
Lux, Thomas

Working Paper

Can heterogeneous agent models explain the alleged
mispricing of the S&P 500?

Economics Working Paper, No. 2020-03

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Lux, Thomas (2020) : Can heterogeneous agent models explain the alleged
mispricing of the S&P 500?, Economics Working Paper, No. 2020-03, Kiel University, Department of
Economics, Kiel

This Version is available at:
https://hdl.handle.net/10419/217226

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/217226
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Can Heterogeneous Agent Models 

Explain the Alleged Mispricing of 

the S&P 500?

by Thomas Lux

No 2020-03

issn 2193-2476



Can Heterogeneous Agent Models Explain the

Alleged Mispricing of the S&P 500? ∗

Thomas Lux †

April 21, 2020

Abstract

Tests of excessive volatility along the lines of Shiller (1981) and Leroy and

Porter (1981) count among the most convincing pieces of evidence against

the validity of the time-honored efficient market hypothesis. Recently, using

Shiller’s distinction between ex-ante rational (fundamental) price and ex-post

rational price, Schmitt and Westerhoff (2017) have demonstrated that the dif-

ference between S&P 500 market prices and their ex-post counterparts exhibits

a bi-modal distribution speaking for the prevalence of long periods of either un-

dervaluation or overvaluation. Schmitt and Westerhoff (2017) also show that

this new stylized fact is shared by a large set of nonlinear behavioral models of

speculative interactions between heterogeneous market participants. Most of

these models allow some form of chartist or fundamentalist strategy, and the
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more recent members of this family of models also allow for agents switching

between both alternatives according to some fitness criterion. Here I go one

step further exploring which (if any) of this legacy of behavioral models fits

best the data. I discuss econometric issues in the estimation of these highly

complex nonlinear models, and estimate the parameters of different versions

of seven canonical models. As it turns out, most of these models perform not

better than a linear chartist-fundamentalist model, and often their fit is worse

than the fit of this benchmark. Among the models considered here, the one

proposed by Franke and Westerhoff (2012) is the only exception. Estimation

of the model confidence set indicates that this model is not outperformed by

other candidates, and depending on the setting and the confidence level, it is

often found to be the single member of the model confidence set.

Keywords: Stock market dynamics, bubbles and crashes, nonlinear dynamics,

chartists and fundamentalists, model confidence set

JEL classification: G12, G14, G17
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1 Introduction

Tests for excessive volatility of asset prices compared to the change of their funda-

mental values count among the most convincing circumstancial evidence against the

efficient market hypothesis. Pioneered by Shiller (1981) and Leroy and Porter (1981),

these tests are based on a comparison of market prices with ex-post rational prices

computed on the base of realized dividends. If prices would reflect rational forecasts

of future earnings (i.e., if they were ex-ante rational), they should be characterized

by a lower volatility than their ex-post counterparts. The mere juxtaposition of both

series for the S&P 500 in Shiller (1981) shows that if anything the opposite is the

case: Rather than being less volatile, the realized price movements exhibit fluctua-

tions that are much larger than those of ex-post rational prices. Indeed, recorded

S&P 500 prices appear to fluctuate in wide swings around the ex-post rational values

giving the impression of prolonged periods of overvaluation and undervaluation (cf.

Fig. 1). Subsequent literature has somewhat toned down the extend of violation of

Shiller’s null hypothesis (e.g. Flavin (1983)), by pointing out small sample biases

and other statistical problems. However, the prevalence of excess volatility has never

been convincingly refuted and it appears to be accepted within the profession that

standard models of expected returns cannot explain the documented level of stock

price volatility (e.g. West (1988)) and that either models with noise traders, or naive

investors, or systematic time variation of discount rates would be called for to explain

this “anomaly”.

In a recent paper, Schmitt and Westerhoff (2017) have added an interesting twist

to this long-lasting discussion. Schmitt and Westerhoff show that the price distortion,

i.e., the differences between the historical prices and their ex-post rational counter-
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parts is characterized by a bimodal distribution. Using appropriate statistical tests

they are indeed able to show that the visual impression of a distribution with two

peaks, to the left and the right of the origin, is confirmed by a highly significant

rejection of the null of unimodality of the distribution of distortions. This previously

overlooked feature speaks even more in favor of some elements of fads, fashions or

speculative excesses playing an important role in the price formation process. Schmitt

and Westerhoff point out that bimodality could only come about if there were non-

linear forces in the price formation process. In contrast, a linear model could only

give rise to a unimodal shape of the resulting distribution.

Models of fads, fashions and speculative overreaction typically entail nonlinear

components as important building blocks, and so, this statistical property corresponds

to systematic changes between periods of overvaluation or undervaluation, rather than

random deviations from the ex-post rational benchmark. Schmitt and Westerhoff

also show that the bimodality of price distortions is shared by a large collection of

models with heterogeneous agents pursuing trading strategies like technical or chartist

trading rules, following the majority of the other market participants or obeying

other behavioral traits that would be incompatible with perfectly rational formation

of prices. It is interesting to note that while there exists a long legacy of models

with non-rational expectations that come along with bimodal price distortions, I

am not aware of any model of time-varying discount rates that could explain this

phenomenon. While in recent literature, time variation of discount rates or risk

premiums has become the “de facto explanation for excess volatility” (Giglio and

Kelly, 2018) the new stylized fact discovered by Schmitt and Westerhoff suggests that

heterogeneity of expectations and learning may have been unduly neglected in this

area. Since variation of discount rates and of expectations affect either the nominator
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or denominator of a standard asset pricing equation, theories of the time change of

one of these entities could be transformed into theories of the other (Cochrane, 2011).

However, such mathematical equivalence does not imply that an equivalent theory

based on discount rates would be economically plausible. Giglio and Kelly (2018)

indeed show that violation of internal consistency requirements for the term structure

of various short and long term claims allows to rule out variation of discount rates

as the source of observed excess volatility. They also show that their findings are

consistent with a recent model of extrapolative formation of expectations. In this

paper, I built upon the work by Schmitt and Westerhoff (2017) and go one step

further: The aim here is to estimate the parameters of the collection of behavioural

models reviewed by Schmitt and Westerhoff and to evaluate their performance and

explanatory power for the S&P 500 distortions.

In recent literature, there is one other contribution with a closely related approach:

Majewski et al. (2020) estimate an extended version of the model of Chiarella (1992),

and show that the estimated parameters indeed give rise to bi-modality for certain

financial data (e.g, the US stock market). Majewski et al., however, do not compare

the performance of this model with other candidate models, and they use a state-

space approach to identify the fundamental value as a hidden variable (while here we

use Shiller’s ex-post findamental value as a benchmark).

The rest of the paper proceeds along the following lines: in sec. 2, we outline our

general approach to estimation of a large set of behavioral asset pricing models, and

we discuss the justification for a straight maximum likelihood estimation of complex

nonlinear models like the ones we are interested in. Sec. 3 then starts the sequence

of our estimation exercises with some simple benchmark models that use polynomials

up to cubic order as a simple formalisation of the nonlinear structure of the price for-
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mation process. Secs. 4 to 6 consider various subsets of the list of models considered

by Schmitt and Westerhoff (2017). We start with Zeeman’s (1974) “catastrophe” ap-

proach (sec. 4), and move on to “first generation” models of speculative interaction

of the early 90ies (sec. 5), followed by more complex models with strategy switching

by the agents (sec. 6). Sec. 7 compares all models via the estimation of the model

confidence set, i.e., it determines those models that cannot be outperformed by others

at a certain level of significance. Depending on the significance level, we find either

a dominance of one single model (Franke and Westerhoff, 2012), or a large sample of

non-rejected models that also includes a linear model with chartists and fundamen-

talists, but excludes the random walk (hence pointing to non-random structure). Sec.

8 finally concludes.

2 General Approach

As demonstrated in Shiller’s (1981) derivation of his excess volatility test, rationality

of agents’ expectations entering their computation of the alleged arbitrage-free price or

fundamental value pf,t requires that there should be no systematic deviation between

the expected dividends and the realised dividends, and predictions of dividends and

prediction errors should be uncorrelated. In his design of a test for excessive volatility,

Shiller introduces the concept of the ex-post rational price p∗t which is the price one

would obtain under perfect foresight of all future dividends (i.e., the price that could

be computed ex-post when the realization of dividends is known). The difference

between p∗t and the ex-ante rational price or fundamental value computed on the

base of information at time t, pf,t, then consists of the discounted sum of prediction

errors for future dividends which all should be uncorrelated random errors under
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rational formation of dividend expectations.

Denoting this sum by εt, we have the following simple relationship: pf,t = p∗t + εt.

Since most of the models we attempt to estimate have some form of fundamentalist

baseline strategy as one of their building blocks, we can substitute p∗t + εt for pf,t

using the computation of the ex-post rational price by Shiller. The prediction error εt

then enters as the unknown stochastic component. Estimating various models with

behavioural features allows an assessment of how much of the mispricing is explained

by their behavioural ingredients and how much remains as unexplained prediction

error.

