

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Ortu, Fulvio; Severino, Federico; Tamoni, Andrea; Tebaldi, Claudio

Article

A persistence-based Wold-type decomposition for stationary time series

Quantitative Economics

Provided in Cooperation with:

The Econometric Society

Suggested Citation: Ortu, Fulvio; Severino, Federico; Tamoni, Andrea; Tebaldi, Claudio (2020) : A persistence-based Wold-type decomposition for stationary time series, Quantitative Economics, ISSN 1759-7331, The Econometric Society, New Haven, CT, Vol. 11, Iss. 1, pp. 203-230, https://doi.org/10.3982/QE994

This Version is available at: https://hdl.handle.net/10419/217186

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

https://creativecommons.org/licenses/by-nc/4.0/

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Supplement to "A persistence-based Wold-type decomposition for stationary time series"

(Quantitative Economics, Vol. 11, No. 1, January 2020, 203-230)

FULVIO ORTU Department of Finance, Università Bocconi and IGIER

FEDERICO SEVERINO

Département de Finance, Assurance et Immobilier, FSA, Université Laval and Department of Economics, USI Lugano

> ANDREA TAMONI Department of Finance and Economics, Rutgers Business School

CLAUDIO TEBALDI Department of Finance, Università Bocconi, IGIER, and Baffi-CAREFIN

A. Online supplement

A.1 Proofs

The notation employed here is taken from Section 2.1. Lemma A.1 is preparatory for the proof of Theorem 1.

LEMMA A.1. Let $\boldsymbol{\varepsilon}$ be a unit variance white noise. The Hilbert space $\mathcal{H}_t(\boldsymbol{\varepsilon})$ decomposes into the orthogonal sum $\mathcal{H}_t(\boldsymbol{\varepsilon}) = \bigoplus_{i=1}^{\infty} \mathbf{R}^{j-1} \mathcal{L}_t^{\mathbf{R}}$, where

$$\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}} = \left\{ \sum_{k=0}^{+\infty} b_k^{(j)} \varepsilon_{t-k2^j}^{(j)} \in \mathcal{H}_t(\boldsymbol{\varepsilon}) : b_k^{(j)} \in \mathbb{R} \right\}$$

and, for any $j \in \mathbb{N}$ and $t \in \mathbb{Z}$, $\varepsilon_t^{(j)}$ is given by equation (6).

PROOF. $\mathcal{H}_t(\boldsymbol{\varepsilon})$ is a Hilbert subspace of $L^2(\Omega, \mathcal{F}, \mathbb{P})$, equipped with the inner product $\langle A, B \rangle = \mathbb{E}[AB]$ for all $A, B \in L^2(\Omega, \mathcal{F}, \mathbb{P})$. We begin with showing that the scaling operator **R** is well-defined, linear, and isometric on $\mathcal{H}_t(\boldsymbol{\varepsilon})$.

Consider any $X = \sum_{k=0}^{\infty} a_k \varepsilon_{t-k}$ in $\mathcal{H}_t(\varepsilon)$, that is, $\|X\|^2 = \sum_{p=0}^{\infty} a_p^2 < +\infty$. Then

$$\|\mathbf{R}X\|^{2} = \frac{1}{2} \sum_{k=0}^{+\infty} a_{\lfloor \frac{k}{2} \rfloor}^{2} = \frac{1}{2} \sum_{p=0}^{+\infty} a_{\lfloor \frac{2p}{2} \rfloor}^{2} + \frac{1}{2} \sum_{p=0}^{+\infty} a_{\lfloor \frac{2p+1}{2} \rfloor}^{2} = \sum_{p=0}^{+\infty} a_{p}^{2} = \|X\|^{2}$$

Fulvio Ortu: fulvio.ortu@unibocconi.it

Federico Severino: federico.severino@fsa.ulaval.ca

Andrea Tamoni: andrea.tamoni.research@gmail.com

Claudio Tebaldi: claudio.tebaldi@unibocconi.it

^{© 2020} The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://qeconomics.org. https://doi.org/10.3982/QE994

Supplementary Material

and this quantity is finite. As a result, **R** is a well-defined (and bounded) operator. The linearity of **R** is immediate. To prove that **R** is isometric, take any $X = \sum_{k=0}^{\infty} a_k \varepsilon_{t-k}$, $Y = \sum_{h=0}^{\infty} b_h \varepsilon_{t-h}$ in $\mathcal{H}_t(\varepsilon)$. By the white-noise properties of ε ,

$$\begin{split} \langle \mathbf{R}X, \mathbf{R}Y \rangle &= \sum_{k=0}^{+\infty} \frac{a_{\lfloor \frac{k}{2} \rfloor}}{\sqrt{2}} \frac{b_{\lfloor \frac{k}{2} \rfloor}}{\sqrt{2}} = \frac{1}{2} \sum_{p=0}^{+\infty} a_{\lfloor \frac{2p}{2} \rfloor} b_{\lfloor \frac{2p}{2} \rfloor} + \frac{1}{2} \sum_{p=0}^{+\infty} a_{\lfloor \frac{2p+1}{2} \rfloor} b_{\lfloor \frac{2p+1}{2} \rfloor} \\ &= \sum_{p=0}^{+\infty} a_p b_p = \langle X, Y \rangle. \end{split}$$

As a result, **R** is an isometry on $\mathcal{H}_t(\varepsilon)$ and the abstract Wold theorem (i.e., Theorem 1.1 in Nagy, Foias, Bercovici, and Kérchy (2010)) applies.

