
Basu, Arnab K.; Byambasuren, Tsenguunjav; Chau, Nancy H.; Khanna, Neha

Working Paper

Cooking Fuel Choice, Indoor Air Quality and Child Mortality
in India

GLO Discussion Paper, No. 560

Provided in Cooperation with:
Global Labor Organization (GLO)

Suggested Citation: Basu, Arnab K.; Byambasuren, Tsenguunjav; Chau, Nancy H.; Khanna, Neha
(2020) : Cooking Fuel Choice, Indoor Air Quality and Child Mortality in India, GLO Discussion Paper,
No. 560, Global Labor Organization (GLO), Essen

This Version is available at:
https://hdl.handle.net/10419/218749

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/218749
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Cooking Fuel Choice, Indoor Air Quality and Child Mortality in
India∗

Arnab K. Basu, Tsenguunjav Byambasuren, Nancy H. Chau and Neha Khanna†

This version: May 2020

Abstract: Indoor air pollution (IAP)–predominantly from the use of solid fuel for cooking–
is a global health threat, particularly for women and young children, and one of the leading
causes of infant deaths worldwide in developing countries. We estimate the causal effect
of cooking fuel choice on infant mortality in India, focusing on children under five years of
age using pooled cross-sectional data from the National Family Health Survey (NFHS) over
the period 1992–2016. To address the potential endogeneity in the relationship between fuel
choice and mortality, we instrument for cooking fuel choice using a speed of change in forest
cover and ownership status of agricultural land, which induce significant variations in fuel
type. We find that cooking fuel choice has a statistically significant impact on under-five
and neonatal mortality, raising the mortality risk by 4.9 percent. We also find that the past
literature has overestimated the association between under-five mortality and polluting fuel
use by about 0.6 percentage points or equivalently, 152,000 deaths per year nationally. Our
result is robust to a set of alternative specifications with the inclusion of various controls
and different estimation strategies.
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1 Introduction

Indoor air pollution (IAP) is produced mainly by incomplete combustion of polluting fuels

used for cooking, heating, and lighting and remains the single largest environmental health

risk factor worldwide (WHO, 2016). Almost three billion people—41% of the world’s

population—have been using open fire or simple stoves fueled by kerosene, coal, wood,

animal dung and crop waste for cooking and as domestic sources of energy for the past

three decades (WHO, 2018b).

Around 95% of these people live in poverty in low and middle-income countries of

Southeast Asia, Western Pacific, and Africa: 80% of the population in China, 82% in India,

87% in Ghana, 95% in Afghanistan, and 95% in Chad rely primarily on polluting cooking

fuels (Duflo et al., 2008b). The combination of traditional cooking stoves and polluting

fuels generates high levels of hazardous indoor air pollutants. Each year, close to 4 million

people die because of diseases attributable to indoor air pollution (including heart disease,

respiratory disease, stroke, and cancer) caused by an inefficient use of polluting fuels for

cooking and heating (WHO, 2018b).1

Since women are mainly responsible for cooking, and children spend most of their time

with their mothers in developing countries, women and young children (especially, children

under five years of age) tend to be more exposed to IAP (Edwards and Langpap, 2012). In

India, approximately 56% of under-five children stay with their mothers at all times including

during cooking (Rehfuess et al., 2011; Martin et al., 2014). Thus, the environmental risks

from IAP to health are highest among the most vulnerable members of society. IAP from

cooking with solid fuels is the biggest cause of disability-adjusted life years (DALYs)2 lost in

Southeast Asia and Sub-Saharan Africa, and the third leading cause of DALYs lost globally

(Apte and Salvi, 2016). Moreover, acute lower respiratory infections (ALRI), including

pneumonia is the second dominant cause of deaths in children under five years of age in the
1In 2016, IAP from solid fuel use resulted in 3.8 million premature deaths, equivalent to 6.7% of global

mortality, greater than the toll due to malaria, tuberculosis and HIV/AIDS combined. Of these deaths,
403,000 were among children under 5 years of age (WHO, 2016, 2018a). Air pollution is the leading
environmental factor for death in India, accounting for about 1.2 million deaths in 2017, nearly 40 percent
of which are due to poor indoor air quality (Global Burden of Disease 2017).

2The DALY is the most commonly used measure of national burden of disease and combines the years of
life lost due to disability with the years of life lost due to death.
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world after prematurity, and one-third of ALRI-related deaths are because of poor quality

air inside the house (WHO, 2000, 2018c).3

There has been a growing literature focusing on the health impacts of exposure to IAP.

Nearly 200 publications, most of which are epidemiological studies, reported health effects

of solid fuel combustion in Chinese households and documented strong evidence for adverse

health outcomes including chronic obstructive pulmonary disease (COPD), ALRI, asthma,

lung cancer, and immune system impairment (Zhang and Smith, 2007). One of the earliest

works which investigate the health impact of IAP found a high correlation between using a

traditional stove and having symptoms of respiratory illness using a linear probability model

with a variety of controls (Duflo et al., 2008a).

The first randomized control trial (RCT) experiments on health effects of IAP were

conducted in the city of San Marcos, Guatemala, by Diaz et al. (2007) and Smith-Sivertsen

et al. (2009). Using logistic random intercept models, they found that the use of improved

cooking stoves (planchas) has a protective health effect by reducing exposure to IAP and

symptoms of headache and sore eyes during 18 months of their follow-up. Imelda (2018)

evaluated the causal effect of the Indonesian government program of subsidizing households

to switch from kerosene to liquid petroleum gas (LPG) as the cooking fuel choice using

a quasi-experimental approach. Employing a difference-in-differences (DID) method, she

found that the program led to a 1.1 percent reduction in infant mortality rate.4 Hanna
3Relatedly, Silwal and McKay (2015) find that the use of firewood instead of kerosene, LPG and electricity

for cooking damages the individual’s lung capacity by 9.4 percent in Indonesia using proximity to the nearest
market as an instrument for household fuel choice. In addition, Edwards and Langpap (2012) investigate
the impacts of firewood consumption and whether mother cooks while caring for children on children’s
respiratory health in Guatemala using household’s gas stove ownership and mother’s age as IVs for the
two regressors of interest, and suggest that their key explanatory variables cause incidences of respiratory
symptoms among under-five children. It is worth noting that the validation of the exclusion restriction and
exogeneity of instruments utilized in these two studies are weakly justified. Pitt et al. (2006) also examine
the effect of time spent cooking on incidence of any respiratory symptom for all adults and adult women
based on an instrumental variable strategy, considering that there is heterogeneity bias and measurement
error in the time spent cooking. Using gender-specific hierarchies as instruments for exposure to IAP, they
suggest that a four hour per day increase in the time spent cooking leads to a 10.8 percentage point increase
in the probability of having a respiratory symptom. It is also important to note that the Silwal and McKay
(2015), Edwards and Langpap (2012) and Pitt et al. (2006) papers have a different focus in terms of the
research questions, and are thus distinct from ours.

4A related work is Imelda (2018) who estimates the causal effect of IAP (proxied by a household fuel-
switching program) on infant mortality using a difference-in-differences (DID) estimation strategy on the
effect of a kerosene (polluting fuel) to liquid petroleum gas (LPG–clean fuel) conversion program implemented
by the Indonesian government. In a follow-up paper, Imelda (2019) also estimates 3.3 percentage points
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et al. (2016) conduct the largest RCT with a 4-year of follow-up in rural Orissa, India to

address the long term impacts of improved cookstoves. The study provides evidence that

improved cookstoves did not reduce smoke exposure following the second year of installation,

or improve health of recipients and greenhouse gas emissions at all because they were not

used regularly and recipients did not maintain them properly.

While the extant literature has mainly focused on the effectiveness of specific policies

and programs (e.g., improved cooking stoves, house construction, and voucher allocation

for electrification) on reducing IAP and improving selected health outcomes (Bruce et al.,

2004; Duflo et al., 2008a; Smith-Sivertsen et al., 2009; Hanna et al., 2016; Barron and

Torero, 2017), Naz et al. (2016) has explored the the effect of IAP on under-five mortality

in India. However, Naz et.al.’s analysis of the odds ratio of 1.30 between polluting fuel use

and under-five mortality ignores potential omitted variables bias and endogeneity issues.

For example, Naz et.al. does not account for factors such as number of people in the

household, small size of dwelling, and other regional-level demographic and environmental

factors (e.g., characteristics of local governors and administrators, culture of the region,

distance to the nearest metropolitan areas, and ambient air and soil quality)5 that

simultaneously affect IAP concentration and mortality.

Our contribution to this nascent literature on the IAP-child mortality link thus lies in

estimating the causal impact of indoor air pollution through the use of polluting fuels for

cooking on under-five mortality after accounting for the reverse causality between mortality

and cooking fuel choice. The issue of reverse causality, from mortality (health outcome) to

reduction in infant mortality rate in response to a 10 percentage points increase in the intensity of the
same government program by replacing a binary treatment variable with a continuous variable of program
intensity in her DID equation.

5For instance, the demographic and political characteristics of the state governors, such as their age,
gender, education, political power and affiliation, and relationship with the government, could affect the
implementation of the central government policy and local policy initiation about household fuel use and air
pollution in general. It is also reasonable to consider that there exist region-specific socio-cultural trends that
prevent households from switching to modern and clean energy. Many people in developing countries, who
live in rural areas, tend to prefer to use animal dung not just due to its abundance but because they believe
that it is clean and natural. The proximity to the nearest town and city represents access to the socioeconomic
and medical resources, while it also proxies the closeness to the clean fuels, including electricity and various
types of gases, and remoteness of the polluting fuels such as firewood and animal dung. Outdoor air quality
also reflects, for example, the abundance of forests and coal deposits, both of which potentially determine
household fuel decisions, while soil quality could be a proxy of arable land that possibly demonstrates the
availability of agricultural crop waste.
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cooking fuels, is important for several reasons. First, switching to a cleaner cooking fuel

is a readily available means to prevent another mortality case immediately subsequent to a

mortality case in a household. Second, air pollution can also adversely affect an individual’s

long-term earnings through poor health and low productivity (Graff Zivin and Neidell, 2013;

Isen et al., 2017). Relatively poorer households are caught in a vicious cycle (or poverty trap)

wherein they are only able to afford cheaper and more polluting cooking fuel options, which

adversely affects household health and mortality and, in turn, household earnings (Hanna

and Oliva, 2015; Graff Zivin and Neidell, 2012, 2018; Chang et al., 2016, 2019).6

We use two instrumental variables for household fuel choice–forest cover and agricultural

land ownership–to address this potential endogeneity. Density of forest cover across different

locations determines the availability or access, lower opportunity costs for households to

collect, and lower prices for local firewood (often classified as a polluting fuel). Furthermore,

households that own land for agricultural purposes are more likely to use polluting fuels

such as agricultural crop waste, animal dung, and even firewood. We thus provide the first

empirical estimate of the causal effect of IAP, as determined by cooking fuel choice, on

under-five mortality by relying on plausibly exogenous variations in IAP introduced by the

speed of change in forest cover and status of agricultural land ownership. Conditional on

other controls included in our empirical specifications, we do not expect these two variables

to have any impact on child mortality.

