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Identifying the discount factor in dynamic
discrete choice models

Jaap H. Abbring
Department of Econometrics & OR, Tilburg University and CEPR

Øystein Daljord
Booth School of Business, University of Chicago

Empirical research often cites observed choice responses to variation that shifts
expected discounted future utilities, but not current utilities, as an intuitive source
of information on time preferences. We study the identification of dynamic dis-
crete choice models under such economically motivated exclusion restrictions on
primitive utilities. We show that each exclusion restriction leads to an easily in-
terpretable moment condition with the discount factor as the only unknown pa-
rameter. The identified set of discount factors that solves this condition is finite,
but not necessarily a singleton. Consequently, in contrast to common intuition,
an exclusion restriction does not in general give point identification. Finally, we
show that exclusion restrictions have nontrivial empirical content: The implied
moment conditions impose restrictions on choices that are absent from the un-
constrained model.
Keywords. Discount factor, dynamic discrete choice, empirical content, identifi-
cation.

JEL classification. C25, C61.

1. Introduction

Identification of the discount factor in dynamic discrete choice models is crucial for
their application to the evaluation of agents’ responses to dynamic interventions. It is,
however, well known that the discount factor is not identified from choice data without
further restrictions (Rust (1994, Lemma 3.3) and Magnac and Thesmar (2002, Propo-
sition 2)). Consequently, empirical researchers usually fix the discount factor at some
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a priori plausible value, for example, 0�95, or impose ad hoc functional form assump-
tions that allow it to be identified and estimated. These approaches solve the identifica-
tion problem, but often lack economic justification. Inferring the time preferences in the
specific context of an application is important as discount factors have been estimated
to vary substantially across choice contexts and populations (Frederick, Loewenstein,
and O’Donoghue (2002)).1

In this paper, we explore identification from observed choice responses to variation
that shifts expected discounted future utilities, but not current utilities. Such variation
is commonly cited in applications as an intuitive source of information on time pref-
erences. For example, in studies of green technology adoption, Bollinger (2015) and
De Groote and Verboven (2019) argued that firms’ and households’ current choice re-
sponses to regulation that shifts their future expenses, but not their current expenses,
are informative about discount factors. In a study of demand for game consoles, Lee
(2013) assumed that the discount factor is identified from variation in the expected qual-
ity of future releases, which shifts future values without affecting current payoffs. In an
application to cell phone plan choice, Yao, Mela, Chiang, and Chen (2012) argued in-
formally that utilities can be identified in a terminal period when the choice problem
is static. The discount factor can subsequently be identified from choices in the next to
last period. Chung, Steenburgh, and Sudhir (2014) appealed to Yao et al.’s (2012) idea in
a study of salesforce compensation plans. We give further examples from the literature
in Section 3.5.

In Section 3, we formalize the intuition in these studies as an exclusion restriction on
primitive utilities. We first consider a stationary model with infinite horizon (introduced
in Section 2). We prove that, in contrast to common intuition, an exclusion restriction on
primitive utilities does not generally point identify the discount factor. It does however
narrow the identified set—the set of observationally equivalent discount factors—to a
discrete and, if we exclude values near one, finite set. This set contains the solutions to a
moment condition that only involves the discount factor and that has a straightforward
interpretation in terms of choice responses to variation in expected discounted future
utilities. The moment condition can be used directly in estimation, independently of
the rest of the model parameters.

We subsequently provide a finite upper bound on the number of discount factors in
the identified set for the case in which the states display finite dependence, as defined
by Arcidiacono and Miller (2011, 2020). Examples include optimal stopping and renewal
problems, which we show to be point identified.

We extend our analysis to nonstationary models with finite horizons, which are com-
monly used in labor applications (Eckstein and Wolpin (1989) and Keane and Wolpin
(1997) are early examples). We show that, with exclusion restrictions, the discount fac-
tor is generally identified up to a finite set in these models.

In Section 4, we explore the empirical content of exclusion restrictions. Magnac and
Thesmar’s Proposition 2 implies that dynamic discrete choice models without exclusion

1Frederick, Loewenstein, and O’Donoghue also showed that geometric discounting is often rejected in
data in favor of present biased time preferences. We study the identification and estimation of hyperbolic
discount functions in Abbring, Daljord, and Iskhakov (2018).
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restrictions cannot be falsified with data on choices and states. In that sense, the mod-
els have no empirical content. We show that exclusion restrictions impose nontrivial
restrictions on the data, which can be tested.

Finally, in Section 5, we argue that common intuition often supports multiple exclu-
sion restrictions, which imply multiple moment conditions. These moment conditions
share the true discount factor (if one exists that rationalizes the data) as one solution,
but may individually have more solutions. We discuss how standard (set) estimators can
be applied to this case.

This paper’s main contribution is to provide a simple and intuitively appealing anal-
ysis of identification of the discount factor in dynamic discrete choice models under
economically motivated exclusion restrictions. Our analysis complements a substantial
literature in econometrics (see Rust (1994) and Abbring (2010), for reviews). Magnac and
Thesmar’s Proposition 4 established point identification based on a different type of ex-
clusion restriction than ours: the existence of a pair of states that affects, in some specific
way, expected discounted future utilities, but not the “current value,” which is a differ-
ence in expected discounted utilities between two particular choice sequences. This is a
high level exclusion restriction that is difficult to interpret and hard to verify in applica-
tions. In particular, unlike our exclusion restriction, it does not formalize the common
intuition that is given in applications like those discussed above. Empirical applications
often incorrectly cite Magnac and Thesmar’s result as one for an exclusion restriction
on primitive utility. For example, in a study of housing location choice, Bayer, McMillan,
Murphy, and Timmins (2016, p. 921) wrote

Magnac and Thesmar (2002) . . . showed that dynamic models are identified with an ap-
propriate exclusion restriction—in particular, a variable that shifts expectations but not
current utility. In the context of our framework, lagged amenities provide exactly this sort
of exclusion restriction: while current utility depends on the current level of the amenities
provided in a neighborhood, lagged amenity levels help predict how amenities will evolve
going forward, and thus contribute to expectations about the future utility associated with
that choice of neighborhood.

We show how Bayer, McMillan, Murphy, and Timmins’s exclusion restriction can be used
to set identify and estimate the discount factor, even if it is insufficient for point identi-
fication.2

Magnac and Thesmar’s identification result relies on a rank condition that ensures
sufficient variation in expected discounted future utilities. This rank condition does not
suffice for point identification with our exclusion restriction on primitive utilities. We do
however use natural extensions of this condition to ensure local identification of myopic
preferences, which is needed for our discrete set identification result.

Magnac and Thesmar’s Proposition 2 implies that, without further restrictions, not
only the discount factor, but also the utility of one reference choice can be normalized
without restricting the observed choice and transition probabilities. Intuitively, discrete
choices only identify utility contrasts, not levels. However, counterfactual choice prob-
abilities, which are often the objects of interest in dynamic discrete choice analysis,
are generally not invariant to the choice of reference utility (Norets and Tang (2014),

2We thank John Rust for this example.
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Kalouptsidi, Scott, and Souza-Rodrigues (2017)). This suggests that we do not only treat
the discount factor, but also the utility of the reference choice as a free parameter that
should be determined from data. Indeed, we view the identification of the reference util-
ity as an important, but separate problem from the identification of the discount factor.
For expositional convenience, we derive our main results under the normalization that
the reference utility equals zero. In the Appendix, we show that our results straightfor-
wardly extend to the case in which the reference utility is known up to a constant shift.

We emphasize that the idea of using exclusion restrictions to identify time prefer-
ences in choice models is not ours, but has circulated in the literature for a while. One
early example is Chevalier and Goolsbee (2009), which studied demand for textbooks.
Its choice model implicitly excluded the expected future resale price of a textbook from
the current period pay-off to identify a discount factor. Fang and Wang (2015) explicitly
proposed the use of exclusion restrictions similar to ours to identify a dynamic discrete
choice model with partially naive hyperbolic time preferences. In Abbring and Daljord
(forthcoming), we argued that Fang and Wang’s main generic identification result has no
implications for the identification of the model with hyperbolic discounting or its spe-
cial case with geometric discounting, which we study. In any case, our approach is differ-
ent: We isolate the specific empirical implications of the exclusion restrictions, whereas
Fang and Wang studied their model as a general system of nonlinear equations, using
results from differential topology.

Komarova, Sanches, Silva Junior, and Srisuma (2018) showed point identification of
the discount factor under parametric assumptions on the utility function in a model
like ours, but without exclusion restrictions. Norets and Tang demonstrated that in a
model with parametric utility, point identification is lost to set identification when the
distribution of unobservables is allowed to deviate from a known one, such as the type-
1 extreme value specification that underlies logit choice probabilities. Without any re-
strictions on the distribution of unobservables beyond conditional independence and
absolute continuity, all identification of the discount factor is lost, that is, the identi-
fied set of discount factors is the unit interval. We instead focus on identification for a
nonparametric utility function under economically motivated exclusion restrictions. We
map each exclusion restriction to an easily interpretable and computable moment con-
dition that directly informs the identification and estimation of the discount factor, and
the model’s empirical content.

2. Model

Consider a stationary dynamic discrete choice model (e.g., Rust (1994)). Time is dis-
crete with an infinite horizon.3 In each period, agents first observe state variables x

and ε, where x takes discrete values in X = {x1� � � � � xJ} and ε = {ε1� � � � � εK} is contin-
uously distributed on R

K ; for J�K ≥ 2. Then they choose d from the set of alternatives
D = {1�2� � � � �K} and collect utility ud(x�ε) = u∗

d(x) + εd . Finally, they move to the next
period with new state variables x′ and ε′ drawn from a Markov transition distribution

3Section 3.6 considers an extension to a nonstationary model with a finite horizon.