The abstract Wold theorem supplies the orthogonal decomposition $\mathcal{H}_t(\varepsilon) = \hat{\mathcal{H}}_t(\varepsilon) \oplus \tilde{\mathcal{H}}_t(\varepsilon)$, where

$$\hat{\mathcal{H}}_{t}(\boldsymbol{\varepsilon}) = \bigcap_{j=0}^{+\infty} \mathbf{R}^{j} \mathcal{H}_{t}(\boldsymbol{\varepsilon}), \qquad \tilde{\mathcal{H}}_{t}(\boldsymbol{\varepsilon}) = \bigoplus_{j=1}^{+\infty} \mathbf{R}^{j-1} \mathcal{L}_{t}^{\mathbf{R}}$$

and $\mathcal{L}_t^{\mathbf{R}} = \mathcal{H}_t(\boldsymbol{\varepsilon}) \ominus \mathbf{R} \mathcal{H}_t(\boldsymbol{\varepsilon})$ is called *wandering subspace*.

In particular, we show that $\hat{\mathcal{H}}_t(\boldsymbol{\varepsilon})$ is the null subspace. Indeed, the subspaces $\mathbf{R}^j \mathcal{H}_t(\boldsymbol{\varepsilon})$ are made of linear combinations of innovations $\boldsymbol{\varepsilon}_t$ with coefficients equal to each others 2^j -by- 2^j :

$$\mathbf{R}^{j}\mathcal{H}_{t}(\boldsymbol{\varepsilon}) = \left\{\sum_{k=0}^{+\infty} c_{k}^{(j)} \left(\sum_{i=0}^{2^{j}-1} \boldsymbol{\varepsilon}_{t-k2^{j}-i}\right) \in \mathcal{H}_{t}(\boldsymbol{\varepsilon}) : c_{k}^{(j)} \in \mathbb{R}\right\}.$$

As a result, $\hat{\mathcal{H}}_t(\boldsymbol{\varepsilon})$ can just include variables as $\sum_{h=0}^{\infty} c \boldsymbol{\varepsilon}_{t-h}$ with $c \in \mathbb{R}$. These elements belong to $\mathcal{H}_t(\boldsymbol{\varepsilon})$, hence $\sum_{k=0}^{\infty} c^2$ is finite and this is possible just in case c = 0. As a result, $\hat{\mathcal{H}}_t(\boldsymbol{\varepsilon}) = \{0\}$ and $\mathcal{H}_t(\boldsymbol{\varepsilon}) = \tilde{\mathcal{H}}_t(\boldsymbol{\varepsilon})$.

We now focus on the subspace $\tilde{\mathcal{H}}_t(\boldsymbol{\varepsilon})$. As the orthogonal complement of $\mathbf{R}\mathcal{H}_t(\mathbf{x})$ is the kernel of the adjoint operator \mathbf{R}^* (see, e.g., Theorem 1, Section 6.6 in Luenberger (1968)), we determine \mathbf{R}^* . Specifically, $\mathbf{R}^* : \mathcal{H}_t(\boldsymbol{\varepsilon}) \longrightarrow \mathcal{H}_t(\boldsymbol{\varepsilon})$ is such that

$$\mathbf{R}^*: \sum_{k=0}^{+\infty} a_k \,\varepsilon_{t-k} \longmapsto \sum_{k=0}^{+\infty} \frac{a_{2k} + a_{2k+1}}{\sqrt{2}} \varepsilon_{t-k}.$$

Indeed, **R**^{*} is well-defined and the relation $\langle \mathbf{R}X, Y \rangle = \langle X, \mathbf{R}^*Y \rangle$ holds for any $X = \sum_{h=0}^{\infty} b_h \varepsilon_{t-h}$, $Y = \sum_{k=0}^{\infty} a_k \varepsilon_{t-k}$ in $\mathcal{H}_t(\varepsilon)$, due to the white noise nature of ε :

$$\langle \mathbf{R}X, Y \rangle = \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} \frac{b_{\lfloor \frac{h}{2} \rfloor}}{\sqrt{2}} a_k \langle \varepsilon_{t-h}, \varepsilon_{t-k} \rangle = \sum_{k=0}^{+\infty} b_{\lfloor \frac{k}{2} \rfloor} \frac{a_k}{\sqrt{2}} = \sum_{k=0}^{+\infty} b_k \frac{a_{2k} + a_{2k+1}}{\sqrt{2}}$$
$$= \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} b_h \frac{a_{2k} + a_{2k+1}}{\sqrt{2}} \langle \varepsilon_{t-h}, \varepsilon_{t-k} \rangle = \langle X, \mathbf{R}^*Y \rangle.$$

A persistence-based Wold-type decomposition 3

As for the kernel of \mathbf{R}^* , we prove that

$$\ker(\mathbf{R}^*) = \left\{ \sum_{k=0}^{+\infty} d_k^{(1)}(\varepsilon_{t-2k} - \varepsilon_{t-2k-1}) \in \mathcal{H}_t(\varepsilon) : d_k^{(1)} \in \mathbb{R} \right\}$$

