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Supplementary Material

Supplement to “Measuring quality for use in incentive schemes:
The case of “shrinkage” estimators”

(Quantitative Economics, Vol. 10, No. 4, November 2019, 1537–1577)

Nirav Mehta
Department of Economics, University of Western Ontario

Appendix B: Cutoff model proofs and extensions

B.1 Direct conditioning on class size

The difference in administrator’s value from using different teacher-quality estimators
derives from the assumption that the administrator chooses a cutoff policy based on
only test score information. Such a one-dimensional policy is quite simple and, there-
fore, is of considerable clear policy relevance; this demonstrated by Table A.1, which
documents existing incentive schemes and shows that none condition on class size.
Moreover, when compared with a policy that may also explicitly condition on class sizes,
a test-score-based cutoff may attenuate issues of class size manipulation for the sake of
affecting the administrator’s posterior about the quality of a particular teacher. How-
ever, allowing the administrator to explicitly take into account class size may still be of
interest. This section shows how the theoretical results in Section 3 would be affected.

Now suppose the administrator, instead of only indirectly taking it into account
when maximizing her utility, could instead explicitly condition on class size ni. If ni was
a strictly monotonic function of teacher quality θ, then the administrator could achieve
a perfect classification of teachers by inverting n(θ)—even if she ignored all teachers’
test scores. A more realistic case would allow for multiple teacher qualities for at least
one class size. Suppose that the distribution of teacher qualities for each class size was
normally distributed. Because the administrator can explicitly condition on class size
she can hold a separate cutoff-based classification problem for each class size level;
denote the administrator’s value from using the fixed effects and empirical Bayes es-
timators as vFE

CP�n(κ) and vEB
CP�n(κ), respectively. Then by Proposition 1, the administra-

tor would obtain the same value for either estimator given the desired cutoff κ, that is,
vFE

CP�n(κ) = vEB
CP�n(κ) for all (n�κ). Therefore, we can without loss of generality consider

only the fixed-effects estimator, with optimal cutoff policy c∗FE
n . Further note that the

administrator’s expected objective would be at least as high if she is allowed to split her
original objective into one objective for each class size; if the cutoff for c∗FE

n1
= c∗FE

n2
for all

class sizes n1� n2, then her value under the separate class size scheme would be the same
as that from her original objective.
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B.2 Administrator’s problem with infinite precision

We want to prove that as the variance of the measurement error tends to 0 (which im-
plies σε → 0) all teachers will be correctly categorized, giving vFE

CP(κ) = vEB
CP(κ) = 1 for

all desired κ. First, consider the fixed effects estimator. The administrator’s utility for a
teacher with true quality θ under the fixed effects estimator and cutoff policy c is

uCP
(
θ� θ̂FE; c�κ) = α1

{
θ̂FE ≥ c|θ≥ κ} + (1 − α)1{θ̂FE < c|θ < κ}

p→ α1{θ≥ c|θ≥ κ} + (1 − α)1{θ < c|θ < κ}� (S.1)

which is maximized at c = κ. The administrator’s utility from using cutoff policy c under
the empirical Bayes estimator, for the same teacher, is

plim
σε→0

uCP
(
θ� θ̂EB; c�κ)

= α1
{
θ̂EB ≥ c|θ≥ κ} + (1 − α)1{θ̂EB < c|θ < κ}

= α1
{
λ(θ)θ≥ c|θ≥ κ} + (1 − α)1{λ(θ)θ < c|θ < κ}� (S.2)

which is maximized at c = κ/λ(F−1(κ)). The probabilities of the events in both (S.1)
and (S.2) are all 1, giving an expected utility of 1 for all teacher qualities, which then
integrates to a value of 1 for each estimator.

B.3 Proof of Proposition 2

Recall that we are considering first the case where κ� c∗EB < 0. Differentiating the admin-
istrator’s value with respect to β− and evaluating at β− = 0, our goal is to show when

∂vEB
CP

∂β−

∣∣∣∣
β−=0

= (1 − α)
∫ κ

−∞
−c∗EBθ

(δ−)2σε
φ

(θ− c∗EB

δ−
σε

)
φ(θ/σθ)

σθ(κ/σθ)
dθ

+ α
∫ 0

κ

c∗EBθ

(δ−)2σε
φ

(θ− c∗EB

δ−
σε

)
φ(θ/σθ)

σθ
(
1 −(κ/σθ)

) dθ < 0� (S.3)

The conjugate nature of the normal distribution (Bromiley (2003)) allows us to combine

the above densities into one Gaussian density,1 letting us write 1
σε
φ(

c∗EB
δ− −θ
σε

)× 1
σθ
φ( θσθ )=

1 If X1 ∼ F1 = N(μ1�σ
2
1 ), with density f1 and X2 ∼ F2 = N(μ2�σ

2
2 ), with density f2, then f1(θ)× f2(θ) =

fP (θ)
SP

, where

fP(θ)= 1
σP
φ

(
θ−μP
σP

)
�
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fP(θ)
SP

, where SP is a positive constant and

fP(θ)= 1
σP
φ

(
θ−μP
σP

)
�

μP =
c∗EB

δ−
σ2
θ + 0 × σε2

σε
2 + σ2

θ

=
c∗EB

δ−
σ2
θ

σε
2 + σ2

θ

= c∗EB�

σ2
P = σε

2σ2
θ

σε
2 + σ2

θ

�

where the last equality on the second line follows because δ− = λ(θ)|β−=0 = σ2
θ

σε
2+σ2

θ

. Di-

viding through by SP , we have
∂vEB

CP
∂β− |β−=0 < 0 if

∫ κ

−∞
c∗EBθ

(δ−)2
fP(θ)dθ∫ 0

κ

c∗EBθ

(δ−)2
fP(θ)dθ

>

(
α

1 − α
)(

(κ/σθ)

1 −(κ/σθ)
)

⇒

∫ κ

−∞
θfP(θ)dθ∫ 0

κ
θfP(θ)dθ

>

(
α

1 − α
)(

(κ/σθ)

1 −(κ/σθ)
)
� (S.4)

The top and bottom terms on the left side of (S.4) are expectations of truncated nor-
mal random variables, scaled by truncation probabilities, that is,∫ κ

−∞
θfP(θ)dθ= (

FP(κ)− FP(−∞)
)

