follows. Section two presents the regulatory

environment and data. Section three outlines a model of bidding behavior in multi-unit

auctions in electricity markets. The model incorporates the two standard mechanisms of

technology support and closely guides our empirical investigation. In section three, we

illustrate our empirical strategy and discuss different econometric specifications. Section

four presents our empirical findings. Section five concludes.
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2 Regulatory environment, market places, and data

We investigate technology support for clean energy by studying the Spanish electricity mar-

ket. We focus on the Spanish market to exploit a regulatory change in the support mechanism

introduced in 2004. Furthermore, this market allows us to utilize detailed firm-level data

from wholesale auctions. During our period of observation, from January 2004 to December

2005, clean energy in the Spanish power market mainly came from wind power, but also in-

cluded small-scale hydro resources, bio-energy, and small combined heat and power plants.3

In contrast, conventional carbon-intensive technologies comprise thermal power plants that

use natural gas, coal, or fuel oil as input.

2.1 Market and regulatory environment

During the years 2004 and 2005, the Spanish power market exhibited an oligopolistic market

structure. The market was dominated by four large power producers: Endesa, Iberdrola,

Union Fenosa, and Hidrocantábrico, who jointly covered about 80% of the market. Endesa

and Iberdrola alone supplied about 50 % of sales to the market.

The electricity mix was largely dominated by thermal power plants. Coal power plants

contributed most (more than 25 percent), followed by nuclear power stations and combined

cycle gas turbines.4 Spain, however, was an early adopter of renewable power, especially

with regard to onshore wind. The installed base of onshore wind power amounted to about

10 gigawatt (GW) at the end of our observation period. For comparison, daily peak demand

during our observation period varied around 26 GW.

In March 2004, new regulations introduced by the Royal Decree 436 entered into force.

After the regulation became binding, substantial quantities of electricity from renewable

plants successively entered the spot market. The regulation permitted power producers to

choose between a fixed tariff and a market based remuneration, where the latter included a

regulatory premium on top of the market price for production from renewable sources. The

fixed tariff in effect constituted a contract between the government and renewable producers.

In contrast, under the premium mechanism renewable output was sold in the electricity spot

market. This is, renewable power had to be marketed as any other type of power generation,

but received a top-up on the equilibrium market price. In terms of magnitude, the tariff

3Small scale hydro refers to units with capacity less than 50 MW. Waste incineration and small cogen-
eration plants are also subsidized. Our results are robust to excluding CHP plants and waste incineration,
hence are largely driven by wind power.

4Information are from the Spanish market operator OMIE (Operador del Mercado Ibérico de Enerǵıa).
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was set at about 6.50 AC /MWh, while the premium plus average market prices yielded about

7.10 AC /MWh.5

Although the expected revenue of selling electricity in the market and receiving the

additional premium exceeded the expected revenue of the tariff, not all producers changed

to the premium scheme immediately. The transition took place continuously rather than

instantaneously. Upon choosing to switch to a market based remuneration plus premium,

producers were set to stay within this mechanism for at least one year. This commitment

and potential risk aversion of smaller agents may in parts explain the continuous transition.

Figure A.1 in the Appendix plots the evolution of clean output sold in the tariff and in the

premium mechanism.

2.2 The day-ahead market

Our empirical analysis investigates pricing and mark-up strategies on the day-ahead elec-

tricity market, as it represents the by far most liquid electricity market in Spain and covers

about 70 percent of produced electricity in 2004 and 2005.6 The day-ahead electricity market

clears as a multi-unit uniform price auction, where producers and retailers participate. Sub-

sequent to the day-ahead market, participants may balance their positions on an intraday

market, which during our period of observation however constituted a much smaller market

in terms of volume. The market for forward contracts was negligible during our observation

period (Vázquez et al., 2006).7 Producers mostly hedged via vertically integrating their re-

tail business. Indeed, Crampes and Fabra (2005) report that the large producing companies

also held significant stakes in the retail sector. Below, we therefore address vertical integra-

tion in our empirical specification by controlling for a firm’s subsidiary retail demand in the

day-ahead market.

The day-ahead market is organized by the Spanish market operator OMIE. Generators

and retailers are placing bids for each hour of the consecutive day. In contrast to many other

EU markets and in line with most US markets, supply bids have to be submitted at the

plant-level, instead of covering a firm’s portfolio of production units. For each power plant,

generators can place up to 25 distinct supply bids, specifying different prices and quantities.

The market operator gathers and sorts supply (demand) bids in increasing (decreasing) order

5Numbers refer to subsidy levels for onshore wind power in 2004 following Del Ŕıo and Gual (2007) and
del Ŕıo González (2008).

6About 84 percent of electricity was traded in centralized spot markets (day-ahead and intraday). The
remaining sales mainly include generation subject to the tariff, and to a lesser extent bilateral trades.

7Also the EU DG Competition energy sector inquiry (SEC(2006)1724, 10 January 2007, Part II) finds
that forward markets were insignificant.

6



and clears the market. Hourly prices and quantities are determined in uniform price auctions,

i.e., all production units with bids below the clearing price receive the latter.