Take any element of $\mathcal{H}_t(\varepsilon)$ of the kind $X = \sum_{k=0}^{\infty} d_k^{(1)}(\varepsilon_{t-2k} - \varepsilon_{t-2k-1})$ for some squaresummable sequence of real numbers $\{d_k^{(1)}\}_k$. Such X can be rewritten as $X = \sum_{h=0}^{\infty} a_h \varepsilon_{t-h}$ with $a_{2k+1} = -a_{2k}$ for all $k \in \mathbb{N}_0$, that is $a_{2k} + a_{2k+1} = 0$. Therefore, by the expression of \mathbb{R}^* , we realize that $\mathbb{R}^* X = 0$. Thus,

$$\left\{\sum_{k=0}^{+\infty} d_k^{(1)}(\varepsilon_{t-2k} - \varepsilon_{t-2k-1}) \in \mathcal{H}_t(\varepsilon) : d_k^{(1)} \in \mathbb{R}\right\} \subset \ker(\mathbf{R}^*).$$
(23)

Conversely, consider $X = \sum_{h=0}^{\infty} a_h \varepsilon_{t-h}$ in ker(**R**^{*}). Since **R**^{*}X = 0 in the L^2 -norm, $\sum_{k=0}^{\infty} (a_{2k} + a_{2k+1})^2 = 0$. As a consequence, $a_{2k+1} = -a_{2k}$ for any $k \in \mathbb{N}_0$ and we can write $X = \sum_{k=0}^{\infty} d_k^{(1)}(\varepsilon_{t-2k} - \varepsilon_{t-2k-1})$ with $d_k^{(1)} = a_{2k}$. As a result, also the converse inclusion in (23) holds and

$$\mathcal{L}_t^{\mathbf{R}} = \ker(\mathbf{R}^*) = \left\{ \sum_{k=0}^{+\infty} b_k^{(1)} \varepsilon_{t-2k}^{(1)} \in \mathcal{H}_t(\varepsilon) : b_k^{(1)} \in \mathbb{R} \right\}.$$

In addition,

$$\mathbf{R}\mathcal{L}_{t}^{\mathbf{R}} = \left\{ \sum_{k=0}^{+\infty} b_{k}^{(2)} \varepsilon_{t-4k}^{(2)} \in \mathcal{H}_{t}(\boldsymbol{\varepsilon}) : b_{k}^{(2)} \in \mathbb{R} \right\}$$

and, for any $j \in \mathbb{N}$,

$$\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}} = \left\{ \sum_{k=0}^{+\infty} b_k^{(j)} \boldsymbol{\varepsilon}_{t-k2^j}^{(j)} \in \mathcal{H}_t(\boldsymbol{\varepsilon}) : b_k^{(j)} \in \mathbb{R} \right\}.$$

As the case with $j \in \mathbb{N}$ can be derived by induction, we focus on $\mathbf{RL}_t^{\mathbf{R}}$ and show that

$$\mathbf{R}\mathcal{L}_{t}^{\mathbf{R}} = \left\{ \sum_{k=0}^{+\infty} d_{k}^{(2)} (\varepsilon_{t-4k} + \varepsilon_{t-4k-1} - \varepsilon_{t-4k-2} - \varepsilon_{t-4k-3}) \in \mathcal{H}_{t}(\varepsilon) : d_{k}^{(2)} \in \mathbb{R} \right\}.$$
(24)

Consider any $Y \in \mathbf{RL}_t^{\mathbf{R}}$. Since Y is the image of some $X \in \mathcal{L}_t^{\mathbf{R}}$, there exists a squaresummable sequence of real numbers $\{d_k^{(1)}\}_k$ such that

$$X = \sum_{k=0}^{+\infty} d_k^{(1)} (\varepsilon_{t-2k} - \varepsilon_{t-2k-1}), \qquad Y = \sum_{k=0}^{+\infty} \frac{d_k^{(1)}}{\sqrt{2}} (\varepsilon_{t-4k} + \varepsilon_{t-4k-1} - \varepsilon_{t-4k-2} - \varepsilon_{t-4k-3}).$$

As a result, $\mathbf{R}\mathcal{L}_{t}^{\mathbf{R}}$ is included in the set in (24). Vice versa, take any $Y = \sum_{k=0}^{\infty} d_{k}^{(2)} (\varepsilon_{t-4k} + \varepsilon_{t-4k-1} - \varepsilon_{t-4k-2} - \varepsilon_{t-4k-3})$ for some square-summable sequence of coefficients $\{d_{k}^{(2)}\}_{k}$. Then *Y* belongs to $\mathbf{R}\mathcal{L}_{t}^{\mathbf{R}}$, too, because it is the image of $X = \sum_{k=0}^{\infty} \sqrt{2}d_{k}^{(2)} (\varepsilon_{t-2k} - \varepsilon_{t-2k-1})$, which belongs to $\mathcal{L}_{t}^{\mathbf{R}}$. Therefore, the characterization in (24) is assessed.