EFP [θ|θ < κ]

= (
FP(κ)− FP(−∞)

)
⎛
⎜⎜⎝μP + σP

φ

(−∞ −μP
σP

)
−φ

(
κ−μP
σP

)



(
κ−μP
σP

)
−

(−∞ −μP
σP

)
⎞
⎟⎟⎠

=
(
κ−μP
σP

)(
μP + σP

−φ
(
κ−μP
σP

)



(
κ−μP
σP

) )

μP = μ1σ
2
2 +μ2σ

2
1

σ2
1 + σ2

2

�

σ2
P = σ2

1σ
2
2

σ2
1 + σ2

2

�

and SP is a positive and constant scaling factor that depends onμ1�μ2�σ1�σ2 according to Sp =φ( μ1−μ2√
σ2

1 +σ2
2

).
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and∫ 0

κ
θfP(θ)dθ= (

FP(0)− FP(κ)
)

EFP [θ|κ < θ < 0]

= (
FP(0)− FP(κ)

)(
μP + σP

φ

(
κ−μP
σP

)
−φ

(−μP
σP

)



(−μP
σP

)
−

(
κ−μP
σP

))

=
(


(−μP
σP

)
−

(
κ−μP
σP

))(
μP + σP

φ

(
κ−μP
σP

)
−φ

(−μP
σP

)



(−μP
σP

)
−

(
κ−μP
σP

))
�

Putting the above expressions back into the comparison (S.4) and rearranging, we
have

(
μP + σP

−φ
(
κ−μP
σP

)



(
κ−μP
σP

) )

(
μP + σP

φ

(
κ−μP
σP

)
−φ

(−μP
σP

)



(−μP
σP

)
−

(
κ−μP
σP

))

︸ ︷︷ ︸
#1

×
(1 −

(
κ

σθ

)



(
κ

σθ

) )

︸ ︷︷ ︸
#2

×


(
κ−μP
σP

)
(


(−μP
σP

)
−

(
κ−μP
σP

))
︸ ︷︷ ︸

#3

>
α

1 − α� (S.5)

Recall that we are considering the case where κ < 0 and c∗EB < 0.2 Therefore, both the
numerator and denominator of expression #1 are negative, with the numerator greater
in absolute value than the denominator, which implies that expression #1 > 1. More-
over, κ < 0 implies that(κ/σθ) < 1/2, which implies that expression #2> 1 as well. For
example, consider α ≤ 1/2. In these cases, the expressions #1 and #2 would satisfy the
above inequality. However, the expression #3 could potentially be less than 1.

Due to our well-known lack of a closed-form expression for the standard normal
CDF , it is impossible to sign the above inequality in a purely analytical manner for
all possible cases. Moreover, the inequality would be violated for extreme parameteriza-
tions, such as where the administrator only placed value on one type of error (making α
go to either the corner of zero or one). However, it is still possible to show why Condition
(S.5) would likely hold for a wide range of reasonable values of (α�κ�σθ�σε� c∗EB).

To start, assume α = 1/2, in which case what is left to be shown is that the left side
of the inequality (S.5) is greater than one (in Appendix B.4, I use numerical methods
to verify that estimator rankings consistent with (S.5) hold for a wide range of α). For

2I show below that similar conditions obtain when considering κ > 0 and c∗EB > 0.
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simplicity, express the cutoff policy as a fraction of the desired cutoff κ, that is, cEB = γcκ,
where γc ∈ [0�1] (i.e., cEB will be the same sign as κ and no larger in absolute value than
κ) and write μP = c∗EB = γcκ. Because #1 is always greater than one, it is sufficient to
satisfy the following condition:

1<
1 −

(
κ

σθ

)



(
κ

σθ

) ×


(
κ−μP
σP

)



(−μP
σP

)
−

(
κ−μP
σP

)

⇒


( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

) < 1
(κσ)

� (S.6)

where κσ ≡ κ/σθ expresses the desired cutoff in terms of standard deviations of teacher

quality and γσ ≡ σ2
ε

σε
2+σ2

θ

∈ (0�1).

With the above simplifications, whether Condition (S.6) will be satisfied (which is
sufficient for satisfying Condition (S.5) when α= 1/2) depends on (γσ�γc�κσ) ∈ (0�1)×
[0�1] × (−∞�0]. The following cases analyze when (γσ�γc�κσ) satisfy Condition (S.6):

Case a: κσ → 0 For all (γσ�γc) ∈ (0�1)× [0�1], Condition (S.6) will also be satisfied as
κσ → 0, as the left side tends to one and the right side tends to two.

Case b: κσ < 0 There are two relevant subcases:

Case b.i: 1 − γc ≤ √
γσ

Lemma S.1. Condition (S.6) will be satisfied if 1 − γc ≤ √
γσ .

Proof. The numerator of the left side of (S.6) will always be smaller than the nu-
merator of the right for any finite κσ . If 1 − γc ≤ √

γσ , then we have (1−γc)√
γσ
κσ ≥ κσ ⇒

((1−γc)√
γσ
κσ) ≥ (κσ), that is, the denominator of the left will be at least as large as the

denominator of the right.

Case b.ii: 1 − γc >√
γσ

Lemma S.2. There exists a threshold γ̂σ(κσ�γc) ∈ (0�1) such that, given (κσ�γc), Condi-
tion (S.6) is met for γσ > γ̂σ(κσ�γc).

Proof. Note that (γσ�γc) only enter the left side of (S.6). The limit of the left side of
Condition (S.6) as γσ → 0 is (∞)/(−∞) = 1/0 = ∞, which is greater than the right
side for any finite κσ . As γσ → 1, the above sufficient condition 1 − γc ≤ √

γσ is satisfied
for γc ∈ (0�1) because 1 − γc ≤ 1 ⇔ γc ≥ 0, meaning the left side is less than the right
side. Because the left side is continuous in γσ , there exists a γ̂σ(κσ�γc) by the Interme-

diate Value Theorem such that G(κσ�γc� γ̂σ(κσ�γc)) ≡
( −γc√

γ̂σ (κσ �γc)
κσ )

( (1−γc)√
γ̂σ (κσ �γc)

κσ )
− 1

(κσ)
= 0. The
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solution to G will be unique if the left side of (S.6) is monotonically decreasing in γσ .
The derivative of the left side with respect to γσ is

∂

[ 

( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)]

∂γσ

= 2
κσ√
γσ

⎡
⎢⎢⎢⎣
γcφ

( −γc√
γσ
κσ

)


(
(1 − γc)√

γσ
κσ

)
+ (1 − γc)φ

(
(1 − γc)√

γσ
κσ

)


( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)2

⎤
⎥⎥⎥⎦ �
(S.7)

which is negative because the term in brackets is positive and κσ < 0.