All units are obligated to place bids for their entire available capacity. Power generators

participating in the market are allowed to place both simple and complex bids. Whereas

simple bids signal the willingness to sell a certain amount of electricity at or above the price

bid, complex bids add constraints on the minimum daily revenue required by a plant. Firms

make use of complex bids, for instance, whenever plants face additional costs to start-up.8

If operating margins throughout a day do not cover a plant’s revenue requirement, all bids

by this plant are excluded from the auction. Complex bids thus change the probability of

winning and being dispatched for the respective plants (Reguant, 2014). Lastly, there exists

a price cap of 180.30 AC /MWh, which was however never binding during our observation

period. Indeed, clearing prices ranged between 3 AC /MWh and 127 AC /MWh.

2.3 Data

To study the effects of subsidies on pricing behavior, we require data on firms’ mark-ups,

that is, their supply bids and marginal costs, as well as data on demand and actual sales.

We therefore collect all market participants’ supply and demand bids on the day-ahead

market, the type of technology for which a supply bid was submitted, the equilibrium clearing

price and resulting sales for each firm. The data come, as market clearing does, in hourly

granularity. In detail, our main dataset consists of all hourly supply bids for each plant and

each company for the years 2004 and 2005. As we are interested in the pricing decisions

by the dominant producers, we restrict our sample to bids submitted by the four largest

companies, which cover about 80% of the market. For all fringe firms, we keep the data

on their joint output. The fringe consists mostly of small renewable producers. Last, we

use fuel price data and EU ETS prices from Bloomberg and Thomson Reuters to estimate

plant-specific marginal cost of power production. We use engineering estimates to attach

the efficiency to each thermal power plant in the sample. Appendix B illustrates our data in

more detail. In sum, the data allow us to study firm-specific sales for clean and conventional

generation, as well as the firms’ pricing strategies in the wholesale market.

8Doraszelski et al. (2018) study related mechanisms that remunerate wear and tear costs for ramping up
and down power plants in the UK electricity market.
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3 Model and empirical strategy

To formalize firms’ pricing decisions, we employ a model of bidding behavior in multi-unit

uniform price auctions, which constitute the standard clearing mechanism in electricity mar-

kets. The literature on multi-unit auctions considers continuous bid functions (e.g., Wilson,

1979; Klemperer and Meyer, 1989; Hortaçsu and Puller, 2008; Holmberg and Newbery, 2010)

and discrete bidding strategies (e.g., Fabra et al., 2006; Kastl, 2006, 2012). Both modeling

approaches have been applied to electricity markets. Wolfram (1998), Fabra et al. (2006),

Reguant (2014), and Schwenen (2015) study discrete bids, while Green and Newbery (1992),

Wolak (2000), and Hortaçsu and Puller (2008) study price games with continuous supply

functions. Our model follows the framework in Hortaçsu and Puller (2008) as it aids us in

formally incorporating stochastic wind and solar output into our analysis.9

3.1 A model for strategic pricing with technology support

We model strategic firms who decide on their supply to the market at any possible market

price p. Each firm i therefore chooses its supply function Si(p), where supply may stem from

“clean” renewable production (wind and solar) or from emitting conventional production.

We denote firm i’s clean production as xci and model its output as random variable, whose

realization is private information to firm i. At the time of submitting bids, firm i knows its

own renewable output, but not the one of its rivals. As the supply of firm i hence depends on

its realized renewable output, we on occasion write Si(p) = Si(p, x
c
i). Last, we assume that

firms are capacity constrained in their clean output so that Si(p) > xci at any equilibrium

market price.10

The regulator implements a set of support mechanisms for firm i’s clean production.

Specifically, the regulator offers two types of support mechanisms: In the first mechanism,

the firm receives a fixed tariff t for every unit produced from clean assets. In the alternative

mechanism, the firm opts for a premium on top of the market price for its clean supply. This

premium is denoted by s.

To incorporate both mechanisms into our model, we allow firms to have a share αi of their

9In models with discrete bids, a large domain of supply or demand shocks can lead to mixed strategies
if bids are long-lived and used for several rounds of market clearing (Fabra et al., 2006). Kastl (2012),
Holmberg et al. (2013), and Anderson and Holmberg (2018) show conditions under which the difference in
discrete and continuous models is qualitatively negligible. Fabra and Llobet (2019) provide a model with
discrete bids and uncertain renewable output.

10Otherwise, there would be little need for subsidies. We also show that in our empirical setting, firms
always produce output larger than their renewable capacity.
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clean production subsidized by the premium, while they receive the tariff for the remaining

share, 1 − αi. This modeling approach matches our empirical application and many real-

world mechanisms, where firms can decide on their preferred form of subsidy over a specified

period of time. Firms decide on their share αi in advance of participating in the market, so

that the choice on the support mechanism is sunk when firms submit their supply function.

We model demand to be deterministic and denote demand as a function of price by

D(p).11 When N firms participate in the market, the clearing price p∗ must satisfy

N∑
i

Si(p
∗, xci) = D(p∗). (1)

Ex-post of market clearing, each firm’s profits yield

πi = Si(p
∗)p∗ − Ci(Si(p∗)) + sαix

c
i + (t− p∗)(1− αi)xci , (2)

where Ci is the firm’s cost function. The first two terms capture standard revenue and

cost considerations. The third term represents the premium on top of the market price that

firm i receives for its share αi of clean energy sold at the respective market price. The last

term adds firm i’s profits for its remaining share of renewable output for which the firm

receives the fixed tariff.