Most models will also be estimated in an alternative form in which noise enters as

an additional factor of excess demand besides the excess demand functions of various

groups of traders, rather than as the prediction error of dividends. While for some

models, both alternatives are observationally equivalent, for others they constitute

alternative formalisations which might differ in their explanatory power. Most models

also allow a formalization either in market prices or alternatively in their logarithms.

The latter formalization is quite natural if one assumes that fundamentalists, for

instance, react on the relative mispricing rather than absolute deviations between

market price and assumed fundamental value. Fig. 1 shows that the mispricing of

the S&P500 appears visually different in both representations. Only in the logarith-

mic representation does the distortion appear to be stationary with long periods of

overvaluation interrupted by relatively short drawdowns. In the original data format,

the impression is rather of a non-stationary process with an increasing amplitude of

deviations from fundamental values 1. We might, thus, conjecture that the models

1A standard Dickey-Fuller test leads to non-rejection of its null hypothesis at the 5 percent level
of significance for both time series. The pertinent values of the test statistics are −2.402 for the
original data and −2.814 for the logarithmic mispricing. The latter is very close to the 5 percent
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should rather be used in their log forms, but we will nevertheless apply them to both

alternatives to see what difference the data format makes. In the following we group

our estimation exercises into four categories: We start with some simple general func-

tional forms, from a linear model to a cubic specification. We then move on to the

simplest model covered in Schmitt and Westerhoff, the “catastrophe model” of Zee-

man (1974) followed by the “first generation” of simple models with heterogeneous

agents with given strategies. In the next step we estimate more involved models that

allow agents to switch between groups, often governed by some success criteria.

A few remarks are in order on the theoretical justification of our use of a standard

maximum likelihood approach for estimation of the above models. First, it should

be noted that in all models, identification of all parameters should be generically

guaranteed because of their nonlinearity (cf. McManus, 1992). Nevertheless, near-

collinearity of certain parameters can often be an issue as we will see below. Another

issue is whether maximum likelihood estimation is consistent and obeys some conve-

nient limit laws in the present framework. While there do not appear to be any results

that can strictly be applied to our settings, recent research suggest that maximum

likelihood might indeed be consistent. The basic theoretical problem here is that most

models of speculative dynamics have a nonlinear system as their deterministic kernel

that undergoes a number of bifurcations under variation of its parameters leading

from asymptotic stability of its steady state via cyclical dynamics to chaotic motion.

Interestingly, with their combination of centripetal and centrifugal forces, all mod-

els appear to satisfy a weak notion of stability: The system stays within a certain

boundary (2.86). The fact that a unit root is not more strongly rejected, could actually be consistent
with nonlinear bubble-burst dynamics as it has been frequently reported that such dynamics are
hard to distinguish from unit-root processes under the Dickey-Fuller test even though they might
give rise to stationary dynamics, cf. De Grauwe et al. (1993) and Lux and Marchesi (2000).
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region around its unique stationary state when converging to a limit cycle or chaotic

attractor, but does not generate divergent trajectories. However, notwithstanding

such limiting behavior, standard asymptotic theory is not routinely applicable in the

presence of chaotic attractors because of the long-term dependence chaotic dynamics

implies by its very definition. Only very recently have first results been published

on the consistency of maximum likelihood estimation for certain classes of chaotic

dynamics (McGoff et al., 2015a). While it is unclear whether their technical condi-

tions for consistency would be applicable in our case, their setting is also not exactly

the one we have adopted here. Namely, what they investigate is chaotic systems

with observational noise only. In our above models, in contrast, noise enters in the

price formation, and, therefore, the dynamic process itself. Such a framework would

rather be categorized as an observation-driven dynamic model. This formal structure

is well-known from the family of GARCH models. The general problem of maximum

likelihood estimation in such a setting has been investigated by Douc et al. (2013) and

Douc et al. (2015) who provide sets of regularity conditions under which maximum

likelihood estimation is consistent for observation-driven models. They also show

that the conditions for consistency of maximum likelihood are fulfilled for certain

more complex members of the GARCH family. A further generalisation is achieved

by Sim et al. (2019) who derive conditions for consistency of the maximum likelihood

estimator for observation-driven systems with higher-order lag structures. This more

general framework nests, for instance, the model by De Grauwe et al. (1993) as can

inferred from eq. (16).

Since consistency heavily relies on ergodicity of the process, we might expect

that if the chaotic attractors of the above models are ergodic, maximum likelihood

should work as expected. However, a proof of ergodicity is outside the scope of the
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present paper. If the parameter would fall into a region with asymptotic convergence

or cyclical dynamics, existence of a stationary distribution should be guaranteed.

However, along a typical bifurcation route variation of one parameter would lead to

sudden switches between higher-order cycles and chaotic attractors which could lead

to discontinuous behavior of the likelihood. Furthermore, different attractors could

co-exist for a given set of parameters for certain nonlinear systems. Many examples

of such behavior can be found in the dynamic system literature, and indeed the

present author found multiple co-existing attractors for certain parameter values in

the De Grauwe model when preparing classroom presentations of the latter. Since

each attractor has its own basin of attraction and different starting values could lead

to different distributions of the state variable(s) along the resulting trajectories, such

a scenario would obviously be a non-ergodic one.

Fortunately, in our setting, we are not dealing with deterministic systems, and

adding noise could dramatically change the properties of such a system. As demon-

strated via selected examples in Anishchenko et al. (2000), random disturbances of

a dynamic system with multiple attractors could lead to the emergence of a single

stationary distribution that connects the different attractors of its deterministic coun-

terpart. Intuitively, adding noise to a deterministic system would lead to repeated

jumps between the basins of attraction of different attractors so that a joint probabil-

ity distribution would be obtained that merges the different basins. Since we assume

noise with unbounded support in our applications, this effect should prevail in all

our models preventing the existence of multiple separate attractors in the resulting

stochastic system.

All in all, in light of the recent findings cited above, we have some reason to

be confident that maximum likelihood estimation should be consistent in our set-
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ting. We note, however, that the technical conditions for consistency have not been

demonstrated to hold for the models under scrutiny. It is also worthwhile to note that

consistency of parameter estimates would not necessarily imply consistency of the re-

constructed trajectories of the underlying hidden state(s) of the system. Judd (2007)

has demonstrated that maximum likelihood often is unable to reconstruct the par-

ticular chaotic path underlying the observations of a dynamic process from a chaotic

attractor with observational noise. This seems plausible since the chaoticity of the

process might provide many alternative trajectories that have a smaller error vari-

ance, and, therefore, seemingly appear to be more accurate reconstructions. Hence,

overfitting in this sense seems intrinsic to chaotic processes. However, McGoff et al.

(2015b) show that for an entire class of chaotic models, this inconsistency of recon-

structed trajectories does not imply inconsistency of parameter estimates. Keeping

all these caveats in mind, we move on to our empirical findings.

3 Simple Benchmark Models

All the behavioral models considered by Schmitt and Westerhoff (2017) as candidate

explanations of the deviation between the S&P 500 and its ex-post rational price

are strongly nonlinear specifications. While their nonlinearities are motivated by a

variety of economic arguments, we can also use a more generic specification of the

potential nonlinear forces at work.

In order to establish a simple benchmark, I use the basic ingredients of all models:

the presence of chartist and fundamentalist investors in the market, and formulate its

most basic specification using a general polynomial functional form with entries up

to cubic order. Following the standard set-up, fundamentalists are assumed to react
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on deviations between the fundamental value (here the ex-post rational price) and

the current market valuation, i.e. their excess demand will be expressed as:

EDf,t = a1(pf,t − pt) + a2(pf,t − pt)
2 + a3(pf,t − pt)

3. (1)

Chartists, in contrast, react on price changes in the hope of their continuation at least

in the short run:

EDc,t = b1(pt − pt−1) + b2(pt − pt−1)
2 + b3(pt − pt−1)

3. (2)

Prices are assumed to adjust in the presence of overall excess demand:

pt+1 = pt + βEDt (3)

with

EDt = EDf,t + EDc,t + ǫt. (4)

The parameters to be estimated will be the six parameters of the two excess

demand functions plus σǫ, the standard deviation of the noise factor which here

and in all other models will be assumed to follow a Normal distribution. The price

adjustment speed β will be assumed to be equal to one as it cannot be estimated

independently of the other parameters. Here it is assumed that noise enters as a

noise trading factor in excess demand. One could alternatively assume that it enters

in the determination of the fundamental value following the argument in the preceding

section which would lead to EDf,t =
∑B

i=1
ai(pf,t+ ǫt− pt)

i. However, since the noise

factor then appears in different powers of the polynomial form of fundamentalists’
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excess demand this version cannot be easily estimated and is not pursued in this

section.