Lemma S.3. The threshold γ̂σ(κσ�γc) is decreasing in γc .

Proof. Having established that there exists a cutoff γ̂σ solvingG in Lemma S.2, we can
implicitly differentiateG around the solution to obtain

∂γ̂σ

∂γc
= −

∂G

∂γc
∂G

∂γσ

= −

∂

[ 

( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)]

∂γc

∂

[ 

( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)]

∂γσ

�

The derivative in the denominator, (S.7), has been shown to be negative, which means
that ∂γ̂σ∂γc will have the same sign as the derivative in the numerator (because the entire
expression is multiplied by negative one):

∂

[ 

( −γc√
γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)]

∂γc

= κσ√
γσ

⎡
⎢⎢⎢⎣
φ

(
(1 − γc)√

γσ
κσ

)


( −γc√
γσ
κσ

)
−φ

( −γc√
γσ
κσ

)


(
(1 − γc)√

γσ
κσ

)



(
(1 − γc)√

γσ
κσ

)2

⎤
⎥⎥⎥⎦ �
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Table B.1. Summary of cases.

Case Parameterization Will (S.5) be Satisfied? Proof

a κσ → 0 Yes Direct (see page 5 of text)
b.i κσ < 0 and 1 − γc ≤ √

γσ Yes Lemma S.1
b.ii κσ < 0 and 1 − γc >√

γσ Depends on (γσ�γc�κσ) Lemma S.2

The denominator of the term in the brackets is positive iff

φ

(
(1 − γc)√

γσ
κσ

)


( −γc√
γσ
κσ

)
>φ

( −γc√
γσ
κσ

)


(
(1 − γc)√

γσ
κσ

)

⇔
φ

(
(1 − γc)√

γσ
κσ

)



(
(1 − γc)√

γσ
κσ

) > φ

( −γc√
γσ
κσ

)



( −γc√
γσ
κσ

) �

which is satisfied because each side represents the reverse hazard function for the nor-
mal distribution r(x) = φ(x)

(x) , which is decreasing (see Theorem 17 of Chechile (2011)),

and we have (1−γc)√
γσ
κσ < 0< −γc√

γσ
κσ .

Putting the above together, although it is not possible to obtain explicit conditions
that exactly characterize the set of parameters satisfying the desired inequality, it is pos-
sible to show that the inequality would be satisfied for a wide range of parameters. Ta-
ble B.1 summarizes the cases considered above. First, all (γc�γσ) ∈ (0�1)× [0�1] satisfy
the inequality as κσ → 0 (case a). Intuitively, as κσ → 0, the countervailing decrease in
Type I errors vanishes, meaning the increase in Type II errors will necessarily dominate.
For κσ < 0 (case b), we know that there exists a cutoff value of γσ for each (κσ�γc) such
that the inequality will be satisfied, and that this cutoff is decreasing in γc (making it
more likely to hold). If γc is large enough (case b.i) then κσ does not need to be consid-
ered to verify whether the inequality will be satisfied. Otherwise (case b.ii), whether the
inequality will be satisfied depends on (γσ�γc�κσ). Intuitively, as 1 − γc increases (rela-

tive to
√
γσ ) the weights φ(

θ− c∗EB
δ−
σε

) in (S.3) increase more for larger values of |θ|, causing
the increase in Type II errors to be larger than the decrease in Type I errors.

Therefore, it is instructive to compute the “worst-case” cutoff where γc = 0. Setting
γc = 0 and rearranging (S.6), we obtain

(0)



(
κσ√
γσ

) < 1
(κσ)

⇔ γσ >

(
κσ

−1
(
(κσ)

2

))2
�

where the sign reversal in the last inequality is due to −1((κσ)2 ) < 0. Take, for exam-
ple, κσ = −1, meaning the administrator wishes to identify the bottom 16% teachers. In
this case, γ̂σ(κσ = −1�γc = 0) ≈ 0�50. Several empirical studies find that test scores are
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Figure B.1. Cutoff γ̂σ when κσ = −1 and κσ = −2.

comprised of roughly equal parts signal and noise (see, e.g., Staiger and Rockoff (2010),
which means we can use γσ = 1/2 as a rough approximation. This, combined with the
fact that γ̂σ would only decrease as γc increased from its lower bound of zero, makes it
very likely that Condition (S.6) would be satisfied.

Figure B.1 plots the sufficient condition γσ ≥ (1 − γc)
2 (dotted curve) and the κσ -

dependent γ̂σ when κσ is −1 (solid curve) and −2 (dot-dashed curve). Any value of γσ
above a scenario-specific curve would satisfy Condition (S.6) for that scenario. For ex-
ample, the result that all values of γσ would satisfy the inequality as γc → 1 can be seen
as the sufficient condition goes down to zero when γc → 1. As κσ increases in absolute
value the cutoff γ̂σ increases, where γ̂σ approaches the sufficient condition (1 − γc)2 as
|κσ | → ∞.

Across a wide variety of class size and teacher quality scenarios and desired cutoffs
(κ), the typical value of γc is in the range of 0�275 to 0�4. For example, the 25th and 75th
percentiles of γc are, respectively, 0�286 and 0�30 when using the calibrated relationship
between class size and teacher quality for Reading in the LAUSD. The red segment shows
the range of typical values of γc , coupled with the typical value of γσ ≈ 1/2. Much of the
red segment lies in the “sufficiency” part of the plot, meaning Condition (S.6) would be
satisfied for any nonpositive κσ . We can see that the typical values of (γc�γσ)would also
easily satisfy Condition (S.6) when κσ = −1 and κσ = −2.