Quantitative Economics 11 (2020) Identifying the discount factor 475

controlled by d. We assume that a version of Rust’s (1987) conditional independence
assumption holds. Specifically, x′ is drawn independently of ε from the transition distri-
bution Qk(·|x) for any choice k ∈ D; and ε1� � � � � εK are independently drawn from mean
zero type-1 extreme value distributions.4 Agents maximize the rationally expected utility
flow discounted with factor β ∈ [0�1).

Each choice d equals the option k that maximizes the choice-specific expected dis-
counted utility (or, simply, “value”) vk(x�ε). The additive separability of uk(x�ε) and
conditional independence imply that vk(x�ε) = v∗

k(x)+ εk, with v∗
k the unique solution

to

v∗
k(x) = u∗

k(x)+βE
[

max
k′∈D

{
v∗
k′

(
x′) + ε′

k′
} ∣∣ d = k�x

]

= u∗
k(x)+β

∫
E

[
max
k′∈D

{
v∗
k′(x̃)+ ε′

k′
}]
dQk(x̃|x) (1)

for all k ∈ D. Here, for each given x̃ ∈ X ,

E

[
max
k′∈D

{
v∗
k′(x̃)+ ε′

k′
}] = ln

( ∑
k′∈D

exp
(
v∗
k′(x̃)

))
(2)

is the McFadden surplus for the choice among k′ ∈ D with utilities v∗
k′(x̃)+ ε′

k′ .
Suppose we have data on choices d and state variables x that allow us to determine

Qk(·|x̃) and the choice probabilities pk(x̃) = Pr(d = k|x= x̃) for all k ∈ D and x̃ ∈ X . The
model is point identified if and only if we can uniquely determine its primitives from
these data. As we discuss in Section 4, a version of Magnac and Thesmar’s Proposition 2
holds: There exist unique (up to a standard utility normalization) values of the primitives
that rationalize the data for any given discount factor β ∈ [0�1). We therefore focus our
identification analysis on β.

The choice probabilities are fully determined by

ln
(
pk(x̃)

) − ln
(
pK(x̃)

) = v∗
k(x̃)− v∗

K(x̃)� k ∈ D/{K}� x̃ ∈ X � (3)

The transition probabilities Qk(·|x̃), the value contrasts v∗
k(x̃)− v∗

K(x̃) for k ∈ D/{K} and
x̃ ∈ X therefore capture all the model’s implications for the data. Hotz and Miller (1993)
pointed out that (3) can be inverted to identify the value contrasts from the choice prob-
abilities. To use this, we first rewrite (1) as

v∗
k(x) = u∗

k(x)+β

∫ (
m(x̃)+ v∗

K(x̃)
)
dQk(x̃|x)� (4)

where, for given x̃ ∈ X , m(x̃) = E[maxk′∈D{v∗
k′(x̃) − v∗

K(x̃) + ε′
k′ }] is the “excess surplus”

(over v∗
K(x̃)), the McFadden surplus for the choice among k′ ∈ D with utilities v∗

k′(x̃) −
v∗
K(x̃)+ ε′

k′ . By (2) and (3), it follows that m(x̃) = − ln(pK(x̃)).

4Magnac and Thesmar showed that the distribution of ε cannot be identified and took it to be known.
Our type-1 extreme value assumption leads to the canonical multinomial logit case. Our results extend
directly to any other known, continuous distribution on R

K .
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3. Identification

Let vk, pk, uk, and m be J×1 vectors with jth elements v∗
k(xj), pk(xj), u∗

k(xj), and m(xj),
respectively. Let Qk be the J × J matrix with (j� j′)th entry Qk(xj′ |xj) and I be a J × J

identity matrix. Note that the J×1 vector m+vK stacks the McFadden surpluses in (2). In
this notation, the data are {pk�Qk;k ∈ D} and directly identify m = − ln pK (Arcidiacono
and Miller (2011, Lemma 1 and Section 3.3)).

3.1 Magnac and Thesmar’s result

We can rewrite (4) as v∗
k(x) = u∗

k(x)+βQk(x)[m + vK], where Qk(xj) is the jth row of Qk.
Subtracting the same expression for v∗

K(x), rearranging, and substituting (3), we get

ln
(
pk(x)

) − ln
(
pK(x)

) = β
[
Qk(x)− QK(x)

]
m +Uk(x)� (5)

where Uk(x) = u∗
k(x)− u∗

K(x)+β[Qk(x)− QK(x)]vK is Magnac and Thesmar’s “current
value” of choice k in state x. Its Proposition 4 assumes the existence of a known option
k ∈ D/{K} and a known pair of states x̃1� x̃2 ∈ X such that x̃1 �= x̃2 and Uk(x̃1) = Uk(x̃2).
Under this exclusion restriction, differencing (5) evaluated at x̃1 and x̃2 yields

ln
(
pk(x̃1)/pK(x̃1)

) − ln
(
pk(x̃2)/pK(x̃2)

)
= β

[
Qk(x̃1)− QK(x̃1)− Qk(x̃2)+ QK(x̃2)

]
m� (6)

Given the choice and transition probabilities, the left-hand side of (6) is a known scalar
and its right-hand side is a known linear function of β. Therefore, provided that Magnac
and Thesmar’s rank condition

[
Qk(x̃1)− QK(x̃1)− Qk(x̃2)+ QK(x̃2)

]
m �= 0 (7)

holds, moment condition (6) uniquely determines β in terms of the choice data.
This identification argument can be interpreted in terms of an experiment that shifts

the expected excess surplus contrast [Qk(x)− QK(x)]m by changing the state x from x̃2

to x̃1, while keeping the current value Uk(x̃1) = Uk(x̃2) constant. The discount factor
is the per unit effect of that observed shift on the observed log choice probability ratio
ln(pk(x)/pK(x)).

A shift in the expectation contrast Qk(x)− QK(x) does not suffice for identification.
For example, suppose that the exclusion restriction holds for some x̃1� x̃2 ∈ X , but that
the excess surplus m(x1) = · · · = m(xJ) is constant, so that the expected excess surplus
contrast [Qk(x) − QK(x)]m = 0. Then a shift in the expectation contrast does not shift
the expected excess surplus contrast, and hence does not change the decision problem.
Consequently, this shift is not informative on β and Magnac and Thesmar’s rank condi-
tion (7) fails.

Rank condition (7) has a meaningful interpretation and is verifiable in data. The ex-
clusion restriction Uk(x̃1) = Uk(x̃2), however, is more problematic, because it imposes
opaque conditions on the primitives that are hard to verify in applications. The current
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values depend on both current utilities and discounted expected future values. Specifi-
cally, they involve elements of vK , which by (4) equals

vK = [I −βQK]−1[uK +βQKm]� (8)

The current value is in fact a value contrast between two sequences of choices: choose
k now, K in the next period, and choose optimally ever after, relative to choose K now,
K in the next period, and choose optimally ever after. Because this particular value con-
trast does not correspond to common economic choice sequences, the applied value of
Magnac and Thesmar’s restriction is limited. It is hard to think of naturally occurring
experiments that shift the expected contrasts in excess surplus, that is, satisfy the rank
condition, without also shifting the current value and consequently violating the exclu-
sion restriction, except for special cases. Indeed, the intuitive identification arguments
in the Introduction’s empirical examples do not involve current values, but exclusion
restrictions on primitive utility.

3.2 An exclusion restriction on primitive utility

Like Magnac and Thesmar, we start with (5) or, equivalently,

ln pk − ln pK = β[Qk − QK][m + vK] + uk − uK� (9)

Instead of controlling the contribution of vK to the right-hand side with an exclusion
restriction on the current value, we exploit that it can be expressed in terms of the model
primitives. Substituting (8) in (9) and rearranging gives

ln pk − ln pK = β[Qk − QK][I −βQK]−1[m + uK] + uk − uK� (10)

Intuition from static discrete choice analysis and Magnac and Thesmar’s results for dy-
namic models suggest that, for identification, we need to fix utility in one reference alter-
native, say uK . Intuitively, choices only depend on, and thus inform about, utility con-
trasts. Thus, following, for example, Fang and Wang and Bajari, Chernozhukov, Hong,
and Nekipelov (2015), we set uK = 0.5 This normalization cannot be refuted by data
without further restrictions (see Section 4). Despite this lack of empirical content, it is
not completely innocuous, as it may affect the model’s counterfactual predictions (see,
e.g., Norets and Tang’s Lemma 2 and Kalouptsidi, Scott, and Souza-Rodrigues). In the
Appendix, we demonstrate that our analysis applies without change to the case in which
u∗
K(x) is constant, but not necessarily zero, and can straightforwardly be extended to the

case in which u∗
K(x) is known up to a constant shift, but not necessarily constant. Thus,

our analysis of the identification of the discount factor complements identification re-
sults for the reference utility u∗

K .6

5Note that this normalization does not collapse Magnac and Thesmar’s exclusion restriction on current
values to an easily interpretable restriction on primitives.