Note that firm i faces uncertainty on the clearing price due to the unknown clean produc-

tion of its competitors. Put differently, the market price depends on the realization of the

aggregate clean output of firm i’s rivals, and how this output changes their supply function.

To capture this uncertainty in firm i’s pricing, we follow Wilson (1979) and Hortaçsu and

Puller (2008) and map randomness in rival supply to randomness in price. Denoting the

cumulative distribution function of the market clearing price, given firm i’s supply at this

price, as Hi(p, Si) ≡ Pr(p∗ < p | Si), the maximization problem can be written as

max
Si(p)

E[πi] =

∫ p

p

[Si(p)p− Ci(Si(p)) + sαix
c
i + (t− p)(1− αi)xci ] dHi(p | Si). (3)

Using calculus of variations, the Euler-Lagrange first-order condition yields

p− C ′i(S∗i (p)) = (S∗i (p)− (1− αi)xci)
HS(p, S∗(p))

Hp(p, S∗(p))
(4)

11Demand may be stochastic. Our results are independent of this modeling choice and we therefore stick
to deterministic demand.
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where S∗i (p) is firm i’s optimal supply function, C ′i marginal costs, and HS and Hp are

derivatives with respect to supply and price, respectively. The left hand side represents

the firm’s mark-up at its level of supply S∗i (p). The right hand side shows that the mark-

up depends on overall output and the amount of clean production supported by the tariff.

Appendix A presents more details on the derivation of the optimality condition.

To interpret the optimality condition, note that Hp is the probability density function of

price and must be positive. Also HS must be positive because additional supply increases

the likelihood that price is below any given value. Vice versa, withholding supply decreases

the likelihood that the equilibrium price is below a certain value. The right hand side

consequently is positive and determines a non-zero mark-up, unless the supply effect of firm

i on the price distribution is infinitely small.12

In addition, the optimality condition shows that all clean output rewarded by the tariff,

(1−αi)xci , decreases the mark-up. Note that this effect is conditional on a firm indeed having

the ability to impact the market price distribution. As this probability approaches zero, also

the effect of inframarginal capacity on the mark-up vanishes.

The effect of the tariff mechanism on price is similar to the price-reducing effect of forward

contracts as first suggested by Allaz and Vila (1993) and as documented in Wolak (2003a),

Bushnell et al. (2008), and Hortaçsu and Puller (2008). The two cases are similar because

both, capacity sold at forward prices and clean production sold via the tariff, reduce a firm’s

residual demand. As a result of declining residual demand, the equilibrium mark-up must

decrease accordingly.

To compute equation (4), one needs to either derive or estimate HS and Hp. As Hortaçsu

and Puller (2008) show, the analytical derivation simplifies when restricting the strategies

to be additively separable. In our context, this assumption translates into renewable shocks

that shift supply curves in a parallel fashion. We therefore consider strategies where clean

and emitting supply is additive, this is, Si(p, x
c
i) = Si(p, x

c
i) + ε(xci), where the function ε

translates realized renewable output into parallel shifts.13

As shown in Appendix A, restricting strategies to be additive allows to derive HS

Hp
analyt-

12As discussed in Wolak (2003b) and Hortaçsu and Puller (2008), the strategies that follow equation (4)
are also ex-post optimal, as long as shocks to supply or demand are additive.

13Note that this supply function still allows for mark-ups on renewable supply. We just restrict the
uncertainty to be additive. For example, supply could be linearly upward sloping with positive mark-ups over
the entire output range, where ε shifts the lowest price with positive output. In Hortaçsu and Puller (2008),
parallel shifts are instead introduced by forward contracts with volume unknown to firm i’s competitors.
In our setting, the additive separability assumption captures that renewable shocks in electricity markets
typically shift the entire supply curve.
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ically with HS

Hp
= 1

mi(p)
, where mi(p) denotes, in absolute terms, the slope of firm i’s residual

demand at price p. Furthermore, recalling that we study a setting where firms are capacity

constrained and sell all of their subsidized output, we can rewrite S∗i (p) = xei (p) + xci , where

xei (p) is the emitting part of firm i’s supply curve. The optimal strategy in equation (4)

hence simplifies to

p− C ′(S∗i (p)) = (αix
c
i + xei (p))

1

mi(p)
. (5)

Given that price, marginal costs, demand, as well as clean and conventional production

are observable, the optimality condition is also estimable. Equation (5) states that clean

supply under the premium mechanism contributes positively to a firm’s mark-up. This is

because, under the premium mechanism, the equilibrium market price applies to both clean

and conventional output.14 Therefore, while the premium itself is not relevant for optimal

pricing, the remuneration of clean supply under the premium regime nonetheless depends on

the market price and as such impacts a firm’s pricing decision. We summarize this finding,

that we test in our empirical application, in the following proposition.

Proposition 1 The optimal mark-up of firm i depends positively on firm i’s share of clean

output sold under the premium mechanism, i.e., the mark-up increases in αix
c
i .