Proof of Theorem 1

PROOF. By applying the classical Wold decomposition to the zero-mean, weakly stationary purely nondeterministic process x, we find that x_t belongs to the Hilbert space $\mathcal{H}_t(\boldsymbol{\varepsilon})$, where $\boldsymbol{\varepsilon}$ is the unit variance white noise of classical Wold innovations of **x**. Importantly, $\mathcal{H}_t(\varepsilon)$ orthogonally decomposes as in Lemma A.1. By denoting $g_{t,j}^{(j)}$ the orthogonal projections of x_t on the subspaces $\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}}$, we find that $x_t = \sum_{j=1}^{\infty} g_t^{(j)}$, where the equality is in the L^2 -norm. Then, by using the characterizations of subspaces $\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}}$, for any scale $j \in \mathbb{N}$ we find a square-summable sequence of real coefficients $\{\beta_k^{(j)}\}_k$ such that equation (9) holds. As a result, we are allowed to decompose the variable x_t as in equation (5).

We now show (i). As we can see in equation (6), the process $\varepsilon^{(j)}$ is an MA($2^j - 1$) with respect to the fundamental innovations $\boldsymbol{\varepsilon}$. In addition, the subprocess $\{\boldsymbol{\varepsilon}_{t-k2^{j}}^{(j)}\}_{k\in\mathbb{Z}}$ is weakly stationary. Indeed, since $\boldsymbol{\varepsilon}$ is a unit variance white noise, for any $k\in\mathbb{Z}$,

$$\mathbb{E}\left[\left(\varepsilon_{t-k2^{j}}^{(j)}\right)^{2}\right] = \frac{1}{2^{j}} \mathbb{E}\left[\left(\sum_{i=0}^{2^{j-1}-1} \varepsilon_{t-k2^{j}-i} - \sum_{i=0}^{2^{j-1}-1} \varepsilon_{t-k2^{j}-2^{j-1}-i}\right)^{2}\right] = \frac{1}{2^{j}} \sum_{i=0}^{2^{j}-1} \mathbb{E}\left[\varepsilon_{t}^{2}\right] = 1.$$

Thus, $\mathbb{E}[(\varepsilon_{t-k2^{j}}^{(j)})^{2}]$ is finite and it does not depend on k. Moreover, $\mathbb{E}[\varepsilon_{t-k2^{j}}^{(j)}] = 0$ for any $k \in \mathbb{Z}$ and the expectation does not depend on k. Finally, we analyze cross-moments in the support $S_{t}^{(j)} = \{t - k2^{j} : k \in \mathbb{N}_{0}\}$. By taking $h \neq k$,

$$\begin{split} \mathbb{E}\left[\varepsilon_{t-h2^{j}}^{(j)}\varepsilon_{t-k2^{j}}^{(j)}\right] \\ &= \frac{1}{2^{j}}\mathbb{E}\left[\left(\sum_{i=0}^{2^{j-1}-1}\varepsilon_{t-h2^{j}-i} - \sum_{i=0}^{2^{j-1}-1}\varepsilon_{t-h2^{j}-2^{j-1}-i}\right)\right. \\ &\cdot \left(\sum_{l=0}^{2^{j-1}-1}\varepsilon_{t-k2^{j}-l} - \sum_{l=0}^{2^{j-1}-1}\varepsilon_{t-k2^{j}-2^{j-1}-l}\right)\right] \\ &= \frac{1}{2^{j}}\left\{\sum_{i=0}^{2^{j-1}-1}\sum_{l=0}^{2^{j-1}-1}\mathbb{E}[\varepsilon_{t-h2^{j}-i}\varepsilon_{t-k2^{j}-l}] - \sum_{i=0}^{2^{j-1}-1}\sum_{l=0}^{2^{j-1}-1}\mathbb{E}[\varepsilon_{t-h2^{j}-i}\varepsilon_{t-k2^{j}-2^{j-1}-l}] \\ &- \sum_{i=0}^{2^{j-1}-1}\sum_{l=0}^{2^{j-1}-1}\mathbb{E}[\varepsilon_{t-h2^{j}-2^{j-1}-i}\varepsilon_{t-k2^{j}-l}] + \sum_{i=0}^{2^{j-1}-1}\sum_{l=0}^{2^{j-1}-1}\mathbb{E}[\varepsilon_{t-h2^{j}-2^{j-1}-l}] \right] \end{split}$$

Since $h \neq k$, the sets of indices $\{h2^j, \ldots, h2^j + 2^j - 1\}$ and $\{k2^j, \ldots, k2^j + 2^j - 1\}$ are disjoint and so the last sums are null. Therefore, $\mathbb{E}[\varepsilon_{t-h2^j}^{(j)}\varepsilon_{t-k2^j}^{(j)}] = 0$ for all $h \neq k$. As a result, $\{\varepsilon_{t-k2^j}^{(j)}\}_{k\in\mathbb{Z}}$ is weakly stationary on $S_t^{(j)}$ and it is a unit variance white

noise.

We now turn to (ii). For any fixed scale $j \in \mathbb{N}$, since the variables $\varepsilon_{t-k2^{j}}^{(j)}$ are orthonormal when *k* varies, the component $g_t^{(j)}$ has a unique representation as in equation (8). Thus, the coefficients $\beta_k^{(j)}$ are uniquely defined, and clearly, $\sum_{j=1}^{\infty} \sum_{k=0}^{\infty} (\beta_k^{(j)})^2$ is finite.