What results would one expect? All behavioral models include some form of

centrifugal and centripetal forces: the destabilizing tendency of chartist behavior and

the stabilizing forces exerted by fundamentalists. In a linear model, one of both

would dominate over the other so that the fundamental equilibrium would either

be asymptotically stable or explosively unstable. Appropriate nonlinearities could

prevent the scenario of complete instability: with changing elasticity of one or both

of the two excess demand functions further away from the equilibrium local instability

could lead to cyclic or chaotic dynamics rather than explosive movement away from

the fundamental equilibrium. The visual appearance of particularly the log mispricing

lends support to such an approach. What is, therefore, needed to end up in such a

scenario is that chartists’ excess demand flattens out for larger values of the current

price trend, or that fundamentalists’ reaction becomes relatively stronger for larger

deviations of the price from its fundamental value. The polynomial terms up to third

order provide for these possibilities.

Table 1 and Fig. 2 show the results. In both the raw data and the loga-

rithmic mispricing, we find similar parameter estimates in a linear version of the

chartist/fundamentalist model. In both cases, the chartist effect appears more pro-

nounced (as judged by its t-statistics). Adding only a quadratic or cubic term leads

to relatively small improvements of the goodness-of-fit, and additional parameters are

often insignificant. A larger improvement of the fit is observed if both the quadratic

and cubic term are added simultaneously. For the raw data, in the full model all

parameters appear to be significant. The resulting functional forms in Fig. 2 are,

however, not always as expected. For the chartists, the full model indicates an over-
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proportional reaction to larger price changes. For the fundamentalists, we also find

a convex shape in the positive quadrant which might indeed be stronger than the

convexity of chartists’ excess demand. For negative misalignments, excess demand

by fundamentalists appears non-monotonic and is hard to interpret. One may note

that a cubic term alone without the second-order contribution would deliver ‘nice’

shapes of both excess demand functions in agreement with the overall predictions of

the behavioral models. Unfortunately, without the quadratic term, the improvement

compared to the linear benchmark appears negligible. For the log data, the results

are different insofar as in the full model only the linear term is significant in chartists’

demand and only higher order terms are significant in fundamentalists’ demand func-

tion. While the latter still has a non-monotonic shape for negative misalignments,

far away from the fundamental value, fundamentalists’ reaction is on both sides char-

acterized by a strongly convex shape. Together with a linear demand function of

chartists and a relatively flat inelastic reaction of the fundamentalists in the vicinity

of the fundamental value, these results are in broad support of the scenario of stronger

stabilizing forces that become activated at a certain distance from the fundamental

equilibrium.

Our approach in this section is very close to that of Majewski et al. (2020) who

also estimate nonlinear functions up to cubic order for chartists’ and fundamentalists’

excess demand functions. While their setting is different (they use a state-space

formalization of an extended version of Chiarella’s model), the results are very close

in their overall support of the relevance of higher-order terms.

However, one difference to their results is that a closer inspection of the dynamics

reveals that all estimated models are still locally asymptotically stable in the neigh-

borhood of the fundamental equilibrium pt = pf,t of the deterministic skeleton of the
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models. We also note that despite significance of various behavioral parameters, all

the models investigated are characterized by about the same estimate of the error

variance, σǫ. Hence, this setting would not explain the bimodality of the S&P500

mispricing. This leaves the possibility that this feature of the data is the result of

some more intricate non-linear mechanism that might be covered by some of the

models reviewed by Schmitt and Westerhoff.

4 The Stochastic Cusp Catastrophe Model

Christopher Zeeman, one of the founding fathers of mathematical catastrophe theory,

has proposed as one of a variety of potential applications of “catastrophic” singular-

ities a model of interacting investors in Zeeman (1974). While the original paper

also offers a profound economic intuition for the behavioral interactions that might

lead to mispricing followed by catastrophic corrections, in applications of this model

researchers have typically abstracted from these behavioural foundations and have

estimated a nonlinear stochastic differential equation that forms the dynamic coun-

terpart of the geometric representation of the so-called cusp catastrophe (Baruńık

and Vošvrda, 2009; Diks and Wang, 2016). The cusp catastrophe can be described

by the geometrical features of the function

V =
1

4
x4 −

1

2
βx2 − αx (5)

in which α and β are control parameters. As a polynomial function in x, eg. (5) will

either have three or only one solution. When varying the control parameters α and
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β and adding dynamics of the form:

d

dt
xt =

−∂V

∂xt

= −x3

t + βxt + α (6)

one can identify the extrema of (5) as equilibria of the dynamic system (6), and cer-

tain changes of the control parameters will lead to abrupt switches from one stable

equilibrium (that ceases to exist) to the other. Performing the parameter variation

in reverse one can also observe hysteresis effects, i.e., the system will remain in the

second stable equilibrium even for some time when the first one reappears. This dy-

namic version motivates the estimation of a nonlinear stochastic differential equation

with drift term equal to the derivative of the standard form of the cusp catastrophe

function:

dzt = (−z3t + βzt + α)dt+ σzdWt (7)

where Wt is standard Brownian motion. Since linear transformations leave the topo-

logical features of the model unchanged, one can adopt this normal form to the

particular scale of the data by setting zt =
yt−λ

σ
so that for the data format at hand,

yt, the following stochastic differential equation is obtained:

dyt = (−(
yt − λ

σ
)3 + β

yt − λ

σ
+ α)dt+ σσzdWt (8)

Our data here is the price distortion, i.e., yt = pt − p∗t when using the original data,

or yt = ln(pt)− ln(p∗t ) when considering the relative distortion.

The potential explanatory power for bimodal price distortions is readily visible

from eqs. (7) and (8). If the so-called Cardan’s discriminant, δ = 27α2 − 4β3, is
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negative, there will exist three equilibria, with the two stable ones corresponding to

states of overvaluation or undervaluation under a bimodal stationary distribution for

yt in eg. (8). If the discriminant is positive only one equilibrium exists for which yt

should obey a uni-modal distribution with its maximum in the vicinity of pt = p∗t .

We estimate the cusp catastrophe model using a maximum likelihood approach2.

Previous applications of this model have used the stationary distribution of the

stochastic differential equation (8) or Gausian approximations (Baruńık and Vošvrda,

2009; Diks and Wang, 2016). While there is no closed-form solution to the transient

density, we can, however, characterize its time evolution by a so-called Fokker-Planck

or forward Kolmogorov equation (e.g. Gardiner, 2009). The latter is a partial dif-

ferential equation that can be solved, for instance, using standard finite difference

methods. Poulsen (1999), Lindström (2007) and Lux (2009) demonstrate how this

approximation can be used within a maximum likelihood framework. Proceeding in

this way, we do not need to use any approximation of the crucial nonlinearity, and

with a sufficiently fine mesh in the finite difference equation, we can arrive at estima-

tion results arbitrarily close to analytical maximum likelihood. To find the maximum

of the likelihood function, we can apply standard gradient-based methods. Since

the nonlinearity of the drift function might lead to multimodality of the likelihood

function, the optimization has been run with different starting points, but was found

always to converge to roughly the same numbers for the significant parameters.

Table 2 exhibits the results for both the raw data and the logarithmic prices.

Unfortunately, this model does not what Schmitt andWesterhoff or the present author

himself would have expected it to do in the current framework: In both cases, the

2 Since in this section the estimated model is a well-behaved diffusion process, the usual asymptotics
should apply.
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slope parameters α and β are insignificant. While Cardans’s discriminant δ is negative

for the raw data, Brownian motion even leads to a better fit than the cusp model3.

The model actually does not appear to be able to make much sense of the data as all

parameters turn out to be insignificant. As Fig. 3 shows, the estimated cusp model

would remain in one of its two modes over the entire horizon of the data, and the fit

is apparently worse than that of a simple Brownian motion.

For the log data, there is at least the expected hierarchy of goodness-of-fit with

the cusp model achieving a higher likelihood than a model with α = β = 0 and the

latter again superior to Brownian motion. However, neither are the differences in the

likelihoods significant nor are the estimates of α and β. Compared to the standard

deviation σz ·σ parameters α and β have no visible relevance for the resulting dynamics

(cf. Fig. 3). We, thus, see that not every model with the potential of generating a bi-

modal distribution provides a good fit to the bi-modal distortion of the S&P500. The

close proximity of both the raw and log distortion to Brownian motion also indicates

that there is a high noise-to-signal ratio in the data set which will make it hard for

any behavioural model to pick up the remaining systematic patterns in the data (if

any such non-linear factors exist).

5 Simple Nonlinear Behavioral Models

The literature on behavioral asset pricing models started to become a popular area

around the early 90s. The seminal contributions of this time have all been formal-

ized as nonlinear dynamic models of the interaction of chartist and fundamentalist

investors. An early inspiration has been the paper by Beja and Goldman (1980).