Our analysis is based on a large-scale household survey collected throughout India that

recorded the health and demographic information, including type of fuels used for cooking,

from 1992 to 2016. Specifically, we rely primarily on three rounds of India’s National Family

Health Survey (NFHS) — NFHS-1 (1992–93), NFHS-2 (1998–99), and NFHS-4 (2015–16)

which include detailed observations on 369,416 singleton live-born children, of whom 19,517

died in the 5-years prior to the respective survey years. Our analysis shows that a household

using solid fuels for cooking has a 4.9 percent higher probability of experiencing under-

five child mortality. Furthermore, we re-estimate the existing models in the literature with
6As an example, a strong negative effect of air pollution (carbon monoxide–CO) on fourth-grade test

scores (math and language skills) was observed in Santiago, Chile, and a 50% increase in CO in Santiago
between 1990 to 2005 reduced an individual’s lifetime earnings by around US$100 million (Bharadwaj et al.,
2017).
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additional controls for exposure to pollution within the household and find find that the use

of dirty fuel for cooking is associated with an increased risk of under-five mortality by 0.8

percentage points. This is lower than the previous estimates reported in the literature by

about 0.6 percentage points. These earlier estimates, on the consequences of IAP, have been

questioned in terms of their reliability due to inadequate controls for health outcomes and

lack of convincing identification strategies (Duflo et al., 2008b). We assess the robustness

of our findings by estimating a variety of specifications with additional controls and fixed

effects.

Taken together, this paper makes the following two contributions to the literature on

the impact of IAP on child mortality. First, to our knowledge, this is the first attempt to

empirically estimate the causal effect of IAP, as proxied by cooking fuel choice, on infant

mortality while addressing the endogeneity in the relationship between cooking fuel choices

and mortality. Existing studies mostly based on epidemiological estimates of the

IAP-mortality relationship rather than causal estimates (Duflo et al., 2008b). While the

endogeneity issue in the mortality-IAP (or -cooking fuel) relationship has been recognized

(Schindler et al., 2017), it has not been addressed in empirical settings yet, perhaps due to

the challenge in finding a valid instrumental variable.7

Second, we utilize the NFHS (also called Demographic and Health Survey–DHS) — a

widely-accepted gold standard for research in the developing world — datasets that cover

601,509 representative households from all 36 states and 640 districts of India over the last

25 years. Most of the papers that study indoor air quality in developing countries largely

focused on a rural village of Orissa in India (Duflo et al., 2008a; Hanna et al., 2016), the

city of San Marcos in Guatemala (Smith-Sivertsen et al., 2009), and the rural village of

La Victoria in the western highlands of Guatemala (Bruce et al., 2004). A detailed and

large-scale dataset collected from this nationwide household survey, covering both urban

and rural areas, allows us to provide more broadly representative empirical estimates of the

causal relationship between cooking fuel choice, and therefore IAP, and infant mortality. We

consider a total of 12 types of cooking fuels including kerosene, coal/lignite, charcoal, wood,
7Those few studies mentioned earlier attempt to address the endogeneity in the lung capacity-use of

firewood, respiratory illness-time spent cooking, and children’s respiratory health-firewood consumption
relationships using IV strategy.
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straw/shrubs/grass, agricultural crop waste, and animal dung as a dirty fuel, and electricity,

LPG, natural gas and biogas as a clean fuel. In addition, we consider mortality of four

different age-groups including neonatal, post-neonatal, child, and under-five.

The remainder of the paper is organized as follows. Section 2 presents the background

on IAP and child mortality in India and provides the trend analysis of under-five mortality

attributed to the cooking fuel types. Section 3 lays out the empirical strategy, and Section

4 describes the data and presents descriptive statistics for the sample. Section 5 presents

model results and a set of robustness tests. Section 6 concludes.

2 Background

With a population of 1.4 billion, India is the second-most populous country in the world

and the tenth-biggest contributor to global gross domestic product. Over 72% of households

in India (more than 90% of the rural population and 31% of the urban population) use

solid fuels as a primary source of energy and for cooking. In this section, we first discuss

India’s challenges related to IAP due to cooking fuel choice and the potential effect on early

childhood (under-five) mortality. We then present and discuss the trends in India’s under-five

mortality incidence in relation to type of cooking fuels.

2.1 Indoor Air Pollution and Infant Mortality in India

The United States Environmental Protection Agency (EPA) sets standards for PM10

concentrations at 50 µg/m3 based on an annual average, and at 150 µg/m3 based on a

24-hour average (https://www3.epa.gov/region1/airquality/pm-aq-standards.html).

However, the 24-hour average of PM10 concentration in solid fuel firing households in India

often exceeds 2,000 µg/m3 (Smith, 2000). Menon (1988) and Saksena et al. (1992) found

higher concentrations of PM10 (20,000 µg/m3) near the cooking location in India, with the

concentration decreasing substantially with distance away from kitchen.

According to the World Health Organization (WHO), 3.5% of the total burden of

disease in India has been caused by IAP (Bonjour et al., 2007), while 20% of deaths among

children aged under-five can be attributed to the use of solid fuels (Bassani et al., 2010;
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Upadhyay et al., 2015). Additionally, and as reported earlier, Naz et al. (2016) finds a

positive association, and estimates an odds ratio of 1.30 between IAP and under-five

mortality in India. Beyond child mortality, Balakrishnan et al. (2019) using data from

Global Burden of Disease 2017, estimated that 1.2 million deaths in India (or 12.5% of the

total deaths) were attributable to air pollution, including 0.7 million to ambient (outdoor)

PM2.5 and 0.5 million to IAP. Finally, Smith (2000) estimated that the annual health

burden for India from IAP is 1.6-2.0 billion days of work lost (number of sick days due to

the diseases caused by IAP) while Duflo et al. (2012) reports that a large portion of

absence from schooling in rural areas of India is due to poor health.

Due to perceived health threats from polluting fuels, Indian authorities and

non-governmental organizations (NGOs), have implemented policies and programs for

reducing IAP. For example, subsidizing cleaner fuel technologies, distributing “improved

cooking stoves”, and convincing households to improve ventilation system within the

household are common interventions. Among these policy strategies, the improved cook

stove has become the most popular policy prescription for reducing IAP with the

government of India implementing the second-largest program in the world to limit

emission of smoke within households by distributing roughly 33 million biomass-based

improved stoves in rural areas during 1984-2000 through its National Biomass Cookstoves

Programme. However, these initiatives have received mixed reviews: while improved

biomass stoves have reduced the time and effort that rural women put into collecting fuel

per meal by half, it’s effectiveness in reducing IAP and health benefits were far below the

expectations. In fact, studies suggest that “improved” cooking stoves had a hazardous

impact on health due to inefficient use (Hanbar and Karve, 2002; Kishore and Ramana,

2002).

2.2 Infant Mortality Trends in India

Figure 1 shows the trend in infant mortality by cooking fuel choices in India. Compared to

the under-five mortality incidence that has leveled off at around 3.1% per year for households

that use clean fuel for cooking, the under-five mortality rate remains more than twice as high

for households using polluting fuel — although this rate has declined sharply by about 45%
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over the past 25 years.8 There is some variation in the mortality rate by age group: the

neonatal mortality rate (defined as the probability of dying within the first 28 days of life)

is the highest, followed by post-neonatal mortality (measured as the probability of dying

between approximately the first month after birth and end of the first year of life) and

then child mortality (assessed as the probability of dying between exact ages one and five).

Decreasing trends are also observed for each age group, where the neonatal mortality rate

declined from 4.4% in 1992 to 3.1% in 2016, post-neonatal mortality rate from 2.6% in 1992

to 1.1% in 2016, and child mortality rate from 1.5% in 1992 to 0.5% in 2016 for those using

polluting fuels for cooking.9

3 Empirical Strategy

In this section, we first describe the empirical specification for the relationship between

cooking fuel choice and child mortality. We then discuss the challenges in estimating the

causal effect of cooking fuel choice on under-five mortality.

3.1 Indoor Air Pollution and Infant Mortality

To examine the causal effect of cooking fuel choice on mortality of children under five years

of age, we specify the following relationship:

Yihvdst = α + βDhvdst +Xhvdstγ +Mjhvdstλ+Wihvdstδ+

+ µt + ηs + (ηs × µt) + εihvdst

(1)

where Yihvdst is one of the four binary variables for under-five mortality (neonatal, post-

neonatal, child, and under-five) taking the value 1 if the death occurred during the considered

age-periods, and 0 if the child survived during the age-period for child i, in household h, in
8The mortality rate (mortality incidence proportion, %) is calculated by the ratio (Number of child

deaths/Total number of live births) for the trend analysis presented in Figure 1. In this paper, we will refer
to mortality rate interchangeably with mortality incidence proportion.

9The mortality rates for each of the preceding three age-groups including neonatal, post-neonatal, and
child add up to the under-five mortality rate. This is because (i) the three successive age groups constitute the
first 5 years of life, and (ii) the mortality incidence proportions for different age groups have been calculated
using a common denominator, total number of live births during the five-year window. The details about
constructing the mortality measure has been provided in Section 4.
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village v, in district d of state s, in survey year t. The key regressor is a binary variable for

solid fuel use (Dhvdst) in household h, in village v, in district d of state s, in year t as defined

above. The vectors Xhvdst,Mjhvdst, andWihvdst are respectively composed of household (h)

characteristics including place of residence, household wealth index, number of household

members, place where food is cooked and type of house, mother (j) characteristics including

mother’s age and mother’s education, and child (i) characteristics including gender of the

child and breastfeeding status. The error term, εihvdst, captures the remaining unobserved,

time-varying, and child-specific factors.

The state fixed effects, ηs, control for all permanent unobserved determinants of mortality

across states, while the inclusion of year fixed effects for year of survey, µt, nonparametrically

adjusts for national trends in under-five mortality, which is important in light of the time

patterns observed in Figure 1. To control for possible unobserved spatial differences in

cooking fuel at different periods, we interact the time fixed effect with the state fixed effect

and include state-specific time trends, ηs × µt, to allow the unobserved time trend to vary

across states.10

3.2 Identification

The key identification challenge is the potential endogeneity resulting from non-random use

of polluting fuels. In the empirical literature on air pollution and its health consequences, it

is commonly assumed that IAP affects mortality and other human health outcomes but not

vice versa. In practice, IAP and choice of fuel types for cooking can be affected by mortality,

morbidity, and other health outcomes. For example, Duflo et al. (2008b) document the

potential impact of IAP on health, productivity, and ultimately long-term earnings. Noting

that low-income households can only afford the cheaper fuel option which is frequently

polluting and adversely affects health and earnings, we have a simultaneity issue that makes

the choice of cooking fuel endogenous in Equation (1). We address this reverse causality

from health outcomes to cooking fuel choice by estimating Equation (1) with instrumental
10Controlling for State×Time fixed effects allows us to estimate the effect of region-specific characteristics

varying over time, which can be seen as regional (or neighborhood) differences such as culture, weather
conditions, environmental features, and local-level policies or programs on cooking fuels.
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variables (IVs).

A set of variables including speed of change in district forest cover over the period 2007–

13 and household ownership status of agricultural land are tested as IVs both individually

and combined, and the instruments are described in detail in the next section. Note that

the variables measuring the relative change in tree cover over the given period are measured

at the district level even though village-level information is available, for example, in the

Census data. This is due to the random Primary Sampling Unit (PSU) point (or village/city

block) displacement in the NFHS GPS data, which limits our ability to correctly match the

PSUs with Census locations at the village-level.11 In other words, we are unable to correctly

match the NFHS dataset with Census and other datasets at sub-district (or tehsil) and

village levels as the maximum displacement buffers for particular cluster points overlay with

level 3 administrative (sub-district) boundaries. Figure 2 shows the displacement strategy

of PSU points in NFHS-4 and the difficulty in correctly identifying the sub-districts and

villages where the NFHS survey respondents reside. Although the PSU point displacement is

random, it would affect our empirical analysis because we combine NFHS data with satellite

and Census data by location.