A persistence-based Wold-type decomposition 5

In order to find the explicit expression of coefficients $\beta_k^{(j)}$, we exploit the orthogonal decompositions of $\mathcal{H}_t(\varepsilon)$ at different scales $J \in \mathbb{N}$:

$$\mathcal{H}_t(\boldsymbol{\varepsilon}) = \mathbf{R}^J \mathcal{H}_t(\boldsymbol{\varepsilon}) \oplus \bigoplus_{j=1}^J \mathbf{R}^{j-1} \mathcal{L}_t^{\mathbf{R}}.$$

We call $\pi_t^{(j)}$ the orthogonal projection of x_t on the subspace $\mathbf{R}^j \mathcal{H}_t(\boldsymbol{\varepsilon})$ and we proceed inductively.

We start by the first decomposition $x_t = \pi_t^{(1)} + g_t^{(1)}$ coming from scale J = 1, namely $\mathcal{H}_t(\varepsilon) = \mathbf{R}\mathcal{H}_t(\varepsilon) \oplus \mathcal{L}_t^{\mathbf{R}}$. By the definitions of elements in $\mathbf{R}\mathcal{H}_t(\varepsilon)$ and $\mathcal{L}_t^{\mathbf{R}}$ described in Lemma A.1, we set

$$\pi_t^{(1)} = \sum_{k=0}^{+\infty} \gamma_k^{(1)} \frac{\varepsilon_{t-2k} + \varepsilon_{t-(2k+1)}}{\sqrt{2}} = \sum_{k=0}^{+\infty} c_k^{(1)} (\varepsilon_{t-2k} + \varepsilon_{t-(2k+1)}),$$
$$g_t^{(1)} = \sum_{k=0}^{+\infty} \beta_k^{(1)} \varepsilon_{t-2k}^{(1)} = \sum_{k=0}^{+\infty} d_k^{(1)} (\varepsilon_{t-2k} - \varepsilon_{t-2k-1})$$

for some sequences of coefficients $\{c_k^{(1)}\}_k$ and $\{d_k^{(1)}\}_k$, or equivalently $\{\gamma_k^{(1)}\}_k$ and $\{\beta_k^{(1)}\}_k$, to determine in order to have $x_t = \pi_t^{(1)} + g_t^{(1)}$, where we set $\sqrt{2}c_k^{(1)} = \gamma_k^{(1)}$ and $\sqrt{2}d_k^{(1)} = \beta_k^{(1)}$. The expressions above may be rewritten as

$$x_t = \sum_{k=0}^{+\infty} \{ (c_k^{(1)} + d_k^{(1)}) \varepsilon_{t-2k} + (c_k^{(1)} - d_k^{(1)}) \varepsilon_{t-2k-1} \}.$$

However, from the classical Wold decomposition of x,

$$x_t = \sum_{k=0}^{+\infty} \{ \alpha_{2k} \varepsilon_{t-2k} + \alpha_{2k+1} \varepsilon_{t-2k-1} \}$$

with the same fundamental innovations ε_t . By the uniqueness of writing of the classical Wold decomposition, the two expressions for x_t must coincide. As a result, $c_k^{(1)}$ and $d_k^{(1)}$ are the solutions of the linear system

$$\begin{cases} c_k^{(1)} + d_k^{(1)} = \alpha_{2k}, \\ c_k^{(1)} - d_k^{(1)} = \alpha_{2k+1}, \end{cases}$$

that is,

$$c_k^{(1)} = \frac{\alpha_{2k} + \alpha_{2k+1}}{2}, \qquad d_k^{(1)} = \frac{\alpha_{2k} - \alpha_{2k+1}}{2}$$

and, in particular, we find

$$\gamma_k^{(1)} = \frac{\alpha_{2k} + \alpha_{2k+1}}{\sqrt{2}}, \qquad \beta_k^{(1)} = \frac{\alpha_{2k} - \alpha_{2k+1}}{\sqrt{2}}.$$

Supplementary Material

Next, we focus on the scale J = 2. We exploit the decomposition of the space $\mathbf{R}\mathcal{H}_t(\boldsymbol{\varepsilon}) = \mathbf{R}^2\mathcal{H}_t(\boldsymbol{\varepsilon}) \oplus \mathbf{R}\mathcal{L}_t^{\mathbf{R}}$ that implies the relation $\pi_t^{(1)} = \pi_t^{(2)} + g_t^{(2)}$. We follow the same track as in the previous case, by using the features of elements in $\mathbf{R}^2\mathcal{H}_t(\boldsymbol{\varepsilon})$ and in $\mathbf{R}\mathcal{L}_t^{\mathbf{R}}$ and, finally, by comparing the expression of $\pi_t^{(2)} + g_t^{(2)}$ with the (unique) writing of $\pi_t^{(1)}$ that we found before. Since

$$\pi_t^{(2)} = \sum_{k=0}^{+\infty} \gamma_k^{(2)} \frac{\varepsilon_{t-4k} + \varepsilon_{t-(4k+1)} + \varepsilon_{t-(4k+2)} + \varepsilon_{t-(4k+3)}}{2}, \qquad g_t^{(2)} = \sum_{k=0}^{+\infty} \beta_k^{(2)} \varepsilon_{t-4k}^{(2)},$$

by solving a simple linear system we discover that

$$\gamma_k^{(2)} = \frac{\alpha_{4k} + \alpha_{4k+1} + \alpha_{4k+2} + \alpha_{4k+3}}{2}, \qquad \beta_k^{(2)} = \frac{\alpha_{4k} + \alpha_{4k+1} - \alpha_{4k+2} - \alpha_{4k+3}}{2}.$$

At the generic scale J = j, we retrieve the expressions of $\beta_k^{(j)}$ and $\gamma_k^{(j)}$ of equation (7) and (11), where $\pi_t^{(j)}$ is defined in equation (10).

