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Risk estimation for shares on the Johannesburg Stock Exchange 
using transfer function modeling 
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Mike T. Bendixen 
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This study investigates whether the estimation of the systematic risk component or the beta of shares on the 
Johannesburg Stock Exchange (JSE) can be improved using transfer function or MARIMA modeling. Two 
propositions are tested. Transfer function modeling will result in estimates of systematic risk which are different 
from those obtained using conventional OLS regression methods. Transfer function models will provide forecasting 
results which are better than those provided by betas estimated in the conventional way. Proposition I cannot be 
tested using conventional inferential tests as the standard errors of estimate of the betas estimated from MARIMA 
modeling cannot, in general, be measured. It is found however that 16.9% of the MARIMA beta estimates fall 
outside the 95% confidence intervals of the respective OLS regression beta estimates. Similar results are obtained 
when the OLS regression betas are compared to the University of Cape Town (UCT) Financial Risk Service and 
BFA-NET beta estimates. Proposition 2 can in general not be supported as the MARIMA and OLS regression 
forecasts are found not to be statistically significantly different. Cross correlations between index and share returns 
are in many cases found not to be statistically significant. In such cases one is probably better off using OLS 
regression. Resulting beta estimates should be used with caution. 

* Author to whom correspondence should be addressed. 

Introduction 

The Capital Asset Pricing Model (CAPM), developed by 
Sharpe (1964), Lintner (1965) and others, and the market 
model (Markowitz, 1959; Sharpe, 1963), are widely used pro­
ducts of Capital Market Theory. These models essentially 
relate returns to the systematic risk taken to achieve such 
returns. Non-systematic risk can be effectively eliminated 
at virtually no cost through diversification (for example 
Fama, 1965; Statman, 1987), i.e. investors do not get paid 
for bearing risk that can be diversified away. 

The estimation of the systematic risk component of shares 
have been the focus of many researchers in the field of finan­
cial economics. It is traditionally estimated from the market 
model (Bodie, Kane & Marcus, 1996: 279) which postulates a 
simple linear relationship between the return on the share and 
the return on the market. The beta coefficient of a share, 
which is the measure used to express systematic risk, is sim­
ply the slope coefficient of this linear relationship. The beta 
of a share is therefore obtained by means of an Ordinary 
Least Squares (OLS) regression of the total returns of the 
share against the total market index returns. In the CAPM 
framework, excess returns (deviations from the risk free rate) 
would typically be used in the regressions. 

Efficient beta estimates are useful for portfolio design, asset 
pricing decisions, cost of capital calculations, and efficient 
testing of financial models such as the CAPM (for example 
Firer, 1993). Due to the importance of the beta coefficient to 
the investment community, much empirical research has fo­
cussed on the problems associated with estimating beta 
(Bowie & Bradfield, 1993). 

This study investigates whether the estimation of the sys­
tematic risk component of shares on the JSE can be improved 
using transfer function modeling as described in Box, Jenkins 
& Reinsel ( 1994) and Makridakis, Wheelright & McGee 
(1983). Box-Jenkins transfer function or Multivariate Au­
toregressive Integrated Moving Average (MARIMA) mod­
els use the same dependent and independent variables that 
are used in the OLS regression estimation of beta. 

Transfer function models have the advantage that they ac­
count for leads and lags between the share price returns and 
the market index returns in a systematic way, unlike conven­
tional OLS regression which only account for share price re­
turn and market index return movements which occur 
simultaneously. It is well known for example that the prices 
of all classes of shares lead the business cycle whereas the 
non-residential building sector lags the business cycle (Van 
der Walt & Pretorius, 1994 ). Conventional OLS regression 
estimates of beta do not account for such a phenomenon. 

Earlier attempts at incorporating both leads and lags of the 
relevant return series in the estimation of beta, can be found 
in Dimson (1979), Cohen, Hawawini, Maier, Schwartz & 
Whitcomb (1983), and Bradfield & Barr (1989). These papers 
address risk estimation in thinly traded markets. 

In this article, two propositions are tested: 

1. Transfer function modeling will result in estimates of sys­
tematic risk which are different from those obtained using 
conventional OLS regression methods. 

2. Transfer function models will provide forecasting results 
which are better than those provided by betas estimated in 
the conventional way. 
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Procedure for estimating beta 

This section describes how beta is estimated using both an 
OLS regression and a transfer function modeling approach. 
For a more comprehensive account see Box et al. (1994) and 
Makridakis et al. ( 1983). 

Data preparation 

Data preparation is required before transfer function model­
ing and OLS regression can commence. Firstly, a meaningful 
share and index sample is required from which returns can be 
calculated. The resulting time series then needs to be made 
stationary via differencing before the Box-Jenkins method­
ology is applied. Finally, the input and output series are pre­
whitened to simplify the MARIMA modeling procedure, and 
to make the results easier to interpret. 

Sample selection 

Weekly closing prices of the industrial index and all the 
shares listed on the industrial board of the JSE were obtained 
from BFA-NET, the financial database system of the Uni­
versity of Pretoria's Bureau for Financial Analysis, for the 
period l January 1988 to 31 December 1995. The industrial 
index was used as a proxy for the market. All shares which 
did not trade for the full eight-year period were eliminated 
from the data set. This left 250 shares from which a random 
sample of 60 shares were taken and on which transfer 
function modeling and OLS regression were performed. 

Eight years worth of four-weekly share and index returns 
were calculated over individual four-week periods by divid­
ing the price difference of the fourth and first week closing 
prices by the closing price of the first week. This resulted in 
13 equispaced return data points for each share and the index 
per annum. 

Sixty months of data have traditionally been considered a 
reasonable compromise between stability of the underlying 
betas and a sufficient number of data points for efficient esti­
mation (Dimson & Marsh, 1983; Bowie & Bradfield, 1993). 
The eight years worth of data were therefore partitioned such 
that the first five years of data could be used for model or beta 
estimation. The remaining three years worth of data was used 
for model validation, as it is standard practice in the field of 
system identification to perform model estimation on two 
thirds of the data set and model validation on the other third 
(Ljung, 1995). 

Share returns were not corrected for dividends as this was 
deemed not to have a significant impact on the findings of 
this work (Brummer, 1997). 

Differencing 

Many empirical time series, such as the share and index 
returns discussed here, behave as though they do not have a 
fixed mean. Models for such non-stationary series can how­
ever be obtained by supposing some suitable difference of the 
process to be stationary. For the time series under discussion 
it was found that first differencing suffices, that is the 
estimated auto and cross correlations of the differenced 
series, damp out quickly. First differencing of the index 
returns (X,) and share returns (Y,) respectively, are shown 
below: 

Xi=(] -B)X, 
Yi=(] - B)Y, 
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(]) 

with Xi and Yi representing the differenced index and share 
returns respectively. B is the backshift operator defined by: 

B)(, = X,..,. (2) 

B., operating on X, has the effect of shifting the data back n 
periods. 

After the differencing performed in equation (] ), the means 
of Xi and Yi were subtracted from the differenced index and 
share return series, as the focus of this article is on estimating 
the slope coefficient or beta in the market model and not the 
constant alpha. The resulting zero mean series were used in 
the steps that follow. 