Although we compute the speed of change in forest cover as a relative change in the

percentage of forested area in the total geographical area using multiple years of satellite

data, we have a single observation for each of the districts; thus, we are unable to use district

fixed effects in Equation (1).

4 Data

Our empirical analysis is based on three datasets. The first data set (nearly 0.4 million

observations) is nationally-representative data from India’s National Family Health Survey

(NFHS). The NFHS collects individual-level data on mortality incidence and other socio-

economic characteristics for every member in the sample household. Additionally, it also
11According to the description of the NFHS GPS data provided by the DHS Program, the displacement

is restricted so that the PSU points stay within the country, the NFHS survey region (state), and district
area. Therefore, the displaced cluster’s coordinates are located within the same country, state, and district
areas as the undisplaced cluster. This random error can substantively affect analysis results, where analysis
questions look at small geographic areas including sub-districts and villages/city blocks.
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contains household-level information on wealth, housing, place of residence and agricultural

land ownership status. Importantly, for our analysis, NFHS data includes information on

the type of cooking fuel that household use, which allows us to approximate indoor air

quality at the household level. To date, four rounds of the survey have been conducted since

1992–93.12 Our analysis relies primarily on three rounds of this survey: NFHS-1 (1992–93),

NFHS-2 (1998–99), and NFHS-4 (2015–16). We are unable to use the NFHS-3 (2005–06) in

our empirical analysis due to the absence of district identifiers in the questionnaire of this

particular round for confidentiality of HIV testing. A total of 1,003,880 ever-married women

of reproductive ages between 15–49 years (317,250 from urban and 686,630 from rural areas)

were included in the three surveys (NFHS-1, NFHS-2, and NFHS-4), that we analyzed in this

paper. Ever-married women, aged less than 15, are excluded from the sample, and all the

women interviewed in the survey were ever-married, of whom only 271 were aged less than

15 years. Our analysis is based on a pooled dataset of 421,709 singleton live-born children,

of whom 22,268 died in the 5-years before the respective survey years.

Second, as a primary database on land use of the country, we use satellite data on forests

from the Planning Commission of India. Third, from the 2011 Census of India, we also

obtain land use information at the village and city block level. Specifically, we utilize the

total surface area of the land of each geographical region and the land covered by forests,

both measured in hectares.

4.1 Under-Five Mortality

Under-five mortality rates are an appealing measure of the effect of indoor air pollution for at

least two reasons. First, children under five years tend to spend most of their time at home

alongside their mothers, and since women are primarily responsible for cooking in India,

under-five children tend to be exposed to indoor air pollution. Second, earlier years of life

are especially vulnerable periods, and losses of life expectancy due to environmental exposure
12While the first three NFHS survey datasets cover all states of India, which includes more than 99% of

India’s population, the most recent NFHS data for the years 2015–16 (NFHS-4), adds all union territories
for the first time. It is worth noting that we treat union territories as states. The NFHS-4 also provides vital
estimates of most demographic and health indicators at the district level for all 640 districts in the country
(as per the 2011 Census).
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are likely to be large. Our primary outcome variable is under-five mortality. In addition, we

consider three preceding age groups including neonatal, post-neonatal, and child mortality.

Neonatal mortality is the number of deaths during the first 28 days of life (0–28 days), as

a fraction of total number of live births; post-neonatal mortality is the number of deaths

between one month and the first birthday (1–12 months), as a fraction of total number of

live births; child mortality is the number of deaths between exact ages one and five (12–59

months), as a fraction of total number of live births.

4.2 Cooking Fuel Choice and Other Controls

The key explanatory variable in our analysis is the type of fuel used for cooking in the

household, a proxy for indoor air pollution. Twelve types of cooking fuel are reported in the

NFHS datasets, and we classify these fuels into two groups, clean and polluting, based on

exposure to cooking smoke. The clean fuel includes electricity, liquid petroleum gas (LPG),

natural gas and biogas, while polluting fuel includes kerosene, coal/lignite, charcoal, wood,

straw/shrubs/grass, agricultural crop waste, and animal dung. Note that no household

reported using more than one type of cooking fuel in the survey.

In addition to the main exposure variable, we collect information on several other

determinants of under-five mortality. Place of residence (urban or rural), household wealth

index (high wealth, middle wealth, or low wealth),13 mother’s education (secondary or

higher, primary, or no education), type of house (pucca, semi-pucca, or kachha), and

number of household members14 are included as potential socio-economic factors

(Wichmann and Voyi, 2006; Rinne et al., 2007; Tielsch et al., 2009; Bassani et al., 2010;
13The household wealth index was constructed using principal components analysis, with weights for the

wealth index calculated by giving scores to the asset variables such as ownership of transport, durable goods,
and facilities in the household. “Low wealth” referred to the bottom 40% of households, “middle wealth”
referred to the middle 40% of households, and “high wealth” referred to the top 20% of households (Filmer
and Pritchett, 2001).

14Number of household members refers to the total number of members living together in a household,
which is not necessarily the same as family size. On average households in the survey have 7 members, but
there are households with as many as 46 people. There is a strong positive correlation between household
size and fuel choice, and the use of polluting fuels tends to increase as household size gets larger. Gas
stove limits the volume of food that can be cooked because the size of the stove-top is small while wood
burning furnaces can be built to accommodate larger utensils. The distribution of household size suggests
that households with less than about 25 members are quite prevalent in the data while households with more
than 25 members could be considered as outliers.
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Epstein et al., 2013; Pandey and Lin, 2013; Ezeh et al., 2014; Naz et al., 2015, 2016).

Mother’s age (<20, 20–29, 30–39, and 40–49 years) and gender of the child are also

considered as potential confounders of the association between exposure to IAP and under-

five mortality. Breastfeeding status of the mother (ever breastfed or never breastfed) and

place where food is cooked (in the same room inside the house, in a separate room as kitchen

inside the house, in a separate building, or outside)15 are also factors that correlate with

different levels of exposure to polluting fuels. No separate kitchen used for cooking inside

the house has also been shown to be significantly associated with high exposure to IAP,16

whereas breastfeeding has been shown to be a protective factor for under-five mortality,

generally in the neonatal and post-natal periods.17

Thus, we can control for whether food is cooked inside the house, in a separate building,

or outside using the data from NFHS-4 (2015–16) combined with an indicator for a separate

kitchen inside the house.

4.3 Instruments for Cooking Fuel Choice

To account for the endogeneity of cooking fuel choice, we use forest cover to generate

exogenous variation in the opportunity cost of cooking fuel choice. In the absence of data

on prices of firewood and LPG, the main fuels for cooking in India, at district and/or

village level we use forest cover as a proxy for the relative price (cost) of firewood.18 We
15In the NFHS questionnaire, the question whether the household has separate room as kitchen captures

only cooking inside the house and is not relevant to outdoor cooking. Another variable for indicating if the
household cooks inside the house, in a separate building, or outdoors is only available in NFHS-4 (2015–16).
Therefore, if we utilize this variable in our analysis, we are forced to use only the last round of NFHS survey.
We separate cooking inside the house into two groups: in a separate room as kitchen inside the house or in
the same room as they live inside the house based on variable indicating an existence of separate kitchen,
i.e., question asking whether the household has a separate room used as kitchen in house. A separate room
for cooking as compared to cooking inside is likely to be quite similar because of poor ventilation within
houses, especially in rural areas, would lead to smoke permeating throughout if cooking with wood or coal.

16See, for example, Dasgupta et al. (2006); Khaliquzzaman et al. (2007); Khalequzzaman et al. (2010,
2011); Edwards and Langpap (2012); Gurley et al. (2013); Naz et al. (2015, 2016).

17See, for example, Cushing et al. (1998); Arifeen et al. (2001); Heinig (2001); Black et al. (2003); Wichmann
and Voyi (2006); Ezeh et al. (2014).

18Kuo and Azam (2019) recently attempted to determine the drivers of household cooking fuel choice in
India by estimating a panel multinomial logit regression with random effects based on two rounds of India
Human Development Survey datasets. They show that access to paved road and peer effects significantly
increase the probability of rural households to adopt clean fuel while distance to the nearest town is not an
important driver of fuel choice in rural areas. In addition, Kuo and Azam (2019) find that the bargaining
power or economic status of women in the household (proxied by education, financial independence and
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expect that the speed of change in forest cover is exogeneous to child mortality.

The speed of change in forest cover is relevant and generates meaningful variation in

cooking fuel choice through several channels. First, wood is the most widely-used fuel for

cooking in India. Figure 3 shows that one-half of the Indian households covered in four

rounds of the NFHS rely on wood as a fuel for cooking. The speed of change in forest

cover generates variations in access to or availability of firewood (polluting) for cooking,

and households living in villages with forest use firewood twice as much as households in

villages without forest (Pinto et al., 1985). Figure 4 illustrates India’s district-wise forest

cover as in 2011 by utilizing satellite-based information from the Planning Commission of

India. The share of households using solid fuels for cooking in three of the largest five

forest cover states (88% in Odisha, 84% in Chhattisgarh, and 81% in Madhya Pradesh) is

substantially larger than the country average, 76%, suggesting that location of forests affects

cooking fuel choice. Also note that the correlation coefficient between the speed of change

in forest cover and the 2011 level of forest cover is 0.9984 (SE: 0.0024, p-value: 0.00) at

the district level. Since the speed of change in forest cover is positively correlated with the

level of forest cover, our argument here is also applicable for regions with high speed of

growth in forest cover. Furthermore, under-five mortality rates in these three states (6.0%

in Odisha, 5.8% in Chhattisgarh, and 6.6% in Madhya Pradesh) are persistently higher

than the country average, 5.3%. This geographic variable hence induces plausibly exogenous

variation in cooking fuel choice that is not correlated with the unobserved, time-varying, and

child-specific shocks to under-five mortality.

We obtain district-level satellite data on forest cover from the Planning Commission of

India (reformed as the National Institution for Transforming India–NITI Aayog in 2015)

for three years, including 2007, 2011, and 2013. The baseline regressions use the speed of

change or relative change in forest cover, where forest cover is defined by forested area as

a percentage of total geographical area, based on data from the NITI Aayog to account for

the spatial and temporal variation in forest cover. A change in forest cover over the periods

2011 and 2013 minus a change in forest cover over the periods 2007 and 2011 measures the

freedom) and price of LPG are critical for urban households to make a decision about adopting clean fuel.
However, the determinants of fuel choice have to affect the child mortality only through cooking fuel choice
in order to be valid instruments.
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speed of change or relative change in forest cover over the three years. In the Planning

Commission dataset, forest cover refers to all lands more than one hectare in area, with a

tree canopy density of more than 10 percent irrespective of ownership and legal status. It

also includes orchards, bamboo, and palm. The satellite-based tree cover has been classified,

based on tree canopy density, into four categories including very dense forest, moderately

dense forest, open forest, and scrub, and we consider the first three of these forest types in

our analysis excluding the scrub.

An alternative measure of forest cover is available from the 2011 Indian Census which

provides village-level data on land covered by forests (in hectares). We define forest cover

as per-capita forest area (ha/person, unreported) and percentage of total geographical area

of the village under forest (% of land area). The village-level data on population and the

geographical area of the village also come from the 2011 Census of India. Because areas

inhabited by tribal population and inaccessible hilly geographic areas present a problem in

nationwide ground-level census of trees in India (Foster and Rosenzweig, 2003), we prefer

the satellite-based data as our primary measure of forest cover and use the census-based

measure as a robustness check. The bivariate correlation of satellite-based forest cover with

census-based forest cover is 0.62. This shows that the Indian census- and satellite-based tree

cover data are indeed different but quite comparable.

