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Estimation and inference with a (nearly) singular Jacobian

Sukjin Han
Department of Economics, University of Texas at Austin

Adam McCloskey
Department of Economics, University of Colorado at Boulder

This paper develops extremum estimation and inference results for nonlinear
models with very general forms of potential identification failure when the source
of this identification failure is known. We examine models that may have a gen-
eral deficient rank Jacobian in certain parts of the parameter space. When iden-
tification fails in one of these models, it becomes underidentified and the identi-
fication status of individual parameters is not generally straightforward to char-
acterize. We provide a systematic reparameterization procedure that leads to a
reparametrized model with straightforward identification status. Using this repa-
rameterization, we determine the asymptotic behavior of standard extremum es-
timators and Wald statistics under a comprehensive class of parameter sequences
characterizing the strength of identification of the model parameters, ranging
from nonidentification to strong identification. Using the asymptotic results, we
propose hypothesis testing methods that make use of a standard Wald statistic
and data-dependent critical values, leading to tests with correct asymptotic size
regardless of identification strength and good power properties. Importantly, this
allows one to directly conduct uniform inference on low-dimensional functions
of the model parameters, including one-dimensional subvectors. The paper il-
lustrates these results in three examples: a sample selection model, a triangular
threshold crossing model, and a collective model for household expenditures.

Keywords. Reparameterization, deficient rank Jacobian, asymptotic size, uni-
form inference, subvector inference, extremum estimators, identification, nonlin-
ear models, Wald test, weak identification, underidentification.

JEL classification. C12, C15.

1. Introduction

Many models estimated by applied economists suffer the problem that, at some points
in the parameter space, the model parameters lose point identification. It is often the
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case that at these points of identification failure, the identified set for each parameter is
not characterized by the entire parameter space it lies in but rather the identified set for
the entire parameter vector is characterized by a lower-dimensional manifold inside of
the vector’s parameter space. Such a nonidentification scenario is sometimes referred to
as “underidentification” or “partial identification.” The nonidentification status of these
models is not straightforwardly characterized in the sense that one cannot say that some
parameters are “completely” unidentified while the others are identified. Instead, it
can be characterized by a nonidentification curve that describes the lower-dimensional
manifold defining the identified set. Moreover, in practice the model parameters may be
weakly identified in the sense that they are near the underidentified/partially-identified
region of the parameter space relative to the number of observations and sampling vari-
ability present in the data.

This paper develops estimation and inference results for nonlinear models with very
general forms of potential identification failure when the source of this identification
failure is known. We characterize (global) identification failure in this paper through the
Jacobian matrix of the model restrictions: the Jacobian matrix of the model restrictions
has deficient column rank in a (typically linear) subspace of the entire parameter space.1

We examine models for which a vector of parameters governs the identification status of
the model, with identification failure occurring when this vector of parameters is equal
to a specific value. The contributions of this paper are threefold. First, we provide a sys-
tematic reparameterization procedure that nonlinearly transforms a model’s parame-
ters into a new set of parameters that have straightforward identification status when
identification fails. Second, using this reparameterization, we derive limit theory for a
class of standard extremum estimators (e.g., generalized method of moments, minimum
distance, and some forms of maximum likelihood) and Wald statistics for these mod-
els under a comprehensive class of identification strengths including nonidentification,
weak identification, and strong identification. We find that the asymptotic distributions
derived under certain sequences of data-generating processes (DGPs) indexed by the
sample size provide much better approximations to the finite sample distributions of
these objects than those derived under the standard limit theory that assumes strong
identification. Third, we use the limit theory derived under weak identification DGP se-
quences to construct data-dependent critical values (CVs) for Wald statistics that yield
(uniformly) correct asymptotic size and good power properties. Importantly, our robust
inference procedures allow one to directly conduct hypothesis tests for low-dimensional
functions of the model parameters, including one-dimensional subvectors, that are uni-
formly valid regardless of identification strength.