Prewhitening 

It is always desirable for building models from time series 
data to be able to have some control over the input of the 
process. When dealing with physical processes, this is quite a 
feasible objective. In business and economics the input can 
usually not be controlled, but the input series can be pre­
whitened to simplify the identification process. Prewhitening 
of a suitably differenced input process Xi can be performed 
by obtaining an ARMA (Autoregressive Moving Average) 
model which transforms the correlated input series to an 
uncorrelated white noise series e,., as follows: 

(3) 

Usually the same transformation is applied to the output s~­
ries Yi such that the cross correlation function between the 
prewhitened input and correspondingly transformed output i1, 
directly proportional to the impulse response function of the 
system being modeled. In this article however, the Granger & 
Newbold methodology (1977: 232, 237) was applied, where 
in addition to prewhitening the input series, the output series 
was prewhitened by its own ARMA model: 

I 0 (B) 
y = _Y __ e 

I +yCB) y, t 
(4) 

Care should be applied when interpreting parameters of 
MARIMA models as they reflect both the relationships be­
tween the variables concerned, as well as the influence of all 
other variables which are modeled through the MARIMA 
process (Nicholson, 1991). The Granger-Newbold methodol­
ogy overcomes this problem as it makes the cross correlo­
gram easier to interpret by eliminating spurious regression 
and by taking care of possible feedback in the system. 

The autocorrelation and partial autocorrelation functions 
(ACFs and PACFs) are typically calculated and plotted to de­
termine whether the particular time series has been prewhit­
ened to a sufficient degree (usually to 95% confidence). The 
Box-Jenkins MARIMA models are then developed from the 
residual series with e,., as input and ey., as output. 
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Box-Jenkins methodology 

The general format of Box-Jenkins MARIMA models 1s 
given by: 

y = ro• (8) X N 
, 6.<8 > 1-b + , 

The polynomials ro* and 8* and are given by: 

2 
w• (8) = w~ - rof 8 - ro~ 8 - ... 

2 o•(8)= 1- oj 8 -o; 8 -

where 

ro• (8) 

o• (8) 

(5) 

(6) 

is known as the transfer function model. N, is the noise model 
and b is the number of sampling intervals that elapse before 
the output starts responding to a change in the input. It is as­
sumed that the pairs of observations (X,, Y,) are sampled at 
equispaced intervals of time and th~t X. is the 'input' and Y, 
the 'output' of some dynamic system. For the purposes of this 
article, the dynamic relationship between share returns (out­
puts) and market index returns (inputs) were described. 

The MARIMA model as shown in equation (5) has the ad­
vantage that it accounts for leads aqd lags between the share 
price returns and the market index returns in a systematic 
way. It does this by recognizing th&t index return values can 
be dynamically distributed over past and future time periods. 
This information is then captured in a transfer function 
model. Conventional OLS regression only accounts for share 
price return and market index return IPOVements which occur 
simultaneously. 

Now that the share and index returqs have been calculated, 
the return series have been made stationary by differencing, 
and the differenced series have been prewhitened, MARIMA 
models can be estimated. The MARIMA modeling process 
consists of an identification stage in which the model order 
and time delay is estimated, a model fitting stage in which the 
transfer function parameters are determined, and a validation 
stage where the ability of the transfer function to forecast re­
turns, is tested. These stages will be described in more detail 
in what follows. 

Model identification 

Before fitting a transfer function model to the data, it is useful 
to have an indication of the size of tl\e delay b, and the order 
of the numerator and denominator polynomials. In the model 
identification stage it is also necessary to determine if share 
returns lead the index returns. In such "case the share returns 
need to be shifted relative to the index returns before 
MARIMA modeling can commence. The size of this shift 
must therefore be determined. 

The order of a linear system can b~ estimated in many dif­
ferent ways (Ljung, 1987: 413). For example, the estimation 
data set could be used to examine the !lpectral analysis esti­
mate of the transfer function, to test the rank of the sample co­
variance matrix, and to examine the information matrix. 

In the forecasting literature it is common to use the cross 
correlogram between the input (e,.,) and output (ey.,) series to 
estimate model order, as well as the size of the delay parame­
ter b in equation (5). In addition, the cross correlogram be-
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tween the residual series e,., and ey., is also useful for 
determining whether a particular share return series actually 
leads the index return series, and what the size of the shift of 
the share return series relative to the index return series needs 
to be. 

An estimate of the order of the model can be obtained from 
the number of significant (at the 95% confidence level) cross 
correlations, as they are approximately equal to the sum of the 
orders of the numerator and denominator polynomials, ro* 
(B) and 8* (B). The standard error for cross correlations of 
lag k were calculated in this work using Bartlett's formulation 
(Makridakis et al. , 1983: 495): std. error of 

'xy(k)= Jn~k 

The MATLAB® System Identification Toolbox (Ljung, 
1995) was used as a basis for obtaining the MARIMA mod­
els. In MATLAB notation the model order and the size of the 
delay are specified as: 

nn=[nb nc nd nf nk] 

with nk being the number of sampling periods that make up 
the delay (b in equation 5), nb and nf being the model orders 
of the numerator and denominator polynomials ro(B) and 
8(B) respectively, and nc and nd being the model orders of the 
numerator and denominator noise polynomials, 8(B) and ~(B) 
respectively. This notation · corresponds to that used in 
equation (7). 

The impulse response weights, which are calculated from 
the cross correlation coefficients, are used to obtain a prelimi­
nary estimate of the noise series. The orders of the noise poly­
nomials (nc and nd) can then be estimated from the 
corresponding ACF and PACF derived from this noise series. 

The best model structure is a trade-off between flexibility 
and parsimony. A flexible model can be obtained by using 
many parameters such that many different possible systems 
can be described whereas a parsimonious model will use only 
as many parameters as is necessary. The motto is to try simple 
things first. 

Model fitting 

Model parameters were calculated from the estimation range 
of the data set ( 1 January 1988 to 31 De~·ember 1992), and 
were developed from the residual series with e,., as input and 
ey., as output: 

w (B) en (8) 
ey,1 = 6(8)ex,t-h+ cj,n(8)e' (7) 

To estimate the model parameters, a robustified quadratic 
prediction error criterion was minimized using an iterative 
Gauss-Newton algorithm (Ljung, 1995: 4-11 ). Standard er­
rors were calculated for each model parameter and only mod­
els with statistically significant parameters were used for 
further evaluation. In addition to the loss function, Akaike's 
final prediction error (FPE) criterion (Ljung, 1987: 420) was 
calculated to facilitate comparison between different models. 

Before validating a model as described in the next section, 
preliminary tests were performed using the estimation data 
set to determine whether the model should be discarded or 
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not. Firstly, the model output, as generated by the actual input 
series, was visually compared to the actual output. This gives 
a good indication of the quality of the fit. Subsequently, the 
autocorrelation of residuals, and the cross correlation of the 
residuals and the input series, were computed and tested for 
statistical significance. If the model is a good one, the residu­
als should be a white noise series, that is there should be no 
statistically significant autocorrelations except for lag 0. Also 
the input and residual series should be independent, that is 
there should be no statistically significant cross correlation 
between these two series. If significant cross correlations do 
exist, it implies that there is information in the output which 
originates from the input but which is not explained by the 
model. Finally, the residuals were plotted and inspected for 
outliers. 

Model validation 

Models will in general perform well when evaluated on the 
data set to which it was adjusted. The real test for a model is 
whether it is capable of also describing different data sets 
from the same process. Model validation was therefore done 
using the validation range of the data set (I January 1993 to 
31 December 1995 ). When determining if the model is good 
enough, the following questions arise (Ljung, 1987: 424): 

- Does the model agree sufficiently well with the observed 
data? 

- Is the model good enough for my purpose? 

- Does the model describe the true system? 

These questions are addressed by subjecting the model to as 
much information about the true system as is possible. This 
could include prior knowledge, experimental data, and ex­
perience of using the model. 

Before model validation was done, the same data manipula­
n was performed on the validation data as was applied to 
 estimation data, that is differencing, prewhitening (using 
 ARMA models found in the estimation stage), and shift­
 of shares whose returns lead the index returns. 