Table 1 presents summary statistics on cooking fuels, infant mortality, and other

demographic indicators used in the regression analysis. As can be seen, the data suggests

that under-five mortality rate in India during the period analyzed was 5.3%, and infant

mortality rate increases as age of the child decreases. A majority (76.0%) of the households

use polluting fuels, while the remaining households use clean (electricity, LPG, and biogas)

fuels for cooking. Three-fourth of the children included in our analysis are from rural areas.

Overall across rural and urban areas 67.9% of the mothers with children aged under five

are in the 20-29 years old age bracket. In terms of other socio-economic characteristics,

including household wealth, mother’s education, gender of child, location where food is

cooked, and type of house, the individuals included in the analysis are evenly distributed.

Tables 2 and 3 provides the mean and standard deviation of the four outcome variables

(infant mortality for different age-groups) and key explanatory variable (type of cooking
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fuel) by geographic region, age and gender of the household head, along with the associated

number of observations. Evidently, infant mortality rate and fuel choices significantly vary

across regions throughout the country (Table 2). By contrast, infant mortality and fuel

choices are relatively stable across different age groups (Panel A of Table 3) and gender

(Panel B of Table 3) of the household head.

5 Results

In this section, we first present the estimated average marginal effects19 of cooking fuel choice

on child mortality using a multivariate probit and the IV (2SLS) regressions. We then discuss

the implications of our baseline results and present a set of robustness tests. We begin with

the probit model results to create a comparable benchmark against the existing literature.

5.1 Probit Estimates

Table 4 presents the results of estimating Equation (1) as a pooled probit model for under-five

mortality under three different specifications with more control variables added successively.

The average marginal effect (AME) of the key regressor, use of polluting fuel for cooking,

ranges from 2.3 to 0.8 percentage points in the three regressions. The basic model shown in

Column (1) includes year and state fixed effects and is estimated using NFHS-1, NFHS-2,
19Marginal effects are computed using two methods: average marginal effects (AME) and marginal effects

at the means (MEM). MEM is calculated by setting the values of all covariates to their means within the
sample. On the other hand, to obtain the AME, the marginal effect is first calculated for each individual
with their observed levels of covariates, and these values are then averaged across all individuals. Since our
independent variables, except for the number of household members, including our key regressor, fuel choice,
are binary variables, the average marginal effects measure discrete change or how the predicted probabilities
(infant mortality) change as the binary independent variables change from 0 to 1. For probit regression, the
average marginal effect of xk = (x1k · · ·xik · · ·xNk)′(N×1) on y = (y1 · · · yi · · · yN )′(N×1) is calculated by

AME =
1

N

N∑
i=1

[
Φ
(
x′iβ̂|xik = 1

)
− Φ

(
x′iβ̂|xik = 0

)]
where Φ is the probability density function for a standardized normal variable, and x′i =
(xi1 · · ·xik · · ·xiK)(1×K) is a vector of explanatory variables. Intuitively, for example, the AME of fuel
choice demonstrates that a change of polluting fuel for cooking from 0 to 1 changes the probability that the
under-five mortality takes the value of 1 by how many percentage points. There are several ways to compute
the standard errors for the AMEs of regressors. The standard errors of the AMEs in this paper have been
computed using the delta method, which is a semi-parametric method for deriving the variance of a function
of asymptotically normal random variables with known variance.
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and NFHS-4, while the probit models, shown in Columns (2) and (3), are estimated using

only NFHS-4 because a variable capturing an actual place where food was cooked is only

available in the last round of survey. Since the coefficient estimates and calculated marginal

effects of polluting fuel use are consistently greater than zero and statistically significant at

1 percent level for each specification, we conclude that the use of polluting fuels for cooking

is associated with the mortality risk amongst children aged under-five in India. We consider

the last regression as our preferred or primary specification because the inclusion of state-

by-year fixed effects controls for time-varying spatial factors such as state attributes (e.g.,

characteristics of state magistrate, whether there is any government program regarding the

child health service in the state, and access to medical facilities) and local characteristics

(e.g., distance from urban areas and large cities, percentage of districts, tehsils, or villages

with paved roads, outdoor air quality, and quality of soil and water resources) that could

affect both under-five mortality and fuel choice.

To examine the effect of cooking fuel choice on infant mortality in more detail, we

consider three alternative age groups: neonatal, post-neonatal, and child. Table 5 presents

the results for child mortality. The average marginal effect of IAP on child mortality

decreases significantly from 0.8 to 0.2 percentage points as well as the associations of other

confounders change dramatically in magnitude. This major decrease is quite intuitive

because the most vulnerable period (or the first year of life) has been excluded from the

first five years of life. In other words, childhood between ages one and five is a less risky

period compared to neonatal and post-neonatal periods which are included in under-five

years of age. The results for the post-neonatal mortality are presented in Table 6. The

average marginal effect of IAP on post-neonatal mortality is estimated at 0.1 percentage

point; however, it is not statistically significant.

Table 7 shows the results for neonatal mortality. Compared to other two relatively

older age groups, average marginal effect of polluting fuel choice on neonatal mortality is

estimated at 0.6 percentage point, the largest estimate among these three alternative age

groups. One would expect that the youngest age group should have the largest coefficient

estimate since the neonatal period is the most vulnerable time for a child’s survival. Overall

our results suggest that the harmful effect of IAP on infant mortality increases for the
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youngest children, which is consistent with the existing child’s age-risk of dying (or -child’s

vulnerability) argument. A comparison between baseline results in Table 4 and those under

the three alternative outcomes in Tables 5–7 suggests that the key results are robust to

the range of plausible age differences of child mortality from the literature. An important

implication of this finding is that the harmful effect of IAP can be reduced by improving the

care for infants to increase the immunity.

The average marginal effects of the other variables are all intuitively signed and are

consistent with the infant mortality literature. The risk of mortality in mothers who had

never breastfed is the highest compared to other confounders, which is in line with previous

findings (Cushing et al., 1998; Arifeen et al., 2001; Heinig, 2001; Black et al., 2003; Wichmann

and Voyi, 2006; Ezeh et al., 2014). While infant mortality is positive and significant for

teenage mothers, older mothers (in age groups 20-29 and 30-39) have a lower risk of under-

five child mortality. Our results also show that mother’s education is inversely related to

under-five mortality. Infant mortality is also higher in households of middle- and low-wealth

compared to the high-wealth ones, households with no separate kitchen inside the house, and

households that live in semi-pucca and kaccha (makeshift and temporary) houses. Cooking

outside is essentially the same as cooking in the living room in terms of their association

with infant mortality (Column (3) of Tables 4–7), possibly due to poor ambient air quality.

We also estimate specifications with district and district × time fixed effects and obtain

qualitatively identical results.

In Table 8, we compare our results from a nonlinear model with those from Naz et al.

(2016) which uses a multivariate logistic regression and data from NFHS-1 (1992–93), NFHS-

2 (1998-99) and NFHS-3 (2005–06) to estimate an association between use of polluting

fuel for cooking and infant mortality. The results (or odds ratio) of Naz et al. (2016) are

reported in Column (1), while our replication results and corresponding calculated average

marginal effects are shown in Column (2). Since our analysis utilizes the most recent round

of NFHS, or NFHS-4 (2015–16), we also estimate simple logistic regression with the same

specification as Naz et al. (2016) using NFHS-4 data. Columns (3) and (4) present the

estimated odds ratios and corresponding marginal effects using only NFHS-4 (2015–16) and a

complete sample between 1992–2016 (NFHS-1-4), respectively. Compared with our primary
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specification (Column (5) of Table 8) which includes additional controls for the location

where food is cooked (inside/outside/separate room of the house) and a set of fixed effects,

the replicated (or Naz et al. (2016)) average marginal effects of polluting fuel use on infant

mortality are almost always higher.

5.2 Linear IV Estimates

We address the endogeneity of cooking fuel choice using IV strategy. We explore the speed of

change in forest cover and agricultural land ownership respectively as a region and household-

specific characteristics, which create exogenous variations in fuel choice of the households

and serve as IVs for our endogenous variable.20

We first present evidence on how speed of change in forest cover and agricultural land

ownership relate to household’s choice of fuel types used for cooking. The relationships are

estimated using linear model, where the dependent variable is a binary variable whether

fuel choice. The correlation coefficients of speed of change in forest cover and agricultural

land ownership with mean fractions of polluting fuel use for cooking are 0.0824 (SE: 0.0430,

p-value: 0.06) and 0.5816 (SE: 0.0332, p-value: 0.00) at the district-level, respectively.

Column (1) of Table 9 reports the first-stage results when the indicator variable for

household’s agricultural land ownership is used as an IV. Agricultural land ownership is a

dummy variable and takes the value of 1 if household owns land for agricultural purposes in
20The bivariate correlations of under-five mortality with agricultural land ownership and speed of change

in forest cover are 0.0038 (SE: 0.0020, p-value: 0.06) and -0.0110 (SE: 0.0021, p-value: 0.00), respectively.
One may argue that infant mortality is negatively associated with ownership of agricultural land through
an income channel considering that agricultural production is a source of household revenue. The negative
relationship between infant mortality and household wealth is illustrated in Figure 5a. However, Figure 5b
shows that agricultural land ownership status is negatively associated with the household wealth. This means
that variation in agricultural land ownership is not necessarily a proxy for variation in household wealth in
India. This observation is consistent with the fact that there are many small farm households in India.
Hence, it suggests that the household’s status of agricultural land ownership does not necessarily indicate
that a family is wealthy, supporting the idea that agricultural land ownership status at least does not affect
the household fuel choice through the income channel. Note that we use household wealth (stock) as a proxy
of household’s income (flow) given that the DHS data does not include actual earnings of the household.
Our argument here holds if household wealth represents its income. We find (unreported) a negative
and statistically significant relationship between agricultural land ownership and principal components of
household wealth index which require households to have flows of income to operate them (or with variable
cost) such as ownership of refrigerator, television, washing machine, electric fan, air conditioner or cooler,
and computer, conditional on a set of time and spatial fixed effects. Thus, we can assume that wealth and
income are correlated. Additionally, some of our other controls, such as mother’s education and the number
of household members, potentially capture the household income.
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a given year. This variable has a positive and statistically significant impact on cooking fuel

choice. Agricultural households are likely to consume their own agricultural crop waste and

animal dung as cooking fuel which are classified as polluting. This confirms that agricultural

land ownership generates plausible variation in fuel choice. Columns (2)–(5) of Table 9

present the estimates from the IV (2SLS) regressions for four different age groups. The

coefficient estimates on polluting fuel for cooking for under-five and neonatal mortality are

positive and statistically significant, ranging from 0.037 to 0.050.

Column (1) of Table 10 presents the first-stage results when speed of change in forest cover

and an indicator variable for household’s agricultural land ownership are jointly included as

IVs. The joint F -statistic on the excluded instruments is large enough to suggest that

these two IVs provide plausible variations in fuel choice that we can leverage to identify

a causal effect of fuel choice on infant mortality.21 Columns (2)–(5) in Panel A present

the estimates from the IV (2SLS) regressions for four different age groups. The coefficient

estimates for polluting fuel for cooking for under-five and neonatal mortality are positive

and statistically significant at 5 percent level, ranging from 0.034 to 0.049. In other words,

a family relying on polluting fuel for cooking has a 4.9 and 3.4 percent higher probability

of experiencing child mortality in the first five years and within the first 28 days of life,

respectively. Heteroskedasticity-consistent standard errors were clustered at the district

level instead of PSU level, given the utilization of district-level speed of change in forest

cover as one of the instruments. The Hansen’s J-statistic suggests that the excluded IVs are

exogenous.