It is important to remember that Condition (S.6) is only a sufficient condition for the
derivative of the value under empirical Bayes with respect to β− being negative, as it
ignores the first term in (S.5). For example, consider γc = 0�275 and γσ = 0�5. Setting γc
to the lowest value in the typical range is conservative as it makes (S.6) harder to satisfy.
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The left side of (S.6) decreases in κ more quickly than the right side of (S.6), meaning a
low (i.e., extreme negative) desired cutoff would make it harder to satisfy the inequality.3

Choosing κ = −5σθ, that is, the desired cutoff was five standard deviations below the
mean teacher quality, the left side numerically evaluates to 1�91. Notably, this extreme
cutoff is far beyond any existing or proposed teacher incentive scheme. Thus, we can be
confident that the desired inequality would be satisfied for reasonable parameter values.

Now suppose that κ > 0 and c∗EB > 0. For the negative-quadratic n(θ) to result
in lower value from using empirical Bayes for all κ, the desired inequality would be
∂vEB

CP
∂β+ |β+=0 > 0. The (sufficient) analogue of the sufficient condition (S.6) in this case
would be

(κσ)

1 −(κσ) >


(
(1 − γc)√

γσ
κσ

)
−

( −γc√
γσ
κσ

)

1 −
(
(1 − γc)√

γσ
κσ

)

⇔ 1 −(−κσ)
(−κσ) >



( −γc√
γσ
(−κσ)

)
−

(
(1 − γc)√

γσ
(−κσ)

)



(
(1 − γc)√

γσ
(−κσ)

)

⇔ 1
(−κσ) >



( −γc√
γσ
(−κσ)

)



(
(1 − γc)√

γσ
(−κσ)

) �
which, since −κσ < 0, is equivalent to Condition (S.6). Thus, the conditions on (γc�γσ)
are identical, given |κσ |.

B.4 Asymmetric Type I and Type II weights

The administrator’s preferred estimator in the cutoff-based model is not very sensitive
to α being close to 1/2. Figure B.2 plots the ratio of the administrator’s value under fixed
effects and empirical Bayes, by class size scenario n(θ) and desired cutoff κ, for different
values of the Type I error weight. Figure B.2(a) shows the ratio in administrator’s value
when α = 1/4, that is, the administrator values Type I errors one-third as much as she
values Type II errors. Figure B.2(b) shows the value ratio when α = 2/3, that is, the ad-
ministrator values Type I errors twice as much as Type II errors. In both plots, we can
see that the relative ranking of the estimators is the same as it was under the symmetric
weight, α= 1/2, scenario.

B.5 Proposition S.1

This section proves that fixed effects and empirical Bayes return the same value when
the administrator’s problem is symmetric.

3This is illustrated in Figure B.1, which shows that γ̂σ increases as κσ decreases from −1 to −2. Indeed,
as can be seen by inspectingG in Lemma S.2, γ̂σ → (1 − γc)2 as κσ → −∞.
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Figure B.2. Difference between administrator’s value under fixed effects and empirical Bayes,
by class size scenario and desired cut point and weight on Type I error, α.

Definition S.1. The administrator’s problem is symmetric if α= 1/2, n(θ) is symmetric
around the population mean of teacher quality, and the administrator’s desired cutoff is
κ= 0.

Proposition S.1. The administrator receives the same value from both estimators when
the problem is symmetric.

Proof. Because n(θ) is symmetric about θ = 0 and θi ∼ F = N(0�σ2
θ), the distribution

of θ is symmetric around its population mean of 0. The optimal c∗EB solves

∫ ∞

0

1
λ
(
n(θ)

)
σε

(
n(θ)

)φ(
c∗EB/λ

(
n(θ)

) − θ
σε

(
n(θ)

) )
φ(θ/σθ)

σθ · 1/2
dθ

=
∫ 0

−∞
1

λ
(
n(θ)

)
σε

(
n(θ)

)φ(
c∗EB/λ

(
n(θ)

) − θ
σε

(
n(θ)

) )
φ(θ/σθ)

σθ · 1/2
dθ�

At c∗EB = 0, the expression becomes∫ ∞

0

1
λ
(
n(θ)

)
σε

(
n(θ)

)φ( −θ
σε

(
n(θ)

))φ(θ/σθ)
σθ · 1/2

dθ

=
∫ 0

−∞
1

λ
(
n(θ)

)
σε

(
n(θ)

)φ( −θ
σε

(
n(θ)

))φ(θ/σθ)
σθ · 1/2

dθ�

which holds because of the symmetry of φ(·), n(·), and λ(·) (through its dependence
on n, which is symmetric). Therefore, c∗EB = 0 solves the administrator’s problem when



Supplementary Material Measuring quality for use in incentive schemes 11

empirical Bayes is used. Because λ(n(θ))= 1, ∀θwhen the fixed effects estimator is used,
c∗FE = 0 must also solve the administrator’s problem when fixed effects is used, meaning
the administrator’s objective is equivalent under both estimators.

B.6 Functional form of λ(·)
The functional form for λ(θ) was chosen to simplify exposition; another way to provide
intuition for result in Proposition 2 is to consider the effect of an infinitesimal “bump”
βb to the shrinkage weight, via

λ(θ)=
{
λ θ �= θb�
λ+βb θ= θb�

If θb < κ, then

∂vEB
CP

∂βb

∣∣∣∣
βb=0

= (1 − α) −c∗EB

(λ)2σε
φ

(θb − c∗EB

λ
σε

)
φ(θb/σθ)

σθ(κ/σθ)
> 0�

that is, lowering the weight λ(·) for lower values of θ, as would occur with a negative-
quadratic λ(·), would lower the administrator’s value and increasing λ(·) for lower values
of θ, as would occur with a positive-quadratic λ(·), would increase the administrator’s
value.

B.7 Mechanical heteroskedasticity

The theoretical results in Section 3 were obtained under the assumption that all teach-
ers faced the same distribution of mean measurement error, that is, σε(θ) = σε. There
are two main sources of heteroskedasticity in the errors on teacher quality measures.
The first could be thought of as “essential heteroskedasticity,” where the test score er-
rors for different teachers had different variances, meaning the standard deviation of
the measurement error for a single test score for teacher i could be written as σε�i. Such
heteroskedasticity could be present even in the case of constant class sizes. The second
is what I will refer to as “mechanical heteroskedasticity,” which is due to nonconstant
class sizes (which would emerge, e.g., in the scenario of Proposition 2).