6Chou (2015) recently provided identification results for dynamic discrete choice models without a nor-
malization of u∗

K . Chou’s results for the stationary model that we study here take the discount factor to be
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Now suppose that we know the value of u∗
k(x̃1) − u∗

l (x̃2) for some known choices
k ∈ D/{K} and l ∈ D and known states x̃1 ∈ X and x̃2 ∈ X ; with either k �= l, x̃1 �= x̃2, or
both. For expositional convenience only (see the Appendix for the general case), we take
this known value to be zero, and simply focus on the exclusion restriction

u∗
k(x̃1) = u∗

l (x̃2)� (11)

An advantage of this exclusion restriction over Magnac and Thesmar’s current value re-
striction is that it is a direct constraint on primitive utility with a clear economic inter-
pretation. It also extends Magnac and Thesmar by allowing for restrictions on primitive
utilities across combinations of choices and states.

3.3 The identified set

Under exclusion restriction (11), we can difference (10) to implicitly relate β to the
choice data (the choice and transition probabilities), without reference to any other un-
known parameters (the utilities):

ln
(
pk(x̃1)/pK(x̃1)

) − ln
(
pl(x̃2)/pK(x̃2)

)
= β

[
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

][I −βQK]−1m� (12)

For any discount factor that solves (12), unique primitive utilities can be found that ra-
tionalize the choice data, and these utilities satisfy exclusion restriction (11).7 So, with-
out further assumptions or data, moment condition (12) contains all the information
about the discount factor in the choice data under exclusion restriction (11) and can be
used directly for its identification and estimation.8,9

Unlike the right-hand side of (6), the right-hand side of (12) is not linear in β. Nev-
ertheless, given data on transition and choice probabilities, it is a well-behaved, known
function of β. It is therefore easy to characterize the identified set B of values of β ∈ [0�1)
that equate it to the known left-hand side of (12).

Theorem 1. Suppose that the exclusion restriction in (11) holds for some k ∈ D/{K},
l ∈ D, x̃1 ∈ X , and x̃2 ∈ X ; with either k �= l, x̃1 �= x̃2, or both. Moreover, suppose that either

known. Chou’s Propositions 3, 7, and 8 for a nonstationary model like the one we study in Section 3.6 pro-
vide high-level sufficient conditions for point identification, whereas we focus on set identification under
intuitive conditions. A general difference is that we emphasize the economic interpretation of the identify-
ing conditions and that we provide results on their empirical content.

7The argument in Section 4, which establishes a version of Magnac and Thesmar’s Proposition 2, im-
plies that the utilities that rationalize the choice data for a given discount factor solve (10) for uk. It follows
straightforwardly that they satisfy (11) whenever (12) holds.

8Additional exclusion restrictions (as in Section 5) and functional form assumptions on the utility func-
tions may provide further information on the discount factor. After all, the utilities that rationalize the
choice data for a discount factor that solves (12) may not satisfy these additional constraints.

9Similarly, moment condition (6) contains all the information about the discount factor under Magnac
and Thesmar’s exclusion restriction on current values.
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the left-hand side of (12) is nonzero (i.e., pk(x̃1)/pK(x̃1) �= pl(x̃2)/pK(x̃2)) or a general-
ization of Magnac and Thesmar’s rank condition (7) holds:[

Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)
]
m �= 0� (13)

Then, the identified set B is a closed discrete subset of [0�1).

Proof. We need to show that, under the stated conditions, B ⊆ [0�1) has no limit points
in [0�1). First note that [I −βQK]−1 exists for β ∈ (−1�1) and equals

I +βQK +β2Q2
K + · · · � (14)

This is trivial for β = 0. If |β| ∈ (0�1), it follows from the facts that |β−1| > 1 and that
QK is a Markov transition matrix, with eigenvalues no larger than 1 in absolute value.
Consequently, the determinant of QK − β−1I is nonzero, so that I − βQK is invertible
and the power series in (14) converges.

It follows that, for given choice and transition probabilities, the right-hand side of
(12) minus its left-hand side is a real-valued power series in β that converges on (−1�1).
Denote the function of β this defines with f : (−1�1) → R. Corollary 1.2.4 in Krantz and
Parks (2002) ensures that f is real analytic.

Denote B∗ = {β ∈ (−1�1) | f (β) = 0}. Note that B = B∗ ∩ [0�1). First, suppose that f
has no zeros (B∗ = ∅). Then B = ∅ has no limit point in [0�1).

Finally, suppose that f has at least one zero (B∗ �= ∅). Then f cannot be constant (and
thus equal zero) under the stated conditions: If the left-hand side of (12) is nonzero then,
because its right-hand side equals zero at β = 0, f (0) is nonzero; if rank condition (13)
holds, then the derivative of the right-hand side of (12) at β = 0 and, therefore of f at 0,
is nonzero. Because f is a nonconstant real-analytic function, its zero set B∗ has no limit
point in (−1�1) (Krantz and Parks, Corollary 1.2.7). Because B = B∗ ∩ [0�1), this implies
that B has no limit point in [0�1).

Under the conditions of Theorem 1, each β ∈ [0�1) that is consistent with (12) is
an isolated point in [0�1) and thus locally identified. Note that β = 1 is excluded from
the model to ensure convergence of the discounted utility flows. Theorem 1 does not
exclude that 1 is a limit point of the identified set. So, the identified set may contain
countably many discount factors near 1. However, because a closed discrete set is finite
on compact subsets, only finitely many discount factors in the identified set lie outside
a neighborhood of 1.

Corollary 1. Under the conditions of Theorem 1, B ∩ [0�1 − ε] is finite for 0 < ε< 1.

In many applications, one may be able to argue against discount factors that are
arbitrarily close to 1. Corollary 1 shows that, in such applications, it suffices to search for
the finite number of discount factors in a compact set [0�1 − ε] that solve (12), which is
computationally easy.

The right-hand side of (12) is the log choice probability difference implied by the
model with an exclusion restriction across choices k and l and states x̃1 and x̃2. From
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the proof of Theorem 1, we know it equals the discount factor β, which represents how
much the agent cares about the next period, multiplied by the sum of two terms that
capture how much relevant variation in next period’s expected discounted utility there
is for the agent to care about:

[
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

]
m (15)

and [
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

]
vK

= [
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

][
βQK +β2Q2

K + · · · ]m� (16)

The first term (15) does not depend on β. It is nonzero if the generalized rank condition
(13) holds. It corresponds to the leading, linear term in the right-hand side of (12), which
extends the right-hand side of Magnac and Thesmar’s (6) to the possibility of comparing
across distinct choices k and l.

The next section gives conditions under which the second term (16) vanishes. Sec-
tion 3.5 gives economic examples in which these conditions hold. If they hold, the right-
hand side of (12) is linear in β, so that (12) uniquely determines β under the generalized
rank condition (13).

In general, the second term (16) does not vanish and depends on β. Then the right-
hand side of (12) is not linear in β, but its derivative at β = 0 still equals the first term
(15).10 Therefore, if the generalized rank condition (13) holds, this derivative is nonzero
and myopic preferences (β = 0) are locally identified.11 In economic terms, the rank
condition ensures that there is variation in next period’s expected discounted utility for a
myopic agent to care about, so that only myopic preferences can explain a lack of choice
response. In Theorem 1, the rank condition excludes the trivial case that a zero choice
response is observed and the right-hand side of (12) equals zero for all β.

In the case that a zero choice response is observed, local identification of myopic
preferences does not rule out that the data are also consistent with some positive dis-
count factors, as there may be β ∈ (0�1) such that the sum of (15) and (16) is zero (i.e.,
there is no variation in next period’s expected discounted utility for the agent to care
about). These discount factors, if any, can easily be found by searching for the solutions
of (12). In particular, if the sum of (15) and (16) is nonzero for all β ∈ (0�1), only myopic
preferences can explain the lack of choice response.

More generally, rank condition (13) does not suffice for point identification of β. As
the next example demonstrates, the same observed choice response may arise from a
combination of a low β (little care about the next period) and a large absolute sum of
(15) and (16) (lots of variation in the next period to care about) and from a combination
of a high β and a small absolute sum of (15) and (16).

10The derivative corresponding to the second term (16) vanishes because choice K has zero value if the
agent is myopic.

11Here, β is locally identified at some β0 if β = β0 uniquely solves (12) in a neighborhood of β0. Rank
condition (13) is not necessary for local identification of β at zero; for that, higher order variation of the
right-hand side of (12) in β at zero would suffice (Sargan (1983)).
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Figure 1. Example in which the rank condition holds, but identification fails. Note: For J = 3
states, K = 2 choices, k = l = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left-hand side
of (6) and (12) (solid horizontal line) and the right-hand sides of (6) (dashed line), and (12)
(solid curve) as functions of β. The data are Q1(x1) = [0�25 0�25 0�50 ], Q1(x2) = [0�00 0�25 0�75 ],

QK =
⎡
⎢⎣0�90 0�00 0�10

0�00 0�90 0�10
0�00 1�00 0�00

⎤
⎥⎦, p1 =

⎡
⎢⎣0�50

0�49
0�10

⎤
⎥⎦, and pK =

⎡
⎢⎣0�50

0�51
0�90

⎤
⎥⎦. Consequently, the left-hand side of (6)

and (12) equals ln(p1(x1)/pK(x1))− ln(p1(x2)/pK(x2))= 0�0400. Moreover, m′ = [0�69 0�67 0�11 ]
and Q1(x1)−QK(x1)−Q1(x2)+QK(x2)= [−0�65 0�90 −0�25 ], so that the slope of the dashed line
equals [Q1(x1)− QK(x1)− Q1(x2)+ QK(x2)]m = 0�1291. A unique value of β, 0�31, solves (6), but
two values of β solve (12): 0�34 and 0�95.