3The Brownian motion benchmark is not nested in the cusp model since even for α = β = λ = 0
the cubic term would be preserved.
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Since the latter had formulated only linear excess demand and price formation rules,

similar to the linear version of the model of sec. 3, it could, however, only give rise

to either a stable fundamental equilibrium or unstable, explosive dynamics. Whether

one or the other prevails is mainly determined by the relative strength of stabilizing

fundamental arbitrage versus destabilizing technical trading. Neither convergence to

some fundamental equilibrium nor everlasting speculative bubbles appear a satisfac-

tory description of the volatile dynamics of many asset markets.

The contributions by Day and Huang (1990), Chiarella (1992) and De Grauwe

et al. (1993) have all introduced some specific form of nonlinearity, which allows

these authors to generate intermediate forms of dynamic evolutions such as periodic

cycles or chaotic dynamics. As a consequence, alternating periods of overvaluation

and undervaluation became possible.

In order to achieve this outcome different forms of nonlinear components are

assumed by these authors: Day and Huang (1990) assume that fundamentalists’

excess demand becomes increasingly elastic with larger deviations of the price from

its fundamental value; Chiarella (1992), in contrast, assumes that chartists’ demand

is characterized by a decreasing elasticity in its reaction to observed momentum (price

changes), while De Grauwe, Dewachter and Embrecht (1993) assume that chartists’

and fundamentalists’ weights in aggregate excess demand change in reaction to the

actual degree of mispricing. Their model is embedded in an monetary framework of

the foreign exchange market in which fundamentalists and chartists are advisors to

foreign exchange dealers who combine the recommendations of these two groups of

analysts using time varying weights. In the present context, the model of De Grauwe

et al. (1993) has been adapted to a stock market framework and aligned with the

formalizations chosen by Day and Huang (1990) and Chiarella (1992).
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In more detail, the three models are formalized as follows:

As in sec. 3, all three models assume that prices follow a structural adjustment

mechanism in that a market maker increases or decreases prices in response to excess

demand:

pt+1 = pt + β(EDt) (9)

where β denotes the price adjustment speed. Excess demand is composed of the

demand and supply or fundamentalists (EDf,t) and chartists (EDc,t). In Day and

Huang (1990), these assume the following forms:

EDDH
f,t = a (pf,t − pt) f(pt − pf,t) , (10)

f(pt − pf,t) =
1

(pt − pf,t −m1)d1 (m2 − pt − pf,t)d2
, (11)

EDDH
c = b (pt − pf,t). (12)

This formalization guarantees that fundamentalists would built up relatively higher

counterpositions for higher levels of mispricing and given the parametrization of the

model, would not allow prices to exceed from the interval (pf,t −m1, pf,t +m2) since

at these boundaries the fundamentalists’ demand would become infinitely elastic.

Chartists here are defined in a slightly different way than in other models as their

excess demand is based on mispricing rather than momentum. This model has alto-

gether six parameters that need to be estimated: a, b,m1,m2, d1 and d2. The price

adjustment speed cannot be estimated independently of the elasticities a and b, and

hence it is set equal to unity.

Chiarella’s model has linear fundamentalists and chartists whose excess demand
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is driven by momentum with decreasing elasticity if momentum assumes very high

positive or negative values:

EDC
f,t = a (pf,t − pt), (13)

EDC
c,t = b tanh(c(pt − pt−1)). (14)

This model has also been estimated by Majewski et al. (2020) who consider an

extended version with nonlinearities in both the chartists’ and fundamentalists’ excess

demand functions, and the fundamental value being treated as a hidden variable in

a state space framework.

Finally, De Grauwe et al. (1993) allow for time-varying fractions of chartists and

fundamentalists, wt and 1−wt, respectively. Excess demand of their fundamentalists

is linear while chartists’ trading signal is the change of momentum, i.e. one-period

compared to two-period price changes:

EDG
f,t = a (pf,t − pt) wt, (15)

EDG
c,t = b( (pt−1 − pt−2)− (pt−1 − pt−3)) (1− wt). (16)

The weight or fraction of chartists is determined by the function

wt =
1

1 + d(pf,t−1 − pt−1)2
. (17)

Chartists will, therefore, dominate the market in the vicinity of the fundamental

equilibrium while fundamentalists will have a higher influence in the presence of a

large deviation of the market price from its fundamental value. Since the model of
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De Grauwe et al. is originally formulated as a model of speculative activity in the

foreign exchange market, its price formation mechanism is derived from a monetary

macroeconomic model. In the present context, we replace this macroeconomic com-

ponent by eq. (9). In all three models we again suppress the variable β as it always

enters multiplicatively with the slope coefficients of the excess demand functions.

The parameter set of the model of Chiarella is θ = {a, b, c} while for the model of

De Grauwe et al. (1993) it is θ = {a, b, d}. Although we have used the same symbols

for the coefficients of excess demand components in all three models, it should be

noted that their estimates are not directly comparable as they are based on different

implementations of the behavior of these groups of traders.

All three models are estimated both for the raw data as well as for logarithmic

prices and fundamentals. For the noise term, we either assume that it enters in excess

demand: EDt = EDf,t+EDc,t+ ǫt, due to an additional noise trading or microstruc-

tural component of demand, or we alternatively assume that the fundamental value

used by the agents consists of: pf,t = p∗t + ǫt, i.e. is obtained as the ex-post rational

fundamental value plus the prediction error of the sum of future discounted dividends.

This corresponds to the framework of the excess volatility tests introduced by Shiller

(1981), and is economically plausible since the currently best computation of the fun-

damental value is based on limited information about future realisations of dividends

and ex-post the expectation errors should enter as uncorrelated random variates. In

the first version, in contrast, we assume implicitly fundamentalist agents have perfect

foresight, i.e. pf,t = p∗t which, of course, is an extreme and unrealistic scenario. We

will refer to these two alternative scenarios as versions I and II of any model under

scrutiny. The models are all not nested in the formalization of sec. 3 with polynomial

terms up to third order, and so estimation of these alternative formalizations allows
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us to investigate whether alternative nonlinear forms fit the data better.

Under a fully rational asset pricing framework, the behavioral components should

not enter as significant explanatory factors. Note that the distinction between the two

alternatives of noise in excess demand and noise in fundamental values only leads to

different results in the models of Day and Huang (1990) and De Grauwe et al. (1993)

whereas in Chiarella (1992) both alternatives would be observationally equivalent due

to the linear formalization of excess demand of fundamentalists. All models will be

estimated via maximum likelihood using the Nelder-Mead or simplex algorithm to find

the maxima of the likelihood function. The Nelder-Mead algorithm still counts very

much as the industry standard for estimating objective functions with non-continuous

derivatives and possible multiple local minima or maxima. Indeed, gradient-based

optimization routines did mostly worse than the Nelder-Mead algorithm although

one would expect the likelihood function to be continuous over most of its support

for our problems. Reported results are the maxima of the likelihood function obtained

after hundreds of runs with varying initial conditions.

Table 3 displays results for both the raw and logarithmic data. One observes

that with one exception the best fitting configurations come with likelihood values

that are in the vicinity of those of the benchmark models of sec. 3. We also see

that in many cases the behavioral parameters are not significant, and for the type I

models, the estimates of the standard deviation of the noise component are very close

to the standard deviation of the data. The later observation also suggests that the

behavioral components of the models do not contribute much explanatory power.

Starting with the model of Day and Huang (1990), we find that most parame-

ters are insignificant and the maximized likelihood is smaller than that of a linear

chartists/fundamentalists model. Indeed, when inspecting the details of the outcomes
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of the optimization we find parameter values displaying wide variations that all lead

to basically the same likelihood. When plotting the excess demand functions of the

best fitting parameter sets, we find large differences in the fundamentalists’ excess

demand, but when aggregating it with excess demand by chartists, practically the

same shape results for all of them. As can been seen in Fig. 4 the resulting excess

demand appears also almost linear over most of its support with a sharp bend at the

boundaries. Given their insignificant t-statistics it seems that the four parameters for

the nonlinear behavior of the fundamentalists appear superfluous.

The estimation of the model by Chiarella (1992) shows a more pronounced non-

linear shape as also illustrated in Fig. 4 While in this case the parameters are all

highly significant, the model improves only marginally upon a linear model with the

same groups of agents. The type I version of De Grauwe et al. (1993) is the worst

in this category. Here, only σǫ enters significantly, the parameters for the elasticity

of the excess demand functions assume counterintuitive signs, and the likelihood is

only marginally higher than that of a pure random walk. When inspecting the details

of this model, it shows one particular feature that as we will see later is also shared

by some more elaborate models with switching of strategies: Most of the time, we

find a dominance of one group (here the chartists) while the other group (here the

fundamentalists) only occasionally assumes a non-zero weight, cf. Fig. 4.