Essential heteroskedasticity Consider the environment of Boyd et al. (2013), which al-
lows for heteroskedasticity in terms of two observed variables: the grade level and the
student level (in terms of prior achievement). In principle, either or both forms of het-
eroskedasticity could be accommodated by my framework by conducting the compar-
ison at the appropriate level, for example, assigning a bonus to the κ-quantile quality
teacher among 4th-grade teachers with students who had low prior achievement. More
generally, if the error variance depends on known variables then conducting compar-
isons given those variables will result in homoskedastic error terms.
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Mechanical heteroskedasticity The other main form of heteroskedasticity is the me-

chanical heteroskedasticity that would emerge in the case of nonconstant class sizes.

That is, the mean score for teacher i, for example, in the cutoff model, yi = θj +
∑
j εji
ni

, is

naturally heteroskedastic when n(θ) is nonconstant, where σε(θ)= σε/√n(θ).
I chose the simple and tractable homoskedastic environment to most clearly illus-

trate the theoretical results. This mechanical heteroskedasticity is accounted for by the

indirect inference algorithm described in Appendix D.2, and the numerical model so-

lutions and quantitative results allow for it. Nevertheless, it is worthwhile to show how

the theoretical results from the cutoff model could still hold in the presence of mechan-

ical heteroskedasticity. Proposition 1 follows trivially, since the constant n(θ) precludes

there being any mechanical heteroskedasticity, but Proposition 2 is less obvious.

I show here why Proposition 2 would still likely hold in the presence of mechanical

heteroskedasticity. Consider as a starting point that
∂vEB

CP
∂β− |β−=0 < 0 in the homoskedastic

case. With heteroskedastic errors, we have

∂vEB
CP

∂β−

∣∣∣∣
β−=0

= (1 − α)
∫ κ

−∞
−c∗EBθ

(δ−)2σε(θ)
φ

(θ− c∗EB

δ−
σε(θ)

)
φ(θ/σθ)

σθ(κ/σθ)
dθ

+ α
∫ 0

κ

c∗EBθ

(δ−)2σε(θ)
φ

(θ− c∗EB

δ−
σε(θ)

)
φ(θ/σθ)

σθ
(
1 −(κ/σθ)

) dθ�

If in the homoskedastic error case we have
∂vEB

CP
∂β− |β−=0 < 0, then by Proposition 2 we have

(1 − α)
∫ κ

−∞
h(θ)

φ(θ/σθ)

σθ(κ/σθ)
dθ > α

∫ 0

κ
h(θ)

φ(θ/σθ)

σθ
(
1 −(κ/σθ)

) dθ�

where h(θ)= c∗EBθ
(δ−)2σε

φ(
θ− c∗EB

δ−
σε

)≥ 0. We can then examine the effect of heteroskedasticity

by seeing how h(θ) changes when the average measurement error variance can now de-

pend on θ, via n(θ), that is, when h(θ)= c∗EBθ
(δ−)2σε(θ)

φ(
θ− c∗EB

δ−
σε(θ)

). To operationalize this, note

that the relationship between θ and σε(θ) will have the opposite sign as that between

θ and λ(θ) (which has the same sign as the relationship between θ and n(θ)). Thus, I

consider

σε(θ)= max{σ�δσ −βσθ}� ∀θ≤ 0�

where σ > 0. Note that, as in the parameterization of λ(·) for Proposition 2, although

it has been included for completeness, the max operator is obviated by evaluating the

derivative at βσ = 0.
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Figure B.3. How h(θ) is affected when βσ is increased from zero.

Differentiating hwith respect to βσ , at β− = βσ = 0 (and, for simplicity, setting δ− =
1), we have

∂h

∂βσ

∣∣∣∣
β−=βσ=0

= cEBθ2

δσ︸ ︷︷ ︸
<0

(
1 −

(
θ− cEB)2

δ2
σ

)
1
δσ
φ

(
cEB − θ
δσ

)
︸ ︷︷ ︸

>0

�

The middle term is positive for values of θ that are very close to cEB, resulting in a reduc-
tion in h(θ). For θ < cEB − δσ , the middle term will be negative, resulting in an increase

in h(θ).4 Given that the starting point where h(θ) was such that
∂vEB

CP
∂β− |β−=0 < 0, the in-

creases in h(θ) for larger, negative values of θ and decreases in h(θ) for θ values close

to cEB mean the inequality will likely continue to hold, that is,
∂vEB

CP
∂β− |β−=0 < 0 even with

βσ �= 0. Intuitively, h(θ) “stretches” to the left, as shown in Figure B.3. The left panel
shows how h(θ) changes when we increase βσ from zero, and the right panel plots the
derivative of h(θ) with respect to βσ , evaluated at βσ = β− = 0. In each panel, the verti-
cal dotted line denotes κ, which has been set to −2σθ. Thus, the presence of mechanical
heteroskedasticity would, if anything, likely widen the difference in value obtained un-
der the two estimators.

Appendix C: Extensions to hidden type model HT-0

C.1 Model HT-1

Now allow T > 2 and let output depend on teacher experience xi(j�t)�t according to qjit =
β0 + θi(j�t) + e(xi(j�t)�t), where e(xit) represents output, net of β0 and teacher quality, for
a teacher with t − 1 periods of prior experience.

4The middle term would also be negative for θ > cEB + δσ , which does not substantially affect the argu-
ment as we are only considering θ≤ 0.
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The optimal hiring policy ψh is unchanged. Consider the retention decision for
teachers in period t = T , for teachers with the same experience, xit = xt . Such a pol-
icy need not only apply to teachers’ first years of experience; Wiswall (2013) shows that
teacher quality also changes after the first few years of experience. Let q̂Hit be the sam-
ple mean of teacher i’s output signals realized before period t. The retention decisionψr
still has a reservation value property, which now depends on the mean of each teacher’s
entire history of signals, q̂Hit , where the threshold now depends on the period, that is,

q
t
= μ− (χ+e(xt)

ρt
), where ρt = σ2

θ/(σ
2
θ + σ2

ε
n|Ht |). The reservation signal q

t
is decreasing in

xt if there are productivity gains to experience and increasing in ρt , due to the higher
precision about teachers’ true quality. Note that solution to this problem would be the
same as that from HT-0, setting the replacement cost (in HT-0) to χt ≡ χ+ e(xt) and us-
ing the relevant ρt , and that considering instead periods t < T would change the desired
threshold quality, which could be modeled by suitably adjusting the replacement cost χ
from the static model HT-0. Therefore, this sequence of per-period reservation signals
can then be mapped to the cutoff-based model via a sequence of cutoff-based prob-
lems, one for each period of experience, as was done for Model HT-0. Also, note that a
similar transformation to the one above could be performed to adapt Model HT-2 (see
Section C.2) to also allow for an effect of experience on output.