Panel B of Table 10 reports the coefficient estimates from OLS model to show how

employing IV strategy affects our simple model estimates. Compared to the coefficient

estimates from a simple OLS model (Columns (2) and (5) in Panel B), IV regression

coefficients suggest that addressing endogeneity in the fuel choice-infant mortality
21Although there is theoretically no concern about the “relatively large” value of F -statistic on excluded

IVs, in practice, one may be concerned about it. The “large” value of F -stat on IVs is possibly due to (i)
a large sample, and (ii) “perfect” multicollinearity between instruments and an endogenous regressor. The
latter would indicate that the instruments are not exogenous. This would be the case if R2 of the first-stage
regression is “too large” and household fuel choice is perfectly correlated with the speed of change in forest
cover and agricultural land ownership. The R2 of 0.54 shown in Column (1) of Table 10 indicates that our
endogenous regressor not perfectly correlated with the instruments. Hence, we consider that the value of
F -statistic reflects our sample size.
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relationship leads to about six-fold increase in the estimates of the causal impact on

under-five and neonatal mortality. The causal effect of polluting fuel use on child mortality

essentially becomes zero.

5.3 Robustness Checks

To assess the robustness of our findings, we re-estimate the causal effect of cooking fuel

choice on infant mortality using (two-step) IV probit regressions as an alternative to the IV

regression. We find that IV probit provides exactly the same conclusion as the IV (2SLS)

regression, verifying that the results are robust to an alternative estimation approach.

Panel A of Table A.1 presents the parameter estimates derived from the IV probit

regression for under-five, child, post-neonatal, and neonatal mortality (with the same

specification as used in Panel A of Table 10 where both relative change in forest cover over

time and agricultural land ownership are used as IVs). It shows that using dirty fuels

instead of clean fuels causes under-five and neonatal mortality, and the corresponding

coefficient estimates on polluting fuel for cooking ranges from 0.556 to 0.569. The effect of

employing an IV strategy on the magnitude of the causal effect of polluting fuel use on

under-five and neonatal mortality is also similar to IV (2SLS) regression. In particular,

both estimates of the causal effect of under-five and neonatal mortality also increase

approximately six-fold once the endogeneity in the fuel choice-infant mortality relationship

is addressed in comparison with the coefficient estimates from a pooled probit model

(Columns (2) and (5) in Panel B of Table A.1). The causal impact of polluting fuel use on

child mortality also becomes zero. Note that the pooled probit models in Columns (2)-(5)

of Panel B of Table A.1 are exactly the same as those in Column (3) of Tables 4-7,

respectively.

Second, the National Biomass Cookstoves Initiative (NBCI) was launched by the Indian

government to enhance the use of improved biomass cookstoves in 2009. The pilot projects

distributed 12,000 improved cookstoves to households in the states of Jammu and Kashmir,

Uttar Pradesh, Bihar, Madhya Pradesh, Jharkhand, Chhattisgarh, Karnataka, and

Odisha.22 Hence, we additionally control for states where improved cookstoves program has
22The government of India had also initiated the National Programme on Improved Chulha (NPIC) in
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been implemented by adding a dummy variable which indicates states where there is NBCI

program. Notice that we omit the state fixed effect for one of the NBCI states to resolve

the collinearity problem. It is important to note that we did not control for states with

another government program, National Programme on Improved Chulha (NPIC), since it

already became a nationally disseminated program. Table A.2 reports results from the first

and second-stage regressions of IV (2SLS) regression where a dummy variable is added to

our preferred specifications in Table 10. The first stage regression results suggest that the

effect of the NBCI program on household fuel choice is not statistically significant, which is

consistent with the existing findings from the literature including Hanna et al. (2016). The

results obtained with the inclusion of the dummy variable for NBCI implementation are

qualitatively identical to the IV (2SLS) regression results.

Third, we disaggregate our key regressor by ranking fuel types from 1 (the cleanest fuel)

to 10 (the dirtiest fuel) based on their cleanliness or the energy ladder concept (Goldemberg,

2000). The assigned values to different types of fuels used for cooking are: 1 = electricity, 2

= LPG/natural gas, 3 = biogas, 4 = kerosene, 5 = coal/lignite, 6 = charcoal, 7 = wood, 8 =

straw/shrubs/grass, 9 = agricultural crop, and 10 = animal dung. Table A.3 shows that if

dirtiness level of cooking fuel increases by 1 unit, the probability of under-five and neonatal

mortality will rise by 0.9 and 0.6 percent, respectively. In other words, the probability of

experiencing child mortality within five years and 28 days of birth increases respectively by

0.9 and 0.6 percent if a household switches to a fuel type that is dirtier by one level along

the energy ladder. Notice that the key regressor here, dirtiness level of cooking fuels, is a

categorical variable. Our results here remain remarkably similar to our baseline results that

use the cooking fuel choice as a binary variable.

Finally, we leverage satellite- and census-based data on forest cover (% of geographical

area) in 2011 to test whether we can still identify a positive impact of polluting fuel use on

under-five and neonatal mortality incidences. Using data on 2011 satellite-based forest cover

and tree cover from the 2011 Indian Census as alternates to a satellite-based speed of change

in forest cover, we find that the results are also exceptionally robust to the utilization of

1984 to provide efficient cooking stoves to rural areas in an attempt to limit air pollution. NPIC became a
nation-wide program in 1986 and was implemented until 2000. Since this program had universal coverage
throughout the country, we cannot use this program for a robustness check.
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either satellite- or census-based tree cover for a single year as one of the IVs for household

fuel choice (Tables A.4 and A.5, respectively).

6 Conclusion

Almost half of the global population continues to rely on solid fuels for cooking, and it

constitutes largest source of indoor air pollution. In 2015, 64% of the Indian population

used different types of solid fuels for cooking including wood, dung and coal, second after

Sub-Saharan Africa. Each year, diseases attributed to indoor air pollution (IAP) kill 1.2

million people, including 100,000 children in India. Leveraging a unique and large-scale

household survey data from 1992 to 2016 and geospatial information of forest cover in India,

we find that the use of solid fuels for cooking increases under-five mortality and that our

results are robust to a variety of empirical specifications.

Our analysis presents two important departures from the existing literature. First, we

utilize nationally-representative demographic survey data instead of focusing on RCTs

conducted in a particular region of the country as commonly analyzed in the literature

(Diaz et al., 2007; Smith-Sivertsen et al., 2009; Hanna et al., 2016). Our analyses based on

simple probit regressions lead to a 0.6 percentage points decrease in the estimates of the

marginal impact of cooking fuel on infant mortality relative to the extant literature. This

suggests that the literature has tended to overestimate the association between IAP and

under-five mortality by approximately 152,000 deaths per year nationally as compared to

our estimates. Our non-IV estimation departs from the existing literature in terms of

additional controls and a more recent sample which points to the importance of including a

full set of controls.

Second, ours is the first empirical analysis to address the endogeneity in cooking fuel

choice when quantifying the causal effect of cooking fuels on infant mortality. The speed

of change in forest cover and agricultural land ownership status in India provide plausibly

exogenous variation in cooking fuels for causal identification. The IV (2SLS) analysis based

on the speed of change in forest cover and agricultural land ownership shows that a household

using solid fuel for cooking has a 3.4 and 4.9 percent higher probability of experiencing child
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mortality within 28 days and five years of birth, respectively. However, we find no causal

impact of fuel choice on post-neonatal and child mortality.

We conclude with some caveats and directions for future research. First, our analysis is

based on an indirect indicator of IAP, i.e., type of cooking fuels, to estimate the effect of

IAP on under-five mortality due to the lack of data availability. Using direct measures of

IAP (CO and PM emissions in homes) recorded by 24-hour carbon monoxide readings might

provide more accurate estimates. Although cooking is the main source of IAP, it is not the

only source of CO emission inside the house that poses risks to children’s health. The WHO

guidelines for household fuel combustion (WHO, 2014) classify kerosene as a polluting fuel

and discourage its use as a household fuel. Nevertheless, kerosene is still used for lighting by

around one billion people who lack access to electricity. Kerosene lamps are often the only

means of lighting houses at night. Use of kerosene not only pollutes the air inside the house

but also increases the risks for fires, burns and CO poisoning. Therefore, we might have

underestimated the effect of IAP on infant mortality due to the absence of a direct measure

of IAP and indirect measures for other sources of household air pollution.

Second, we focus on the causal impact of IAP on infant mortality. It is well understood

that IAP affects not only infant mortality but also other socio-economic and health outcomes.

Hence, future research could empirically examine the impact of cooking fuels on productivity

of children and adults, school attendance, labor market participation, all of which could have

important implications on the broader economy and contribute to the economic literature of

indoor air quality or fuel choice.
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Figure 1: Mortality Trend in All Age-Groups of Children Under-Five by Cooking Fuel
Type in India

Notes: Based on NFHS datasets 1992–93, 1998–99, 2005–06, and 2015–16. In the medical literature, the
measure of incidence proportion (or cumulative incidence) is defined as the proportion of individuals alive at
the start of a period who die over that period (Greenland and Rothman, 2008; Centers for Disease Control
and Prevention, 2006). To adjust for the cluster sampling survey design and apply the complex sample
design parameters in estimating indicators, “svyset” and “svy” commands were used for calculating weighted
estimates of mortality incidence proportion. The NFHS sample was selected through a two-stage sample
design, and the commands deal with multiple stages of clustered sampling. Notice that the incidence
proportions of neonatal, post-neonatal and child mortality add up to under-five mortality incidence because
(i) these three preceding and successive age groups fully make up the first five years of life, and (ii) the measure
of mortality incidence for all four different age groups have been calculated using a common denominator
(or total number of live births).
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Figure 2: Displacement of PSUs (Villages/City Blocks) in India’s NFHS-4 (2015–16)

Notes: The figure shows how the PSU points are displaced in NFHS-4 (2015–16) survey based on few
PSU points in Kerala district. In order to ensure that respondent confidentiality is maintained, the GPS
(latitude/longitude positions) of respondent locations are randomly displaced according to the “random
direction, random distance” method. The displacement is randomly carried out so that (i) urban clusters
are displaced up to 2 kilometers, (ii) rural clusters are displaced up to 5 kilometers, with 1% of the rural
clusters displaced up to 10 kilometers. According to the description of the DHS GPS data provided by the
DHS Program, the displacement is restricted so that the points stay within the same country, state, and
district areas as the undisplaced cluster. The buffer analysis on few PSU points in Kerala district as an
example suggests that identification of villages/towns and sub-districts (or tehsils) is questionable because
2-5-kilometer buffers intersect with boundaries of villages/towns and sub-districts.
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Figure 3: Share of Households in the NFHS relying on Different Types of Fuels for Cooking

Notes: The figure shows the share of households covered in four rounds of National and Family Health
Survey (NFHS) using different types of fuels for cooking in India over the period 1992–2016. The line
charts depict the share of households using each type of cooking fuel for each individual rounds of survey,
while the bar chart illustrates the share for all four rounds of survey between 1992 and 2016 (the bars
for clean fuels are filled with pattern, whereas the bars for polluting fuels are in solid fill). Wood is the
leading fuel used for cooking in India, accounting for 50.1% of the sampling households in the NFHS over
the period. The second dominant cooking fuel is a liquid petroleum gas (LPG) and/or natural gas with
a share of 32.4%. The other clean fuels account for only 1.4% (electricity and biogas account for about
0.9% and 0.4%, respectively). Overall, based on our classification of cooking fuels, we can see that one-
third of the Indian households have been consuming clean fuels for their cooking, while the majority or the
remaining two-thirds of the households have been relying on polluting fuels for cooking over the past 25 years.
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Figure 4: India’s District-Wise and Satellite-based Forest Cover