3.2 Empirical strategy

Our empirical strategy closely relies on Proposition 1 and the optimality condition in equa-

tion (5). Following Proposition 1, we are interested in evaluating price effects of the premium

mechanism. To estimate the price effects of marketed renewable production αix
c
i , we test

the optimality condition at the margin, this is, for all mark-ups at the clearing price p∗ and

submitted quantities Si(p
∗). More specifically, we test Proposition 1 by log-linearizing the

optimality condition at the margin to

ln (p∗ − C ′i(Si(p∗))) = ln (αix
c
i + xei (p

∗))− ln mi(p
∗). (6)

Furthermore, rearranging αix
c
i + xei (p

∗) to (1 + θi)x
e
i (p
∗) with θi =

αix
c
i

xei (p
∗)

yields a specifi-

cation that allows to estimate the model as:

ln (p∗ − C ′i(Si(p∗))) = ln (1 + θi) + ln xei (p
∗)− ln mi(p

∗). (7)

14The result that mark-ups increase in offered quantity is in line with a range of specifications for standard
oligopoly and multi-unit auction models (e.g., Klemperer and Meyer, 1989). Note that firms can sell this
additional output because demand in the spot market increases by the same amount by which renewable
sales in the tariff mechanism are reduced.
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Equation (7) states that, at the margin, the mark-up is a function of all of firm i’s con-

ventional capacity and the ratio of its marketed clean over conventional capacity, as well

as the slope of firm i’s residual demand. The slope of residual demand affects the mark-up

negatively, where for a more elastic residual demand (higher mi), the mark-up decreases.

To capture price effects of subsidized renewable sales over time, we estimate equation (7)

by pooling data across auctions, controlling for observed and unobserved factors that may

vary from one auction to the next. In detail, we add hourly time indeces to equation (7) and

estimate:

ln (p∗it − C ′it(Sit(p∗))) = β0 + β1 ln(1 + θit) + β2 ln x
e
it(p
∗) + β3 ln mit(p

∗) + γW + εit,

where the matrix W comprises different time fixed effects and, depending on the spec-

ification, plant and company fixed effects. Time fixed effects capture regularly reoccurring

patterns in power markets, such as demand or temperature. We include hour, day-of-week,

month, and year fixed effects that capture hourly, daily, and seasonal demand patterns as

well as other time-specific heterogeneity. To the extent that unobserved production cost

occur on hourly or daily patterns, fixed effects also capture higher mark-ups due to regularly

emerging ramping or start-up costs.

To interpret the absolute effect of sales from clean energy, we also deviate from the model

and estimate a version that estimates the elasticity between marketed clean production and

the mark-up more directly:

ln (p∗it − C ′it(Sit(p∗))) = β0 + β1 ln αix
c
it + β2 ln x

e
it(p
∗) + β3 ln mit(p

∗) + γW + εit.

Our data allow to compute all required variables. First, we can compute the hourly

mark-up on marginal costs, defined as the price-bid submitted at the quantity Si(p
∗) by firm

i in auction t minus marginal costs of the respective plant. Second, the renewable output

marketed under the premium mechanism, αitx
c
it, as well as the amount of conventional

production xeit(p
∗) are directly observable in the data. Note that our data on marketed

renewable production captures clean inframarginal capacity under the premium scheme αixc,

rather than merely αi. Next to improved interpretability, this is because we do not observe

the share αi of renewables under the premium mechanism, at least not at firm-level. Instead,

we observe the amount of renewables directly sold in the market and hence earning the

premium. For running our first specification, we in addition compute the share of marketed

renewable energy, 1 + θit. Last, we use the data on demand bids to compute the slope of the
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residual demand around the clearing price.15 Table 1 presents the summary statistics.

Table 1: Summary statistics

Mean Median Std. dev. Min Max Obs.

Clearing prices [AC/MWh] 40.1 37.8 18.4 10.1 127.0 14,101

Marginal costs at Si(p
∗) [AC/MWh] 18.9 16.2 9.3 8.9 87.9 30,390

Mark-up [AC/MWh] 17.0 14.4 13.2 0.0 101.6 30,390

Renewable generation [MW] 102.4 5.9 223.0 0.0 2108.5 30,390

Conventional generation [MW] 4622.4 3617.2 3033.7 745.6 13,064.5 30,390

Notes: Sample from January 2004 to December 2005. Observations are hourly and comprise the largest four

firms in the market. Hours where pumped storage, hydro power plants, imports, or nuclear power produced

at the margin are excluded, as their marginal production costs are prone to measurement bias.

Note that firms submit discrete bid functions. Therefore, the mark-up p∗it − C ′it(Sit(p∗))
may not be defined, if a firm’s residual demand intersects its supply function in between

steps. Indeed, in most hours there is only one of the four dominant firms that submits a

bid that is identical to the clearing price. To compute the mark-up for all four firms, we

therefore use each firms price-bid at its equilibrium quantity Si(p
∗), which may be equal to

or lower than p∗. Our results are robust to computing the mark-up using the unique clearing

price for all firms instead of their marginal bid.16

Our empirical approach derives from the modeled optimality condition and hence is

subject to the underlying model assumptions. First, we do not model forward contracts.

However, firms may change their forward market strategy in response to selling renewable

generation under the premium mechanism, as they are exposed to price volatility for a

larger volume of sales. Yet, since forward contracts during our period of observation have

been negligible, we conjecture that forward market reactions have not been significant. In

addition, price exposure is limited by the relatively stringent price cap in Spain on the day-

ahead and intraday market. If, however, hedging incentives and forward volumes were to

increase in response to additional price exposure for renewable output, our model estimates

are likely to be downward biased, as a simultaneous increase in forward sales would negatively

effect spot market prices (e.g., Wolak, 2000; Bushnell et al., 2008).