A substantial portion of the recent econometrics literature has been devoted to
studying estimation in the presence of weak identification and developing inference
tools that are robust to the identification strength of the parameters in an underlying
economic or statistical model. Earlier papers in this line of research focus upon the lin-
ear instrumental variables (IV) model, the behavior of standard estimators and infer-
ence procedures under weak identification of this model (e.g., Staiger and Stock (1997)),

1See Rothenberg (1971) for a discussion of local versus global identification.
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and the development of new inference procedures robust to the strength of identifi-
cation in this model (e.g., Kleibergen (2002) and Moreira (2003)). More recently, focus
has shifted to nonlinear models, such as those defined through moment restrictions. In
this more general setting, researchers have similarly characterized the behavior of stan-
dard estimators and inference procedures under various forms of weak identification
(e.g., Stock and Wright (2000)) and developed robust inference procedures (e.g., Kleiber-
gen (2005)). Most papers in this literature, such as Stock and Wright (2000) and Kleiber-
gen (2005), focus upon special cases of identification failure and weak identification by
explicitly specifying how the Jacobian matrix of the underlying model could become
(nearly) singular. For example, Kleibergen (2005) focused on a zero rank Jacobian as the
point of identification failure in moment condition models. In this case, the identified
set becomes the entire parameter space at points of identification failure. The recent
works of Andrews and Cheng (2012, 2013, 2014) implicitly focus on models for which
the Jacobian of the model restrictions has columns of zeros at points of identification
failure. For these types of models, some parameters become “completely” unidentified
(those corresponding to the zero columns) while others remain strongly identified. In
this paper, we do not restrict the form of singularity in the Jacobian at the point of
identification failure. This complicates the analysis but allows us to cover many more
economic models used in practice such as sample selection models, treatment effect
models with endogenous treatment, nonlinear regression models, nonlinear IV models,
certain dynamic stochastic general equilibrium (DSGE) models, and structural vector
autoregressions (VARs) identified by instruments or conditional heteroskedasticity. In-
deed, this feature of a singular Jacobian without zero columns at points of identification
failure is typical of many nonlinear models.

Only very recently have researchers begun to develop inference procedures that are
robust to completely general forms of (near) rank-deficiency in the Jacobian matrix. See
Andrews and Mikusheva (2016b) in the context of minimum distance (MD) estimation
and Andrews and Guggenberger (Forthcoming) and Andrews and Mikusheva (2016a) in
the context of moment condition models. Andrews and Mikusheva (2016b) provided
methods to directly perform uniformly valid subvector inference while Andrews and
Guggenberger (Forthcoming) and Andrews and Mikusheva (2016a) do not.2 Unlike these
papers, but like Andrews and Cheng (2012, 2013, 2014), we focus explicitly on models for
which the source of identification failure (a finite-dimensional parameter) is known to
the researcher. This enables us to directly conduct subvector inference in a large class of
models that is not nested in the setup of Andrews and Mikusheva (2016b). Also unlike
these papers, but like Andrews and Cheng (2012, 2013, 2014), we derive nonstandard
limit theory for standard estimators and test statistics. This nonstandard limit theory

2Andrews and Mikusheva (2016a) provided a method of “concentrating out” strongly identified nuisance
parameters for subvector inference when all potentially weakly identified parameters are included in the
subvector. One may also “indirectly” perform subvector inference using the methods of either Andrews
and Guggenberger (Forthcoming) or Andrews and Mikusheva (2016a) by using a projection or Bonferroni
bound-based approach but these methods are known to often suffer from severe power loss. We refer the
interested reader to Remark 5.2 for further comparisons with the methods in these papers as well as An-
drews and Mikusheva (2016b).
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sheds light on how (badly) the standard Gaussian and chi-squared distributional ap-
proximations can fail in practice. For example, one interesting feature of the models we
study here is that the asymptotic size of standard Wald tests for the full parameter vec-
tor (and certain subvectors) is equal to one no matter the nominal level of the test. This
feature emerges from observing that the Wald statistic diverges to infinity under certain
DGP sequences admissible under the null hypothesis.