Notes: Based on a satellite-based data on forest cover from the Planning Commission of India. The figure
depicts the 2011 district-wise forest cover (measured by percentage of geographical area covered by forests)
in India. The forest cover includes all types of forests (different canopy density classes) including very
dense (lands with tree canopy density of 70% and above), moderately dense (lands with tree canopy density
between 40% and 70%), and open forests (lands with tree canopy density between 10% and 40%). The scrub
or degraded forest lands with canopy density less than 10% is not considered for calculating forest cover.
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Figure 5: Mortality in All Age-Groups of Children Under-Five and Ownership Status of
Agricultural Land by Household Wealth in India

(a) Infant Mortality

(b) Ownership of Agricultural Land

Notes: Based on NFHS datasets 1992–93, 1998-99, 2005–06, and 2015–16. Panel (a) shows that under-five
mortality incidence proportion is higher in households with lower wealth, suggesting that the probability
of mortality decreases as a family becomes wealthier. The “low wealth” is the bottom 40% of households,
“middle wealth” is the middle 40% of households, and “high wealth” is the top 20% of households. Panel
(b) depicts the mean fraction of households that own land for agricultural purposes by dividing agricultural
households into five groups (quintiles) based on household wealth.
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Table 1: Summary Statistics
Variables Mean S.D. Min Max N

Infant mortality (% total live births)
Under-five 0.053 0.224 0.000 1.000 369,416
Child 0.007 0.085 0.000 1.000 369,416
Post-neonatal 0.015 0.120 0.000 1.000 369,416
Neonatal 0.031 0.173 0.000 1.000 369,416

Type of cooking fuel (% households)
Clean 0.240 0.427 0.000 1.000 354,161
Polluting 0.760 0.427 0.000 1.000 354,161

Place of residence (% households)
Urban 0.244 0.430 0.000 1.000 369,416
Rural 0.756 0.430 0.000 1.000 369,416

Household wealth (wealth index, % households)
High 0.150 0.357 0.000 1.000 369,416
Middle 0.385 0.487 0.000 1.000 369,416
Low 0.465 0.499 0.000 1.000 369,416

Mother’s age (years, % households)
40-49 0.027 0.162 0.000 1.000 369,416
<20 0.041 0.199 0.000 1.000 369,416
20-29 0.679 0.467 0.000 1.000 369,416
30-39 0.253 0.435 0.000 1.000 369,416

Mother’s education (% households)
Secondary/Higher 0.458 0.498 0.000 1.000 369,219
Primary 0.151 0.358 0.000 1.000 369,219
No education 0.392 0.488 0.000 1.000 369,219

Gender of child (% households)
Female 0.481 0.500 0.000 1.000 369,416
Male 0.519 0.500 0.000 1.000 369,416

Breastfeeding status (% households)
Ever breastfed 0.654 0.476 0.000 1.000 369,416
Never breastfed 0.346 0.476 0.000 1.000 369,416

Place where food is cooked (% households)
In same room as they live in 0.369 0.483 0.000 1.000 253,670
In separate kitchen inside the house 0.447 0.497 0.000 1.000 253,670
In a separate building 0.106 0.307 0.000 1.000 253,670
Outdoors 0.078 0.268 0.000 1.000 253,670

Type of house (% households)
Pucca 0.376 0.484 0.000 1.000 358,410
Semi-pucca 0.437 0.496 0.000 1.000 358,410
Kachha 0.187 0.390 0.000 1.000 358,410

Number of household members 6.864 3.253 1.000 46.000 369,416

Notes: The table summarizes the household and individual characteristics of respondents from the three
rounds of NFHS (1992–93, 1998–99, and 2015–16) used in the regression analysis. The unit of observation
is the child. Neonatal = first 28 days of life (0–28 days), Post-neonatal = period between approximately the
first month after birth and end of the first year of life (1-12 months), and Child = period between exact ages
of one and five (12–59 months). Units are % household unless otherwise specified. The type of cooking fuel
recorded in the survey as “no food cooked in house”, “other”, and “not a de jure resident” has been coded as
missing observations.
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Table 2: Summary Statistics of Infant Mortality and Fuel Choice (by State)

Panel A. Infant Mortality (fraction)

States Under-Five Child Post-Neonatal Neonatal
NMean S.D. Mean S.D. Mean S.D. Mean S.D.

Uttar Pradesh 0.074 0.262 0.010 0.099 0.021 0.142 0.044 0.204 56,090
Madhya Pradesh 0.066 0.249 0.012 0.108 0.017 0.129 0.038 0.190 32,007
Odisha 0.060 0.237 0.007 0.083 0.019 0.136 0.034 0.181 16,192
Rajasthan 0.059 0.235 0.009 0.096 0.017 0.129 0.033 0.177 25,435
Bihar 0.059 0.236 0.008 0.088 0.014 0.118 0.037 0.190 33,093
Assam 0.058 0.234 0.008 0.092 0.016 0.127 0.033 0.179 14,393
Chhattisgarh 0.058 0.235 0.006 0.08 0.012 0.110 0.040 0.196 10,695
Andhra Pradesh 0.055 0.228 0.006 0.076 0.016 0.125 0.033 0.179 5,515
Meghalaya 0.050 0.218 0.008 0.086 0.018 0.132 0.025 0.156 6,261
Gujarat 0.050 0.218 0.008 0.089 0.013 0.112 0.029 0.168 12,077

All States/UTs 0.053 0.224 0.007 0.085 0.015 0.120 0.031 0.173 369,416

Panel B. Type of Cooking Fuel (fraction)

States Mean S.D. NPolluting Clean

Bihar 0.905 0.095 0.294 31,573
Meghalaya 0.896 0.104 0.305 6,247
Jharkhand 0.890 0.110 0.312 12,712
Odisha 0.881 0.119 0.323 15,487
West Bengal 0.865 0.135 0.342 9,033
Tripura 0.856 0.144 0.351 2,500
Assam 0.855 0.145 0.353 14,229
Chhattisgarh 0.838 0.162 0.368 10,108
Nagaland 0.829 0.171 0.376 5,646
Madhya Pradesh 0.812 0.188 0.391 30,658

All States/UTs 0.760 0.240 0.427 354,161

Notes: The table summarizes the infant mortality of four different age-groups (outcome variables, Panel
A) and the type of cooking fuel (key explanatory variable, Panel B) by state recorded in three rounds of
NFHS (1992–93, 1998–99, and 2015–16) used in the regression analysis. All 35 regions of India (29 states
and six union territories–UTs) are considered, and we show 10 states/UTs with highest incidence of child
mortality and highest share of households that use polluting fuel for cooking. Infant mortality and fuel
choices significantly vary across regions throughout the country. In addition, six of these ten states/UTs
(Odisha, Madhya Pradesh, Bihar, Assam, Chhattisgarh, and Meghalaya) are common in terms of highest
fraction of polluting fuel use and under-five mortality incidence proportion.

38



Ta
bl
e
3:

Su
m
m
ar
y
St
at
is
ti
cs

of
In
fa
nt

M
or
ta
lit
y
an

d
Fu

el
C
ho

ic
e
(b
y
A
ge

an
d
G
en
de
r
of

th
e
H
ou

se
ho

ld
H
ea
d)

In
fa
nt

m
or
ta
lit
y
(f
ra
ct
io
n)

T
yp

e
of

co
ok

in
g
fu
el

(f
ra
ct
io
n)

U
nd

er
-F
iv
e

C
hi
ld

P
os
t-
N
eo
na

ta
l

N
eo
na

ta
l

N
M
ea
n

S.
D
.

N
M
ea
n

S.
D
.

M
ea
n

S.
D
.

M
ea
n

S.
D
.

M
ea
n

S.
D
.

P
ol
lu
ti
ng

C
le
an

P
an

el
A

.
B
y

A
ge

of
th

e
H

ou
se

ho
ld

H
ea

d

A
ge

10
-1
9

0.
10

0
0.
30

1
0.
01

2
0.
10

7
0.
04
1

0.
19

7
0.
04

8
0.
21

5
51

8
0.
93
1

0.
06
9

0.
25
3

49
4

A
ge

20
-2
9

0.
05

8
0.
23

5
0.
00

7
0.
08

2
0.
01
6

0.
12

5
0.
03

6
0.
18

6
62

,8
07

0.
81
2

0.
18
8

0.
39
1

62
,0
67

A
ge

30
-3
9

0.
05

2
0.
22

2
0.
00

9
0.
09

5
0.
01
5

0.
12

3
0.
02

8
0.
16

4
11
1,
51

3
0.
75
1

0.
24
9

0.
43
2

11
0,
10
3

A
ge

40
-4
9

0.
06

1
0.
23

9
0.
01

0
0.
09

9
0.
01
7

0.
12

7
0.
03

4
0.
18

2
53

,6
63

0.
79
1

0.
20
9

0.
40
7

50
,1
69

A
ge

50
-5
9

0.
04

9
0.
21

7
0.
00

5
0.
07

2
0.
01
3

0.
11

4
0.
03

1
0.
17

3
60

,8
28

0.
73
2

0.
26
8

0.
44
3

55
,6
54

A
ge

60
-6
9

0.
04

6
0.
20

9
0.
00

5
0.
06

9
0.
01
2

0.
10

9
0.
02

9
0.
16

8
56

,2
11

0.
72
0

0.
28
0

0.
44
9

52
,8
30

A
ge

70
-7
9

0.
04

8
0.
21

3
0.
00

6
0.
07

7
0.
01
3

0.
11

1
0.
02

9
0.
16

8
18

,9
20

0.
73
7

0.
26
3

0.
44
0

18
,1
12

A
ge

80
-8
9

0.
05

2
0.
22

1
0.
00

6
0.
07

6
0.
01
6

0.
12

6
0.
03

0
0.
17

0
4,
25
4

0.
76
1

0.
23
9

0.
42
7

4,
07
1

A
ge
≥

90
0.
07
0

0.
25

6
0.
00

8
0.
08
8

0.
02

0
0.
14

1
0.
04
2

0.
20
1

64
0

0.
79
7

0.
20
3

0.
40
3

60
1

T
ot
al

0.
05
3

0.
22

4
0.
00
7

0.
08
5

0.
01

5
0.
12
0

0.
03
1

0.
17

3
36

9,
35

4
0.
76
0

0.
24
0

0.
42
7

35
4,
10
1

P
an

el
B
.
B
y

G
en

de
r

of
th

e
H

ou
se

ho
ld

H
ea

d

M
al
e

0.
05
3

0.
22

5
0.
00
8

0.
08

6
0.
01
5

0.
12
1

0.
03

1
0.
17

4
33

0,
88

4
0.
76
2

0.
23
8

0.
42
6

31
7,
86
7

Fe
m
al
e

0.
04

8
0.
21

4
0.
00

6
0.
07

7
0.
01
4

0.
11

7
0.
02
8

0.
16
6

38
,5
30

0.
73
8

0.
26
2

0.
44
0

36
,2
92

T
ot
al

0.
05
3

0.
22

4
0.
00
7

0.
08
5

0.
01

5
0.
12
0

0.
03
1

0.
17

3
36

9,
41

4
0.
76
0

0.
24
0

0.
42
7

35
4,
15
9

N
ot
es
:

T
he

ta
bl
e
su
m
m
ar
iz
es

th
e
in
fa
nt

m
or
ta
lit
y
an

d
th
e
ty
pe

of
co
ok

in
g
fu
el

fo
r
di
ffe

re
nt

ag
e
gr
ou

ps
(P

an
el

A
)
an

d
ge
nd

er
(P

an
el

B
)
of

th
e

ho
us
eh
ol
d
he
ad

re
co
rd
ed

in
th
re
e
ro
un

ds
of

N
F
H
S
(1
99
2–
93
,1

99
8–
99
,a

nd
20
15
–1
6)

us
ed

in
th
e
re
gr
es
si
on

an
al
ys
is
.
N
ot
e
th
at

ho
us
eh
ol
d
he
ad

s
w
ho

ar
e
ol
de
r
th
an

50
ye
ar
s
m
ay

ha
ve

ch
ild

re
n
w
it
h
un

de
r
fiv

e
ye
ar
s
of

ag
e.