Finally, we show (iii). First, when *t* is fixed, $\mathbb{E}[g_t^{(j)}g_t^{(l)}] = 0$ for all $j \neq l$ because $g_t^{(j)}$ and $g_t^{(l)}$ are, respectively, the projections of x_t on the subspaces $\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}}$ and $\mathbf{R}^{l-1}\mathcal{L}_t^{\mathbf{R}}$ that are orthogonal by construction. Now, consider any $g_{t-m2^j}^{(j)}$ with $m \in \mathbb{N}_0$. Clearly, $g_{t-m2^j}^{(j)}$ belongs to $\mathbf{R}^{j-1}\mathcal{L}_{t-m2^j}^{\mathbf{R}}$ but, by the definition of $g_t^{(j)}$, we can write

$$g_{t-m2^{j}}^{(j)} = \sum_{k=0}^{+\infty} \beta_{k}^{(j)} \varepsilon_{t-(m+k)2^{j}}^{(j)} = \sum_{K=0}^{+\infty} \beta_{K}^{(j)} \varepsilon_{t-K2^{j}}^{(j)},$$

where $\beta_K^{(j)} = 0$ if K = 0, ..., m-1 and $\beta_K^{(j)} = \beta_k^{(j)}$ if K = m+k for some $k \in \mathbb{N}_0$. As a result, $g_{t-m2^j}^{(j)}$ belongs to $\mathbf{R}^{j-1}\mathcal{L}_t^{\mathbf{R}}$, too. Similarly, at scale l, taken any $n \in \mathbb{N}_0$, it is easy to see that $g_{t-n2^l}^{(l)}$ belongs to $\mathbf{R}^{l-1}\mathcal{L}_t^{\mathbf{R}}$. Hence, the orthogonality of such subspaces guarantees that $\mathbb{E}[g_{t-m2^j}^{(j)}g_{t-n2^l}^{(l)}] = 0$ for all $j \neq l$ and $m, n \in \mathbb{N}_0$.

As for the general requirement on $\mathbb{E}[g_{t-p}^{(j)}g_{t-q}^{(l)}]$ for any $j, l \in \mathbb{N}$ and $p, q, t \in \mathbb{Z}$,

$$\begin{split} \mathbb{E}[g_{t-p}^{(j)}g_{t-q}^{(l)}] &= \sum_{k=0}^{+\infty}\sum_{h=0}^{+\infty}\beta_{k}^{(j)}\beta_{h}^{(l)}\mathbb{E}[\varepsilon_{t-p-k2^{j}}^{(j)}\varepsilon_{t-q-h2^{l}}^{(l)}] \\ &= \frac{1}{\sqrt{2^{j+l}}}\sum_{k=0}^{+\infty}\sum_{h=0}^{+\infty}\beta_{k}^{(j)}\beta_{h}^{(l)}\sum_{u=0}^{2^{j-1}-1}\sum_{v=0}^{2^{l-1}-1}\{\mathbb{E}[\varepsilon_{t-p-k2^{j}-u}\varepsilon_{t-q-h2^{l}-v}] \\ &\quad -\mathbb{E}[\varepsilon_{t-p-k2^{j}-u}\varepsilon_{t-q-h2^{l}-2^{l-1}-v}] -\mathbb{E}[\varepsilon_{t-p-k2^{j}-2^{j-1}-u}\varepsilon_{t-q-h2^{l}-v}] \\ &\quad +\mathbb{E}[\varepsilon_{t-p-k2^{j}-2^{j-1}-u}\varepsilon_{t-q-h2^{l}-2^{l-1}-v}]\} \end{split}$$

and so

$$\mathbb{E}[g_{t-p}^{(j)}g_{t-q}^{(l)}] = \frac{1}{\sqrt{2^{j+l}}} \sum_{k=0}^{+\infty} \sum_{h=0}^{+\infty} \beta_h^{(j)} \beta_h^{(l)} \sum_{u=0}^{2^{j-1}-1} \sum_{v=0}^{2^{l-1}-1} \{\gamma(p-q+k2^j+u-h2^l-v) - \gamma(p-q+k2^j+u-h2^l-2^{l-1}-v)\}$$

A persistence-based Wold-type decomposition 7

$$-\gamma(p-q+k2^{j}+2^{j-1}+u-h2^{l}-v) +\gamma(p-q+k2^{j}+2^{j-1}+u-h2^{l}-2^{l-1}-v)\}$$

where coefficients $\beta_k^{(j)}$, $\beta_h^{(l)}$ do not depend on *t* and γ denotes the autocovariance function of ϵ . After the summations over *u*, *v* and *k*, *h*, the one remaining variables are *j*, *l*, p - q. In other words, $\mathbb{E}[g_{t-p}^{(j)}g_{t-q}^{(l)}]$ depends at most on *j*, *l*, p - q.