In the category of type II models, we find the pertinent version of De Grauwe

et al. performing similarity like its type I version. The type II version of Day and

Huang, however, performs better than all the other alternatives and also beats the

cubic model of sec. 3. It appears on a first view hard to explain its more successful

performance as again most parameters are insignificant. Inspecting the predictions of

the price of this model vis-à-vis the four alternatives also provides little evidence of
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striking differences. When computing the differences in the log likelihoods in Fig. 5,

one observes that the advantage of Day and Huang rests on a better fit in the volatile

periods between time 1500 and 1600 (1990 to 2004) which weights higher than some

subsequent negative deviations from the other models (most pronounced in period

1650 which is 10/2008). Fig. 5 restricts the comparison to the last 200 observations

of the sample since in the remainder of the series one finds almost no discernible

difference between the models.

It seems that the responsible factor for the better performance of Day and Huang

II is the much higher estimate of the parameters d2 and m2 and the lower estimate

of a that leads to much less curvature in the excess demand function of the second

version of the Day and Huang model. Predicting smaller price slumps in the booming

years 1996 through 2004 than its competitors, it on average performs better. The

relatively large number of better fits in this period also dominates over a large negative

outlier in 2008 when Day and Huang II would have predicted a much smaller crash

than the other models. The main drawback of the best-fitting model Day and Huang

II is, however, that it comes with a six-digit standard deviation of the errors of

agents’ computation of the fundamental value. Taken literally, this implies that agents

expectations could deviate by several orders of magnitude from the ex-post rational

value, i.e. they were basically ignorant of what a sensible range of fundamental values

might be.

The remainder of Table 4 displays results for models that use the log data rather

than the raw entries. Starting with the last model in our list, we again find that both

versions of De Grauwe et al’s formalization perform hardly better than a pure random

walk. In the first version this comes despite the fact that its group dynamics shows

interesting variations between the weights attached to either chartists or fundamen-
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talists. As one would expect, the estimation assigns low weights to fundamentalism in

times with large distortion and higher weights when the price is closer to the ex-post

rational value.

However, due to the large discrepancy in the parameters a and b, the funda-

mentalist component of excess demand is much smaller than the one contributed by

chartists. Both are dominated by the noise component of excess demand with a stan-

dard deviation approximately equal to that of the log price changes in the data. The

lack of explanatory power of the behavioral components is corroborated by the lack

of significance of all parameters but σǫ. The same applies to De Grauwe II for which

again we find a dominating weight of unity for fundamentalists just as for the case of

the raw data.

The Day and Huang model is somewhat more successful although we again find

hardly any significant parameter estimate (except for m1,m2 and σ in version I).

Fig. 6 shows the nonlinearity for both versions. Overall, both alternatives perform

worse than a benchmark linear model with chartists and fundamentalists. The best

behavioral model is here the parsimonious parametrization of Chiarella (1992) that

slightly improves upon the linear benchmark. However, its nonlinear parameter c is

not significant, and as we can see from the first panel of Fig. 6, its nonlinearity is

indeed irrelevant over the support of the excess demand function of chartists in our

data.

6 Models with Discrete Choice of Strategies

Among the best-known behavioural asset-pricing models are those that model the

selection of strategies by market participants as a discrete choice problem. This
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literature got started with Brock and Hommes (1998) who consider the problem of

chosing between a completely rational forecast that comes at some cost for the agents,

and a costless adaptive alternative. While Brock and Hommes (1998) apply this

framework to a cobweb-type model, very similar approaches have been developed in

subsequent literature for asset markets. Schmitt and Westerhoff (2017) demonstrate

that the bi-modality of the S&P500 distortions is shared by both the baseline Brock

and Hommes (1997) model, appropriately adopted to the problem of forecasting an

asset price, and by the slightly different version of Gaunersdorfer and Hommes (2007)

that is geared towards speculative price dynamics in asset markets from the outset.

These models are somewhat more complex than the previous ones. In particular,

their starting point is a traditional asset pricing framework in which agents’ demand

is derived from a mean-variance utility function leading to excess demand

EDi,t = (Ei,t[xt+1]− (1 + r)xt)/µ (18)

with xt+1 = pt − pf,t the price distortion, r the risk free interest rate, µ the product

of the risk aversion coefficient and the expected volatility of the asset price (assumed

to be constant), and i an index for the type of investor. Again, two groups with

different expectation formation processes are assumed to exist which we again denote

as fundamentalists and chartists. Fundamentalists expect the price to be equal to its

fundamental value, hence Ef,t[xt+1] = 0. Chartists are assumed to form extrapolative

expectations: Ec,t[xt+1] = axt−1. The discrete choice component enters by agents

comparing the profitability of both strategies. Profits by both groups are given by:

πi,t = (xt − (1 + r)xt−1)EDi,t−1 − di (19)
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where di is the cost of forming the expectation which is di = d > 0 for i = f and

di = 0 for i = c. The fraction of chartists is consequently determined as:

nc,t =
exp(γπc,t−1)

exp(γπc,t−1) + exp(γπf,t−1)
(20)

with γ the so-called intensity of choice and nf,t = 1− nc,t. Under an equilibrium

asset-pricing framework with zero supply of shares, the asset-price is determined as

pt =
1

1 + r
(nc,tEc,t[xt+1] + nf,tEf,t[xt+1]) (21)

where the second entry in the bracket on the right-hand side would be zero by defini-

tion in the baseline model. We again distinguish between two versions of this frame-

work. Version I adds a normally distributed error term additionally on the right-hand

side, while version II assumes again an error term in the perception of the true funda-

mental value by the fundamentalists so that Ef,t = ǫt and pt =
1

1+r
(ncEc,t[xt+1]+nf,tǫt)

results.

Turning to the model of Gaunersdorfer and Hommes (2007), their demand func-

tions are slightly more complex:

EDi,t = (Ei,t[pt+1 + dt+1]− (1 + r)pt)/µ (22)

with:

Ef,t[pt+1] = pf,t + v(pt − pf,t), (23)

Ec,t[pt+1] = pt−1 + g(pt−1 − pt−2). (24)

Profits are derived similarly as above, but Gaunersdorfer and Hommes take into
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account also dividends, dt, and assume that agents consider not only the most recent

realization of profits but rather the entire history with exponential discounting of

older observations:

πi,t = (pt + dt − (1 + r)pt−1)EDi,t−1 + ηπi,t−1 (25)

Here η is the discount parameter for older observations. Fractions of both groups are,

then, determined as in Brock and Hommes with an additional factor that prevents

explosive instability by restricting the fraction of chartists in the presence of large

deviations of the market price from its assumed fundamental value:

πc,t =
exp(γπc,t−1)

exp(γπc,t−1) + exp(γπf,t−1)
exp

(

−
(pt−1 − pf,t−1)

2

α

)

(26)

The equilibrium price is determined as:

pt =
1

1 + r
(nc,tEc,t[pt+1] + nf,tEf,t[pt+1] + E[dt+1]) (27)

It is assumed that both groups of agents form expectations about dividends in the

same way. Version I and II of this model are defined as for the model of Brock and

Hommes.

These models requires some additional data as input: The risk-free rate r and

expected dividends. For the former the rate of 7.6 percent p.a. is used as in Shiller’s

computation of the ex-post rational price. For expected dividends it has been assumed

that these expectations are formed completely rationally (i.e., the next period’s real-

ization has been substituted for it) or that agents use the historical average of their

realizations. While the later alternative in certainly assuming much less rationality
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on the part of our agents, it provides better estimates so that this version is reported.

It is not obvious how to reformulate these models in terms of the log of prices.

Mean-variance utility functions and profits would, of course, not preserve their in-

tended meaning if prices would be replaced by their logarithms. The same applies to

the equilibrium condition of eqs. (21) and (27).

In order to arrive at a log-version of the model, we, therefore, replace the latter

equations by a market maker adjustment in the presence of excess demand:

ln(pt+1) = ln(pt) + β(EDc,t + EDf,t) (28)

This adds the new parameter β (analogously to the models of the previous section).

The excess demand functions in the right-hand, of course, still depend on prices so

that all the other functions appearing in these model are preserved. Since β and µ

cannot be estimated independently, we set the latter equal to 1. The third example of

a model with discrete choice component is the one of Franke and Westerhoff (2012).

These authors use very basic forms of the excess demand functions of the two groups

but assume that these functions come with a group-specific noise factor:

EDf,t = (a(pf,t − pt) + ǫft )nf,t (29)

EDc,t = (b(pt − pt−1) + ǫct)nc,t (30)

Prices are determined via a market maker mechanism:

pt+1 = pt + β(EDf,t + EDc,t) (31)
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and group occupation numbers follow a discrete choice setting so that

nc,t =
exp(γU c

t−1)

exp(γU f
t−1) + exp(γU c

t−1)
=

1

exp[γ(U f
t−1 − U c

t−1)]
(32)

and nf,t = 1− nc,t.