In
tu
it
iv
el
y,

th
e
nu

m
be

r
of

ch
ild

re
n
w
ho

liv
e
in

ho
us
eh
ol
ds

w
it
h
he
ad

s
ol
de
r

th
an

50
ye
ar
s
de
cl
in
es

as
ag
e
of

th
e
ho

us
eh
ol
d
he
ad

in
cr
ea
se
s.

39



Table 4: Probit: The Marginal Impact of Cooking Fuel Choice on Under-Five Mortality
Dependent variable: Under-five mortality

(1) (2) (3)

Polluting fuel for cooking 0.023*** 0.008*** 0.008***
(0.001) (0.001) (0.001)

Place of residence: Rural 0.004*** 0.004***
(0.001) (0.001)

Household wealth: Middle 0.012*** 0.011***
(0.002) (0.002)

Household wealth: Low 0.015*** 0.014***
(0.002) (0.002)

Number of household members -0.004*** -0.004***
(0.000) (0.000)

Mother’s age: <20 0.017*** 0.017***
(0.003) (0.003)

Mother’s age: 20-29 -0.009*** -0.008***
(0.002) (0.002)

Mother’s age: 30-39 -0.013*** -0.013***
(0.002) (0.002)

Mother’s education: Primary 0.008*** 0.008***
(0.001) (0.001)

Mother’s education: No education 0.010*** 0.010***
(0.001) (0.001)

Gender of child: Male 0.004*** 0.004***
(0.001) (0.001)

Never breastfed 0.049*** 0.049***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.002** -0.003**
(0.001) (0.001)

Food cooked: In a separate building -0.003 -0.003*
(0.002) (0.002)

Food cooked: Outdoors 0.000 0.000
(0.002) (0.002)

House type: Semi-pucca 0.004*** 0.004***
(0.001) (0.001)

House type: Kachha 0.005** 0.005**
(0.002) (0.002)

Year FE Yes Yes Yes
State FE Yes Yes Yes
State-by-Year FE No No Yes

N 354,161 230,091 230,091
Probit log-likelihood -71,407 -37,102 -37,094

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
under-five mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are computed by the delta
method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 5: Probit: The Marginal Impact of Cooking Fuel Choice on Child Mortality
Dependent variable: Child mortality
(1) (2) (3)

Polluting fuel for cooking 0.007*** 0.002*** 0.002***
(0.000) (0.001) (0.001)

Place of residence: Rural 0.001 0.001
(0.000) (0.000)

Household wealth: Middle 0.001 0.001
(0.001) (0.001)

Household wealth: Low 0.002* 0.002*
(0.001) (0.001)

Number of household members -0.001*** -0.001***
(0.000) (0.000)

Mother’s age: <20 -0.004*** -0.004***
(0.001) (0.001)

Mother’s age: 20-29 -0.004*** -0.004***
(0.001) (0.001)

Mother’s age: 30-39 -0.002*** -0.002***
(0.001) (0.001)

Mother’s education: Primary 0.002*** 0.002***
(0.000) (0.000)

Mother’s education: No education 0.003*** 0.003***
(0.000) (0.000)

Gender of child: Male -0.001*** -0.001***
(0.000) (0.000)

Never breastfed 0.004*** 0.004***
(0.000) (0.000)

Food cooked: In separate kitchen inside -0.001* -0.001*
(0.000) (0.000)

Food cooked: In a separate building -0.001 -0.001
(0.001) (0.001)

Food cooked: Outdoors -0.000 -0.000
(0.001) (0.001)

House type: Semi-pucca 0.001** 0.001**
(0.000) (0.000)

House type: Kachha 0.001* 0.001*
(0.001) (0.001)

Year FE Yes Yes Yes
State FE Yes Yes Yes
State-by-Year FE No No Yes

N 353,064 228,420 228,420
Probit log-likelihood -14,927 -6,349 -6,349

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is child
mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects (FEs) in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The number of observations is lower than that in Table 4 because there exist
five states for which state FEs perfectly explain child mortality, and thus those five state FEs are dropped
because probit models cannot be estimated when the outcome variable is perfectly predicted by the regressor.
The unit of observation is the child. Standard errors of the probit regressions are clustered at the PSU level,
and standard errors of the AMEs in parentheses are computed by the delta method. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.
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Table 6: Probit: The Marginal Impact of Cooking Fuel Choice on Post-Neonatal Mortality
Dependent variable: Post-neonatal mortality

(1) (2) (3)

Polluting fuel for cooking 0.007*** 0.001 0.001
(0.001) (0.001) (0.001)

Place of residence: Rural 0.002** 0.002**
(0.001) (0.001)

Household wealth: Middle 0.005*** 0.005***
(0.001) (0.001)

Household wealth: Low 0.007*** 0.007***
(0.001) (0.001)

Number of household members -0.001*** -0.001***
(0.000) (0.000)

Mother’s age: <20 0.003** 0.003**
(0.002) (0.002)

Mother’s age: 20-29 -0.003*** -0.003***
(0.001) (0.001)

Mother’s age: 30-39 -0.004*** -0.004***
(0.001) (0.001)

Mother’s education: Primary 0.002*** 0.002***
(0.001) (0.001)

Mother’s education: No education 0.004*** 0.004***
(0.001) (0.001)

Gender of child: Male -0.000 -0.000
(0.000) (0.000)

Never breastfed 0.013*** 0.013***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.000 -0.000
(0.001) (0.001)

Food cooked: In a separate building -0.000 -0.000
(0.001) (0.001)

Food cooked: Outdoors 0.000 0.000
(0.001) (0.001)

House type: Semi-pucca 0.000 0.000
(0.001) (0.001)

House type: Kachha -0.000 -0.000
(0.001) (0.001)

Year FE Yes Yes Yes
State FE Yes Yes Yes
State-by-Year FE No No Yes

N 354,161 229,696 229,696
Probit log-likelihood -26,484 -12,734 -12,734

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
post-neonatal mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects
(FEs) in Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed
effects include dummies for 36 states. The number of observations is slightly lower than that in Table 4
because there exists one state for which state FE perfectly explains post-neonatal mortality, and thus that
state FE is dropped because probit models cannot be estimated when the outcome variable is perfectly
predicted by the regressor. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are computed by the delta
method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 7: Probit: The Marginal Impact of Cooking Fuel Choice on Neonatal Mortality
Dependent variable: Neonatal mortality
(1) (2) (3)

Polluting fuel for cooking 0.011*** 0.006*** 0.006***
(0.001) (0.001) (0.001)

Place of residence: Rural 0.001 0.001
(0.001) (0.001)

Household wealth: Middle 0.006*** 0.006***
(0.001) (0.001)

Household wealth: Low 0.007*** 0.006***
(0.002) (0.002)

Number of household members -0.002*** -0.002***
(0.000) (0.000)

Mother’s age: <20 0.018*** 0.018***
(0.003) (0.003)

Mother’s age: 20-29 -0.001 -0.001
(0.002) (0.002)

Mother’s age: 30-39 -0.007*** -0.007***
(0.002) (0.002)

Mother’s education: Primary 0.004*** 0.004***
(0.001) (0.001)

Mother’s education: No education 0.003*** 0.003***
(0.001) (0.001)

Gender of child: Male 0.005*** 0.005***
(0.001) (0.001)

Never breastfed 0.032*** 0.032***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.002* -0.002*
(0.001) (0.001)

Food cooked: In a separate building -0.002 -0.002
(0.001) (0.001)

Food cooked: Outdoors 0.000 0.000
(0.001) (0.001)

House type: Semi-pucca 0.003*** 0.003***
(0.001) (0.001)

House type: Kachha 0.004*** 0.004***
(0.002) (0.002)

Year FE Yes Yes Yes
State FE Yes Yes Yes
State-by-Year FE No No Yes

N 354,161 230,091 230,091
Probit log-likelihood -47,742 -26,355 -26,348

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
neonatal mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are computed by the delta
method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 8: The Effect of Polluting Fuel for Cooking on Infant Mortality
(Comparison of Results from Simple Logit Regressions)

(1) (2) (3) (4) (5)
NFHS-1-3 (1992–2006) NFHS-4 NFHS-1-4 This

Naz et al. (2016) Replication (2015–16) (1992–2016) paper

Dependent variable: Under-five mortality
Odds Ratio 1.30*** 1.27*** 1.32*** 1.26*** 1.26***

(0.065) (0.114) (0.054) (0.047)
Marginal Effect 0.014*** 0.011*** 0.013*** 0.009***

(0.003) (0.003) (0.003) (0.001)
N 138,063 150,845 34,423 185,268 230,091

Dependent variable: Child mortality
Odds Ratio 1.42** 1.45** 0.99 1.24 1.46***

(0.231) (0.256) (0.162) (0.177)
Marginal Effect 0.004** 0.000 0.002 0.002***

(0.002) (0.001) (0.001) (0.001)
N 138,063 150,845 34,423 185,268 228,420

Dependent variable: Post-neonatal mortality
Odds Ratio 1.42*** 1.42*** 1.14 1.30*** 1.08

(0.136) (0.187) (0.105) (0.073)
Marginal Effect 0.007*** 0.001 0.004*** 0.001

(0.002) (0.002) (0.001) (0.001)
N 138,063 150,845 34,423 185,268 229,696

Dependent variable: Neonatal mortality
Odds Ratio 1.23*** 1.18** 1.46*** 1.25*** 1.30***

(0.076) (0.158) (0.068) (0.061)
Marginal Effect 0.006** 0.010*** 0.007*** 0.007***

(0.002) (0.003) (0.002) (0.001)
N 138,063 150,845 34,423 185,268 230,091

Notes: Column (1) shows the odds ratio from logit regression in Naz et al. (2016), while Columns (2), (3) and
(4) show the odds ratio from logit regression with specification exactly the same as in Naz et al. (2016). The
differences in odds ratio presented in Columns (1) and (2) are due to difference in number of observations
because we control for exactly the same variables as in Naz et al. (2016) (including type of cooking fuel,
place of residence, wealth index, mother’s age, mother’s education, mother’s working status, sex of child,
breastfeeding status, separate kitchen, type of house, and year of survey). We have very few observations
in Column (3) because only a (state module) sub-sample of women were asked about their employment
status, resulting in a lot of missing observations for mother’s working status variable in the NFHS-4 (2015–
16). Column (5) presents odds ratio and the associated average marginal effects from logit regressions with
our primary specification (or specification in Column (3) of Tables 4-7). One of our controls, a variable
indicating whether household cooks inside the house, in a separate building, or outdoors, is only available in
NFHS-4, thus, we use only last round of the survey in Column (5). The numbers of observations for child
and post-neonatal mortality regressions are lower than that for under-five and neonatal mortality regressions
in Column (5) because there exist respectively five and one state(s) for which state FEs perfectly explain
child and post-neonatal mortality, and thus those state FEs are dropped. It is because logit models cannot
be estimated when the outcome variable is perfectly predicted by the regressor. The unit of observation
is the child. Standard errors of the logit regressions in parentheses are clustered at the primary sampling
unit (PSU) level, and standard errors of the corresponding AMEs in parentheses are computed by the delta
method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 9: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IV = Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.050*** 0.003 0.010 0.037***
(0.017) (0.006) (0.009) (0.014)