Proof of Theorem 2

PROOF. First, we show that any process $\mathbf{g}^{(j)}$ is well-defined. Indeed, by using the moving average representation of each $g_t^{(j)}$ with respect to the innovations on the support $S_t^{(j)}$ and the definition of detail processes $\boldsymbol{\varepsilon}^{(j)}$, we have

$$g_{t}^{(j)} = \sum_{k=0}^{+\infty} \beta_{k}^{(j)} \varepsilon_{t-k2^{j}}^{(j)} = \sum_{k=0}^{+\infty} \sum_{i=0}^{2^{j}-1} \beta_{k}^{(j)} \delta_{i}^{(j)} \varepsilon_{t-k2^{j}-i} = \sum_{h=0}^{+\infty} \beta_{\lfloor \frac{h}{2^{j}} \rfloor}^{(j)} \delta_{h-2^{j} \lfloor \frac{h}{2^{j}} \rfloor}^{(j)} \varepsilon_{t-h},$$
(25)

where $h = k2^j + i$, $k = \lfloor \frac{h}{2^j} \rfloor$ and $i = h - 2^j \lfloor \frac{h}{2^j} \rfloor$. Condition (13) ensures the square-summability of the coefficients and so each $\mathbf{g}^{(j)}$ is well-defined.

In addition, the process **x** is well-defined because of Conditions (13) and (14). According to the latter, the components $g_t^{(j)}$ are orthogonal to each others at different scales for fixed $t \in \mathbb{Z}$. Therefore,

$$\mathbb{E}[x_t^2] = \mathbb{E}\left[\left(\sum_{j=1}^{+\infty} g_t^{(j)}\right)^2\right] = \sum_{j=1}^{+\infty} \mathbb{E}\left[\left(g_t^{(j)}\right)^2\right] = \sum_{j=1}^{+\infty} \sum_{h=0}^{+\infty} \left(\beta_{\lfloor \frac{h}{2^j} \rfloor}^{(j)} \delta_{h-2^j \lfloor \frac{h}{2^j} \rfloor}^{(j)}\right)^2,$$

which is finite because of (13). In consequence, the process \mathbf{x} is well-defined.

Now we show that **x** is weakly stationary, with zero mean. We already observed that $\mathbb{E}[x_t^2]$ is finite and not dependent on *t*. In addition, since the processes $\mathbf{g}^{(j)}$ have zero mean, $\mathbb{E}[x_t] = 0$ for any $t \in \mathbb{Z}$. Finally, take $p \neq q$. Then

$$\mathbb{E}[x_{t-p}x_{t-q}] = \mathbb{E}\left[\left(\sum_{j=1}^{+\infty} g_{t-p}^{(j)}\right) \left(\sum_{l=1}^{+\infty} g_{t-q}^{(l)}\right)\right] = \sum_{j=1}^{+\infty} \sum_{l=1}^{+\infty} \mathbb{E}[g_{t-p}^{(j)}g_{t-q}^{(l)}].$$

As $\mathbb{E}[g_{l-p}^{(j)}g_{l-q}^{(l)}]$ are dependent at most on j, l and p-q (see, e.g., the computations in the proof of Theorem 1), $\mathbb{E}[x_{l-p}x_{l-q}]$ depends at most on the difference p-q. As a result, **x** is weakly stationary, with zero mean.

By taking the sum over scales $j \in \mathbb{N}$ in equation (25), we obtain the decomposition of x_t with respect to the process ε stated in equation (16). Clearly, **x** is purely non-deterministic.

PROPOSITION A.1. The time series

$$\mathbf{R}x_t = \sum_{k=0}^{+\infty} \frac{\alpha_{\lfloor \frac{k}{2} \rfloor}}{\sqrt{2}} \varepsilon_{t-k} \quad and \quad \mathbf{R}_{\mathbf{x}}x_t = \frac{1}{\sqrt{2}} (x_t + x_{t-1})$$

Supplementary Material

have spectral density functions, respectively,

$$f_{\mathbf{R}}(\lambda) = 2\cos^2\left(\frac{\lambda}{2}\right)f_x(2\lambda)$$
 and $f_{\mathbf{R}_{\mathbf{X}}}(\lambda) = 2\cos^2\left(\frac{\lambda}{2}\right)f_x(\lambda),$

where $f_x(\lambda)$ is the spectral density function of x_t .