The first validation step was to visually compare the model 
tput to the actual output. The quality of the fit was typically 

orse than that obtained using the estimation data. Subse­
ently, the autocorrelation of residuals and cross correlation 
 the residuals as well as the input series were computed and 
ted for statistical significance as described earlier. 

In addition to these tests, Theil's U-statistic (Makridakis et 
, 1983: 50) was calculated from the following equation to 
aluate the forecasting ability of the MARIMA models rela­
e to a na"ive approach. 

U= 

A 

- 1 [ Y; + 1 _ Y 
1 

] L I 1+1 

i= I Yi 

y I _yl 2 
n-1 i+ I 

L 
i = I 

y 

(8) 

here Yi is the forecast and V: the observation (differenced 
are return) values. 
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Finally Pearson's correlation coefficient (Makridakis et 
al., 1983: 37), which is a measure of the correlation be­

tween the actual validation output (Y, ) and the validation 

output as estimated by the model ct ), was calculated as 
follows 

(9) 

The measures described above, together with more sub­
jective measures such as experience in model building, 
were used to determine how useful the models are. 

Calculating the MAR/MA beta 

The resulting MARIMA beta is essentially the steady-state 
gain of the estimated transfer function model (Leskinen & 
Tersvirta, 1976). Care must however be taken that the correct 
transfer function be used when beta is calculated. The transfer 
function to be used can be obtained by substituting equations 
(3) and (4) into equation (7) as follows: 

(10) 

or 

y: = 0y(B)ro(B)4,x(B) X 1 + 0y(B)0n(B) e (ll) 
tp) ( B) 0 ( B) 0 x ( B) t - h tp y ( 8)4> n ( B) 1 

To make comparisons with the OLS regression results 
meaningful, the MARIMA beta estimate was taken as the 
steady-state gain of the transfer function 

ro*(B) _ 0y(B)ro(B)4,x(B) 

o*(B) - .Py(B)o(B)0x(B) 

such that: 

ro0 - ro•1 -ro1 - ... 
PMARIMA = I "* "* -o, -02 -

OLS regression 

(12) 

The beta coefficient is normally estimated by means of an 
Ordinary Least Squares (OLS) regression of the share 
returns against the market index returns. (See Makridakis et 
al., 1983 or Levin & Rubin, 1991, for a discussion on OLS 
regression.) The dependent and independent variables used 
in the OLS regression estimation of beta were the same as 
used for MARIMA modeling. OLS regression was 
therefore carried out using the first differenced series x; 
(without the delay b taken into account) and v: . In 
addition, the estimation range of the data set ( 1 January 
1988 to 31 December 1992) was used. 

The regression was performed in MATLAB for each of 
the 60 randomly selected share returns, that is a polynomial 
of degree one was fitted to the data in a least squares sense. 
The following parameters were calculated: the slope (beta), 
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95% confidence intervals for beta (estimated using the ap­
propriate t-test), the residuals, and statistics describing the 
quality of the fit - the coefficient of determination R2 and 
the F-statistic for overall significance of the fit. 

A model validation exercise was carried out on the OLS 
models. The autocorrelations of the residuals were inspected, 
the raw Theil's CT-statistic, and Pearson's correlation coeffi­
cient, were calculated. Finally, a significance test was per­
formed to establish whether the correlation coefficients 
calculated for the MARIMA and OLS models, respectively, 
were significantly different (Kanji, 1993: 35). When perform­
ing the Z-test for two sample correlation coefficients (r;), the 
hypothesis is made that the two population correlation coeffi­
cients are equal, i.e.: 

~1: P1 = P2 
HA: P1 '/:. P2 

This hypothesis is tested by calculating: 

with 

I (I+';) Z. = -In --
' 2 I -r; 

and 

Z is assumed to be normally distributed. 

Results 

(13) 

(14) 

This section describes the results of OLS regression and 
MARIMA beta estimation, based on the estimation range of 
the data set ( I January 1988 to 31 December 1992). In ad­
dition, validation results for the OLS regression and 
MARIMA estimates are given, and the two propositions 
stated in the introductory section are tested. Model validation 
is done using the validation range of the data set ( 1 January 
1993 to 31 December 1995). Finally, the betas obtained in 
this work are compared to those that are available com­
mercially. 

Estimation of OLS betas 

The results from the estimation of OLS betas are given in 
Table I. This table shows, in order of appearance, the name of 
the share, its beta estimate, the lower and upper bounds of the 
95% confidence interval for beta, the coefficient of deter­
mination R2, the F-statistic, and the accompanying p value of 
the regression. 

From inspecting the F-statistic it is clear that only 31 of the 
60 shares returns yielded fits that are significant at the 0.05 
level (F>4.00). It is therefore not surprising that there are rel­
atively wide 95% confidence intervals on most of the OLS 
betas. As one would expect, the shares of well-traded compa­
nies, such as MALBAK (no. 30) and CG Smith (no. 11 ), have 
significant F-statistics, and relatively large R2 values. 
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The JSE is notorious for thin trading which results in esti­
mation problems when the OLS methodology is used (Bowie 
& Bradfield, 1993). Bad fits (small R2 and F-statistics) are 
therefore to be expected for thinly traded shares such as REN­
BEL (no. 49). 

Estimation using MARIMA models 

The results obtained from estimating MARIMA models are 
given in Table 2. This table shows, in order of appearance, 
the name of the share, the order of the ARMA model used 

to prewhiten the output Y{ (na=O and nc= I corresponds to 

a ARMA (O, l) model), the number of months that Y! was 

shifted relative to Xf , the order of the numerator and de­
nominator polynomials of the transfer function (nb and nf 
respectively), the noise model numerator and denominator 
order (nc and nd respectively), the delay in four-week 
periods (nk), and finally the MARIMA beta (as calculated 

from equation 12). The industrial index return series (X{) 
was prewhitened with a ARMA (0, 1) model. 

Some general comments can be made regarding the data 
shown in Table 2. Detailed comments on each fit are given in 
Table 3. 
- The return series of most shares can be prewhitened ad­

equately using an ARMA (0, 1) model. An exception is 
for example LOHNRO where an ARMA (2,0) model is 
required. 

- The return series of most shares do not have significant 
negative cross correlations with the index returns - they 
do not lead the index returns and therefore required no 
shifting. The ones that do, were shifted relative to the in­
dex, and the number of four-week periods that they were 
shifted are shown in the shift column. For example. HOR­
TORSs returns (no. 23) were shifted eight weeks or two 
data points. The return series of shares such as MAC­
MED, NORBAKE, NATRAWL and RENBEL required 
large shifts (7, 15, 8 and 13 data points respectively) in or­
der to obtain fits. This could be due to thin trading, as 
there is no apparent reason for the return series of these 
four shares to lead the index returns by such large time pe­
riods. 

- The return series of some shares lagged the index returns, 
that is, the only significant cross correbtions were found 
at lag k where k :?: nk. Such delays were incorporated into 
the model and are shown in the nk column. For example, 
AUKLAND's returns (no. 6) Jag the index returns by 12 
weeks or three data points. 

- Share returns with very significant cross correlations at 
k=O and nowhere else, are actively traded and generally 
modeled well with MARIMA models of order nn= 
[ I O O O OJ (MATLAB notation). The result is a single 
parameter (co 0 ) model which is the same (apart from the 
effects of prewhitening) as determined by OLS regres­
sion. For example, such a model was obtained for 
MALBAK ((3MAKIMA = 1.291 ), and comparing its beta to 
that obtained with OLS regression ((301 $ = 1.725), it can 
be seen that prewhitening can have an appreciable effect 
on the absolute value of beta. 