Aside from those already mentioned, there are many papers in the literature that
study various types of underidentification in different contexts. For example, Sargan
(1983) studied regression models that are nonlinear in parameters and first-order locally
underidentified. Phillips (1989) and Choi and Phillips (1992) studied underidentified si-
multaneous equations models and spurious time series regressions. In a rather differ-
ent context, Lee and Chesher (1986) also made use of a reparameterization for a type
of identification problem. Arellano, Hansen, and Sentana (2012) proposed a way to test
for underidentification in a generalized method of moments (GMM) context. Qu and
Tkachenko (2012) studied underidentification in the context of DSGE models. Escan-
ciano and Zhu (2013) studied underidentification in a class of semiparametric models.3  

Dovonon and Renault (2013) uncovered an interesting result that, when testing for com-
mon sources of conditional heteroskedasticity in a vector of time series, there is a loss
of first-order identification under the null hypothesis while the model remains second-
order identified. Although all of these papers study underidentification of various forms,
none of them deal with the empirically relevant potential for near or local to underiden-
tification, one of the main focuses of the present paper.

In order to derive our asymptotic results under a comprehensive class of identifi-
cation strengths, we begin by providing a general recipe for reparameterizing the ex-
tremum estimation problem so that, after reparameterization, it falls under the frame-
work of Andrews and Cheng (2012) (AC12 hereafter). More specifically, the reparameter-
ization procedure involves solving a system of differential equations so that a set of the
derivatives of the function that generates the reparameterization are in the null space of
the Jacobian of the original model restrictions. This reparameterization generates a Ja-
cobian of transformed model restrictions with zero columns at points of identification
failure. This systematic approach to nonlinear reparameterization generalizes some an-
tecedents in linear models for which the reparameterizations amount to linear rotations
(e.g., Phillips (1989)). We show that the reparametrized extremum objective function sat-
isfies a crucial assumption of AC12: at points of identification failure, it does not depend
upon the unidentified parameters.4 This allows us to use the results of AC12 to find the
limit theory for the reparametrized parameter estimates. Though beyond the scope of
the current paper, our reparameterization procedure may similarly be useful as a step
toward using the general limit theory of Cox (2017) for some problems. This latter paper
studies other, more complicated forms of weak identification not covered by AC12.

We subsequently derive the limit theory for the original parameter estimates of
economic interest using the fact that they are equal to a bijective function of the

3Both Qu and Tkachenko (2012) and Escanciano and Zhu (2013) used the phrase “conditional identifi-
cation” to refer to “underidentification” as we use it here.

4This corresponds to Assumption A of AC12.
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reparametrized parameter estimates. To obtain a full asymptotic characterization of the
original parameter estimator, we rotate its subvectors in different directions of the pa-
rameter space. The subvector estimates converge at different rates in different directions
of the parameter space when identification is not strong, with some directions leading
to a standard parametric rate of convergence and others leading to slower rates. Un-
der weak identification, some directions of the weakly identified part of the parame-
ter are not consistently estimable, leading to inconsistency in the parameter estima-
tor that is reflected in finite sample simulation results and our derived asymptotic ap-
proximations. The rotation technique we use in our asymptotic derivations has many
antecedents in the literature. For example, Sargan (1983), Phillips (1989) and Choi and
Phillips (1992) used similar rotations to derive limit theory for estimators under identi-
fication failure; Antoine and Renault (2009, 2012) used similar rotations to derive limit
theory for estimators under “nearly-weak” identification;5  Andrews and Cheng (2014)
(AC14 hereafter) used similar rotations to find the asymptotic distributions of Wald
statistics under weak and nearly-strong identification; and recently Phillips (2016) used
similar rotations to find limit theory for regression estimators in the presence of near-
multicollinearity in regressors. However, unlike their predecessors used for specific lin-
ear models, our nonlinear reparameterizations are not generally equivalent to the rota-
tions we use to derive asymptotic theory.