Example 1. Figure 1 plots the left-hand side of (6) and (12) (solid line) and the right-
hand sides of (6) (dashed line) and (12) (solid curve) for a specific example with K = 2
choices, k= l = 1, and J = 3 states. The example’s data satisfy the rank condition in (13).
Under the current value restriction, there is a unique discount factor that rationalizes
the data (the intersection of the solid and dashed lines). Under the primitive utility re-
striction, there are two discount factors that rationalize the same data (the intersections
of the solid line and curve).

Our next example shows that the rank condition in (13) is not necessary for point
identification either.

Example 2. Figure 2 presents an example in which (15) equals zero, so that the right-
hand side of (6) and the first (excess surplus) term in the right-hand side of (12) are
zero, but the second (value of choice K) term in the right-hand side of (12) is positive
and increasing with β. There exists exactly one β ∈ [0�1) that solves (12), despite the
violation of the rank condition.

Also note that there is no value of β that satisfies (6). Even though the data can be
rationalized by some specification of the model, they are not consistent with the current
value restriction. In other words, this restriction has empirical content. We return to this
point in Section 4.
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Figure 2. Example in which the rank condition fails, but the discount factor is identified. Note:
For J = 3 states, K = 2 choices, k = l = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left-hand
side of (6) and (12) (solid horizontal line) and the right-hand sides of (6) (dashed line) and (12)
(solid curve) as functions of β. The data are Q1(x1) = [0�00 0�25 0�75 ], Q1(x2) = [0�25 0�25 0�50 ],

QK =
⎡
⎢⎣0�00 1�00 0�00

0�00 1�00 0�00
0�00 0�00 1�00

⎤
⎥⎦, p1 =

⎡
⎢⎣0�50

0�48
0�50

⎤
⎥⎦, and pK =

⎡
⎢⎣0�50

0�52
0�50

⎤
⎥⎦. Consequently, the left-hand side of (6)

and (12) equals ln(p1(x1)/pK(x1))− ln(p1(x2)/pK(x2))= 0�0800. Moreover, m′ = [0�69 0�65 0�69 ]
and Q1(x1)− QK(x1)− Q1(x2)+ QK(x2)= [−0�25 0�00 0�25 ], so that the slope of the dashed line
equals [Q1(x1) − QK(x1) − Q1(x2) + QK(x2)]m = 0�0000. A unique value of β, 0�90, solves (12),
but (6) has no solution.

3.4 Finite dependence

Some of the examples in the next subsection display a variant of Arcidiacono and Miller’s
(2011) “finite dependence.” Finite dependence is a property of dynamic discrete choice
models that can considerably simplify estimation and is widely used in applications (see
Arcidiacono and Miller (2019) for references).

In our context, finite dependence implies that the moment condition is of finite and
known polynomial order. This order provides an upper bound on the number of solu-
tions for the discount factor in R and, therefore, in [0�1). For example, in the case with
k �= l = K, (16) reduces to

[
Qk(x̃1)− QK(x̃1)

]
vK = [

Qk(x̃1)− QK(x̃1)
][
βQK +β2Q2

K + · · · ]m� (17)

Suppose that Qk(x̃1)Qρ
K = QK(x̃1)Qρ

K for some ρ ∈ {1�2� � � �}. That is, the distribution
of the state ρ + 1 periods from now does not depend on whether the agent chooses k

or K now, provided that she follows up in both cases by choosing K in the next ρ pe-
riods (independently of whether this is optimal or not). Under this “single action (K)
ρ-period dependence” (Arcidiacono and Miller (2020)) on choices k and K in state x̃1,
Qk(x̃1)Qr

K = QK(x̃1)Qr
K for all r ∈ {ρ�ρ + 1� � � �}.12 Now assume that Theorem 1’s condi-

12Throughout, we focus on this special case of Arcidiacono and Miller’s (2011) finite dependence, which
turns out to be particularly powerful in our specific context.
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tions hold. If ρ= 1, the right-hand side of (17) equals zero, the current value

Uk(x̃1) = u∗
k(x̃1)+β

[
Qk(x̃1)− QK(x̃1)

]
vK = u∗

k(x̃1)�

the right-hand side of (12) is linear in β, and β is point identified. If instead ρ ≥ 2, then
the right-hand side of (17) equals

[
Qk(x̃1)− QK(x̃1)

][
βQK + · · · +βρ−1Qρ−1

K

]
m�

the right-hand side of (12) is a ρth order polynomial in β, and the identified set B holds
no more than ρ discount factors. This example straightforwardly extends to the general
exclusion restriction in (11), which we state without further proof.

Theorem 2. Suppose that the conditions of Theorem 1 hold and that {Qk;k ∈ D} satisfies
single action (K) ρ-period dependence on choices k and K in state x̃1,

Qk(x̃1)Qρ
K = QK(x̃1)Qρ

K�

and single action (K) ρ-period dependence on choices l and K in state x̃2,

Ql(x̃2)Qρ
K = QK(x̃2)Qρ

K�

for some ρ ∈ {1�2� � � �}. Then there are no more than ρ points in the identified set B.

Theorem 2 applies finite dependence to cancel differences in expected discounted
utilities across pairs of choices twice, once for each of the two states that appear in the
exclusion restriction. In the special case that the exclusion restriction concerns a com-
parison across states x̃1 and x̃2 for a given choice k = l, the right-hand side of (16) re-
duces to [

Qk(x̃1)− QK(x̃1)− Qk(x̃2)+ QK(x̃2)
][
βQK +β2Q2

K + · · · ]m� (18)

By Theorem 2, single action (K) ρ-period dependence on choices k and K in states x̃1

and x̃2 implies that the identified set contains at most ρ discount factors. If ρ = 1, then
both Uk(x̃1) = u∗(x̃1) and Uk(x̃2)= u∗(x̃2), (18) equals 0, and the discount factor is point
identified.

In this case with k= l, the consequent of Theorem 2 would also hold if, alternatively,

Qk(x̃1)Qρ
K = Qk(x̃2)Qρ

K and QK(x̃1)Qρ
K = QK(x̃2)Qρ

K�

for some ρ ∈ {1�2� � � �}. This is a form of single action (K) ρ-period dependence on the
initial state (instead of the initial choice) under, respectively, choices k and K. Under
one-period dependence on initial states x̃1 and x̃2, current values do not necessarily
reduce to primitive utilities, but it is still true that Uk(x̃1) − Uk(x̃2) = u∗

k(x̃1) − u∗
k(x̃2),

(18) equals 0, and the discount factor is point identified.
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3.5 Examples

Theorem 1 shows that the identified set of discount factors is discrete and, away from
one, finite, but does not establish point identification. Indeed, Example 1 demonstrated
that point identification may fail, even if rank condition (13) holds.

Our first two examples below (Examples 3 and 4) illustrate applications from the lit-
erature in which the exclusion restriction is plausibly met, but the discount factor is not
necessarily point identified. We then give two examples (Examples 5 and 6) of optimal
stopping problems with single action one-period dependence, which are point identi-
fied by Theorem 2. Finally, Example 7 demonstrates that single action one-period de-
pendence is not necessary for point identification. It is a labor supply model that does
not exhibit such one-period dependence, but in which monotonicity of the moment
condition in the discount factor gives point identification.

A number of empirical studies of demand for health care insured under Medicare
Part D base their identification on nonlinearities in the price schedules. Our first ex-
ample describes an empirical strategy from this literature in which the primitive utility
exclusion restriction seems plausibly met.

Example 3. As part of an informal identification argument, Finkelstein, Einav, and
Schrimpf (2015) observed that changes in purchase behavior around kinks in the price
of insurance are informative on time preferences. In the data, insurees pay 25% of ad-
ditional expenditures out of pocket as long as their total yearly expenditures range be-
tween $275 and $2510, but contribute 100% to all expenditures between $2510 and $5726.
A myopic insuree would change her spending only after her total spending hits $2510
and her out-of-pocket contributions increase. In contrast, a forward looking insuree
who is close to the kink late in the year would limit her spending before hitting the in-
crease in contributions. Changes in the propensity to spend toward the end of the year
for those close to the kink are therefore taken to be informative on the discount factor.

This argument can be represented as an exclusion restriction. Let x be the yearly
expenditure, a state controlled by the choice of filling prescriptions. The utility uk(x) of
a particular drug purchase k is assumed constant for two expenditure levels x̃1 < x̃2 in
[275�2510). Along with variation in expected future expenses because of the kinked price
schedule, the exclusion restriction gives set identification by Theorem 1.13

The next example is from Rossi (2018) which studied the effect of reward programs
on gasoline sales using a dynamic discrete choice model.

Example 4. In each period, a consumer can choose to buy gasoline (k = 1) or not
(k= K). Consumers accumulate reward points x by registering their gasoline purchases.
The accumulated points can be traded against nonpecuniary rewards at various point
thresholds x. Rossi observed that the purchase frequency is accelerating in the accumu-
lated points. By assuming that the current period payoff of a gasoline purchase at any

13Dalton, Gowrisankaran, and Town (forthcoming) used a similar argument to identify salience and my-
opia in a dynamic discrete choice model with parametric utility applied to Medicare Part D data.
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price ỹ is independent of the accumulated points, that is, that uk(ỹ� x̃1) = uk(ỹ� x̃2) for
all ỹ and x̃1� x̃2 ∈ [0�x), the purchase acceleration is informative on the discount fac-
tor. The closer the consumer is to qualify for a given reward, the less the future reward
is discounted. This makes a current purchase more attractive and predicts a purchase
frequency that is increasing in the reward points.