- The fits were in general not very good. Parsimonious 
models were therefore used in most cases. For example, 
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Table 1 OL.S regression results 

Share name 13o1.s cnfi95% cnfi95% R2 F-stat p(F) 

I AFX afrux 0.94K 0.41Xl 1.497 0.162 11.947 O.IXII 

2 AKJ 11rthur kaplan 1.W3 -O.IK5 3.)72 0.1149 J.20K 0.07K 

JAL){ alexwyt I.WK 0.202 B95 II.OKI 5.455 0.023 

4A00 arr&ovr 03KO -11.15() 0.9!0 (l.()J2 2.05K 0.156 

S ATN allron 1.547 0.919 2.176 0.2KI 24.BS O.IXXI 

6AUK auk land 0.3!0 -3.359 l979 O.IXXl 0.029 O.Kfifi 

781V hlvec 0.372 -0.243 0.9K6 0.(12J 1.463 0.2'1 

KBSR ha."'read 0.372 -1.270 2.0!4 O.ll03 0.205 0.652 

98WR hnlwcar l.41K 0.130 2.705 0.072 044 0.031 

IORZK hc:rza&..:k O.)K3 •>.479 O.K46 O.IXl5 0.306 0.5K2 

II CGS cgsm1th 1.032 0.725 l.33K 0.422 45.J<KI ().(XX) 

12CHR Chilftt.T 0.456 •l.157 1.1169 0.014 2.214 0.142 

JJl'MI 1.:m1 0.1»15 -0.71XI O.K71 ().()01 11.1147 O.K2K 

14 cur coales 0.142 -0.6K2 1.367 ll.CKl7 0.447 0.5116 

l~CRG cargo 1.490 0.3116 2.674 0.1193 6.))2 0.014 

l6CTI' dlyhokl -O.K9K -1.692 •l.lOS 0.076 5.120 ll.027 

171>1.C dch.:orp l.94K 0.917 2.979 O.IK7 14.264 ().(XX) 

IKDON dun group 0.145 -0.462 0.752 0.()04 0.227 0.635 

19EUR eun:ka 1.296 0.147 2.244 11.107 7.449 O.IX»I 

20FOS rc,s,.;tuni O.IOS -0.374 0.SKS 0.003 0.193 0.662 

21 <iNR gnm.:or 0.6KK •1.1116 l.4KI 0.046 3.IKl4 O.l»IK 

22 HOC hudoco 0.942 0.577 1.)()7 0.301 26.637 O.IXXI 

2\HTR hurtor.i •1.J<ll -3.011 2.41)8 O.IXII 0.1149 O.K25 

24 IHI ih1otJe -0.344 -O.K3K 0.150 0.030 l.93K 0.169 

25 111. inteles 1.796 1.047 2.545 0.270 22.967 O.IXKl 

20LNM lion I.JK9 0.517 I.MO ll.l!iK IBJ3 11.!XII 

271.0N lorvhu I.ISM 0.461 I.K56 O.ISI 11.023 O.IXl2 

2KLSU lonsugr -0.073 -l.8K6 1.7W O.IXXI O.IKl7 0.936 

291.TA ••• 1.5K2 0.4KO 2.6K4 0.117 K.232 O.IXl6 

'lllMLR malhak 1.725 1.321 2.12K 0.541 73.0W O.IXXl 

'I MLT mullisoun.:e 0.136 .J.4()4 2.1176 0.002 0.149 0.70! 

12MMD fflill:med -2.362 -5.1 IS II.WI 0.1145 2.9411 0.1191 

JJMTC llldcash t1.M7 •l.0311 1.364 0.056 3.660 0.1160 

14MUR m&.r hid 1.46() 0.921 2.IXIO 0.321 29.3115 IUXXI 

35 NEH neiht~d 0.3KO -0.291 I.Ir.lo 0.020 l.2K2 0.262 

36NPK nampat 1.112 0.6KO I.S45 0.299 26.454 O.IXXl 

37NRK IMlfflOU •l.170 -1.2119 0.1169 0.002 0.1117 0.745 

3KNTR natrawl 2.K61) O.ISO 5.510 0.llt\7 4.452 o.ow 
WOCF octish ().()(i() •l.6KK O.KOK O.IXXl 0.026 O.K73 

400MA ume1a 1.636 0.450 2.K22 0.1119 7.fiOI) O.IX»I 

41 PEG """'"' 0.921 0.223 1.620 0.101 6.956 II.Oil 

42PEP """""' 0.132 -0.3KS 0.648 0.IXl4 0.260 0.612 

43POR .... -0.153 -0.7411 0.433 O.Oll4 0.274 0.60J 

44PPC Pl"' 0.626 0.3SK 0.K9S 0.2S9 21.723 O.IXXI 

45PTC (IUICO 0.241 -3.1161 3.S42 O.OIXI 0.021 0.KK!li 

46PWK pikw1k 1.972 l.3K9 2.5SS 0.424 45.fifil O.IXX> 

47QDT q dala •l.119K -I.KOi 1.6114 0,0()0 0.013 0.9119 

4KREG reg&:1es 2.619 0.732 4.S07 0.1 IO 7.696 IUKl7 

49RNT n:nhel -(l.074 •l.7KK 0.641 O.!Xll 0.1142 0.K3K 

5tlSAP '"""' 1.1146 0.743 l.34M 0.4JS 41.195 ().(XX) 

51 SPU .... , 1.742 1.1141 2.443 0.28S 24.692 ().(XX) 

52TEG tegkor 1.527 1.154 I.K99 0.521) 67.232 ll.lXIO 

5311'C lrllflaco •>.232 ·l.7S9 1.296 O.Olll 0.1192 0.763 

54TRH lndhkl 0.795 •l.039 1.628 0.0S5 3.635 0.1161 

55TUN ••• ht>ldinp O.M99 0.0!9 1.779 0,{)(i3 4.174 0.1145 

56UTR uni Iran 0.179 •l.5tltl O.K6S 0,0()4 0.274 0.61l'.1 
51 VLlC vnltex. 1.496 0.459 2.S33 0.IIK 8.31K O.!Kr.1 

SK VNT ventn,n O.K!il 0.3117 l.41S 0.13S 9.649 0.(XlJ 

59WAL wahom 1.722 I.ISi 2.294 0.369 36.332 O.IXXl 

61lWLH walhold 1.614 1.026 2.2113 0.327 311.1»12 O.IXIO 
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Table 2 MARIMA modeling results 