We also derive the asymptotic distributions of standard Wald statistics for gen-
eral (possibly nonlinear) hypotheses under a comprehensive class of identification
strengths. The nonstandard nature of these limit distributions implies that using
standard quantiles from chi-squared distributions as CVs leads to asymptotic size-
distortions. To overcome this issue, we provide two data-driven methods to construct
CVs for standard Wald statistics that lead to tests with correct asymptotic size, regard-
less of identification strength. The first is a direct analog of the Type 1 Robust CVs of
AC12. The second is a modified version of the adjusted-Bonferroni CVs of McCloskey
(2017), where the modifications are designed to ease the computation of the CVs in the
current setting of this paper. The former CV construction method is simpler to compute
while the latter yields better finite-sample properties. We then briefly analyze the power
performance of one of our proposed robust Wald tests in a triangular threshold crossing
model with a dummy endogenous variable. Finally, we apply the testing method in an
empirical example that analyzes the effects of educational attainment on criminal ac-
tivity. The theoretical results of this paper are based upon widely applicable high-level
assumptions. We verify these assumptions for the triangular threshold crossing model
by imposing lower-level conditions in Online Appendix B in the Online Supplemental
Material (Han and McCloskey (2019)).

The paper is organized as follows. In the next section, we introduce the general class
of models subject to underidentification that we study and detail four examples of mod-
els in this class. Section 3 introduces a new method of systematic nonlinear reparam-
eterization that leads to straightforward identification status under identification fail-
ure. This section includes a step-by-step algorithm for obtaining the reparameteriza-
tion. Section 4 provides the limit theory for a general class of extremum estimators of

5In this paper, we follow AC12 and describe such parameter sequences as “nearly-strong.”
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the original model parameters under a comprehensive class of identification strengths.
The nonstandard limit distributions derived here provide accurate approximations to
the finite sample distributions of the parameter estimators, uncovered via Monte Carlo
simulation. Section 5 similarly provides the analogous limit theory for standard Wald
statistics. We describe how to perform uniformly robust inference in Section 6. Section 7
contains further details for a triangular threshold crossing model, including Monte Carlo
simulations demonstrating how well the nonstandard limit distributions derived in Sec-
tions 4–5 approximate their finite-sample counterparts and an analysis of the power
properties of a robust Wald test. Section 8 contains the empirical application. Proofs of
the main results of the paper and verification of assumptions for the threshold crossing
model are contained in the in the Online Appendix (Supplemental Material, Han and
McCloskey (2019)), while figures are collected at the end of the document. In addition,
some of the assumptions and expressions from AC12 that also appear in this paper are
collected for the reader’s convenience in the Appendix at the end of the paper.

Notationally, we respectively let bj , bj and db denote the jth entry, the jth subvector
and the dimension of a generic parameter vector b. All vectors in the paper are column
vectors. However, to simplify notation, we occasionally abuse it by writing (c�d) instead
of (c′� d′)′, (c′� d)′, or (c�d′)′ for vectors c and d and for a function f (a) with a = (c�d), we
sometimes write f (c�d) rather than f (a). Finally, we write “wp1” as shorthand for “with
probability one.”

2. General class of models

Suppose that an economic model implies a relationship among the components of a
finite-dimensional parameter θ:

0 = g
(
θ;γ∗)≡ g∗(θ) ∈R

dg (2.1)

when θ = θ∗. The “model restriction” function describing this relationship g may de-
pend on the true underlying parameter γ∗ that contains θ∗, that is, the true underlying
DGP. The parameter γ∗ can be infinite-dimensional so that, for example, moment con-
ditions may constitute (some of) the model restrictions. A special case of (2.1) occurs
when g relates a structural parameter θ to a reduced-form parameter ξ and depends on
γ∗ only through the true value ξ∗ of ξ:

0 = g∗(θ) = ξ∗ − g(θ) ∈ R
dg (2.2)

when θ = θ∗; see Example 2.3 below.
Often, econometric models imply a decomposition of θ: θ = (β�μ), where the pa-

rameter β determines the “identification status” of μ. That is, when β �= β̄ for some β̄,
μ is identified; when β = β̄, μ is underidentified; and when β is “close” to β̄ relative to
sampling variability, μ is local-to-underidentified. For convenience and without loss of
generality, we use the normalization β̄ = 0. In this paper, we characterize identification
of μ via the Jacobian of the model restrictions:

J∗(θ) ≡ ∂g∗(θ)
∂μ′ � (2.3)
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The Jacobian J∗(θ) will have deficient rank across the subset of the parameter space for θ
for which β = 0 but full rank over the remainder of the parameter space.6 We are consid-
ering models that become globally underidentified in a (typically linear) subspace of the
parameter space. Our main focus is on models for which the column rank of J∗(θ) lies
strictly between 0 and dμ when β = 0 and this rank-deficiency is not the consequence of
zero columns in J∗(θ); see Remark 3.1 below for a related discussion in terms of the in-
formation matrix. Although our results cover cases for which J∗(θ) has columns of zeros
when β = 0, these cases are not of primary interest for this paper since they are nested
in the framework of AC12.

We detail four examples that have a deficient rank Jacobian (2.3) with nonzero
columns when β = 0. The first two and last examples fall into the framework of (2.1)
and the third into (2.2).

Remark 2.1. For some models, we can further decompose θ into θ= (β�μ) = (β�ζ�π),
where only the identification status of the subvector parameter π of μ is affected by the
value of β. More formally, when β = 0, rank(∂g∗(θ)/∂π ′) < dπ for all θ= (0�ζ�π) ∈Θ and
γ∗ ∈ � , where Θ and � denote the parameter spaces of θ and γ . Modulo the reordering
of the elements of μ, we can formalize the decomposition μ= (ζ�π) as follows: π is the
smallest subvector of μ such that

dπ − rank
(
∂g∗(θ)/∂π ′)= dμ − rank

(
J∗(θ)

)
when β = 0. That is, the rank deficiency of the Jacobian with respect to the subvector π
is equal to the rank deficiency of the Jacobian with respect to the vector μ when β = 0.
This feature holds for Examples 2.1–2.3 below, and will be illustrated as a special case
throughout the paper.

Example 2.1 (Sample selection models using the control function approach).

Yi = X ′
iπ

1 + εi� Di = 1
[
ζ +Z′

1iβ ≥ νi
]
�

(εi� νi)
′ ∼ Fεν

(
ε�ν;π2)�

where Xi ≡ (1�X ′
1i)

′ is k× 1, Zi ≡ (1�Z′
1i)

′ is l× 1, the variables (Xi�Zi) are independent
of the errors (εi� νi) and (Xi�Zi� εi� νi) are i.i.d. Note that Zi may include (components
of) Xi. We observe Wi = (DiYi�Di�Xi�Zi) and Fεν(·� ·;π2) is a parametric distribution
of the unobservable variables (ε� ν) parameterized by the scalar π2. The mean and vari-
ance of each unobservable is normalized to be zero and one, respectively. Constructing a
moment condition based on the control function approach (Heckman (1979)), we have,
when θ= θ∗,

0 =g∗(θ) = Eγ∗ϕ(Wi�θ)�

6Assumption ID below is related to the former, and Assumption B3(iii) in AC12, which we assume later,
implies the latter.
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where θ= (β�ζ�π1�π2) and the moment function is

ϕ(w�θ) =

⎡⎢⎢⎣ d

[
x

q̃
(
ζ + z′

1β;π2)
] [

y − x′π1 − q̃
(
ζ + z′

1β;π2)]
q̃
(
ζ + z′

1β;π2)F−1
ν

(−ζ − z′
1β
)[
d − Fν

(
ζ + z′

1β
)]
z

⎤⎥⎥⎦ � (2.4)

with w = (dy�d�x� z) being a realization of Wi and q̃(·;π2) being a known function. When
Fεν(ε� ν;π2) is a bivariate standard normal distribution with correlation coefficient π2,
we have Fν(·) = �(·) and q̃(·;π2) = π2q(·) where q(·) = φ(·)/�(·) is the inverse Mill’s
ratio based on the standard normal density and distribution functions φ(·) and �(·).