15We present our approach to construct the slope of residual demand in Appendix B.
16To investigate the distance between the clearing price and a firm’s price-bid at Si(p

∗), we calculated a

distance ratio defined as p∗− bid
p∗ . The median difference between the clearing price and a firm’s bid is below

3%. We therefore conjecture that modeling smooth supply functions, at least at the margin, depicts the
firms’ pricing strategies reasonably well.
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Lastly, our findings rely on the presumption that mark-ups increase because firms account

for inframarginal renewable sales in their optimal pricing decision. Whereas this is in line

with standard oligopoly models where mark-ups increase in output, in our application high

mark-ups could, in turn, lead to more companies switching to the premium mechanism. Yet,

we view this possibility as not realistic as the premium mechanism has been the dominant

mechanism by design. In fact, from the start the premium mechanism has been constructed

to yield more revenue as compared to the tariff mechanism (del Ŕıo González, 2008). Below,

we also rule out that mark-ups could have been increasing as a result of changes in market

concentration. On the contrary, we find that the HHI falls during our observation period.

4 Results

Table 2 presents the results of our empirical analysis and shows the estimated coefficients

for our two main specifications. The first two columns report estimates when using the

share, 1 + θit, to measure the impact of marketed renewable generation on the mark-up.

The estimates for the share of renewable output are positive and robust in magnitude. Also

the coefficients of conventional capacity and for the slope of residual demand show signs as

conjectured.

In column two, we in addition control for a company’s degree of vertical integration. Sim-

ilar to the well-studied effect of forward contracts, we expect that a high share of subsidiary

retail firms on the demand side attenuates incentives to submit high bids. To construct this

control, we first sum up the aggregate quantity of satisfied demand from retailers owned

by the corresponding generating companies. As control variable, we then use the sum of a

firm’s “own” demand relative to total demand satisfied in the respective hour. As shown in

column two, the estimates suggest that indeed firms submit lower bids if a larger portion of

the market demand stems from their own retail firms.

In specifications three and four, we then use the absolute amount of subsidized renewable

generation. While the estimated effects of conventional capacity and demand elasticity stay

robust, the direct elasticity of renewable generation on the mark-up is now estimated to be

about 0.05%. This effect is again significant and robust also when controlling for the demand

of subsidiary retailers in specification four.

Applying our estimate of 0.046 percent for the mark-up effect of renewable energy on the

mean renewable generation and the mean power price during the last month of our sample,

we find that the implementation of the premium scheme yields an overall price increase of
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about 1.80 AC /MWh, raising the average market price by about 3 percent.17

Table 2: Mark-up Regressions.

(1) (2) (3) (4)

Renewable output
ln(1 + θi) 1.519 1.416

(17.98) (16.91)

ln αix
c
i 0.046 0.044

(15.07) (15.71)

Conventional output
ln xei (p

∗) 0.442 0.500 0.471 0.529
(20.92) (24.01) (21.95) (25.00)

Demand slope
ln m∗ -0.035 -0.033 -0.039 -0.037

(-10.02) (-9.35) (-11.29) (-10.51)

Own retail demand
ln (retail demand over total) -0.506 -0.516

(-15.45) (-15.77)

Plant fixed effects Yes Yes Yes Yes

Company fixed effects Yes Yes Yes Yes

Observations 30,390 30,390 30,390 30,390

R2 0.69 0.70 0.69 0.70

Notes: Dependant variable is the mark-up by firm i in auction t. Specifications (1) and (2) use a
firm’s share of renewable to conventional output, ln(1 + θi), as explanatory variable. Specifications
(3) and (4) use a firm’s amount of marketed renewable output, ln αix

c
i . Sample runs from January

2004 to December 2005. T-statistics are in parentheses. All regressions include hour, weekday,
month, and year fixed effects. Standard errors are clustered at the auction-level.

17Note that for specifications three and four, theory does not require the estimates for renewable and
conventional generation to be equal. This is because small changes in ln(αix

c
i + xei (p

∗)) in equation (6) can

be approximated as δln(αix
c
i + xei (p

∗)) ≈ δln(αix
c
i )

αix
c
i

αixc
i+x

e
i (p

∗) + δln(xei (p
∗))

xe
i (p

∗)
αixc

i+x
e
i (p

∗) . Hence we indeed

expect the estimate for conventional generation to be larger, as conventional capacity on average exceeds
renewable capacity.
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4.1 Robustness to cost estimates

Our findings rely on engineering estimates for marginal production costs. To obtain cost

estimates, we follow the large body of literature that models firm behavior and measures

marginal costs and mark-ups in electricity markets (e.g., Wolfram, 1999; Borenstein et al.,

2002; Mansur, 2007; Hortaçsu and Puller, 2008). In particular, we construct marginal costs

by accounting for each plant’s fuel type, fuel efficiency, and regulatory permit costs. As

common, we assume that each plant has constant marginal cost up to its hourly operating

capacity.

Wolak (2007) and Reguant (2014) show that this standard approach abstracts from ramp-

ing or start-up costs of power plants. These costs mainly arise from depreciation of the

equipment when plants quickly increase or decrease generation, and would lead us to under-

state the costs and to overstate the mark-up. When this measurement bias is correlated to a

firm’s inframarginal renewable or conventional generation, our estimates in turn are biased.