The difference in the “utilities” entering the discrete choice formula is compactly

expressed as:

U f
t − U c

t = α0 + αn(n
f
t − nc

t) + αp(pt − pf,t)
2 (33)

The choice of strategies is, thus, determined by (i) a bias α0 which depending on

its sign might express a general tendency in a certain market toward one of the two

strategies, (ii) a herd effect favoring the selection of the most popular strategy, and

(iii) a valuation effect similarity to the one in De Grauwe et al. (1993) that favors

the selection of a fundamentalist strategy if the actual market price is far away from

the perceived fundamental value.

Estimation of the model of Franke and Westerhoff is not as straightforward as for

the models considered before. In particular this model features two noise factors, ǫft

and ǫct while all previous models had assumed only one source of noise. Following Lux

(2018), we can interpret the model of Franke and Westerhoff as a dynamic model with

latent states (cf. Douc et al., 2013, 2015). The observed variable in our framework is,

of course, the market price, pt, while overall excess demand including the fractions of

both groups of investors would count as the unobservable, latent part. We can, then,

assign the two noise factors, ǫft and ǫct , one of two roles: Either being part of the latent

dynamics, or being observation noise that distorts the link from latent variables to the
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observable variable. Since the assignment of the role to both noise factors is arbitrary

in the present setting, we have pursued both alternatives, and found the results to

coincide. In order to maximize numerically the likelihood function, a particle filter

has been used to approximate the latent dynamics. In the case of the Franke and

Westerhoff model, prices can either be set as the raw numbers or their logarithms

since no explicit utility-maximization is assumed. The version I of this model is

simply the model as it has been laid out above, while version II replaces the demand

by fundamentalists by: EDf,t = a (pf,t + ǫf − pt) ηf,t.

Finally, the last model we estimate is the one proposed in Lux (1995). This

approach splits chartists into optimistic and pessimistic ones (equivalent to buyers

and sellers) and assumes transition rates for switches between both groups governed

by a herding component and observed price changes. In detail, this model works as

follows: Excess demand is given by:

EDt = a(pf,t − pt) + bxt (34)

with the first part on the right-hand side representing the usual fundamental com-

ponent, and the second part, bxt, the chartist component depending on the relative

difference between the numbers of optimists and pessimists, n+,t and n−,t:

x =
n+,t − n−,t

n+,t + n−,t

. (35)

In equation (35), stochasticity is implicit through the assumption of a finite population

of chartists which we set to N = n+,t + n−,t = 100. Switches between both groups

are determined by functions similar to discrete choice probabilities with the difference
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that here they pertain to the decision to change one’s previous choice and to join the

other group. We, therefore, have to distinguish between switches from pessimistic to

optimistic opinion, p+−, and vice versa, p−+ given by:

p+− =v exp (α0 + α1 xt + α2

dp

dt
), (36)

p−+ =v exp (−α0 − α1 xt − α2

dp

dt
). (37)

The implication of this formalization is that a positive price trend reinforces the

formation of an optimistic herd and vice versa.

The opinion index xt changes under these transitions according to the following

law of motion:

dxt

dt
=

1

N
(p+−n−,t − p−+n+,t). (38)

Price changes are formulated in continuous time, i.e.

dpt = βEDt. (39)

This model can, like the one by Franke and Westerhoff, be interpreted as a nonlin-

ear state space model with the hidden variable xt and the observable variable pt and

will be estimated by numerical maximum likelihood using the particle filter. Because

of the linear excess demand of the fundamentalists, there is only one version of this

model to be estimated.

Table 4 shows the results. For the raw data, we find three out of six models

that perform better than a linear model of chartists and fundamentalists. Two of
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these have a performance comparable to Day and Huang II, while one beats all other

models considered so far by a sizable margin (i.e. Franke and Westerhoff I).

Starting with the model by Brock and Hommes, we find that its version I has

no significant parameters except for the standard deviation of innovations in excess

demand. With the intensity of choice close to zero, the estimated fractions of both

types of agents stay practically constant for the entire sample at 50 percent (cf. Fig.

7). With constant fractions the dynamics effectively boils down to an autoregressive

process and the likelihood is approximately the same like that of such a simple process.

Brock and Hommes II also has an estimate of γ close to zero but achieves a

somewhat better fit. Despite the small intensity of choice parameter it predicts nev-

ertheless somewhat more variation of the fractions of the two strategies towards the

end of the sample horizon. Until period 1500 the fraction of chartists is practically

constant and equal to unity which is mainly caused by an extremely large estimate

of the cost d of an accurate prediction of future prices. However, in the last years

of the sample, the distortion becomes so high in absolute value that occasionally the

fundamentalist strategy becomes preferable. The predicted reversal of prices towards

their fundamental value helps to improve the overall likelihood.

The two versions of the Gaunersdorfer and Hommes model both perform worse

than any benchmark model. Version I reports many significant parameters. However,

the estimated error variance is almost the same as the variance of the data so that the

contribution of the behavioral terms appears indeed negligible. One particular feature

is that with a very large estimate of α, the built-in tendency towards a fundamentalist

dominance in the presence of large distortions is effectively invalidated. With η > 1

we also have a cumulative effect of differences in profits 4 that apparently leads to an

4The qualitative results remain the same if η is restricted to the interval [0, 1] in the estimation.
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increasing dominance of chartists over time. However, the extrapolative forecasts of

chartists lead to a fit that is worse than that of a linear adaptive chartist rule.

Gaunersdorfer and Hommes II performs even worse. In the point estimates we

find again a very small β and a counterintuitive sign of the chartist extrapolation

parameter g with t-statistics all insignificant. The estimated choice of strategies

shows a dominance of fundamentalism with only intermittent switches to chartism.

In contrast, the two versions of the model by Franke and Westerhoff both perform

better than the linear benchmarks. As can be seen from Fig. 7, these are the first

models that exhibit the type of strategy switching behavior that one would intuitively

expect: A high fraction of chartists dominates phases of overvaluation or undervalua-

tion. Inspecting the estimates for Franke/Westerhoff I, it appears, however, that the

determinants of the switching function are all not significant. The same holds for γ,

but the systematic variation of both fractions nevertheless indicates that there should

be some explanatory value of this component. With α0 = 1.99 and αn ≈ −3.5, the

behavioral model mainly indicates an overall dominance of fundamentalism together

with a tendency of antagonistic behavior away from the dominating strategy. Both

the slope coefficients of the excess demand functions and the two standard devia-

tions, σc and σf , are highly significant so that here indeed we find for the first time a

model that benefits from its nonlinear structural components and cannot be reduced

to a simpler linear framework. The estimate of the two error variances indicates

a dominance of chartists as the group responsible for most of the volatility of the

market.

Somewhat similar results are obtained for Franke and Westerhoff II. Despite the

very small parameters for the switching between strategies, the predicted behavior of

the fractions of both groups is very similar to the first version. However, there is an
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important difference: When estimating the fractions of chartists and fundamentalists

using the particle filter, two different possibilities can be observed: An outcome close

to the one of Franke and Westerhoff I and another one in which the two groups

reverse their roles (the blue and red lines in Fig. 7). This is probably due to the

negative estimate of the fundamentalists’ reaction parameter which effectively makes

the behavior of both groups similar.

The model of Lux (1995) exhibits significant parameters estimates, and performs

comparably to the linear model of sec. 3. Filtered trajectories of the hidden variable

xt show, however, only unsystematic fluctuations of chartists’ sentiment (not shown

in the figure).

Fig. 8 shows the performance in terms of the likelihood values of Franke/Westerhoff

I against its main competitors during the decisive last 200 observations of the time

series. The pattern is similar as for Day and Huang II in Fig. 5 but the gains during

the years 1996 to 2004 are more pronounced and the losses during the onset of the

financial crisis are smaller.

Results for the relative distortion (i.e., logarithmic data) show very similar overall

tendencies. Brock and Hommes I has no significant parameter except for σǫ and

achieves a likelihood close to that of the random walk. Inspection of the group

dynamics shows that the fractions of chartists and fundamentalists in this version

exhibit permanent high frequency changes between zero and unity (not shown in Fig.

9).

Brock and Hommes II shows somewhat better performance despite similarly in-

significant parameters, but it remains below the linear benchmarks. In this case,

the fractions exhibit variations mostly in the range nc ∈ [0, 0.5] that become more

pronounced over time.

36



The two versions of the model by Gaunersdorfer and Hommes also do not improve

much over the random walk. In both cases all parameters appear to be insignificant.

In version I, the coefficient of fundamentalists is negative implying they expect an

increase of any observed mispricing in the future. Nevertheless, the estimates in-

dicate that fundamentalists would completely dominate the market for almost the

entire sample (with only a single event of intermittent existence of about 40 percent

of chartists around time 800). The overall dominance of fundamentalists is shared

by the second version of the model albeit with more frequent short bursts of chartist

activity. The model of Lux (1995) appears again second best, but despite all param-

eters appearing significant, it again only predicts high-frequency fluctuations of its

hidden variable, the opinion index xt.