Example 2.2 (Models of potential outcomes with endogenous treatment).

Y1i = X ′
iπ

1 + ε1i�

Y0i = X ′
iπ

2 + ε0i�
Di = 1

[
ζ +Z′

1iβ ≥ νi
]
�

Yi = DiY1i + (1 −Di)Y0i�

(ε1i� ε0i� νi)
′ ∼ Fε1�ε0�ν

(
ε1� ε0� ν;π3)�

where Fε1�ε0�ν(·� ·� ·;π3) is a parametric distribution of the unobserved variables (ε1�

ε0� ν) parameterized by vector π3. We observe Wi = (Yi�Di�Xi�Zi). The Roy model
(Heckman and Honore (1990)) is a special case of this model of regime switching. This
model extends the model in Example 2.1, but is similar in the aspects that this paper
focuses upon.

Example 2.3 (Threshold crossing models with a dummy endogenous variable).

Yi = 1[π1 + π̃2Di − εi ≥ 0]�
Di = 1[ζ +βZi − νi ≥ 0]�

(εi� νi)
′ ∼ Fεν(εi� vi;π3)�

where Zi ∈ {0�1}. We observe an i.i.d. sample of Wi = (Yi�Di�Zi) and assume that the in-
strument Zi is independent of (εi� νi). The model can be generalized by including com-
mon exogenous covariates Xi in both equations and allowing the instrument Zi to take
more than two values. We focus on this stylized version of the model in this paper for
simplicity only. With Fεν(ε� ν;π3) = �(ε�ν;π3), a bivariate standard normal distribu-
tion with correlation coefficient π3, the model becomes the usual bivariate probit model.
A more general model with Fεν(ε� ν;π3) = C(Fε(ε)�Fν(ν);π3), for C(·� ·;π3) in a class of
single parameter copulas, is considered in Han and Vytlacil (2017), whose generality we
follow here. Let π2 ≡π1 + π̃2 and, for simplicity, let Fν and Fε be uniform distributions.7

The results of Han and Vytlacil (2017) provide that when θ = θ∗, ξ∗ − g(θ) = 0, where

7This normalization is not necessary and is only introduced here for simplicity; see Han and Vytlacil
(2017) for the formulation of the identification problem without it.
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ξ = (p11�0�p11�1�p10�0�p10�1�p01�0�p01�1)
′ with pyd�z ≡ Prγ [Y = y�D = d|Z = z] and

g(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p11�0(θ)

p11�1(θ)

p10�0(θ)

p10�1(θ)

p01�0(θ)

p01�1(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C(π2�ζ;π3)

C(π2�ζ +β;π3)

π1 −C(π1�ζ;π3)

π1 −C(π1�ζ +β;π3)

ζ −C(π2�ζ;π3)

ζ +β−C(π2�ζ +β;π3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� (2.5)

For later use, we also define the (redundant) probabilities:

p00�0(θ) ≡ 1 − p11�0(θ)− p10�0(θ)− p01�0(θ)�

p00�1(θ) ≡ 1 − p11�1(θ)− p10�1(θ)− p01�1(θ)�
(2.6)

Example 2.4 (Engel curve models for household share). Tommasi and Wolf (2018) dis-
cussed Engel curve estimation for the private assignable good in the Dunbar, Lewbel,
and Pendaku (2013) collective model for household expenditure shares when using the
PIGLOG utility function. See equation (2) of Tommasi and Wolf (2018) for these Engel
curves. These authors estimate the model parameters by a particular nonlinear least
squares criterion. We instead consider the general GMM estimation problem in this con-
text for which 0 = g∗(θ) = Eγ∗ϕ(Wi�θ) when θ = θ∗, where θ = (β�π1�π2�π3) and the
moment function is