To rule out such engineering-based explanations, we perform two robustness checks. The

estimation results for both robustness checks are shown in Table A.1 in the Appendix. First,

we exploit the Spanish market design that allows firms to submit complex bids to announce

start-up and ramping costs. We therefore investigate a sub-sample that only includes plants

for which firms did not submit complex bids and for which we presume the absence of start-

ups costs.18 When re-running our regressions with this sample, the estimates for renewable

and conventional capacity remain significant and robust in magnitude. Also the effect of the

slope of residual demand remains robust.

Second, we restrict our analysis to plants that have submitted bids of zero (for their

first of 25 possible bid steps per plant) in hour t and t-1. Thereby we restrict our sample to

plants who have already been operating in the previous hour, and in addition seek to operate

with certainty in hour t. Consequently, these plants should not face significant start-up or

ramping costs from hour t-1 to hour t. We again confirm our main findings, as shown in

Table A.1 in the Appendix.

While our results are in line with the underlying mechanism of the model, equation (7)

implicitly predicts estimates of 1%. Notably, when excluding complex bids we move closer

to the magnitudes predicted by theory. That is, the estimates for inframarginal capacity

move closer to 1. We obtain even better fits with theory when excluding complex bids and

18To focus on sub-samples is a standard approach. For instance, to rule out engineering-based explanations
for mark-ups, Hortaçsu and Puller (2008) consider early morning hours where flexible plants without ramping
costs operate.
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only using mark-ups when firms indeed set the clearing price or submit very close bids to the

clearing price. This indicates that complex costs and discrete bids to some degree explain

deviations from our bidding model.19

4.2 Effects for large producers

Next, we explore the pricing behavior of the two largest generators, Endesa and Iberdrola, as

they control the main share of renewable production. Both companies also own substantial

conventional capacities. Endesa at times supplied more than 14,000 MW per hour of thermal

generation and Iberdrola up to 12,000 MW. The picture reverses for renewable generation.

Endesa sold up to 700 MW, while Iberdrola’s sales reached more than 2,100 MW.

Figure 1 graphs each firm’s hourly mark-up over its marketed renewable output in that

hour. In line with our estimations, we plot the logarithmic scale, which shows that a log-

linear relationship indeed represents the data well. For both firms, we plot selected hours,

i.e., 12 noon (to 1 PM) and 4 PM (to 5 PM). The graphs are clearly indicating the positive

relationship of mark-up and renewable output. Re-running our regressions for a sample that

only contains the two largest firms again confirms our main results.

To illustrate the effects on supply curves and residual demand, Figure 2 plots the entire

supply function for Iberdrola in two selected and exemplary hours. It comprises two plots

with similar conventional production and the identical marginal power plant during the same

hour of the day. The left panel, however, shows a selected hour at the end of 2004, where

Iberdrola only sold about 100 MW of renewable output via the premium mechanism, and

received the tariff for the bulk of its clean output. In contrast, the right panel depicts the bid

curve at a later point in our sample, where Iberdrola had migrated nearly all of its renewable

output to the premium mechanism and, in that hour, sold about 1,700 MW of renewable

generation in the market. The right panel clearly indicates higher residual demand. This is

in line with the conjecture that every unit not sold via the tariff but instead in the market

increases a firm’s residual demand. Also the supply curve is much steeper in the right panel,

where Iberdrola obtains the mark-up over a larger amount of inframarginal capacity. In

combination with the outward shift in residual demand this leads to both, a larger mark-up

and a higher clearing price.

19That mark-ups differ in magnitude from optimality conditions has also been found in previous literature.
Wolfram (1999) finds mark-ups for the British market that were too low to result from profit maximizing
firms, conjecturing that this was due to political pressure or unobserved quantities of forward contracts.
Hortaçsu et al. (2019), taking forward contracts into account, also identify bids that are not profit-maximizing
in the Texas power market, relating this to differences in the strategic ability of firms.
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Figure 1: Mark-up (in logs) over inframarginal renewable output (in logs) for selected hours for Iberdrola
and Endesa. The graph comprises all hours over the full sample from January 2004 to December 2005 with
positive renewable output.

4.3 Competing renewable output and evolution of market shares

Last, we investigate the strategic effects of competing firms’ renewable generation. In our

model, the business-stealing effect of competing renewable output is captured in the residual

demand left for firm i, which derives from the price distribution Hi(p). Recall that this

price distribution is modeled as a function of the uncertain aggregate renewable output of

all rival firms. Hence the variation in aggregate renewable output can be employed to proxy

the variation in Hi(p). We therefore re-estimate our main specifications using the aggregate

renewable output of competitors instead of the residual demand slope. Hence, we test in how

far competing renewable output effects the ability of firm i to exercise market power. As can
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Figure 2: Bid curves for Iberdrola with few marketed renewable output (left) and a high amount of
renewable capacity (right). Both plots are showing bids and residual demand for 4 PM and on a weekday.
In the left graph, Iberdrola sells conventional output of 4,600 MW and renewable output of 100 MW. In the
right graph, Iberdrola sells conventional output of 5,100 MW and renewable output of about 1,700 MW.

be seen in Table 3, our results are again robust for this case. The estimates on renewable and

conventional capacity are in line with our previous results, both in terms of significance and

magnitude. Further and as can be expected, the renewable output by other firms decreases

mark-ups due to a business-stealing effect, whereas a firm’s own sales increase its mark-up.
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Figure 3: HHI (dashed line) and market share for the four largest firms (solid line).