We next turn to optimal stopping problems. The first example is the bus engine re-
placement problem of Rust (1987). Though the plausibility of the exclusion restriction
is questionable in this particular application, it illustrates how one-period dependence
gives point identification in a well-known application of an optimal stopping model.

Example 5. Rust (1987) studied Harold Zurcher’s management of a fleet of (indepen-
dent) buses. In each period, Zurcher can either operate a bus as usual (d = 1) or renew
its engine (d =K = 2). The payoff from operating the bus as usual depend on its mileage
x since last renewal, which both Zurcher and Rust observe, and an additive and inde-
pendent shock. Renewal incurs a cost that is independent of mileage and resets mileage
to x1 = 0:

QK =
⎡
⎢⎣

1 · · · 0 0
���

���
���

1 · · · 0 0

⎤
⎥⎦ �

In terms of Section 3.4’s finite dependence, mileage is single action (K) one-period de-
pendent on both initial mileage and the initial renewal choice. Consequently, Zurcher’s
expected discounted payoffs from renewal do not depend on mileage. In particular,
with our normalization uK = 0, v∗

K(x̃) = β(m(x1) + v∗
K(x1)) for all x̃ ∈ X . Since v∗

K(x̃)

does not vary with x̃, [Q1 − QK]vK = 0, and U1(x̃) = u∗
1(x̃). Therefore, if we assume

u∗
1(x̃1) = u∗

1(x̃2), which may be questionable in this application, Magnac and Thesmar’s
exclusion restriction holds and its identification result applies.14 Its rank condition (7)
simplifies to [

Q1(x̃1)− Q1(x̃2)
]
m �= 0�

That is, it simply requires that the expected next period’s excess surplus differs between
states x̃1 and x̃2 under continued operation of the bus (choice 1).

Example 5’s analysis of optimal renewal extends to optimal stopping problems in
which stopping ends the decision problem. For example, in Hopenhayn’s (1992) model
of firm dynamics with free entry, active firms solve optimal stopping problems in which
they value exit K at vK = 0. As in Example 5, the fact that v∗

K(x̃) is constant in x̃ ensures
that the expectation contrast [Q1 − QK]vK = 0, so that U1(x̃) = u∗

1(x̃).
Of course, [Q1 − QK]vK may equal zero even if v∗

K(x̃) varies with x̃, in particular if the
state is single action (K) one-period dependent on choices 1 and K.

14Since mileage is the only observed state variable in this application, u∗
1(x̃1) = u∗

1(x̃2) requires that the
current payoffs from operating a bus are the same at x̃1 and x̃2 miles, for example, because x̃1 and x̃2 lie on
a known flat segment of Harold Zurcher’s cost curve.
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Example 6. Consider a discrete time, econometric implementation of Dixit’s (1989)
model of firm entry and exit.15 In each period, a firm chooses to either serve the market
(d = 1) or not (d = K = 2). Its payoffs from serving the market depend on x = (y�d−1),
where y is a profit shifter that follows an exogenous Markov process (that is, y may affect
choices but is not controlled by them) and d−1 is the firm’s choice in the previous pe-
riod. The entry costs in profit state ỹ equal the difference between an incumbent’s profit
from serving the market and a new entrant’s profit from doing so, u∗

1(ỹ�1) − u∗
1(ỹ�K),

which we assume to be nonnegative. As before, we set uK = 0, so that the exit costs
u∗
K(ỹ�K)− u∗

K(ỹ�1) are zero.
The firm’s value v∗

K(y
′�k) from choosing inactivity (K) next period after choosing d =

k now may vary with next period’s profit state y ′, because the firm will have the option
to reenter the market and this option’s value may depend on y ′. However, because exit
costs are zero, this value does not depend on the current choice k: v∗

K(y
′�1) = v∗

K(y
′�K).

Moreover, by the assumption that y follows an exogenous Markov process, the distribu-
tion of y ′ given (y�d−1� d = k) is independent of the current choice k and the past choice
d−1, so that

Q1(x̃)vK = E
[
v∗
K

(
y ′�1

) | y = ỹ
] = E

[
v∗
K

(
y ′�K

) | y = ỹ
] = QK(x̃)vK (19)

for all x̃ = (ỹ� d̃−1) ∈ X . Consequently, as in Example 5, [Q1(x̃) − QK(x̃)]vK = 0 and
U1(x̃) = u∗

1(x̃). Note that, in this case, the state x = (y�d−1) is single action (K) one-
period dependent on choices 1 and K (but generally not on initial states).

An exclusion restriction u∗
1(x̃1) = u∗

1(x̃2) implies (6) and, under rank condition (7),
point identification of β. Because y evolves independently of current and past choices,

Qk(x̃)m = E
[
m

(
y ′�k

) | y = ỹ
]
� (20)

Thus, the rank condition is equivalent to

E
[
m

(
y ′�1

) −m
(
y ′�K

) | y = ỹ1
] �= E

[
m

(
y ′�1

) −m
(
y ′�K

) | y = ỹ2
]
� (21)

It immediately follows that identification requires that ỹ1 �= ỹ2 in this case. A difference in
lagged choices alone would not suffice, because these do not help predict next period’s
profit state y ′ given the current profit state y and choice d = k nor directly affect next
period’s excess surplus.

Moreover, identification fails if entry costs are zero; that is, if u∗
1(ỹ�1) = u∗

1(ỹ�K).
In this case, payoffs do not depend on past choices and, more specifically, m(y ′�1) =
m(y ′�K). Intuitively, without entry and exit costs, firms can ignore past and future when
deciding on entry and exit and simply maximize the current profits in each period. Con-
sequently, their entry and exit choices carry no information on their discount factor. As
an aside, note that the entry costs are directly identified from

ln
(
p1(x̃1)/pK(x̃1)

) − ln
(
p1(x̃2)/pK(x̃2)

) = u∗
1(ỹ�1)− u∗

1(ỹ�K)

15Abbring and Klein (2015) presented this example’s model with state independent entry costs, code for
its estimation, and exercises that can be used in teaching dynamic discrete choice models.
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for x̃1 = (ỹ�1) and x̃2 = (ỹ�K). Intuitively, for given profit state ỹ, lagged choices only af-
fect current payoffs through the entry costs and have no effect on expected future pay-
offs, as is clear from (19) and (20).

Finally, if both ỹ1 �= ỹ2 and entry costs are strictly positive, (21) will generally be sat-
isfied. In specific applications, we can verify (21) using that both the distribution of y ′
conditional on y and m(y ′�k) = − ln(pK(y

′�k)) can directly be estimated from choice
and profit state transition data.

As in Zurcher’s problem, profit states are typically ordered, so that an exclusion re-
striction like u∗

1(x̃1) = u∗
1(x̃2) may be justified as a local shape restriction on the firm’s

utility function. Alternatively, because the firm’s utility is a cardinal payoff, we may be
able to exploit that u∗

1(x̃) is known in some state x̃. For example, if u∗
1(x̃) = 0, then (12)

holds with k= 1, l = K, and x̃1 = x̃2 = x̃= (ỹ� d̃−1) and reduces to

ln
(
p1(x̃)

) − ln
(
pK(x̃)

) = βE
[
m

(
y ′�1

) −m
(
y ′�K

) | y = ỹ
]
�

so that β is identified if E[m(y ′�1)−m(y ′�K) | y = ỹ] �= 0. This rank condition is generally
satisfied if entry costs are positive.

In Examples 5 and 6, the rank condition ensures that the shift in expected surplus
contrasts that multiplies β in the right-hand side of (12) is nonzero. Because these ex-
amples satisfy one-period dependence, this shift does not depend on β itself, and this
suffices for point identification. More generally, even if the state is not one-period de-
pendent, strict monotonicity of the right-hand side of (12), as in Example 2, suffices for
point identification (i.e., ensures that a solution is unique if it exists). It is easy to derive
conditions that imply such strict monotonicity, and thus point identification, and that
do not involve β. Without loss of generality—we can freely interchange states x̃1 and x̃2

and switch choices k and l—we focus on conditions under which it is strictly increasing
or, equivalently, its derivative with respect to β is positive:16

[
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

][I −βQK]−2m > 0�

For this, it suffices that

[
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

]
Qr

Km ≥ 0 for all r ∈ {0�1�2� � � �}� (22)

with the inequality strict for at least one r. Like Magnac and Thesmar’s rank condition
(7), these conditions do not depend on β. It is easy to verify that they hold in Example 2
(which is specified in the Note to Figure 2).

16Denoting �2Q ≡ Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2), we have that

∂

∂β
β�2Q[I −βQK]−1m = �2Q[I −βQK]−1m +β�2Q

∂[I −βQK]−1

∂β
m

= �2Q[I −βQK]−1m +β�2Q[I −βQK]−1QK[I −βQK]−1m

= �2Q
[
I + (I −βQK)

−1βQK

][I −βQK]−1m = �2Q[I −βQK]−2m�
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The final example relies on a type of payoff monotonicity that is common in models
with ordered states.

Example 7. In Eckstein and Wolpin’s dynamic model of female labor force participa-
tion, women work both to directly earn wages and to invest in work experience that pays
off later. Consider a highly stylized and stationary variant of this model. Each period, a
woman either works (d = 1) or shirks (d = 2 = K). Work experience takes three levels,
“novice” (x1), “learning” (x2), and “seasoned” (x3). If a woman works and is not yet sea-
soned, her experience increases one level with probability 0�75 and stays the same with
the complementary probability. If instead she shirks, and is not a novice, she falls back
one level of experience with probability 0�50 and keeps her experience otherwise. Work
gives utility u1(x1) = u1(x2) = −0�50 if novice or learning and u1(x3) = 0�50 if seasoned.
Women maximize their flow of expected utility, discounted with a factor 0�80.