ϕ(w�θ) = A(yh)

[(
w1�h
w2�h

)
−
(

π1
(
π2 +π3 +β log(π1yh)

)
(1 −π1)

(
π2 +β log

(
(1 −π1)yh

)))] � (2.7)

where A(·) is some (dg × 2)-dimensional function. For example,

A(yh) =

⎡⎢⎢⎢⎣
1 0
yh 0
0 1
0 yh

⎤⎥⎥⎥⎦ �

There are many other examples of models that fit our framework including but not
limited to nonlinear IV models, nonlinear regression models, certain DSGE models, and
structural VARs identified by conditional heteroskedasticity or instruments.

Examples 2.1 and 2.2 are contained in a class of moment condition models that uses
a control function approach to account for endogeneity. This class of models fits our
framework so that when β = 0, the control function loses its exogenous variability and
the model presents multicollinearity in the Jacobian matrix. In Example 2.1, with q(·)
being the inverse Mill’s ratio, the Jacobian matrix (2.3) satisfies

J∗(θ) = Eγ∗

⎡⎢⎣ −π2DiXi∂qi −DiXiX
′
i −DiqiXi

DiYi∂qi −DiX
′
iπ

1∂qi − 2π2Diqi∂qi −DiqiX
′
i −Diq

2
i

Li(β�ζ)Zi 0l×k 0l×1

⎤⎥⎦ �
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where qi ≡ q(ζ +Z′
1iβ), ∂qi ≡ dq(x)/dx|x=ζ+Z′

1iβ
,

Li(β�ζ) ≡
{
∂qi(Di −�i)− qiφi

}
(1 −�i)+ qiφi(Di −�i)

(1 −�i)
2 � (2.8)

with qi, ∂qi, �i ≡ �(ζ + Z′
1iβ) and φi ≡ φ(ζ + Z′

1iβ) being the terms that depend on
(β�ζ). Note that dζ < rank(J∗(θ)) < dμ when β = 0, since qi becomes a constant and
Xi = (1�X ′

1i)
′. This type of behavior for the Jacobian matrix, which is common to many

models, motivates the following assumption.

Assumption ID. When β = 0, rank(J∗(θ)) ≡ r < dμ for all θ= (0�μ) ∈Θ.

In general, a rank-deficient Jacobian with nonzero columns when β = 0 poses sev-
eral challenges rendering existing asymptotic theory in the literature that considers a
Jacobian with zero columns when identification fails inapplicable here: (i) since none of
the columns of J∗(θ) are equal to zero, it is often unclear which components of the π pa-
rameter are (un)identified; (ii) key assumptions in the literature, such as Assumption A
in AC12, do not hold; (iii) typically, g∗(θ) or J∗(θ) is nonlinear in β. In what follows, we
develop a framework to tackle these challenges and to obtain local asymptotic theory
and uniform inference procedures.

3. Systematic reparameterization

In this section, we define the criterion functions used for estimation and the sample
model restriction functions that enter them and formally impose assumptions on these
two objects. We then introduce a systematic method for reparameterizing general un-
deridentified models. After reparameterization, the identification status of the model
parameters becomes straightforward with individual parameters being either well iden-
tified or completely unidentified when identification fails. We later use this reparam-
eterization procedure as a step toward obtaining limit theory for estimators and tests
of the original parameters of interest under a comprehensive class of identification
strengths. However, this reparameterization procedure carries some interest in its own
right because it (i) characterizes the submanifold of the original parameter space that
is (un)identified and (ii) has the potential for application to finding the limit theory for
general models that are globally underidentified across their entire parameter space (in
contrast to those that lose identification in the subspace for which β = 0).