C.2 Model HT-2

This model augments HT-0 to allow class size to depend on teacher quality, that is, ni =
n(θ). As in HT-0, consider the administrator’s problem in the second period. As in the
cutoff model, the administrator must now integrate over the distribution of class sizes
when choosing their reservation signal. I first derive expected teacher quality, given the
quality signal q̂ = θ̂EB = λ(n(θ))θ̂FE is greater than cutoff rule q, where g(·) denotes the
density function of the argument(s) it takes:

E
[
θ|θ̂EB ≥ q]
=

∫ ∞

−∞
θg

(
θ|θ̂EB ≥ q)dθ=

∫ ∞

−∞

∫ ∞

q
θg

(
θ� θ̂EB|θ̂EB ≥ q)dθ̂dθ

=
∫ ∞

−∞

∫ ∞

q
θ
g
(
θ� θ̂EB)

Pr
{
θ̂EB ≥ q} dθ̂EB dθ= 1

Pr
{
θ̂EB ≥ q}

∫ ∞

−∞

∫ ∞

q
θg

(
θ� θ̂EB)

dθ̂EB dθ

= 1

Pr
{
θ̂EB ≥ q}

∫ ∞

−∞

∫ ∞

q
θg

(
θ̂EB|θ)dθ̂EBf (θ)dθ

= 1

Pr
{
θ̂EB ≥ q}

∫ ∞

−∞

∫ ∞

q/λ(n(θ))−θ
θg(ε|θ)dεf (θ)dθ

= 1

Pr
{
θ̂EB ≥ q}

∫ ∞

−∞
θ

[
1 −

[
q/λ

(
n(θ)

) − θ
σε(θ)

]]
f (θ)dθ�
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where

Pr
{
θ̂EB ≥ q} =

∫ ∞

−∞
Pr

{
θ̂EB ≥ q|θ}f (θ)dθ=

∫ ∞

−∞
Pr

{
ε≥ q

λ
(
n(θ)

) − θ
}
f (θ)dθ

=
∫ ∞

−∞
1 −

[ q

λ
(
n(θ)

) − θ
σε(θ)

]
f (θ)dθ�

We then have

Pr
{
θ̂EB < q

} = 1 − Pr
{
θ̂EB ≥ q} =

∫ ∞

−∞


[ q

λ
(
n(θ)

) − θ
σε(θ)

]
f (θ)dθ�

As before, these quantities when using fixed effects are obtained by setting λ(·)= 1:

E
[
θ|θ̂FE ≥ q] = 1

Pr
{
θ̂FE ≥ q}

∫ ∞

−∞

∫ ∞

q−θ
θ

[
1 −

[
q− θ
σε(θ)

]]
f (θ)dθ�

Pr
{
θ̂FE ≥ q} =

∫ ∞

−∞
1 −

[
q− θ
σε(θ)

]
f (θ)dθ�

Pr
{
θ̂FE < q

} =
∫ ∞

−∞


[
q− θ
σε(θ)

]
f (θ)dθ�

The administrator’s value from using the empirical Bayes estimator, using the result
that she will use a cutoff signal policy, is then

vEB
HT2(χ)= max

q

{−Pr
{
θ̂EB < q

}
χ+ Pr

{
θ̂EB ≥ q}E

[
θ|θ̂EB ≥ q]}

= max
q

{
−Pr

{
θ̂EB < q

}
χ+ Pr

{
θ̂EB ≥ q} 1

Pr
{
θ̂EB ≥ q}

×
∫ ∞

−∞

∫ ∞

q/λ(n(θ))−θ
θ

[
1 −

[
q/λ

(
n(θ)

) − θ
σε(θ)

]]
f (θ)dθ

}

= max
q

{
−Pr

{
θ̂EB < q

}
χ+

∫ ∞

−∞
θ

[
1 −

[
q/λ

(
n(θ)

) − θ
σε(θ)

]]
f (θ)dθ

}

= max
q

{∫ ∞

−∞
(−χ)

[ q

λ
(
n(θ)

) − θ
σε(θ)

]
f (θ)dθ

+
∫ ∞

−∞
θ

[
1 −

[
q/λ

(
n(θ)

) − θ
σε(θ)

]]
f (θ)dθ

}
� (S.8)

and the administrator’s value from using fixed effects is

vFE
HT2(χ)= max

q

{∫ ∞

−∞
(−χ)

[
q− θ
σε(θ)

]
f (θ)dθ+

∫ ∞

−∞
θ

[
1 −

[
q− θ
σε(θ)

]]
f (θ)dθ

}
� (S.9)
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Intuitively, under either estimator the administrator will either replace a teacher with
some probability, which in expectation reduces her objective by an expected value of χ,
or retains the teacher with the complementary probability, in which case her objective
is increased by that teacher’s quality θ.

Because n(θ) is not constant (as it was in HT-0), the reliability of signals varies by
teacher and the analytical characterization of the administrator’s reservation signal from
Model HT-0 no longer obtains. The estimator-specific reservation signals, q∗EB and q∗FE,
are respectively obtained by numerically solving (S.8) and (S.9).

The ranking of the administrator’s utility from HT-2, by class size scenario n(θ), is
the same as her ranking under the cutoff-based model.

Proposition S.2. In Model HT2, the administrator’s preferred estimator depends on the
relationship between teacher quality and class size. In particular, when the relationship
between teacher quality and class size is negative-(positive-)quadratic, the administrator
will prefer the fixed effects (empirical Bayes) estimator.