Share name .. nc shift nh nc nd nf nk llMAIUMA 

I AFX llfroK II II 0 0 II II 0.837 

2AKJ mhurkoplan II II 0 II II 0.344 

J ALX alexwyt II II II 0 II II 0.1>711 

4A!XJ afr&ovr 0 0 0 0 0 o.4n 

SATN altmn 0 0 0 0 0 0 1.21K 

l>AUK auk land {) 0 0 0 -1.034 

7 RIV hivec 0 0 0 II 0 II.SIS 

KRSR h .. read 0 0 II II 0 0 0.1144 

9RWR tN,lwear {) 0 II 0 0 0 O.K29 

IORZK heruck II 0 II 0 0 0 0.227 

II CGS cpmilh II 0 0 0 0 0 0.951 

12CHR chaner II II 0 0 4 0.710 

IJCMI cmi II 0 0 0 0.215 

14COT ., ..... 0 0 0 {) II 0.370 

ISCRG carao 0 0 0 0 II II O.C\119 

ll>CTY dtyhold II 0 II 0 0.128 

17 IJLC delcorp 0 {) 0 0 0 II 1.294 

IKfXlN don cn,up II II 0 0 0 ~1.257 

19 EUR eureka II II {) 0 0 O.Y71> 

20FOS fo1chini II II II 0 0 0.335 

21 GNR Jrint:or 0 0 {) 0 0 O.Kl2 

22 HOC natrawl 0 0 0 0 {) II.MS 

21 HTR hortors {) {) {) 0 II 0.481 

2418) ihjoffe 0 II {) 0 II ~l.lW 

2SITI.. inteles II II II 0 II II 1.1117 

21> L.NM )k,n 0 0 0 0 0 II 11.R.~h 

27LON lonrho 0 0 0 0 0 ~J.574 

2KL~U ....... ,, 0 0 no fit 

29LTA Ila 0 0 II 0 II II I.IRJ 

10MLB malbok II II 0 0 II 0 1.291 

JI MLT multi source 0 II 0 0 0.hJS 

12MMD - {) II 0 II 0 -1.2KS 

11MTC me1cuh 0 0 0 {) 0 O.M2 

J4MUR m&rhld II 0 1.(1611 

JSNEH neihokl {) 0 0 0 0 0515 

JhNPK nampak 0 0 0 0 0 1.()14 

17 NRK norboke II IS 0 0 ~·--
1KNTR nalrawl 0 0 0 II II ~1.993 

WOCF ocfish {) {) II O.h07 

400MA omega {) 0 0 II {) 0.991 

41 PEG pepgn, II II 0 {) 0 0.753 

42 PEP pepkor II II 0 II {) II.Shi 

41 POR pon II II II II II 11.1>17 

44PPC ppc II II II II II O.h94 

45 PTC putco II II II 4 II I.S94 

4hPWK pikwik II 0 II II 1.090 

47 OOT qdala 0 II II 0.140 

4llREG reggies II II II 0 0 II 11.901 

49RNT renhel II 11 II II II O.C\118 

SIISAP sappi 0 II II II II II 11.945 

SI SPU ,pur II II 0.7112 

52TEG te&knr II 0 II II II 0 J.21,() 

SJTPC tmpacu II 0 0 0 II 0 0.472 

54TRH lnidhld II II II II -0.84ll 

SS TUN t&n holdings II 0 0 II II 0.94h 

Sl>UTR uni1ran 0 0 0 II II 0.711 

51 Vl.X voltex II II II II II II 0.902 

SK VNT vcntmn II II 0 II 0 II 0.911 

59WAL waltons 0 II II 0 l.l'.11) 

t,(IWLH walhold 0 II 0 1.11111 
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there exists no significant cross correlations between the 
returns of ARTHUR KAPLAN and the index returns. In 
such a case there is no point in fitting a high order model 
to the data. In fact, an argument can be made for not fit­
ting any model to such data. 

- No MARIMA model was estimated for LOHNRO 
SUGAR as no significant model parameters could be ob­
tained. This is not surprising as its share price changed 
very infrequently during the estimation period (I January 
1988 to 31 December 1992). 

Validation results 

The validation results for the OLS regression and MARIMA 
models are given in Table 3. Table 3 shows, in order of 
appearance. the name of the share, the MARIMA beta 
estimates, the mean squared error (mse), Theil's U-statistic 
(equation 8), and the correlation estimates (r in equation 9) 
for the MARIMA models. This is followed by the OLS beta 
estimates, the mse, Theil's U-statistic, and the correlation 
estimates for the OLS regression models. The Z values shown 
are calculated according to equation (14) and are used to test 
the hypothesis that the correlation estimates for OLS re­
gression and MARIMA modeling are the same. The column 
with heading H shows a 'O' if the null hypothesis cannot be 
rejected and 'I' if it can. Finally comments are given re­
garding each fit. 

These results can be used to test proposition 2, that transfer 
function models will provide forecasting results which are 
better than those provided by betas estimated in the conven­
tional (OLS regression) way. 

One can start testing this proposition by looking at the 
means of the mean squared error (mse), Theil's U-statistic, 
and the correlation coefficient r as shown in Table 3 at the 
bottom of the respective columns. From these means it would 
appear that the MARIMA models forecast returns slightly 
better than OLS regression models. For example the 
MARIMA mse mean is 0.0371 as opposed to the OLS regres­
sion mse mean of 0.0378. Similarly, on average the 
MARIMA models fare slightly better on the Theil's U-statis­
tic. However, both the MARIMA (U> I and Theil's U= 
1.0369) and the OLS regression (U> I and Theil's U= 1.0840) 
models on average fare worse than the nai·ve model. The 
mean absolute value of the correlation coefficient r is lower 
and therefore worse in the MARIMA modeling case than it is 
for OLS regression (0.2815 compared to 0.2936). 

Th~ question arises whether the differences in the means 
given flbove are statistically significant. To answer this ques­
tion a hypothesis test for the difference in means of the two 
samples can be performed (Jones, 1996: 2-209). Hypothesis 
tests were performed for the two mse, Theil's U, and r sam­
ples. It was found that none of these means are statistically 
significantly different at the 0.05 significance level. 

The hypothesis tests on the correlation coefficients show 
that the null hypothesis ( equation 13) is found not to be true 
in seven out of the 60 cases. In all of these cases the correla­
tion coefficients have different signs. 

There are some important validation results which are not 
captured in Table 3. The first validation step is to visually 
compare the model output to the actual output. Subsequently, 
the autocorrelation of residuals and cross correlation of the 
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residuals and the input series are computed and tested for sta­
tistical significance. In general the residuals generated by the 
OLS regression models are not white, that is, there are signif­
icant residual autocorrelations. The MARIMA models were 
chosen such that the residuals generated from the estimation 
and validation data had no significant autocorrelations or 
cross correlations with the input series. In this sense the 
MARIMA models are statistically better than the OLS regres­
sion models. 

Beta comparisons 

The data shown in Table 4 can be used to indicate whether 
transfer function modeling will result in estimates of sys­
tematic risk which are different from those obtained using 
conventional OLS regression methods. This table shows, in 
order of appearance, the name of the share, the OLS regres­
sion beta estimate, the lower and upper bounds of the 95% 
confidence interval for the OLS regression beta, the 
MARIMA beta estimate, the UCT Financial Risk Service 
beta estimate for selected shares only, and the BFA-NET beta 
estimate, all for the period I January 1988 to 31 December 
1992. The last three columns show whether the MARIMA, 
UCT, and BFA betas respectively fall outside of the 95% 
confidence intervals of the OLS regression betas. A 'n' is in­
dicated if they do not and a 'y' if they do. The percentages of 
y's and n's are given at the bottom of the respective columns. 

The standard errors of estimate of the betas estimated from 
MARIMA modelling cannot, in general, be measured be­
cause of the complex way in which they are calculated, 
namely the ratio of polynomials. Thus, statistically testing the 
first proposition, which states that transfer function modeling 
will result in estimates of systematic risk which are different 
from those obtained using conventional OLS regression 
methods, cannot be achieved using conventional inferential 
tests. Albeit weak, some evidence of the differences between 
the betas can be gleaned by examining whether or not the 
MARIMA beta estimates fall within the 95% confidence lim­
its of the OLS regression beta estimates, the standard errors of 
estimate being readily assessed in this case. It can be seen 
from Table 4 that for ten out of 59 shares the MARIMA beta 
fall outside of the 95% confidence interval of the OLS beta. 

Finally, the betas obtained in this work are compared to 
those that are available commercially. Significant adjustments 
are made for thin trading in the UCT beta estimation process 
which would account for some of the vast differences be­
tween the UCT betas and some of the OLS beta estimates ih 
Table 4. Some of these adjustments are summarised in a re­
view paper on systematic risk estimation on the JSE by 
Bowie & Bradfield (1993). It can be seen from Table 4 that 
for four out of the 23 shares (17.4%) for which UCT betas are 
available, the UCT beta fall outside of the 95% confidence in­
terval of the OLS beta. This is similar to the proportion of 
MARIMA betas ( 16.9%) which fall outside this interval. 