Owns agricultural land 0.057***
(0.002)

N 230,091 230,091 230,091 230,091 230,091
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IV 799.71

Notes: All specifications contain an unreported vector of demographic controls and constant term. The
demographic controls include household characteristics: place of residence, household wealth, number of
household members, place where food is cooked, and type of house; mother characteristics: age and education
level; and child characteristics: gender and breastfeeding status. The state, year, and state-by-year fixed
effects are also included in every specification. The OLS model does not drop the state FE(s) that perfectly
explain the child and post-neonatal mortality incidences, and thus the number of observations is the same
across four IV regressions. The unit of observation is the child. Standard errors in parentheses are clustered
at the primary sampling unit (PSU) level. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 10: Cooking Fuel Choice and Infant Mortality from OLS and IV (2SLS) Regressions
(IVs = Speed of Change in Forest Cover and Agricultural Land Ownership):

SEs clustered at district level

(1) (2) (3) (4) (5)
Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. IV
1st stage 2nd stage

Polluting fuel for cooking 0.049** 0.004 0.012 0.034**
(0.020) (0.007) (0.010) (0.015)

Speed of change in forest cover 0.030***
(0.011)

Owns agricultural land 0.054***
(0.003)

N 196,344 196,344 196,344 196,344 196,344
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 169.10
Hansen’s J-statistic 0.92 1.92 0.74 1.80
χ2 p-value 0.34 0.17 0.39 0.18

Panel B. OLS
Polluting fuel for cooking 0.008*** 0.001*** 0.001 0.006***

(0.001) (0.000) (0.001) (0.001)
N 230,091 230,091 230,091 230,091
R2 0.03 0.00 0.01 0.02

Notes: The first column in Panel A reports result from the first-stage regression of our IV (2SLS) regression
using NFHS-4 data. The dependent variable is a binary variable of whether fuel choice. The F -test on IVs—
district-wise speed of change in forest cover calculated as a relative change in the percentage of forested area
in the total geographical area of the region over the period 2007, 2011, and 2013 using satellite-based data
and an indicator variable for household’s agricultural land ownership—verifies that the instruments generate
a plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) in Panel A report results from
the estimation of Equation (1) using IV regression with different dependent variables and similar specification
where the key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. The
Hansen’s J-statistic suggests that the excluded IVs are exogenous. Panel B reports coefficient estimates of
the association between use of polluting fuel for cooking on the infant mortality of four different age-groups.
Coefficients are from the estimation of Equation (1) using OLS regression based on the same dataset used
in Tables 4-7. Notice that we drop a few unmatched observations, which is less than 1 percent of our total
observations, when we merge the survey dataset with the satellite and Census datasets, and it does not
affect our primary results from the estimation of simple models. All specifications of OLS and IV regressions
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and education level; and child characteristics:
gender and breastfeeding status. The state, year, and state-by-year fixed effects are also included in every
specification. The unit of observation is the child. Heteroskedasticity-consistent standard errors clustered
by districts are in parentheses. The statistical significances of the key regressors are the same for all simple
OLS and IV (2SLS) regressions when the standard errors are clustered by PSUs. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.
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Appendix

Table A.1: Cooking Fuel Choice and Infant Mortality from Pooled and IV Probit
Regressions (IVs = Speed of Change in Forest Cover and Agricultural Land Ownership)

(1) (2) (3) (4) (5)
Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. IV Probit
1st stage 2nd stage

Polluting fuel for cooking 0.556*** 0.248 0.439 0.569**
(0.207) (0.477) (0.340) (0.237)

Speed of change in forest cover 0.030***
(0.004)

Owns agricultural land 0.054***
(0.002)

N 196,344 196,344 195,212 195,949 196,344
R2 0.54
F -stat on IVs 339.59
Model Wald χ2 3,913.63 583.90 1,319.46 2,503.41
Model degrees of freedom 49.00 46.00 48.00 49.00
Model Wald p-value 0.00 0.00 0.00 0.00
Exogeneity test Wald p-value 0.03 0.78 0.25 0.05
Wald χ2 test of exogeneity 4.76 0.08 1.34 3.78

Panel B. Pooled Probit
Polluting fuel for cooking 0.097*** 0.127*** 0.030 0.104***

(0.017) (0.041) (0.026) (0.020)
N 230,091 228,420 229,696 230,091
Probit log-likelihood -37,094 -6,349 -12,734 -26,348

Notes: The first column in Panel A reports result from the first-stage OLS regression of IV probit using
NFHS-4 where the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-
wise speed of change in forest cover calculated as a relative change in the percentage of forested area in the
total geographical area of the region over the period 2007, 2011, and 2013 using satellite-based data and
an indicator variable for household’s agricultural land ownership—confirms that the instruments create a
significant variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) in Panel A report coefficient
estimates from the estimation of Equation (1) using IV probit regression with different dependent variables
and a similar specification. Panel B reports coefficient estimates of the association between use of polluting
fuel for cooking on the infant mortality of four different age-groups. Coefficients are from the estimation
of Equation (1) using pooled probit regressions, which are exactly the same as those in Tables 4-7. All
specifications of pooled and IV probit regressions contain an unreported vector of demographic controls and
constant term. The demographic controls include household characteristics: place of residence, household
wealth, number of household members, place where food is cooked, and type of house; mother characteristics:
age and education level; and child characteristics: gender and breastfeeding status. The state, year, and
state-by-year fixed effects (FEs) are also included in every specification. Some state FEs are excluded because
they perfectly predict the outcome variable in child and post-neonatal mortality regressions. The unit of
observation is the child. Heteroskedasticity-consistent standard errors clustered by PSUs are in parentheses.
The standard errors of the key regressors in the first-stage regression and joint F -statistic on the excluded IVs
are different from those in Column (1) of Table 10 due to difference in cluster level. However, the statistical
significances of the key regressors are the same for all pooled and IV probit regressions when the standard
errors are clustered by districts. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A.2: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Speed of Change in Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.049*** 0.004 0.012 0.034**
(0.019) (0.006) (0.010) (0.015)

Cookstoves Program States (NBCI) 0.056 0.055*** 0.006*** 0.011** 0.038***
(0.055) (0.007) (0.001) (0.005) (0.005)

Speed of change in forest cover 0.030***
(0.004)

Owns agricultural land 0.054***
(0.002)

N 196,344 196,344 196,344 196,344 196,344
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 339.59
Hansen’s J-statistic 1.21 1.76 0.92 1.67
χ2 p-value 0.27 0.18 0.34 0.20

Notes: The first column reports result from the first-stage regression of 2SLS regression using NFHS-4 where
the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-wise speed of change
in forest cover calculated as a relative change in the percentage of forested area in the total geographical
area of the region over the period 2007, 2011, and 2013 using satellite-based data and an indicator variable
for household’s agricultural land ownership—verifies that the instruments generate a plausible variation in
polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-stage regressions
of 2SLS regression with different dependent variables and similar specification where the key explanatory
variable is the fitted value of polluting fuel from the first-stage estimation. All specifications contain an
unreported vector of demographic controls and constant term. The demographic controls include household
characteristics: place of residence, household wealth, number of household members, place where food is
cooked, and type of house; mother characteristics: age and education level; and child characteristics: gender
and breastfeeding status. In addition to these demographic controls, we control for a dummy variable
indicating states where the National Biomass Cookstove Initiative (NBCI) has been implemented by the
government of India. The state, year, and state-by-year fixed effects are also included in every specification.
The Hansen’s J-statistic suggests that the excluded IVs are exogenous. The unit of observation is the child.
Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A.3: Levels of Dirtiness of Cooking Fuels and Infant Mortality from IV (2SLS)
Regressions (IVs = Speed of Change in Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Dirtiness level of cooking fuels 0.009*** 0.000 0.002 0.006**
(0.003) (0.001) (0.002) (0.002)

Speed of change in forest cover 0.066***
(0.025)

Owns agricultural land 0.344***
(0.014)

N 196,344 196,344 196,344 196,344 196,344
R2 0.52 0.02 0.00 0.01 0.01
F -stat on IVs 313.55
Hansen’s J-statistic 0.24 2.01 0.44 0.61
χ2 p-value 0.62 0.16 0.51 0.44

Notes: All specifications contain an unreported vector of demographic controls and constant term. The
demographic controls include household characteristics: place of residence, household wealth, number of
household members, place where food is cooked, and type of house; mother characteristics: age and education
level; and child characteristics: gender and breastfeeding status. The state, year, and state-by-year fixed
effects are also included in every specification. The Hansen’s J-statistic suggests that the excluded IVs are
exogenous. The unit of observation is the child. Parentheses contain standard errors clustered by PSUs.
Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A.4: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Satellite-based Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.046*** 0.004 0.010 0.032**
(0.018) (0.006) (0.009) (0.014)

Forest cover (satellite-based, 2011 ) 0.050***
(0.008)

Owns agricultural land 0.057***
(0.002)

N 206,548 206,548 206,548 206,548 206,548
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 376.95
Hansen’s J-statistic 1.24 1.90 1.01 1.70
χ2 p-value 0.27 0.17 0.31 0.19

Notes: The first column reports result from the first-stage regression of our 2SLS regression using NFHS-4
data. The dependent variable is a binary variable of whether fuel choice. The F -test on IVs—2011 district-
wise forest cover calculated as a percent of total geographical area of the region using satellite-based data and
an indicator variable for household’s agricultural land ownership—verifies that the instruments generate a
plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-
stage regressions of 2SLS regression with different dependent variables and similar specification where the
key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and education level; and child characteristics:
gender and breastfeeding status. The state, year, and state-by-year fixed effects are also included in every
specification. The Hansen’s J-statistic suggests that the excluded IVs are exogenous. The unit of observation
is the child. Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10, **p < 0.05,
and ***p < 0.01.
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Table A.5: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Census-based Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.036** 0.002 0.000 0.033**
(0.018) (0.006) (0.009) (0.014)

Forest cover (census-based, 2011 ) 0.037***
(0.009)

Owns agricultural land 0.057***
(0.002)

N 212,493 212,493 212,493 212,493 212,493
R2 0.54 0.03 0.00 0.01 0.02
F -stat on IVs 385.00
Hansen’s J-statistic 2.34 0.59 3.72 1.16
χ2 p-value 0.13 0.44 0.05 0.28

Notes: The first column reports result from the first-stage regression of 2SLS regression using NFHS-4
where the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-wise forest
cover calculated as a percent of total geographical area of the region using the 2011 Indian Census and
an indicator variable for household’s agricultural land ownership—verifies that the instruments generate a
plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-
stage regressions of 2SLS regression with different dependent variables and similar specification where the
key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and education level; and child characteristics:
gender and breastfeeding status. The state, year, and state-by-year fixed effects are also included in every
specification. The Hansen’s J-statistic suggests that the excluded IVs are exogenous. The unit of observation
is the child. Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10, **p < 0.05,
and ***p < 0.01.
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