Proof. I will focus on teachers with θ < 0, since below-average teachers will be most af-
fected by the reservation policy, which will generally be negative.5 As in the cutoff model,
parameterize the empirical Bayes weights using

λ(θ)=
{

max{λ�δ− +β−θ} if θ < 0�

max{λ�δ+ +β+θ} if θ≥ 0�

where λ > 0, and assume homoskedastic errors, that is, σε(θ)= σε for all θ.6 Differenti-
ating the administrator’s value with respect toβ− and evaluating the derivative atβ− = 0
(as will be made clear below, this is convenient because the environment in which the
derivative is evaluated is consistent with the one studied in HT-0, the constant class size
scenario studied by Proposition 4), we obtain

∂vEB
HT2

∂β−

∣∣∣∣
β−=0

=
∫ 0

−∞

q∗EB

δ2−
θ[χ+ θ] 1

σε
φ

( q∗EB

δ−
− θ

σε

)
1
σθ
φ

(
θ

σθ

)
dθ� (S.10)

because
∂vEB

HT2
∂q∗EB × ∂q∗EB

∂β− = 0 due to the envelope theorem. As in the proof of Proposition 2,

combine the normal densities into one density, fP(θ)/SP , where SP is a positive constant
(see footnote 1 for details). The expression (S.10) becomes

∂vEB
HT2

∂β−

∣∣∣∣
β−=0

= 1
SP

∫ 0

−∞

q∗EB

δ2−
θ[χ+ θ]︸ ︷︷ ︸
m(θ)

fP(θ)dθ�

5Figure C.2 shows that estimator rankings are similar for the negative-quadratic and increasing scenar-
ios, and between the positive-quadratic and decreasing scenarios.

6The numerical solutions presented later in this section and the quantitative results in Section 5.3 allow
for mechanical heteroskedasticity in σε(θ).
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Figure C.1. |m(θ)| and fP(θ).

where fP(θ) = 1
σP
φ(θ−μPσP

), μP = q∗EB

δ−
σ2
θ

σε
2+σ2

θ

= q∗EB, σ2
P = σ2

θγσ , and γσ = σε
2

σε
2+σ2

θ

. The

functionm(θ) is strictly concave (in particular, negative quadratic) in θ and has zeros at
θ= −χ and θ= 0. Therefore, we have

∂vEB
HT2

∂β−

∣∣∣∣
β−=0

< 0 ⇔
∫ −χ

−∞
−m(θ)fP(θ)dθ >

∫ 0

−χ
m(θ)fP(θ)dθ�

Observe that −m(−χ − a) > m(−χ + a) for 0 < a < χ and −m(−χ − a) ≥ 0 for a > 0.
Therefore, if fP were centered around a value no greater than −χ, that is, μP ≤ −χ,
then by the symmetry of the normal distribution we would have

∫ −χ
−∞ −m(θ)fP(θ)dθ >∫ 0

−χm(θ)fP(θ)dθ because −m(θ)fP(−χ − θ) > m(θ)fP(−χ + θ) for θ > 0, and thus,
∂vEB

HT2
∂β− |β−=0 < 0. Note that the measurement errors have been assumed to be ho-

moskedastic and that λ(·) is constant because we are evaluating the derivative atβ− = 0,
which means the optimal fixed effects policy from Model HT-0 (see (8)) would obtain

when using fixed effects: q∗FE = −χ
ρ , where ρ= σ2

θ

σ2
θ+σ2

ε

< 1. Then, by Proposition 4 we have

q∗EB = ρq∗FE = −χ, which satisfies μP ≤ −χ, and the desired inequality is obtained.7

Figure C.1 illustrates this scenario, where the solid curve is |m(θ)|, which is −m(θ) for
θ ≤ −χ and m(θ) for θ ∈ [−χ�0], and the dot-dashed curve is fP , drawn with μP = −χ.

7Although not as straightforward to solve for explicitly, q∗EB is very close to −χ across a wide variety of
n(θ), even when allowing for both mechanical heteroskedasticity in σε(θ) and the effect of class size in λ(θ).
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Figure C.2. Ratio of values of FE over EB, across class size scenarios.

To illustrate this theoretical result, Figure C.2 plots the ratio of value from the FE over
EB estimators for a wide range of replacement costs χ,8 across different class size sce-
narios: constant, increasing, decreasing, negative quadratic, and positive quadratic. The
constant class size scenario (dotted black line) represents a special case of HT-2 where
n(θ) = n, which is simply model HT-0. Unsurprisingly, then, we obtain the same value
for all replacement costs χ. Under the negative quadratic scenario (dot-short-dashed
blue curve) the administrator would obtain higher value from using fixed effects for ev-
ery χ. This is the same result as was obtained for a wide range of parameterizations of
the cutoff-based model. Also, as in the cutoff-based model, the estimator ranking is re-
versed under the positive-quadratic class size scenario (long-dashed brown curve); that
is, she would prefer to use empirical Bayes instead of fixed effects. The rankings of in-
creasing (short-dashed red) and negative-quadratic (dot-short-dashed blue) scenarios
are similar. As argued above, most of the difference in value comes from the part of the
teacher quality distribution at highest risk of being replaced—those with below-average
qualities. By the same reasoning, the rankings of decreasing (dot-long-dashed green)
and positive-quadratic (long-dashed brown) scenarios are also similar.9

As with model HT-1, an environment with multiple periods could be modeled by
suitably adjusting the desired threshold quality. For example, adding more periods could

8Wiswall (2013) reported that teachers with 30 years of experience have value-added that is one stan-
dard deviation higher than new teachers and 0�75 standard deviations higher than teachers with 5 years
of experience; this implies a 0�25 sd difference acquired in the first 5 years of experience. Therefore, I set
χ = 0�25σθ = 0�054 for the baseline quantitative results and for this figure use a range for the replacement
cost running from zero to 0�30, over five times this value.

9This figure takes into account the mechanical heteroskedasticity caused by the variation in n(θ).
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be accommodated by decreasing the replacement cost, as the administrator would have
a relatively higher gain from replacing when there are more periods of output. Because
they range from a cost of zero to several times the estimated difference in value-added
between a teacher with 5 years experience and no experience, Figure C.2 then likely also
characterizes estimator rankings for multiperiod environments.

The takeaway from this section is that (i) the administrator’s preferred estimator de-
pends on the class size scenario n(θ), (ii) though the difference in values from using ei-
ther estimator depends on other model parameters (T�χ), the preferred estimator does
not, and (iii) the administrator would prefer the same estimator in HT-2 as she would in
the cutoff model.