The BFA-NET beta estimates were calculated using OLS 
regression on undifferenced index (X) and share ( Y) returns. 
Returns were not adjusted for dividends and the industrial in· 
dex was used as market proxy. These betas differ from the 
OLS regression betas obtained in this study mainly due to the 
non-linear way in which these input and output variables en­
ter the equation from which beta is calculated (Makridakis 
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Table 3 Validation results for OLS re~ression and MARIMA models c 
"' ~ 

Share name 
PAL4RIAU 

mse Theilu r Zval Ans mse Theilu r Zval H comments § 
I; ................................................................................................................................................... ················· ··················································································-············· ······················ ················· ····················································· ································· ·····················•················· ~ 

1 AFX afrox 0.837 0.0062 2 0113 0.4411 0.4736 0.948 0.0064 2.0779 0.4422 0.4750 O good fits 
~ 2 AKJ arthur kaplan 0.344 0.0980 1.0266 0.2269 0.2310 1 593 0.0943 1.1902 0.2594 0.2655 O no significant cross correlations 00 

3ALX alexwyt 0.670 0.0274 1 1855 -0.3684 -0.3866 1.398 0.0369 1.4508 -0.3682 -0.3864 O cross correlations barely significant; inferior fits N 
~ 

4AOO afr&ovr 0.452 0.0165 1.3319 0.1028 01031 0.380 0.0156 1.1186 -0.0763 -0.0764 O inadequate fits; no model without shift -5ATN altron 1.218 0.0202 1.4958 02997 03092 1.547 0.0210 1.6724 0.3213 0.3331 O adequate fits; Theilu misleading 
SAUK aukland -1 034 0.3075 0.9713 -0.1165 -0 1171 0 310 0.2846 0.9790 0.1965 0.1991 O inferior fits 
7 BIV bivec 0.515 0.0225 0.8831 .'.0.0448 -0.0449 0.372 0.0228 1.0347 -0.2060 -0.2090 O MARIMA estimation adequate 
8 BSR basread 0.844 0.0749 1.4369 0.0534 0.0535 0372 00739 1.1761 0.0423 0.0424 O no significant cross correlations 
9BWR bolwear 0.829 00355 1.4201 0.3695 0.3678 1 418 0.0348 1.7490 0.3695 0.3878 O good fits 

10 BZK berzack 0.227 0.0184 0.7824 0.2070 02100 0.183 00185 0.7980 0.1942 0.1967 O no significant cross correlations; insignificant 
model parameter nb=1 

11 CGS cgsmith 0957 0.0092 0.8279 0.5014 05512 1032 0.0093 0.8157 0.5013 0.5510 O adequate fits 
12 CHR charter 0.710 O.Q119 0.4025 -0 0755 -0.0756 0.456 0.0089 0.8357 0.0581 0.0582 O cross correlation at -2 ; no flt with shift; awkward 

cross correlation at O; inadequate flt; nk=4 not 
justifiable from cross correlation 

13 CMI cml 0.215 0.1753 ... 0.085 0.1695 no significant cross correlations: bad validation 
fits:good MARIMA estimation fit 

14 COT coat es 0.370 00059 0.9472 0.1065 0.1069 0.342 0.0055 0.9195 0.2211 0.2248 O nb=1 not significant; inadequate fits 
15 CRG cargo 0.689 0.0562 09760 -0 0375 -00375 1.490 0.0626 0.9846 -0.0363 -0.0364 O inadequate fits 
16 CTY cltyhold 0.128 0.1162 0.7910 -0.1214 -0.1220 -0.898 0.1360 1.1190 -0.1507 -0.1518 O inferior fits; Theilu misleading; prewhitening of 

output not 100% 
17 DLC delcorp 1.294 0.0210 05657 0.4014 0.4254 1.&48 0.0231 0.3521 0.4044 0.4289 O adequate fits 
18 DON don group -0.257 0.0280 0.6856 0.0256 0.0256 0.145 0.0280 1.0574 -0.0625 -0.0626 O inferior fit 
19 EUR eureka 0.976 0.0627 1.1116 0.5264 05852 1 296 0.0608 1.1302 0.5148 0.5693 O better without shifting 
20 FOS foschini 0.335 0.0172 0.8630 -0.1532 -0.1544 0.105 0.0154 1.0432 0.4886 0.5342 1 cross correlation at +14 
21 GNR grincor 0.812 0.0145 2.9555 0.1514 0.1525 0.688 0.0135 2.1103 0.1077 0.1082 O adequate fits 
22 HOC hudaco 0.845 0.0179 1.1321 0.1408 0.1417 0.942 0.0183 1.1446 0.1416 0.1426 O adequate fits 
23 HTR hortors 0.481 0.0307 0.9864 -00316 -0.0316 -0301 0.0317 0.9845 0.0116 0.0116 O inferior fit: nb=1 not sign; 
241BJ ib joffe -0.159 0.0076 ... -0.2685 -0.2753 -0.344 0.0068 ... 0.2190 0.2226 1 inferior fits: /0 in calculating Theilu due to thin 

trading 
251TL intele& 1.107 0.0096 0.9663 0.1807 0.1827 1 796 0.0147 1.3829 0.1929 0.1953 O inadequate fits 
26 LNM lion 0.856 0.0353 1.1473 0.2383 0.2430 1.189 0.0360 1.2095 0.2313 0.2355 O good fits 
27 LON lonrho -0.574 0.0301 0.5052 -0.0666 -0.0667 1.158 0.0320 0.7928 -0.1846 -0.1867 O similar to OLS if no shift 
28 LSU lonsugr no fit -0.073 no fit - insignificant model parameters for no shift 

and shift=7 
29 LTA Ila 1 183 0.0176 0.6773 0.5775 0.6587 1.582 0.0170 0.5984 0.5771 0.6581 O good fits 
30 MLB malbak 1.291 00151 0.5089 0.4587 0.4956 1.725 O.Q160 0.6540 0.4686 0.5083 O adequate fits 
31 MLT multlsource 0.635 0.0133 0.9111 0.1180 0.1186 0.336 0.0123 1.0486 0.2383 0.2430 O nb=1 not significant, no model without shift: no 

significant cross correlations 
32MMD macmed -1.285 0.0651 0.5168 0.3015 0.3111 -2.362 0.0995 1.4197 -0.3269 -0.3393 1 lag 7 marginaUy significant; adequate MARIMA 

flt compared to OLS 

'° 



33MTC metcuh 0.642 0.0093 0.9616 0.4146 0.4411 0.667 0.0098 0.9347 0.3589 0.3756 O adequate flta 
34MUR m&rhld 1068 0.0085 0.8049 0.3576 0.3742 1.460 00102 0.7641 0.3577 0.3743 O adequate fits 
35 NEH neihold 0.515 0.0180 1.1047 01788 0.1807 0.380 0.0198 0.8789 -0.1253 -0.1260 O adequate fits 
38NPK nampak 1.034 0.0054 0.6925 0.6377 0.7542 1.112 0.0050 0.7091 0.6645 0.8008 O good fits: nf=1 required for white rniduala in 

validation 
37 NRK norbllke -0.696 0.0060 0.7036 0.3623 0.3795 -0.170 0.0093 0.9727 -00336 -0.0336 O adequate fits; cross correlation at 15 barely 

significant 
38 NTR natrawl -0.993 0.0776 0.9708 0.4607 0.4983 2.860 0.0991 2.0835 -0.0056 -0.0056 1 nb=1 not significant, no model without shift; 

Inferior fits; cross correlation at 8 barely 
significant 

39 OCF ocfiah 0.607 0.0102 0.9487 -0 1402 -0.1411 0060 0.0080 0.9578 0.3025 0.3123 O Output does not prewhiten perfectly. MARIMA 
better than statistics suggest 