Like with the raw data, the one model that beats all benchmarks is Franke and

Westerhoff I. Nevertheless, it does not deliver any significant parameter estimates

at a traditional confidence level of, say, 5 percent. However, the population dy-

namics superimposed on the linear demand functions of the two groups of agents

performs better by some margin than the linear benchmark. In terms of population

dynamics, clear cycles can be observed (cf. Fig. 9) but they come with smaller

variations of the fractions of both groups than for the same model estimated for the

raw data. In contrast, Frank and Westerhoff II falls back behind the linear model

despite many significant parameters. Interestingly, the first version of the model sees

most of the fluctuations originating from the chartist side of the market, while the

second attributes the lion share to fundamentalists’ errors in their computation of the

fundamental value.

It is also worthwhile to note that in the case of the models of Franke and Wester-

hoff, and Lux, the estimation is a stochastic process so the outcome for these models
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shows variations depending on the initialization of the particle filter in the numerical

likelihood approach. For these models we also indicate the variability of the max-

imized likelihood by its standard deviation in Table 4. Somewhat surprisingly, in

version I of Franke and Westerhoff the estimated likelihood and the filtered fractions

of both groups show practically no variation across different values, while in version

II they do.

Fig. 11 shows likelihood differences of the best model vis-à-vis the others for the

log data. The differences are distinctly different from those obtained with the raw

data. Here it is basically one single episode (in 1932 when S&P 500 reached its lowest

values in the onset of the great depression) that provides Franke/Westerhoff with its

advantage.

7 Model Comparison

As the last step of our analysis, we conduct a simultaneous model comparison of all

models estimated so far, including also the linear to cubic specifications of sec.3, and

- as the simplest benchmark- the random walk. As a state-of-the art tool in the com-

parison of multiple, non-nested models we apply the model confidence set approach

of Hansen et al. (2011). This approach takes as its input the relative performance or

loss of a set of candidate models and seeks to determine the subset of superior models

that are not outperformed by other competitors. The hypothesis tested sequentially

is that a model performs equally well like the average of all (remaining) models or

equally like another selected model. Upon one-sided rejection against a particular

model, the latter is eliminated, and the sequence of tests is continued without it. The

sequence ends if no more model is eliminated in this way.
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A proper size of the test under a chosen level of confidence is established by

bootstrapping the variance of the test statistics. Since two versions of the test exist

based either on comparisons with the average or on pairwise comparison, we report

results of both alternatives in Table 5. We show the outcome for levels of confidence

(its complement being denoted the coverage probability) of 95, 90 and 80 percent.

Chosing a higher level of confidence of the test means that one imposes a lower

error probability when eliminating models from the confidence set. Hence, the model

confidence set tends to be larger when insisting on a higher confidence level. As can

be seen, for the raw data, results are uniform under both versions of the test and

for all levels of significance: The only member of the model confidence set is Franke

and Westerhoff I. For the logarithmic misalignments, there is more variation. Under

the comparison with the average seven models and all the specifications from sec.

3 remain in the model confidence set. Note that the random walk is not included

indicating that we can be confident that there is some structure, but since also the

linear model is not eliminated, we cannot be sufficiently confident in the prevalence of

nonlinear structure. However, under a sequence of pair-wise tests a confidence level

of 90 percent or lower favors again Franke/Westerhoff I while at the 95 percent level

six models including the linear to cubic specifications from sec. 3 are not eliminated.

8 Conclusion

In this paper a large selection of representative models from the behavioral literature

on asset pricing with heterogeneous expectations has been estimated and compared.

Typically, the models under scrutiny lead to complex nonlinear dynamic processes

characterizing the asset price valuation. While no explicit results on the asymptotic
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consistency and efficiency of maximum likelihood are available for any of the models

as they stand, recent results in the mathematical literature suggest that maximum

likelihood is more generally applicable (i.e, consistent) for nonlinear and chaotic pro-

cesses than previously thought.

This broad estimation exercise was motivated by recent findings of the misalign-

ment of the S&P 500 index in comparison with Robert Shiller’s ex-post fundamental

value. While all models considered here can potentially explain such bi-modality, at

their estimated parameters they often display different behavior and contribute rel-

atively little to the explanation of this new stylized fact. The major exception from

this rather disappointing finding is the model proposed by Franke and Westerhoff

(2012).

Estimating the model confidence set following the methodolody of Hansen et al.

(2011) provides the following insights:

(i) in all settings, a simple random walk can be excluded from the model confidence

set. Hence, we can safely state that at the chosen significance level the price

distortion of the S&P 500 contains some non-random factors that call for at least

a linear, if not non-linear structural model for its explanation. A linear model

of chartist/fundamentalist interaction as a candidate explanation or certain

nonlinear extensions of such a simple benchmark always survive in the model

confidence set.

(ii) if we consider the raw data, a much sharper result is obtained. In this case only

the Franke/Westerhoff model with noise in the excess demand function remains

in the model confidence set. Hence, we can say that it dominates all other

models at the chosen level of confidence. As a consequence, we would then have
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convinced ourselves that the non-random element of mispricing cannot be fully

captured by a linear model.

(iii) For the log distortion, the results are more muted and depend both on the

level of statistical confidence and the design of the process of estimation of

the model confidence set. With pair-wise comparisons, at all levels except the

highest level of significance, we again find the Franke/Westerhoff model to be

the only member of the model confidence set. However, when moving from the

90 percent to the 95 percent level of significance, a large number of additional

models remain in the model confidence set, including the linear benchmark. In

group comparisons a similarly large set is obtained at all levels of confidence

always also including the linear model. Hence, there is a weaker tendency here

towards superiority of Franke and Westerhoff.

In the large sets, only few models from our list are missing: The ones that are

always eliminated from the model confidence set are the catastrophe model of Zeeman

(1974) and the model by De Grauwe et al. (1993).

All in all, these results appear encouraging and should provide some incentive to

estimate and asses the explanatory power of some more candidates from the large zoo

of behavioral agent-based model of financial markets. As these models have various

building blocks that can be combined in many different ways, there might still be

alternatives that could more convincingly explain the bi-modality of price distortions.

One advantage that likely contributes to the relatively better performance of the

Franke/Westerhoff model is that it has two sources of noise and, hence, is closer to a

stochastic volatility model than its competitors. However, since it would boil down

to a random walk in the absence of two heterogeneous groups of traders, the baseline
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chartist/fundamentalist dichotomy also seems an indisposable element of a succesful

model.
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Figure 1: S&P500 and ex-post rational price (left-hand side) and its distortion (dif-
ference between market index and ex-post rational price, right-hand side). The upper
panels show the original data, the lower panel depicts the log S&P500 versus the log
ex-post rational price. Shiller’s data set used here covers monthly records from 1871
through 2015.
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Figure 2: Shapes of the polynomial model estimates for chartists’ and fundamental-
ists’ excess demand.
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Figure 3: Estimation of Zeeman’s catastrophe model for the S&P500 distortion. The
upper panel shows the estimation results for the original data, the lower panel shows
results for the log distortion. For the log data, all three curves would have coincided
almost perfectly. In order to enhance visibility, the estimated models have been
shifted horizontically by constant factors.
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Figure 4: Estimation results for ‘first generation’ behavioural models with raw data.
The upper left-hand side shows the nonlinear excess demand function of Chiarella’s
model, the upper right-hand side the excess demand function in the two versions of
the model of Day and Huang. The lower panel displays the fraction of fundamentalists
as it evolves over the sample in De Grauwe et al (version I).
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Figure 5: Relative difference in the log likelihood values of the best-performing model
(Day and Huang II) against the other ’first generation’ models over the last 200
observations of the sample.
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Figure 6: Estimation results for the ‘first generation’ of behavioural models with
logarithmic data. Upper panels: Excess demand functions in the model of Chiarella
and Day and Huang. Lower panel: Fraction of fundamentalist in De Grauwe et al,
version I.
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Figure 7: Estimation results for raw data of the fraction of chartists in the models of
Brock and Hommes (BH), Gaunersdorfer and Hommes (GH) and Franke and West-
erhpff (FW). In the lower left-hand side, two alternative paths are displayed as the
filtering of the fractions of both groups can lead to different outcomes in this model.
We have always added the log distortion to enable comparison of the population
dynamics with historical phases of the S&P 500.
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Figure 8: Price predictions and relative log-likelihood values of FW I against the
alternatives FW II and BH II. Parameter estimates are obtained on the base of the
original price data.
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Figure 9: Estimation results for logarithmic data. Estimated fractions of chartists
in the models of Brock and Hommes, Gaunersdorfer and Hommes and Fanke and
Westerhoff. The lower left-hand side shows again two alternative filtered time series
as different results are obtained in this case for different initialisations of the particle
filter.
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Figure 10: Log-likelihood differences of FW I against the alternative models FW II
and BH II for logarithmic data.