Appendix D: Details for quantitative exercises

D.1 Calibrated error variances

I calibrate σ2
θ and σ2

ε from Table B-2 of Schochet and Chiang (2012) normalizing the to-
tal variance to one. To most closely match a policy where an administrator would like
to rank teachers across a school district, I calibrate σ2

θ = 0�046 by summing the average
of school- and teacher-level variances in random effects. To most closely approximate
an environment where both student and aggregate-level shocks may affect student test
scores, I calibrate σ2

ε = 0�953 by summing the average of class- and student-level vari-
ances in random effects. Note that, due to the much greater student-level error variance,
the approximate sizes of σ2

θ and σ2
ε are approximately the same if school-level variances

are excluded from σ2
θ or class-level variances are excluded from σ2

ε , lending robustness
to the quantitative findings.

D.2 Heteroskedasticity correction for relationship between class size and teacher quality

The advantage of the indirect inference approach is that it can be implemented using a
vector of auxiliary moments which do not necessarily correspond to structural econo-
metric parameters. This is useful in the current context, where the microdata to directly
correct for heteroskedasticity are not available.10

Indirect inference algorithm The following is done separately for Reading and Math.

0. Estimate the relationship between class size (ni) and teacher i’s estimated qual-
ity in the subject (θ̂i) by running the regression ni = βdata

0 + βdata
1 θ̂i + βdata

2 (θ̂i)
2 +

ei. The regression coefficients (β̂data
0 � β̂data

1 � β̂data
2 ) and residual standard error σ̂data

e

form the first set auxiliary parameters to fit. Compute the 25th, 50th, and 75th per-
centiles of the empirical distribution of class sizes, (ndata

p25 � n
data
p50 � n

data
p75 ). These are the

remaining auxiliary parameters. The target vector of auxiliary parameters is then
(β̂data

0 � β̂data
1 � β̂data

2 � σ̂e
data� ndata

p25 � n
data
p50 � n

data
p75 ).

10If microdata had been available, then one could in principle use an approach like the one in Lockwood
and McCaffrey (2014) to account for the nonlinearities produced by heteroskedastic errors.
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1. Given σ2
θ , simulate teacher quality θsim

i once for each teacher in the sample. (Re-
call the population mean has been normalized to 0.)

2. Simulate the random component of class sizes nsim
i�i�i�d�, which is distributed normal

with mean zero and standard deviationσnsim . As described below, this algorithm chooses
the parameter σnsim . Note these are independent from teacher quality to get an idea of
the role heteroskedasticity plays.

3. Assign incremental class sizes according to ninc(θsim
i )= a0 +a1θ

sim
i +a2(θ

sim
i )2. As

described below, this algorithm chooses the parameters (a0� a1� a2). The final simulated
class size for teacher i is then nsim

i = round{nsim
i�i�i�d� + ninc(θsim

i )}, that is, class sizes are
integer-valued.

4. Given σ2
ε and nsim

i simulate an average shock for each teacher, εsim
i ; form simu-

lated estimated teacher quality according to θ̂sim
i = θsim

i + εsim
i .

5. Regress nsim
i = βsim

0 +βsim
1 θ̂sim

i +βsim
2 (θ̂sim

i )2, estimating the auxiliary coefficients
(β̂sim

0 � β̂sim
1 � β̂sim

2 ) and auxiliary residual standard error σ̂sim
e . Compute the 25th, 50th,

and 75th percentiles of the simulated distribution of class sizes, (nsim
p25� n

sim
p50� n

sim
p75). The

simulated vector of auxiliary parameters is then (β̂sim
0 � β̂sim

1 � β̂sim
2 � σ̂sim

e �nsim
p25� n

sim
p50� n

sim
p75).

6. Compute the Euclidean distance between target auxiliary parameters and sim-
ulated auxiliary parameters (e.g., β̂data

0 and β̂sim
0 , resp.) as a function of the parameters

governing class size, d(a0� a1� a2�σnsim).

Repeat steps 1–6 for the vector (a0� a1� a2�σnsim), until the distance between data and
simulated auxiliary moments is minimized.

D.3 Details for quantitative illustration for hidden action model

Output in the hidden action model depends on several parameters, including the vari-
ance of measurement error on output, σ2

η. I adjust the error variance in several steps,
using Reading test scores as the measure:

1. Simulate teacher quality, class sizes, and measurement errors using the parame-
ters from Section 5.1, for 30,000 teachers. Each simulated teacher then has a simulated
quality θsi and a simulated fixed-effect estimate θ̂s�FE

i .

2. Use the empirical Bayes weights λ(·) to generate simulated EB measures of
teacher quality according to θ̂s�EB

i = λ(n(θsi ))θ̂s�FE
i .

3. Standardize θsi , θ̂
s�FE
i , and θ̂s�EB

i to have variances of 1, to make the residual vari-
ances comparable.

4. Finally, I estimate the residual variance from a regression of standardized θ̂s�FE
i on

the standardized true (simulated) quality θsi and the residual variance from a regression

of standardized empirical Bayes measure θ̂s�EB
i on standardized true (simulated) quality.

The ratio of residual variances, or amount unexplained in each regression, tells us how
much more (or less) the fixed effects estimator would inform the administrator about
teacher quality.



Supplementary Material Measuring quality for use in incentive schemes 21

Table D.1. Regressions of simulated teacher quality on FE and EB estimates.

Dependent Variable:

θs (Standardized)

(1) (2)

θ̂s�FE (standardized) 0�718
(0�004)

θ̂s�EB (standardized) 0�707
(0�004)

Constant 0�002 −0�001
(0�004) (0�004)

Observations 30,000 30,000
R2 0�516 0�500
Residual Std. Error (df = 29,998) 0�696 0�707

Note: Standard errors are reported in parenthesis.

The regression results, shown in Table D.1, indicate that the fixed-effects estimator ex-
plains about 3�2% more variation in teacher quality than the empirical Bayes estimator
(1 − 0�69562/0�70702 = 0�032). That is, the fact that the EB estimator makes it more diffi-
cult to separate high- and low-performing teachers when the class size function is neg-
ative quadratic, as it is in the data, can be modeled as increasing the measurement error
variance on teacher output, σ2

η, by this amount.
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