Note that competing renewable output can either come from incumbent companies or

from new, typically small, renewable producers. To further investigate market entry, Figure
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Table 3: Mark-up regressions controlling for competing renewable output.

(1) (2)

Renewable
ln(1 + θi) 1.768

(21.00)

ln αix
c
i 0.052

(18.05)

Conventional
ln xei (p

∗) 0.397 0.427
(18.78) (19.90)

Competitors’ renewables
-0.346 -0.350

(-21.33) (-21.27)

Observations 30,387 30,387

R2 0.70 0.70

Notes: Dependent variable is the mark-up by firm i in auction t. Specification (1) uses a firm’s
share of renewable to conventional output, ln(1 + θi), as explanatory variable. Specification (2)
uses a firm’s amount of marketed renewable output, ln αix

c
i . Sample runs from January 2004 to

December 2005. T-statistics are in parentheses. Standard errors are clustered at the auction-level.
All regressions include plant, company, hour, weekday, month, and year fixed effects.

3 plots the evolution of the HHI and of the market share of the four largest firms. As can

be seen, the large firms have lost market share during our period of observation, while they

are still accounting for about 75% of the market at the end of our sample. The HHI shows

a corresponding downward trend. Overall, the market remains fairly concentrated.

The declining market shares and HHI stress the impact of the subsidy mechanism. First,

we rule out that price increases have been the result of a more concentrated market. In

addition, our findings suggest that while technology policies to spur renewable energy can

lead to market entry and change market structure, mark-ups and policy costs can increase

and off-set potentially price-reducing effects of market entry.
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5 Conclusion

In this paper, we have studied how technology policy to support clean production influences

competition and market structure in power markets. We have tailored our analysis to multi-

unit auctions, the dominant clearing mechanism in power markets around the globe. The

model draws from canonical multi-unit auction frameworks and adds the effects of different

mechanisms to support clean energy. We have applied our model to detailed bidding-level

data from the Spanish power market, to a period of time when regulators re-organized the

subsidy mechanism. The support mechanism changed from a fixed tariff to a price-dependent

support, adding a premium on top of the equilibrium market price.

We have shown that fixed tariff mechanisms work equivalently to forward contracts and,

in line with standard forward market models such as in Allaz and Vila (1993), decrease

the market price set by strategic firms. When regulators change the support design to

a mechanism based on a premium on top of the market price, this pro-competitive effect

vanishes and prices ceteris paribus increase, as do policy costs. We also find that this effect

is conditional on firms indeed having the ability to exercise market power. That is, our

findings are conditional on imperfect spot market competition and illiquid forward markets

that otherwise could attenuate observed effects.

In line with these model findings, our empirical estimates show that firms that sell large

shares of subsidized clean energy to the market account for these in their pricing decisions and

significantly increase their mark-up. At the same time, we have documented that the market

concentration has fallen in parallel, as indicated by a decline in the HHI. Consequently,

market concentration measures can be misleading when evaluating policies to promote clean

energy in power markets.

Our findings highlight the role of mechanism design for technology support on market

outcomes. Our findings also pertain to other forms of technology support, e.g., for quantity

mechanisms such as procurement auctions for clean energy, where the choice of the auction

design and the payment schemes should be considered in view of our findings.
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Hortaçsu, Ali, Fernando Luco, Steven L Puller, and Dongni Zhu (2019) “Does Strategic

Ability Affect Efficiency? Evidence from Electricity Markets.”
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Appendix

A Equilibrium supply functions

Simplifying equation (3) by writing expected profits as E[πi] =
∫ p
p π(Si(p))Hp(p, S(p))dp, we can

integrate by parts and obtain

E[πi] = π(Si(p))H(p) |pp −
∫ p

p

[
d

dp
π(Si(p))

]
H(p)dp.

Using H(p) = 0 and H(p̄) = 1 yields

E[πi] = π(Si(p))−
∫ p

p

[
d

dp
π(Si(p))

]
H(p)dp.

The first term is a constant, so maximizing the integrand of the second term suffices. The derivation

then proceeds as in Hortaçsu and Puller (2008), where renewable energy support in our model

replaces the effect of forward contracts.

To derive the cumulative price distribution Hi(·), let the index −i denote aggregate market

quantities net of firm i. Then, the probability that the clearing price p∗ is below any price p can

be written as the probability that supply is larger than demand at price p:

Hi(p, Si) = Pr
(
S−i(p, x

c
−i) + ε−i(x

c
−i) + Si > D(p) | Si

)
(8)

= Pr
(
ε−i(x

c
−i) > D(p)− S−i(p)− Si | Ŝi

)
= 1− Fi (D(p)− S−i(p)− Si | Si) ,

where Fi is the cumulative distribution function of ε−i. The derivatives are

HS =
∂Hi

∂Si
= −fi(D(p)− S−i(p)− Si)

∂

∂Si
(D(p)− S−i(p)− Si)

and

Hp =
∂Hi

∂p
= −fi(D(p)− S−i(p)− Si)

∂

∂p
(D(p)− S−i(p)− Si) .