400MA omega 0.864 0.1487 0.9112 0.4534 0.4889 1 636 0.1558 1.3561 0.0920 0.0922 O MARIMA moves in nght direction in simulation 
41 PEG pepgro 0.753 0.0126 1.1088 0.4959 0.5438 0.921 0.0120 1.0600 0.5155 0.5702 O inadequate fits- shtft=2 results in worse model 
42 PEP pepkor 0.561 0.0136 1.3126 0.4425 0.4754 0.132 0.0152 0.8805 0.6400 0.7562 O adequate fits; Theilu misleading; MARIMA cross 

correlation between residuals and input not 
independent at O 

43 POR po,t 0.617 0.0319 0.9201 -0.2163 -0.2198 -0.153 0.0291 1.0104 -0.3320 -0.3451 O inferior fits 
44PPC ppc 0.694 0.0241 0.7482 0.5917 0.6803 0.626 0.0238 0.7788 0.6592 0.7914 O good fits: valid residuals not quite white 
45 PTC putco 1.594 0.0633 3.4252 -0.0906 -0.0908 0.241 0.0261 1.1220 -0.0842 -00644 O MARIMA better than statistics suggests; 

significant cross correlation at 13 
46PWK pikwik 1.090 0.0142 0.4691 0.3445 0.3591 1.972 0.0154 1 1805 0.4520 0.4871 O OLS looks better than statistics suggest 
47QDT qdm 0.340 0.0207 1.0780 0.2105 0.2137 -0.098 0.0222 1.0145 -0.3791 -0.3990 1 Inadequate fit: no significant cross correlations 
48 REG raggies 0.903 0.0722 0.9356 0.5408 0.6053 2.619 0.0609 0.8186 0.5407 0.6051 O OLS much better in validation; (1 0 0 5 OJ all 

significant but inferior in validation 
49 RNT renbel 0.688 0.0572 0.9680 0.0827 0.0829 -0.074 0.0533 1 0010 -0.2703 -0.2772 O Inadequate fits; significant cross correlation at 13 
50 SAP aappl 0.945 0.0141 0.9021 0.4977 0.5463 1.046 0.0140 0.8870 0.5008 0.5504 O adequate fits 
51 SPU spur 0.702 0.0100 1.3233 0.5726 0.6513 1 742 0.0091 1.5606 0.6376 0.7540 O OLS much better than MARIMA in validation 
52 TEG tegkor 1.260 0.0053 0.9232 0.5781 0.6596 1.527 0.0062 1.0745 0.5615 0.6647 O adequate fits 
53TPC lmpaco 0.472 0.0423 ... , -0 232 0.0450 no significant cross correlations and no fit 
54 TRH tradhld -0.848 0.0243 1.0723 0.2833 0.2913 0.795 0.0291 1.0976 -0.2025 -0.2053 1 prewhitening of output not perfect; inadequate 

fits 
55TUN t&n holdings 0.946 0.0186 09694 0.3064 0.3166 0.899 0.0183 0.9906 0.2986 0.3080 0 (1 0 0 2 OJ also gives adequate flt 
56 UTR unltran 0.711 0.0128 0.9832 -0.2260 -0.2300 0.179 0.0089 0.8922 0.2639 0.2702 1 very good prewhltening of output; MARIMA 

closer to share volatility; inferior fits 
57 VU< voltex 0.902 0.0242 0.9120 0.2388 0.2435 1.496 0.0263 0.9287 0.2387 0.2434 O good fits 
58 VNT ventron 0.913 0.0094 1.1360 0.2027 0.2056 0.861 0.0091 1.1150 0.2153 0.2187 O OLS than MARIMA in validation 
59WAL walona 1.150 0.0291 0.7732 0.2246 0.2284 1.722 0.0318 0.7012 0.2280 0.2321 O adequate fits; OLS closer to share volatility :,, 

80WLH WlllOld 1.081 0.0284 0.9889 0.1799 0.1819 1.614 0.0327 1.0633 0.1409 0.1418 O noise model parameters not quite significant. > 
~ 

Required for white MARIMA model residuals in ..... 
validation a, 

c 
Munvaluea 0.0373 1.0319 0.2811 0.0371 1.0840 G.2931 "' ~ 

g .., 
~ 
:g 
"" N 
:£ 
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Table 4 Beta comparisons 

Share name 

I AFX 
2 AKJ 
3 ALX 
4 AOO 
5 ATN 
6 AUK 
7 BIV 
8 BSR 
9 BWR 

10 BZK 
II CGS 
12 CHR 
13 CMI 
14COT 
15 CRG 
16 CTY 
17 DLC 
18 DON 
19 EUR 
20 FOS 
21 GNR 
22 HOC 
23 IITR 
24 IBJ 
25 ITL 
26 LNM 
27 LON 
28 LSU 
29 LTA 
30 MLB 
31 MLT 
32 MMD 
33 MTC 
34 MUR 
35 NEH 
36 NPK 
37 NRK 
38 NTR 
39 OCF 
40 OMA 
41 PEG 
42 PEP 
43 POR 
44 PPC 
4S PTC 
46 PWK 
47 QDT 
48 REG 
49 RNT 
~O SAP 
SI SPU 
S2 TEG 
~3 TPC 
S4 TRH 
SS nJN 
S6 UTR 
S7 VLX 
SS VNT 
S9 WAL 
60 WLH 

a&ox 
anhur lcapllll 
alexwyt 
afr&ovr 
altron 
a.ukJand 
bivec: 
basread 
bolwear 
berzack 
cgsmith 
ctwur 
cmi 
Coalel 

cargo 
cityhold 
delcorp 
don group 
eureka 
foschini 
grinc:or 
hudaco 
horton 
ib jolfe 
inteles 
lion 
lonrho 
lonsugr 
It.a 
malbak 
multisourcc 
maaned 
metcash 
m&rhld 
neihold 
nmnpak 
norbake 
rwrawl 
ocfish 
omega 
pepgro 
pepkor 
port 
ppc 
putco 
pikwik 
q data 
reggies 
renbel 
sappi 
spur 
tegkor 

lflll*lO 
tradhld 
t&n holdings 
unitnn 
volt.ex 
ventron 
waltonl 
walhold 

Pou 
0.948 
I.S93 
1.398 
0.380 
I.S47 
0.310 
0.372 
0.372 
1.418 
0.183 
1.032 
0.4S6 
0.08S 
0.342 
1.490 

-0.898 
1.948 
0.145 
1.296 
0. lOS 
0.688 
0.942 
-0.301 
-0.344 
1.796 
1.189 
1.IS8 

-0.073 
1..582 
1.72S 
0.336 
-2.362 
0.667 
1.460 
0.380 
1.112 

-0.170 
2.860 
0.060 
1.636 
0.921 
0.132 
-0.1S3 
0.626 
0.241 
1.972 

-0.098 
2.619 
-0.074 
1.046 
1.742 
1..527 

-0.232 
0.79S 
0.899 
0.179 
1.496 
0.861 
1.722 
1.614 

cnti95% cnfi95o/co a a a MAR UCT BFA 
JJMARJMA MlCT JJBFA 

0.400 
-0.18S 
0.202 
-0.ISO 
0.919 
-3.3S9 
-0.243 
-1.270 
0.130 
-0.479 
o.12s 
-O.IS7 
-0.700 
-0.682 
0.306 
-1.692 
0.917 
-0.462 
0.347 
-0.374 
..0.106 
O.S77 
-J.011 
-0.838 
1.047 
O.Sl7 
0.461 
-1.886 
0.480 
1.321 