PROOF. Define the time-invariant linear filter $A(\mathbf{L}) = \sum_{h=0}^{\infty} \alpha_h \mathbf{L}^h$, so that $x_t = A(\mathbf{L})\varepsilon_t$. Since $\sum_{h=0}^{\infty} |\alpha_h| < +\infty$ and the spectral density function of ε_t is $f_{\varepsilon}(\lambda) = 1/2\pi$,

$$f_x(\lambda) = |A(e^{-i\lambda})|^2 f_\varepsilon(\lambda) = \left|\sum_{h=0}^{+\infty} \alpha_h e^{-ih\lambda}\right|^2 \frac{1}{2\pi}$$
$$= \frac{1}{2\pi} \left\{ \left(\sum_{h=0}^{+\infty} \alpha_h \cos(h\lambda)\right)^2 + \left(\sum_{h=0}^{+\infty} \alpha_h \sin(h\lambda)\right)^2 \right\}$$
$$= \frac{1}{2\pi} \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} \alpha_h \alpha_k \cos(\lambda(k-h)).$$

First, consider $\mathbf{R}x_t$. As $\sum_{k=0}^{\infty} |\alpha_{\lfloor \frac{k}{2} \rfloor}| = 2 \sum_{h=0}^{\infty} |\alpha_h| < +\infty$, we have

$$\begin{split} f_{\mathbf{R}}(\lambda) &= \left| \sum_{k=0}^{+\infty} \frac{\alpha_{\lfloor \frac{k}{2} \rfloor}}{\sqrt{2}} e^{-ik\lambda} \right|^2 \frac{1}{2\pi} = \frac{1}{2\pi} \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} \frac{\alpha_{\lfloor \frac{h}{2} \rfloor} \alpha_{\lfloor \frac{k}{2} \rfloor}}{2} \cos(\lambda(k-h)) \\ &= \frac{1}{2\pi} \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} \alpha_h \alpha_k \left\{ \cos(2\lambda(k-h)) + \frac{\cos(\lambda(2k-2h+1)) + \cos(\lambda(2k-2h-1))}{2} \right\} \\ &= \frac{1}{2\pi} \sum_{h=0}^{+\infty} \sum_{k=0}^{+\infty} \alpha_h \alpha_k \cos(2\lambda(k-h)) \{1 + \cos(\lambda)\} = 2\cos^2\left(\frac{\lambda}{2}\right) f_x(2\lambda). \end{split}$$

Now consider $\mathbf{R}_{\mathbf{x}} x_t$. The spectral density function in the claim follows from

$$f_{\mathbf{R}_{\mathbf{x}}}(\lambda) = \left|\frac{1}{\sqrt{2}} \left(e^0 + e^{-i\lambda}\right)\right|^2 f_x(\lambda) = \frac{1}{2} \left\{ \left(1 + \cos(\lambda)\right)^2 + \sin^2(\lambda) \right\} f_x(\lambda).$$

A.2 Forecasting from the persistence-based decomposition

We provide the formulas for conditional expectation and variance of a process $\mathbf{x} = \{x_t\}_{t \in \mathbb{Z}}$ that has classical and extended Wold decompositions given by equations (4) and (5), respectively. We consider the filtration generated by the white noise $\boldsymbol{\varepsilon} = \{\varepsilon_t\}_{t \in \mathbb{Z}}$ assuming that the innovations ε_t are independent.

Fix $p \in \mathbb{N}$. The conditional expectation at time *t* of x_{t+p} is characterized by an offset of the classical Wold coefficients, namely $\mathbb{E}_t[x_{t+p}] = \sum_{h=0}^{\infty} \alpha_{h+p} \varepsilon_{t-h}$. Notably, such offset is inherited by the extended Wold decomposition of $\mathbb{E}_t[x_{t+p}]$:

$$\mathbb{E}_t[x_{t+p}] = \sum_{j=1}^{+\infty} \sum_{k=0}^{+\infty} \beta_{k,p}^{(j)} \varepsilon_{t-k2^j}^{(j)},$$

A persistence-based Wold-type decomposition 9

where, for any $j \in \mathbb{N}$ and $k \in \mathbb{N}_0$,

$$\beta_{k,p}^{(j)} = \frac{1}{\sqrt{2^{j}}} \left(\sum_{i=0}^{2^{j-1}-1} \alpha_{k2^{j}+i+p} - \sum_{i=0}^{2^{j-1}-1} \alpha_{k2^{j}+2^{j-1}+i+p} \right).$$

Therefore, once the extended Wold decomposition of x_t is known, *p*-step ahead forecasts do not require a large additional effort because they are driven by the detail processes $\varepsilon^{(j)}$, too, and coefficients $\beta_{k,p}^{(j)}$ are easily computed.

cesses $\varepsilon^{(j)}$, too, and coefficients $\beta_{k,p}^{(j)}$ are easily computed. As to the conditional variance, the properties of the classical Wold decomposition ensure that $\operatorname{Var}_t(x_{t+p}) = \alpha_0^2 + \dots + \alpha_{p-1}^2$. By Theorem 2 the coefficients α_h can be obtained from the scale-specific $\beta_k^{(j)}$ and so $\operatorname{Var}_t(x_{t+p})$ can be derived directly from them. For example, $\operatorname{Var}_t(x_{t+1}) = \alpha_0^2 = (\sum_{i=1}^{\infty} \beta_0^{(j)} / \sqrt{2^j})^2$.

References

Luenberger, D. G. (1968), Optimization by Vector Space Methods. John Wiley & Sons. [2]

Nagy, B. S., C. Foias, H. Bercovici, and L. Kérchy (2010), *Harmonic Analysis of Operators* on *Hilbert Space*. Springer. [2]

Co-editor Frank Schorfheide handled this manuscript.

Manuscript received 3 October, 2017; final version accepted 4 August, 2019; available online 14 August, 2019.