52



T
ab

le
1:

S
im

p
le

B
en
ch
m
ar
k
M
o
d
el
s
of

C
h
ar
ti
st
s
an

d
F
u
n
d
am

en
ta
li
st
s

ra
w

d
a
ta

ch
ar
ti
st
s

fu
n
d
am

en
ta
li
st
s

σ
ǫ

M
L

b 1
b 2

b 3
a
1

a
2

a
3

M
o
d
el

0
(r
an

d
om

w
al
k
)

22
.8
52

-7
89

5.
30

4
(5
8.
92

8)

M
o
d
el

1
(l
in
ea
r)

0.
21

1
0.
00

3
22

.3
40

-7
85

5.
92

5
(8
.9
15

)
(1
.3
38

)
(0
.0
0)

M
o
d
el

2
(+

2n
d
o
rd
er
)

0.
23

7
7.
20

2e
-0
4

0.
00

5
-1
82

7e
-0
6

22
.2
80

-7
85

1.
24

5
(2
7.
85

1)
(7
.1
98

)
(1
.4
04

)
(0
.5
52

)
(0
.0
00

)

M
o
d
el

3
(+

3r
d
o
rd
er
)

0.
22

3
-9
.0
60

e-
07

2.
68

5e
-0
6

5.
44

2e
-0
9

22
.3
28

-7
85

5.
02

4
(1
9.
08

6)
(0
.9
83

)
(0
.0
01

)
(2
.4
11

)
(0
.0
00

)

M
o
d
el

4
(+

2n
d
an

d
3
rd

o
rd
er
)

0.
20

7
8.
82

0e
-0
4

3.
11

4e
-0
6

0.
01

9
7.
16

3e
-0
5

5.
89

5e
-0
8

22
.1
67

-7
84

3.
33

3
(1
7.
44

3)
(3
.7
03

)
(2
.1
98

)
(6
.8
90

)
(8
.2
92

)
(9
.7
48

)
(0
.0
00

)

lo
g
d
a
ta

M
o
d
el

0
(r
an

d
om

w
al
k
)

0.
04

1
30

80
.9
90

(5
8.
57

1)

M
o
d
el

1
(l
in
ea
r)

0.
27

6
0.
00

6
0.
03

9
31

51
.0
27

(1
1.
92

8)
(2
.5
33

)
(0
.0
00

)

M
o
d
el

2
(+

2n
d
o
rd
er
)

0.
27

9
0.
21

0
0.
01

6
0.
01

9
0.
03

9
31

55
.3
05

(1
2.
08

9)
(1
.2
81

)
(3
.5
08

)
(2
.4
31

)
(0
.0
00

)

M
o
d
el

3
(+

3r
d
o
rd
er
)

0.
28

9
-0
.5
22

0.
00

3
0.
01

1
0.
03

9
31

51
.9
72

(1
1.
03

6)
(0
.0
68

)
(0
.5
67

)
(1
.0
36

)
(0
.0
00

)

M
o
d
el

4
(+

2n
d
an

d
3
rd

o
rd
er
)

0.
30

4
0.
20

7
-0
.0
83

0.
00

9
0.
06

3
0.
08

3
0.
03

9
31

67
.0
15

(1
1.
28

9)
(1
.2
51

)
(1
.4
55

)
(1
.8
84

)
(4
.9
20

)
(4
.4
77

)
(0
.0
00

)

N
ot
e:

T
h
e
ta
b
le

sh
ow

s
p
ar
am

et
er

es
ti
m
at
es

w
it
h
t-
st
at
is
ti
cs

in
p
ar
en
th
es
es

fo
r
th
e
p
ol
y
n
om

ia
l
ap

p
ro
x
im

at
io
n
of

a
n
on

li
n
ea
r
ch
ar
ti
st
s/
fu
n
d
am

en
ta
li
st
s
m
o
d
el

sp
ec
ifi
ed

in
eq
s.

(1
)
to

(4
).

U
n
d
er

li
ke
li
h
o
o
d
ra
ti
o
te
st
s,
al
l
ri
ch
er

m
o
d
el
s

d
o
si
gn

ifi
ca
n
tl
y
ou

tp
er
fo
rm

th
e
re
st
ri
ct
ed

m
o
d
el
s
th
at

ar
e
n
es
te
d
in

th
em

.

53



Table 2: Estimation of Zeeman model

raw data
α - - -9.447

- - (0.000)
β - - 16.761

- - (0.000)
λ - 244.131 589.776

- (38.119) (0.000)
σ - 123.700 128.479

- (55.445) (0.000)
σz 20.643 10.308 6.809

(57.501) (27.665) (0.000)
lkl -7794.632 -12174.473 -10928.893
δ - -16425.109
log data
α - - 0.000

- - (0.088)
β - - -0.002

- - (-0.265)
λ - 0.211 0.204

- (3.083) (2.385)
σ - 3.163 6.196

- (8.291) (4.456)
σz 0.039 0.039 0.006

(56.143) (56.286) (4.619)
lkl 3116.633 3120.483 3120.533
δ - 1.5 ∗ 10−8

Note: The table presents parameter estimates for Zeeman’s model and simpler models.
Cardan’s discriminant δ indicates wether the system exhibit multi-modality (δ < 0)
or uni-modality (δ > 0). Number in brackets give the t-statistics of the parameter
estimates.

54



Table 3: Estimation results for ‘first generation’ models

raw data
Day and Huang I: Noise in demand function

a b d1 d2 m1 m2 σǫ

estim. 3.417 3.229 0.006 0.002 -439.265 1193.440 22.656
t-stat (0.001) (0.001) (0.001) (0.001) (-0.444) (22.178) (90.844)
lkl = -7880.276
Day and Huang II: Noise in perception of fundamental
estim. 6.595 0.019 0.017 0.594 -439.265 15309.191 341614.080
t-stat . . . . . . .
lkl = -7461.622
Chiarella

a b c σǫ

estim. 0.003 30.332 0.008 22.330
t-stat (2.840) (3.231) (2.568) (81.936)
lkl = -7855.213
De Grauwe et al. I: Noise in demand function

a b d σǫ

estim. -160.098 -0.004 128.344 22.847
t-stat (-0-046) (-0.614) (0.038) (86.054)
lkl = -7894.997
De Grauwe et al. II: Noise in perception of fundamentals
estim. 0.001 -2.215 0.000 18352.908
t-stat (0.784) . . (0.783)
lkl = -7895.184
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Table 3: Continued

log data
Day and Huang I

a b d1 d2 m1 m2 σǫ

estim. 0.074 0.082 0.459 0.197 -0.681 0.976 0.041
t-stat (0.355) (0.377) (0.461) (0.485) (-7.332) (8.602) (50.996)
lkl = 3099.589
Day and Huang II
estim. 0.000 -0.001 9.582 7.366 -0.970 1.198 29.877
t-stat (0.078) (-0.327) (0.431) (0.421) (-1.139) (1.624) (0.328)
lkl = 3142.390
Chiarella

a b c σǫ

estim. 0.007 0.103 2.801 0.039
t-stat (2.504) (1.708) (1.485) (66.219)
lkl = 3151.499
De Grauwe I

a b c σǫ

estim. 0.004 98.645 0.002 0.041
t-stat (0.785) (0.001) (0.001) (58.367)
lkl = 3083.116
De Grauwe II
estim. 0.004 -0.336 0.000 9.381
t-stat (1.244) . . (1.232)
lkl = 3082.361

Note: The table presents parameter estimates, t-statistics and the maximized like-
lihood for the models by Day and Huang (1990), Chiarella (1992) and De Grauwe
et al. (1993)

.
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Table 5: Model Confidence Sets

Test statistics ti◦

Coverage prob. Raw data Log data

0.2 Franke/Westerhoff I

Linear, Square, Cubic,
Square+Cubic, Day/Huang II,
Chiarella, Brock/Hommes II,
Gau/Hommes II,
Franke/Wester I, Lux

0.1 Franke/Westerhoff I

Linear, Square, Cubic,
Square+Cubic, Day/Huang II,
Chiarella, Brock/Hommes II,
Gau/Hommes II,
Franke/Wester I, Lux

0.05 Franke/Westerhoff I

Linear, Square, Cubic,
Square+Cubic, Day/Huang II,
Chiarella, Brock/Hommes II,
Gau/Hommes II,
Franke/Wester I,
Franke/Wester II, Lux

Test statistics tij

Coverage prob. Raw data Log data

0.2 Franke/Westerhoff I Franke/Westerhoff I

0.1 Franke/Westerhoff I Franke/Westerhoff I

0.05 Franke/Westerhoff I

Linear, Square, Cubic,
Square+Cubic,
Chiarella, Brock/Hommes II,
Gau/Hommes II,
Franke/Wester I,
Franke/Wester II, Lux

Note: The table shows the model confidence sets obtained under different specifi-
cations of the sequential test algorithm of Hansen et al. (2011) and under different
coverage probabilities. ti◦ and tij denote tests based on comparison of single models
with the average of all models and pairwise comparisons, respectively.
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