Figure 3 gives the data implied by this example and plots the moment condition cor-
responding to the constraint that u1(x1) = u1(x2). This constraint implies that novices
and learning workers earn the same current utility. Nevertheless, work is more attrac-
tive to a learning woman, because she has a good shot at earning the higher wage
for seasoned workers next period if she works now; moreover, unlike a novice, she
may lose experience if she shirks. Seasoned workers, despite the fact that they can-

Figure 3. Example of a dynamic labor supply model that gives a monotone moment condi-
tion. Note: For J = 3 states, K = 2 choices, k = l = 1, x̃1 = x2, and x̃2 = x1, this graph plots the
left-hand side of (6) and (12) (solid horizontal line) and the right-hand sides of (6) (dashed line)
and (12) (solid curve) as functions of β (we switched the roles of x1 and x2 to ensure a posi-
tive choice response and visually line up this example with the others). The data are generated
from Example 7’s stylized dynamic labor supply model, which gives Q1(x2) = [0�00 0�25 0�75 ],

Q1(x1) = [0�25 0�75 0�00 ], QK =
⎡
⎢⎣1�00 0�00 0�00

0�50 0�50 0�00
0�00 0�50 0�50

⎤
⎥⎦, p1 =

⎡
⎢⎣0�44

0�56
0�71

⎤
⎥⎦, and pK =

⎡
⎢⎣0�56

0�44
0�29

⎤
⎥⎦. Conse-

quently, the left-hand side of (6) and (12) equals ln(p1(x2)/pK(x2))− ln(p1(x1)/pK(x1)) = 0�4918.
Moreover, m′ = [0�57 0�82 1�23 ] and Q1(x2) − QK(x2) − Q1(x1) + QK(x1) = [0�25 −1�00 0�75 ], so
that the slope of the dashed line equals [Q1(x2)−QK(x2)−Q1(x1)+QK(x1)]m = 0�2465. A unique
value of β, 0�80, solves (12), but (6) has no solution.
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not further increase their experience, are sufficiently motivated by the higher earnings
and the risk that their human capital depreciates to work even more. Consequently,
pK(x1) > pK(x2) > pK(x3), so that m(x1) <m(x2) <m(x3). More generally, because QK

is increasing, the expected excess surplus after r rounds of shirking and human capital
depreciation, Qr

Km, is increasing in initial experience.
In this example, the dependence of (the distribution of) a worker’s experience on ini-

tial choices and experience levels does not disappear in a finite number of periods of, for
example, shirking.17 In particular, experience is not single action (K) one-period depen-
dent on initial choices in states x1 and x2 and Magnac and Thesmar’s current value re-
striction and linear moment condition do not hold. Nevertheless, this example’s mono-
tonicity ensures that the discount factor is point identified. Because working, compared
to shirking, affects the experience of a learning worker more than that of a novice with
nothing to lose, [Q1(x2) − QK(x2) − Q1(x1) + QK(x1)] = [0�25 −1�00 0�75], and because
Qr

Km is increasing for all r, (22) holds. Consequently, the moment condition is mono-
tone in β and has only one solution, 0�80.

3.6 Extension to nonstationary models

Our analysis extends to nonstationary models, such as that in Keane and Wolpin, with
minor modifications. In fact, nonstationary models offer useful identification strategies
that are not available for stationary models. Unlike in stationary models, an assumption
of stationary utilities has identifying power in nonstationary models. A common version
of this argument is that the utilities can be identified in the last period, say T , so that
the discount factor is subsequently identified in the next to last period (e.g., Yao et al.
(2012)). This argument assumes stationary utilities, which can be cast as an exclusion
restriction on time as a state variable, that is, ui�T−1(x̃) = ui�T (x̃), where time shifts the
continuation values without shifting the primitive utilities.

Bajari, Chu, Nekipelov, and Park (2016) used the assumption of stationary utilities
to formally establish identification in a finite-horizon optimal stopping model. Theo-
rem 3 below extends Bajari, Chu, Nekipelov, and Park’s result beyond optimal stopping
problems and also allows for identification of models with nonstationary utilities.18

Denote time by t ∈ {1�2� � � � �T }, with terminal period T < ∞, and index u∗
k�t , uk�t ,

mt , and vk�t by time. For ease of exposition, we maintain the assumption of stationary
Markov transition matrices Qk, but the results extend to nonstationary distributions.
The choice-k specific values now satisfy

vk�t = uk�t +βQk[mt+1 + vK�t+1] (23)

17In a similar context, Altuğ and Miller (1998) imposed such finite dependence by assuming that wages
and the utility cost from work only depend on a finite employment history. Our example would display
single action (K) one-period dependence on initial choices in state x1 and two-period dependence in state
x2 if shirking women would for sure see their experience drop by one level. Note that this would still not
suffice to reduce the moment condition to Magnac and Thesmar’s linear moment condition.

18Yao et al. (2012) showed identification of the discount factor in a dynamic model with continuous
controls under the assumption of stationary utilities and conjectured a similar result for discrete controls.
Theorem 3 proves its conjecture.
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for t = 1� � � � �T −1; with terminal condition vk�T = uk�T . With the normalization uK�t = 0
for all t, this gives

ln
(
pk�t(x̃)

) − ln
(
pK�t(x̃)

) = u∗
k�t(x̃)+β

[
Qk(x̃)− QK(x̃)

][mt+1 + vK�t+1] (24)

for all k ∈ D \ {K} and x̃ ∈ X . Finally, using (23) and the normalization uK�t = 0 for all t,
we can write the value of the reference choice K as

vK�t =
T∑

τ=t+1

(βQK)
τ−tmτ� (25)

where we use the convention that
∑T

τ=T+1 · = 0 (so that indeed vK�T = uK�T = 0).

Theorem 3. Suppose that

u∗
k�t(x̃1)= u∗

l�t ′(x̃2) (26)

for k ∈ D/{K}, l ∈ D, x̃1 ∈ X , x̃2 ∈ X , 1 ≤ t ′ < T , and t ′ ≤ t ≤ T ; with either k �= l, or x̃1 �= x̃2,
or t ′ < t, or a combination of the three. If either pk�t(x̃1)/pK�t(x̃1) �= pl�t ′(x̃2)/pK�t ′(x̃2) or[

Qk(x̃1)− QK(x̃1)
]
mt+1 − [

Ql(x̃2)− QK(x̃2)
]
mt ′+1 �= 0� (27)

then there are no more than T − t ′ points in the identified set.

Proof. Differencing (24) corresponding to (26) and substituting in (25) gives

ln
(
pk�t(x̃1)/pK�t(x̃1)

) − ln
(
pl�t ′(x̃2)/pK�t ′(x̃2)

)

= β

([
Qk(x̃1)− QK(x̃1)

][ T∑
τ=t+1

(βQK)
τ−t−1mτ

]

− [
Ql(x̃2)− QK(x̃2)

][ T∑
τ=t ′+1

(βQK)
τ−t ′−1mτ

])
� (28)

For given choice and transition probabilities, the right-hand side of (28) minus its left-
hand side is a polynomial of order T − t ′ in β. If this polynomial is nonconstant, then by
the fundamental theorem of algebra, it has has up to T − t ′ real roots, which is an upper
bound on the number of points in the identified set. To show that (28) is nonconstant
under the stated assumptions, note first that the right-hand side of (28) is zero at β = 0. If
the left-hand side is nonzero, the polynomial is nonconstant. If the left-hand side is zero,
then the rank condition (27) ensures that the derivative of the right-hand side is nonzero
at β= 0, so that the right-hand side, and thus the polynomial, is nonconstant.

Rank condition (27) adapts (13) to the nonstationary case. Unlike the stationary dy-
namic choice problem, the nonstationary problem does not require that the discount
factor lies in [0�1). We leave the definition of the domain of the discount factor to the
reader.
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In a study of identification in nonstationary models, Arcidiacono and Miller (2020)
distinguished between identification in long panels, which include the terminal period,
and short panels, which do not. In general, Theorem 3 requires long panels. However, for
models with ρ-period dependence, it also applies to short panels that extend to at least
period t + ρ. For instance, in Zurcher’s renewal problem with a finite horizon, mileage
is still single action (K) one-period dependent, so that the discount factor can be point
identified in short panels until period t + 1.

4. Empirical content

The previous section focused on identification and gave conditions under which the
primitives can be recovered from the data. In applications, we need to entertain the
possibility that the model is misspecified and did not generate the data to begin with.
It is well known that the unrestricted model has no empirical content: It can rational-
ize any choice data {pk�Qk;k ∈ D}. This section shows that the model under exclusion
restrictions can be rejected by data.

The standard result for the unrestricted stationary model follows from a version of
Magnac and Thesmar’s Proposition 2: For any given data {pk�Qk;k ∈ D}, uK = 0, and
β ∈ [0�1), there exists a unique set of primitive utilities {uk�k ∈ D/{K}} that rationalizes
the data. Specifically, m = − ln pK . Then vK follows from uK = 0 and (8). Next, by (3),
vk = vK+ ln pk− ln pK fork ∈ D/{K} ensures that the value functions are compatible with
the choice probability data. In turn, by (4), these value functions are uniquely generated
by the primitive utilities uk = vk −βQk[m + vK] for k ∈ D/{K} (note that vK was already
set to be consistent with uK = 0).