-1.404 
-s.t IS 
-0.030 
0.921 
-0.291 
0.680 
-1.209 
O.ISO 
-0.688 
0.4SO 
0.223 
-0.38S 
-0.740 
0.3S8 
-3.061 
1.389 

-1.801 
0.732 
-0.788 
0.743 
1.041 
l.lS4 

·l.1S9 
-0.039 
0.019 
-0.506 
0.4S9 
0.307 
I.ISi 
1.026 

1.497 
3.372 
2.S95 
0.910 
2.176 
3.979 
0.986 
2.014 
2.70S 
0.846 
1.338 
1.069 
0.871 
1.367 
2.674 
-0.lOS 
2.979 
0.7S2 
2.244 
O.S8S 
1.481 
1.307 
2.408 
O.lSO 
2.S4S 
1.860 
1.8S6 
1.739 
2.684 
2.128 
2.076 
0.391 
1.364 
2.000 
LOSO 
1..545 
0.869 
S.S10 
0.808 
2.822 
1.620 
0.648 
0.433 
0.89S 
3.S42 
2.SSS 
1.604 
4.S07 
0.641 
1.348 
2.443 
1.899 
1.296 
1.628 
1.779 
0.86S 
2.S33 
1.41S 
2.294 
2.203 

0.837 
0.344 
0.670 
0.4S2 
1.218 

-1.034 
O.SlS 
0.844 
0.829 
0.227 
0.9S1 
0.710 
0.21S 
0.370 
0.689 
0.128 
1.294 

-0.2S7 
0.976 
0.33S 
0.812 
0.84S 
0.481 
-0.1S9 
1.107 
0.8S6 
-O.S74 
no fit 
1.183 
1.291 
0.63S 
-1.28S 
0.642 
1.068 
0.51S 
1.034 

-0.696 
-0.993 
0.607 
0.991 
0.7S3 
0.561 
0.617 
0.694 
1..594 
1.090 
0.340 
0.903 
0.688 
0.94S 
0.702 
1.260 
0.472 
-0.848 
0.946 
0.711 
0.902 
0.913 
USO 
1.081 

0.910 

0.830 
1.610 

0.960 

0.8SO 
0.910 
0.750 

0.890 

1.260 
0.970 

0.820 

0.680 

0.950 

0.350 

1.010 
O.lSO 
0.8SO 

O.S50 
1.260 

1.190 

1.450 

0.883 
0.276 
0.501 
0.193 
0.804 
l.02S 
0.488 
0.544 
0.811 
o.12s 
1.013 
0.664 
0.476 
0.342 
O.S44 
-0.37S 
0.669 
0.506 
0.417 
0.6S8 
0.826 
0.981 

0.118 
0.987 
0.541 
0.997 
0.211 
0.610 
1.174 
0.089 
-O.S42 
0.373 
0.967 
0.272 
0.950 
0.2S6 
-0.090 
0.335 
0.897 
0.605 
0.S69 
0.366 
0.768 
1.213 
0.996 
0.S47 
0.48S 

1.068 
0.9S3 
1.488 
0.019 
0.331 
1.068 
0.505 
0.740· 
0.590 
1.090 
1.017 

n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
y 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
y 

n 
y 
n 
n 
n 
n 
n 
n 
n 
y 
n 
n 
n 
n 
y 
n 
n 
y 
n 
n 
y 
n 
y 
n 
n 
y 
n 
n 
n 
n 
y 
n 
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n 
n 
n 
y 
n 
n 
n 
n 
n 
n 
n 
y 
n 
y 

n 
y 
n 
n 
n 
n 
n 
n 
n 
y 
y 

n- 49 19 47 
y- 10 4 11 
n~ 83.1 82.6 81.0 
~ 16.9 I 7.4 19.0 

II 

et al., 1983: 231 ). Altogether nineteen per cent of the BFA­
NET betas fall outside of theninety five per cent confidence 
interval of the OLS beta. 

quently, conventional inferential tests were again not pos­
sible. 

The standard errors of estimate for the University of 
Cape Town Financial Risk Service and the BFA-NET beta 
estimates were not available for this study, and conse-

Summary and conclusions 
This study investigated whether the estimation of the sys­
tematic risk component of shares on the JSE can be 
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improved using transfer function modeling or Multivariate 
Autoregressive Integrated Moving Average (MARIMA) 
models. In particular, two propositions were tested. 

I. Transfer function modeling will result in estimates of 
systematic risk which are different from those obtained 
using conventional OLS regression methods. 

2. Transfer function models will provide forecasting re­
sults which are better than those provided by betas esti­
mated in the conventional way. 

The first proposition could not be tested using conven­
tional inferential tests as the standard errors of estimate of 
the betas estimated from MARIMA modelling cannot, in 
general, be measured because of the complex way in which 
they are calculated, namely the ratio of polynomials. It was 
found however that 16.9% of the MARIMA beta estimates 
fell outside the 95% confidence intervals of the respective 
OLS regression beta estimates. Similar results were ob­
tained when the OLS regression betas were compared to 
the UCT Financial Risk Service and BFA-NET betas. 

It was found that proposition 2 can in general not be sup­
ported as it only holds in certain individual cases. This 
proposition was tested by studying the means of the mean 
squared error (mse), Theil's CT-statistic, and the correlation 
coefficients of all MARIMA and OLS regression forecasts. 
It was found that these means were not statistically signifi­
cantly different at the 0.05 significance level. A factor in fa­
vour of the MARIMA modeling process is that the models 
it produced generated uncorrelated residuals (white noise) 
when forecasting, as opposed to the OLS regression models 
which generated correlated residuals. In this sense the 
MARIMA models are statistically better than the OLS re­
gression models. 

The results of this study show that the cross correlations 
between the differenced and prewhitened index and share 
returns are in general not statistically significant or only 
barely so. Table I also shows that there are 29 shares for 
which the OLS regression models are not statistically sig­
nificant - p(F)>0.05. In such cases it is difficult to justify 
fitting MARIMA, or any other models to the data. If a 
model has to be obtained however, one is probably better 
off using OLS regression as it is easier to use and under­
stand, and as the results are similar to those obtained by 
MARIMA modeling. 

For shares with insignificant index correlations and OLS 
models, one can argue from a statistical point of view that 
beta equal to zero should be used in the share return fore­
casts. Such share return forecasts would then not depend on 
the index returns. One should rather look at the intended 
use of beta and the consequences of setting it equal to zero. 
If beta is to be used in the CAPM framework, setting beta 
equal to zero would not make much sense as this would im­
ply that the expected share return is equal to the risk free 
rate. If one has no confidence in the estimated beta, it 
would perhaps be better to set beta equal to one rather than 
zero, as the beta of all shares tend"to one over time (Bodie 
et al., 1996: 282). The CAPM estimates would then also 
make more sense as the expected share return would then 
be equated to the expected market return and not the risk 
free rate. 
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This does not mean however that the MARIMA modeling 

technology does not have a role to play in beta estimation. 

The OLS regression process can benefit significantly from 

the use of some of the MARIMA model identification tools 
such as the cross correlogram. It can point out the size of 

leads or lags, as well as where the most significant cross cor­

relations are. The share and index return series can then be 
shifted relative to each other, using the information provided 

by the cross correlogram. Normal OLS regression can then be 
performed on the shifted data series. One can even go as far 

as prewhitening the input and output series before performing 

OLS regression, but this would make the procedure more 

complex. There are also cases where a more complex meth­

odology such as MARIMA modeling is required, for example 

when there are many significant cross correlations between 

the share and index returns. 

Note 

1. In lieu of research done in the Faculty of Management, Univer­
sity of the Witwatersrand, Johannesburg, in partial fulfillment of 
the requirements for the degree of Master of Business Adminis­
tration. 
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