Hence we can write
HS(p, S∗(p))

Hp(p, S∗(p))
=

1

mi(p)
,

with mi(p) = − ∂
∂p (D(p)− S−i(p)) being the slope of firm i’s residual demand. Because the slope

of residual demand, ∂
∂p (D(p)− S−i(p)) is negative, mi is positive and measures the steepness of

the residual demand curve.
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B Data

This appendix provides additional details on our data. To obtain our final sample, we proceed

as follows. We first combine the bidding data with power plant lists provided by the market

operator (OMIE). The bidding data, i.e. supply and demand curves, are available on the website

of the market operator (labeled curva pbc uof). Additionally, we use data on aggregate hourly

production (labeled pdbc stot and pdbc stota) to derive aggregate renewable production supported

via the premium and the tariff mechanism, respectively.

We in addition match our sample with information from Electra (Registro de productores de

enerǵıa eléctrica). Electra publishes data sets on generation capacity in Spain. We also use open

power system data that provides information for energy market modeling, including extensive

information on European power plants. In combination with the power plant lists provided by

OMIE, this matching allows us to extend our sample with the owner of the power plant, the

production technology used, and the respective year of commissioning of the plant.

To obtain marginal costs, we use commodity price data from Bloomberg (hard coal and fuel oil)

and Thomson Reuters (natural gas). We add EU ETS Phase I prices from Bloomberg. Hard coal

prices refer to Australian steam coal (Bloomberg id CLSPAUNE), freight on board in Newcastle

with a calorific value of 6000 kc and are updated on a weekly basis. Fuel oil prices reflect daily CIF

prices for Milazzo (Italy) with a sulfur content of one percent (Bloomberg id N6M1.OCC).

For natural gas we use Dutch TTF (Title Transfer Facility) prices (Thomson Reuters identifier

TRNLTTD) provided on a daily basis. Within our sample, the largest share of natural gas imports

stem from Algeria, for which no granular price series exists. We compared available price points for

Algerian import prices with the high resolution TTF data we received from Bloomberg, confirming

that TTF price data is a good approximation. Furthermore, the TTF price data is in line with the

Gazexport-Ruhrgas prices applied by Fabra and Reguant (2014) for the same period.

There was no detailed price data available for lignite as input factor. For our calculations we

used a fixed price of 8 AC /ton, based on engineering studies. However, we conjecture lignite prices

to be rather stable over time.

Power plant efficiency is estimated using the commissioning date as proxy. Based on engineering

reports (European Commission, 2006; Taylor et al., 2008; IEA, 2010), we attach fuel efficiency to

each power plant conditional on the year of commissioning. Combining commodity price data, cost

of carbon, power plant efficiency and heating values of the respective fuels, we estimate marginal

production cost. We ignore additional marginal cost factors, such as O&M cost in our estimation.

According to (IEA, 2015), median levels of variable O&M cost accrue to 2.70 USD/MWh for CCGT

and to 3.40 USD/MWh for coal power production, respectively. We assume variable O&M cost to

be constant over time. We could not identify reasons for significant changes in O&M cost during

our period of observation.
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To determine hourly residual demand curves for each market participant in our sample, we

again make use of the supply and demand curves provided by the market operator. To derive

residual demand for company i, we first calculate the aggregate supply of all competing market

participants j 6= i, as well as aggregate demand. Subtracting aggregate supply of all firms j from

aggregate demand, we isolate residual demand for firm i. Last, we measure the slope of the residual

demand curve at the marginal bid submitted by firm i, making use of the smooth.spline function

in R.

C Tables and figures
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Figure A.1: Panel (a) plots the evolution of the weekly average renewable generation in the tariff mechanism
and in the premium mechanism. Panel (b) plots the weekly average market sales on the day-ahead market,
along with conditional means for each week of the sample. As can be seen, the demand in the market from
the beginning of our sample to the end of our sample increases by a comparable quantity that leaves the
tariff mechanism and is then sold under the premium mechanism in the day-ahead market.
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Table A.1: Mark-up regressions conditional on the use of complex bids.

(1) (2) (3) (4)

Renewable
ln(1 + θi) 1.033 1.415

(8.79) (13.40)

ln αix
c
i 0.037 0.042

(12.20) (13.10)

Conventional
ln xei (p

∗) 0.644 0.672 0.679 0.694
(25.84) (25.52) (26.84) (26.02)

Demand slope
ln m∗ -0.044 -0.049 -0.045 -0.052

(-11.39) (-12.31) (-11.73) (-13.05)

Own retail demand
ln (retail demand over total) -0.599 -0.583 -0.605 -0.583

(-18.57) (-16.86) (-18.84) (-16.98)

Plant fixed effects Yes Yes Yes Yes

Company fixed effects Yes Yes Yes Yes

Observations 22,948 21,863 22,948 21,863

R2 0.72 0.72 0.72 0.72

Notes: Dependant variable is the mark-up by firm i in auction t. Specifications (1) and (2) use a
firm’s share of renewable to conventional output, ln(1 + θi), as explanatory variable. Specifications
(3) and (4) use a firm’s amount of marketed renewable output, ln αix

c
i . Sample runs from January

2004 to December 2005. Specifications (1) and (3) use plants that have not submitted complex bids.
Specifications (2) and (4) use plants that were operating already in the previous hour. T-statistics
are in parentheses. Standard errors are clustered at the auction-level. All regressions include hour,
weekday, month, and year fixed effects.
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