This result justifies our focus on the identification of the discount factor β in the
previous section: Once the discount factor is identified, we can find unique primitive
utilities that rationalize the data. The empirical consequences of a violation of the as-
sumed exclusion restriction can manifest themselves in two distinct ways.

First, in some cases, it may be possible to find primitives that satisfy the false ex-
clusion restriction. If so, these primitives will in general not equal the true primitives.
Because we can find primitive utilities that rationalize the data for any discount factor,
the data can be of no help in determining the right restriction in this case. Instead, we
need to argue for the identifying assumption on other grounds.

Second, there may not exist discount factors in their domain that are compatible
with the data under the assumed exclusion restriction. The subset of the possible data
that can be rationalized under an exclusion restriction can be very small. For instance,
in a binary choice model with J = 2 and u∗

1(x1) = u∗
1(x2), the model cannot generate any

state-dependent value contrasts. It follows that this model cannot rationalize any state-
dependent choice data. In empirical practice, this may force parameter estimates to lie
outside their theoretical domains. In turn, this may lead researchers to statistically reject
the model and conclude that at least one of its assumptions is violated. While some
solution methods, such as typical nested fixed point algorithms, impose the restriction
that β ∈ [0�1), it is easy to use the moment conditions in (12) for model testing as their
computation does not restrict the values β can take.
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Figure 4. Example of data that are consistent with an exclusion restriction on current
values but not with one on primitive utility. Note: For J = 3 states, K = 2 choices,
k = l = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left-hand side of (6) and (12)
(solid horizontal line) and the right-hand sides of (6) (dashed line) and (12) (solid
curve) as functions of β. The data are Q1(x̃1) = [0�25 0�25 0�50 ], Q1(x̃2) = [0�00 0�25 0�75 ],

QK =
⎡
⎢⎣0�90 0�00 0�10

0�00 0�90 0�10
0�00 1�00 0�00

⎤
⎥⎦, p1 =

⎡
⎢⎣0�50

0�48
0�10

⎤
⎥⎦, and pK =

⎡
⎢⎣0�50

0�52
0�90

⎤
⎥⎦. Consequently, the left-hand side of (6)

and (12) equals ln(p1(x1)/pK(x1))− ln(p1(x2)/pK(x2))= 0�0800. Moreover, m′ = [0�69 0�65 0�11 ]
and Q1(x1)−QK(x1)−Q1(x2)+QK(x2)= [−0�65 0�90 −0�25 ], so that the slope of the dashed line
equals [Q1(x1)− QK(x1)− Q1(x2)+ QK(x2)]m = 0�1116. A unique value of β, 0�72, solves (6), but
(12) has no solution.

The empirical content of the identified model also gives some scope to test non-
nested identifying assumptions against each other. For example, the data in Example 2
cannot be rationalized under Magnac and Thesmar’s current value restriction, but are
consistent with an exclusion restriction on primitive utility. Conversely, it is easy to con-
struct data that are inconsistent with the primitive utility restriction, yet can be rational-
ized by primitives that satisfy the current value restriction.

Example 8. Figure 4 displays the left- and right-hand sides of Magnac and Thesmar’s
moment condition in (6) and ours in (12). There is a β ∈ [0�1) that solves (6), but the
moment condition in (12) cannot be met. Intuitively, the increasingly negative contri-
bution of the second (value of choice K) term in the right-hand side of (12) limits the
possible log choice probability ratio response to the change in states to a level below the
observed response.

In practice, we can easily establish whether given data are consistent with one exclu-
sion restriction or the other by verifying whether the corresponding moment condition,
(6) or (12), or its empirical analog has a solution β ∈ [0�1). We can formally test either
exclusion restriction with a test of the null hypothesis that β ∈ [0�1).

Finally, the empirical content of the nonstationary model depends on the chosen
domain of the discount factor. Therefore, we limit our discussion of this model’s empir-
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ical content to noting that Theorem 3 does not guarantee a real root (and less so one in
a specified domain for β) for general choice and state probabilities.

5. Multiple exclusion restrictions and inference

Often, more than one exclusion restriction is available. In particular, economic intuition
for an exclusion restriction across states typically suggests the exclusion of a state vari-
able from the utility function. For example, the state variable x can be partitioned as
(y� z), where z does not affect utilities: uk(ỹ� z̃1) = uk(ỹ� z̃2) for all k ∈ D/{K}, ỹ, z̃1, and
z̃2 > z̃1.19 This typically gives multiple exclusion restrictions like (11). For example, if
choices, y, and z are all binary, we have two exclusion restrictions, one for each possible
value of y.

With multiple exclusion restrictions, point identification can be obtained even if
each individual moment condition set identifies β. We give two examples of identifi-
cation with two exclusion restrictions.

Example 9. In Figure 5, the moment condition represented by the solid line and curve
and the one in dashes have two and one solutions, respectively. Both moment condi-
tions are consistent with a discount factor of 0�30, while the solid moment condition is
also consistent with a discount factor of 0�65. The dashed moment condition by itself
point identifies the discount factor, while the solid moment condition only set identifies
it. In this case, the solid moment condition is redundant for point identification.

Example 10. In Figure 6, the dashed moment condition holds for discount factors 0�17
and 0�90, while the solid moment condition is solved by discount factors 0�07 and 0�90.
Each individual moment condition is consistent with two discount factors, but only one
discount factor solves both moment conditions.

With choice and transition probabilities generated from a model that satisfies two
(or more) exclusion restrictions, the implied two (or more) moment conditions will al-
ways share one solution, the discount factor that was used to generate the data. We con-
jecture that, generically, the moments will not share any further solutions, because dif-
ferent choice and transition probabilities, which vary freely with the primitive utilities,
enter the various moment conditions.

Generic point identification is of limited practical value in our context. First, we are
not able to a priori characterize the subset of the model space on which point identifi-
cation fails in terms of economic concepts. Though this subset is small, it may, for all we
know, contain economically important models.20

Second, we may not learn whether the discount factor is point or set identified in fi-
nite samples. While finding the shared solutions to multiple moment conditions is easy

19We provide a more formal statement of the exclusion of state variables in our discussion of Fang and
Wang in Abbring and Daljord (forthcoming).

20For example, Ekeland, Heckman, and Nesheim’s (2004) generic identification result for the hedonic
model is particularly instructive because it shows that identification fails exactly for the linear-quadratic
special case that is at the center of most applied work.
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Figure 5. Example with two moment conditions of which one identifies the discount fac-
tor. Note: For J = 4 states, K = 2 choices, and k = l = 1, this graph plots the left- (horizontal
lines) and right-hand sides (curves) of (12) as functions of β, for x̃1 = x1, and x̃2 = x2 (corre-
sponding to u1(x1) = u1(x2); dashed line and curve) and x̃1 = x3 and x̃2 = x4 (corresponding to
u1(x3)= u1(x4); solid line and curve). The data are

Q1 =

⎡
⎢⎢⎢⎣

0�40 0�26 0�18 0�18
0�33 0�29 0�36 0�27
0�19 0�26 0�18 0�45
0�08 0�18 0�29 0�09

⎤
⎥⎥⎥⎦, QK =

⎡
⎢⎢⎢⎣

0�17 0�26 0�13 0�43
0�13 0�07 0�20 0�60
0�20 0�30 0�10 0�40
0�25 0�15 0�50 0�10

⎤
⎥⎥⎥⎦, p′

1 = [0�60 0�59 0�88 0�88 ], and

p′
K = [0�40 0�41 0�12 0�12 ]. Consequently, the left-hand sides of (12) equal ln(p1(x1)/pK(x1)) −

ln(p1(x2)/pK(x2))= 0�0187 and ln(p1(x3)/pK(x3))− ln(p1(x4)/pK(x4)) = 0�0045. A unique value
of β, 0�30, solves (12) for x̃1 = x1 and x̃2 = x2 (dashed line and curve). Two values of β solve (12)
for x̃1 = x3 and x̃2 = x4 (solid line and curve), of which one coincides with the solution to the first
moment condition.

if we know the population choice and transition probabilities, locating the shared solu-
tions in finite samples can be difficult due to sampling variation. This suggests that we
do not insist on point identification, but accept set identification and use a consistent
estimator of the identified set, which may contain one or more points. Set estimators are
easy to implement for single parameter problems. We give one example.

Example 11. Suppose the population moment conditions are as given in Figure 6.
Though each individual moment condition is equally consistent with one small dis-
count factor, at 0�07 and 0�17, respectively, and one large discount factor at the true value
of 0�90, only the latter is a common solution to both moment conditions. The discount
factor is therefore point identified in this population.

In the top panel of Figure 7, the same two moment conditions are plotted with sam-
pling variation in the choice data. One sample moment condition is solved by discount
factors 0�16 and 0�91 and the other by discount factors 0�25 and 0�68. The data do not
clearly reveal that the point-identified true discount factor is 0�90. If anything, the data
suggest point identification in the lower region. Even if point identification cannot be
determined a priori without further assumptions, the discount factor is still set identi-
fied and we can use consistent set estimators.
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Figure 6. Example with two moment conditions that jointly identify the discount factor but
individually do not. Note: For J = 4 states, K = 2 choices, and k = l = 1, the graph in the top
panel plots the left- (horizontal lines) and right-hand sides (curves) of (12) as functions of β, for
x̃1 = x1 and x̃2 = x2 (corresponding to u1(x1) = u1(x2); dashed line and curve) and x̃1 = x3 and
x̃2 = x4 (corresponding to u1(x3) = u1(x4); solid line and curve). The graph in the bottom panel
plots the corresponding squared Euclidian distance between the left- and right-hand sides of
(12) as a function of β (in multiples of 10−4). The data are

Q1 =

⎡
⎢⎢⎢⎣

0�43 0�26 0�18 0�18
0�33 0�29 0�36 0�27
0�19 0�26 0�18 0�45
0�05 0�18 0�29 0�09

⎤
⎥⎥⎥⎦, QK =

⎡
⎢⎢⎢⎣

0�17 0�26 0�13 0�43
0�13 0�07 0�20 0�60
0�20 0�30 0�10 0�40
0�25 0�15 0�50 0�10

⎤
⎥⎥⎥⎦, p′

1 = [0�92 0�92 0�63 0�63 ], and

p′
K = [0�08 0�08 0�37 0�37 ]. Consequently, the left-hand sides of (12) equal ln(p1(x1)/pK(x1)) −

ln(p1(x2)/pK(x2)) = 0�0068 and ln(p1(x3)/pK(x3))− ln(p1(x4)/pK(x4)) = 0�0019. A unique value
of β, 0�90, solves (12) for both x̃1 = x1 and x̃2 = x2 (dashed line and curve) and x̃1 = x3 and x̃2 = x4

(solid line and curve). In addition, each of these two moment conditions has one other solution.

Following Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2010),
suppose that the identified set B = {β ∈ [0�1) : S(β) = 0} for some population criterion
function S : [0�1) → [0�∞). Note that we can alternatively write B = arg minβ∈[0�1) S(β).
This suggests that we estimate B by a random contour set Cn(s) = {β ∈ [0�1) :
anSn(β) ≤ s} for some level s > 0 and normalizing sequence {an}, where Sn(β) is the sam-
ple equivalent of S(β) and n is the sample size. For a given confidence level α ∈ (0�1),
s is set to equal a consistent estimator sn of the α-quantile of supβ∈B anSn(β), so that the
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Figure 7. Example with two moment conditions that jointly identify the discount factor but
individually do not, using noisy estimates of the choice probabilities. Note: This figure redraws
Figure 6 for the same values of Q1 and QK , but randomly perturbed values of its choice prob-
abilities p1 and pK . Rounded to two digits, the perturbed choice probabilities equal those re-
ported below Figure 6. Consequently, the perturbation to m = − ln pK is very small too, so that
the right-hand sides of (12) are very close to those plotted in Figure 6. The left-hand sides of
(12), however, now equal ln(p1(x1)/pK(x1))− ln(p1(x2)/pK(x2)) = 0�0066 (instead of 0�0068) and
ln(p1(x3)/pK(x3))− ln(p1(x4)/pK(x4)) = 0�0050 (instead of 0�0019). The resulting moment con-
ditions again have two solutions. However, they no longer share a common solution and the
squared Euclidian distance in the bottom panel never attains zero. The shaded areas highlight
the intervals [0�10�0�28] and [0�79�0�91] of values of β at which the distance is below some critical
level sn (which is taken to be 0�10 × 10−4 in this example).

estimator Cn(sn) asymptotically contains the identified set with probability α:

lim
n→∞ Pr

{
B ⊆ Cn(sn)

} = α�

The bottom panel of Figure 7 illustrates one such estimator. The criterion Sn(β) is
here a quadratic form in the difference between the left- and right-hand sides of (12)
evaluated at consistent estimators of the choice and transition probabilities using equal
weights. The critical value sn is given as the horizontal line. The estimated set is Cn(sn) =
[0�10�0�28] ∪ [0�79�0�91]. The data are equally consistent with a range of small discount
factors and a range of large discount factors, but an intermediate range (0�28�0�79) is
rejected at the α-level, along with discount factors smaller than 0�10 and larger than 0�91.
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Under some regularity conditions, the set estimator converges to the identified set
as the sample size grows. Since the identified set is a point in this example, in the limit,
the subset of Cn(sn) with small discount factors vanishes and its subset with large dis-
count factors degenerates to the population discount factor 0�90. While these set esti-
mators are computationally demanding for parameter spaces with even just a handful
of dimensions, they are easy to implement in a one-dimensional case such as ours.

6. Practical considerations

We conclude with some considerations relevant to applications. If the discount factor
is point identified, utilities are as well, and β and u can be estimated jointly by stan-
dard methods, for example, maximum likelihood, with the exclusion restriction on u
imposed. Standard inference for extremum estimators applies (e.g., Newey and McFad-
den (1994)).

Typical implementations of such joint estimators will impose functional form as-
sumptions on the utility function that have identifying power on their own (Komarova
et al. (2018)). Then it is unclear how much information about the discount factor is car-
ried by the exclusion restrictions, which are economically motivated, and how much
is carried by the functional forms, which are typically more arbitrary. An alternative ap-
proach is to use that, by a version of Magnac and Thesmar’s Proposition 2 (see Section 4),
there exist unique utilities that rationalize the data for any given discount factor. This
suggests a two-step estimation procedure. In the first step, β can be recovered from the
moment condition in (12). In the second step, the utilities are estimated using the mo-
ment conditions in (10), taking the discount factor recovered in the first step as given.
This way, estimation of the discount factor is robust to misspecification of the utility
function. See Daljord, Nekipelov, and Park (2019) for an application of this approach.

If the discount factor is not known to be point identified, one may construct the sam-
ple analogues to (12) and plot the criterion function, as in the bottom panel of Figure 7.
If the criterion function is close to quadratic around a unique minimum on the domain
of β, one may proceed as if the model is point identified. If the criterion function is de-
cidedly nonquadratic, as in Figure 7, then the discount factor can be estimated in a first
step using a set estimator of the kind described in Section 5. These estimates are a set of
possibly intersecting subintervals of [0�1). In a second step, utilities and counterfactual
choice probabilities can be computed for each β in the identified set.

Appendix: Identification with general reference utility

Consider the stationary model of Section 2. Suppose that we know uK up to a constant
additive shift; that is, uK = γ1 + ūK , with γ ∈R unknown, 1 the J × 1 vector of ones, and
ūK a known J × 1 vector with jth element ūK(xj). Then we can rewrite (10) as

ln pk − ln pK = β[Qk − QK][I −βQK]−1(m + ūK)+ uk − γ1 − ūK� (29)

Note that the constant additive shift γ1 drops from the first term, which is a difference
in expectations under choices k and K.

Now suppose that u∗
k(x̃1) − u∗

l (x̃2) is known, but not necessarily zero, for some
known choices k ∈ D/{K} and l ∈ D, and known states x̃1 ∈ X and x̃2 ∈ X ; with either
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k �= l, x̃1 �= x̃2, or both. This is an exclusion restriction that encompasses (11) in the main
text as a special case. Under this generalized exclusion restriction, (29) implies

ln
(
pk(x̃1)/pK(x̃1)

) − ln
(
pl(x̃2)/pK(x̃2)

) −�2u

= β
[
Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)

][I −βQK]−1m̄� (30)

with �2u ≡ u∗
k(x̃1)− u∗

l (x̃2)− ūK(x̃1)+ ūK(x̃2) and m̄ ≡ m + ūK known. The factor mul-
tiplying β in the right-hand side of (12) can again be interpreted in terms of incentives
related to differences in expected future utilities, which now include the known utilities
derived from the reference choice K. Multiplying these “incentives” by the discount fac-
tor β gives the log choice probability response, corrected for the known effects of the
current utility contrast �2u, in the left-hand side of (12).

The analysis of the main text applies to this generalization with straightforward
adaptations. In particular, (30) is a moment condition in only one unknown, the dis-
count factor β, and can be taken directly to data. The following generalization of Theo-
rem 1 can be proved like that theorem.

Theorem 4. Suppose that u∗
k(x̃1) − u∗

l (x̃2) is known for some k ∈ D/{K}, l ∈ D, x̃1 ∈ X ,
and x̃2 ∈ X ; with either k �= l, x̃1 �= x̃2, or both. Moreover, suppose that either the left-hand
side of (30) is nonzero (i.e., ln(pk(x̃1)/pK(x̃1)) − ln(pl(x̃2)/pK(x̃2)) �= �2u) or a general-
ization of Magnac and Thesmar’s rank condition (7) holds:[

Qk(x̃1)− QK(x̃1)− Ql(x̃2)+ QK(x̃2)
]
m̄ �= 0�

Then the identified set B is a closed discrete subset of [0�1).

A version of Corollary 1 follows directly and so do the simplifications that arise from
finite dependence, in particular those that arise in renewal and optimal stopping prob-
lems. Finally, it is easy to adapt the analysis in this Appendix to the nonstationary case.
We will not pursue that here.

This appendix (in particular, a comparison of moment conditions (12) and (30))
demonstrates that the analysis in the main text extends

• without change to the case in which u∗
K(x) equals a (not necessarily zero or even

known) constant;

• with a simple, known adjustment to the choice probability response in the left-
hand side of (12) to the case that u∗

k(x̃1) − u∗
l (x̃2) is known, but not necessarily zero;

and

• with another such adjustment to the left-hand side of (12) and a known adjustment
to the polynomial in the right-hand side of (12) if u∗

K is only known up to a constant
additive shift, but not necessarily constant.

This shows that our analysis can directly be applied to problems in which a state in-
dependent reference utility exists (as is typically assumed in applied work) and directly
complements results on the identification of more general reference utility specifica-
tions.
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