We define the extremum estimator θ̂n as the minimizer of the criterion function
Qn(θ) over the optimization parameter space Θ:

θ̂n ∈Θ and Qn(θ̂n) = inf
θ∈Θ

Qn(θ)+ o
(
n−1)�

In the following assumptions, we presume that Qn(θ) is a function of θ only through the
sample counterpart ḡn(θ) of g∗(θ). In the case of MD and some particular maximum
likelihood (ML) models, ḡn(θ) = ξ̂n − g(θ), where ξ̂n is a sample analog of ξ∗, in analogy
to (2.2). For GMM, ḡn(θ) = n−1∑n

i=1 ϕ(Wi�θ).
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Assumption CF. Qn(θ) can be written as

Qn(θ) = Ψn
(
ḡn(θ)

)
for some random function Ψn(·) that is differentiable wp1.

Assumption CF is naturally satisfied when we construct GMM/MD or ML criterion
functions, given (2.1) or (2.2). Note that models that generate minimum distance struc-
tures and certain types of likelihoods as in Example 2.3 involve g∗(θ) = ξ∗ −g(θ) by (2.2).
For a GMM/MD criterion function, Ψn(ḡn(θ)) = ‖Wnḡn(θ)‖2 where Wn is a (possibly ran-
dom) weight matrix.8 Note also that our framework includes general ML estimation with
concave likelihoods, since it is numerically equivalent to GMM estimation that uses the
score equations as moments.

Assumption Reg1. ḡn :Θ→ R
dg is continuously differentiable in θ wp1.

To simplify the asymptotic theory derived in Section 4, we impose the following as-
sumption that ensures the reparameterization function h(·) in Procedure 3.1 below does
not depend on the true DGP.

Assumption Jac. When β = 0, the null space of J∗(θ) is a subspace of the null space
of ∂ḡn(θ)/∂μ

′ wp1 for all n ≥ 1. The null space of J∗(θ) does not depend upon the true
DGP γ∗.

We allow the null space of the sample Jacobian to be larger than that of the popula-
tion Jacobian to accommodate the possibility that particular realizations of the random
variables entering the sample Jacobian can induce additional rank reduction. For ex-
ample, this allows the random variables X1i in Example 2.1 above to equal zero for all
i = 1� � � � � n. Examples 2.1–2.4 satisfy this assumption. However, the asymptotic theory
derived in Section 4 can be extended to some cases for which our reparameterization
is DGP-dependent, but we have not found an application for which such an extension
would be useful.

We now propose a systematic reparameterization as a key step toward deriving the
limit theory under various strengths of identification. Let dπ denote the rank reduction
in the Jacobian J∗(θ) under identification failure, that is, dπ ≡ dμ − r (this will later de-
note the dimension of a new parameter π). Let the parameter space for μ be denoted
as

M = {
μ ∈R

dμ : θ= (β�μ) for some θ ∈Θ
}
�

The reparameterization procedure in its most general form proceeds in two steps.

Procedure 3.1. For a given J∗(θ) that satisfies Assumptions ID and Jac, let θ = (β�μ)

denote a new vector of parameters for which dμ = dμ. Find a reparameterization func-
tion h(·) as follows:

8Note that Assumption CF does not cover GMM with a continuously updating weight matrix Wn(θ).
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1. Find a full rank dμ × dμ matrix M that performs elementary column operations9

such that when β = 0,

J∗(θ)M(μ) = [
G(μ) : 0dg×dπ

]
(3.1)

for all μ ∈M, where Gn(μ) is some dg × r matrix.

2. Find a differentiable one-to-one function h : M →M such that

∂h(μ)

∂μ′ = M
(
h(μ)

)
for all μ ∈ M, where

M ≡ {
μ ∈R

dμ : θ= (
β�h(μ)

)
for some θ ∈Θ

}
�

Proposition 3.1 below provides sufficient conditions for the existence of a h(·) func-
tion resulting from Procedure 3.1. We also note that the singular value decomposition
can be used to compute the matrix M(μ) with conventional software since the right
singular vectors of J∗(θ) that correspond to its zero singular values span its null space
and its left singular vectors that correspond to its nonzero singular values span its col-
umn space.10 With the reparameterization function h(·), we transform μ to μ such
that μ = h(μ). That is, we have the reparameterization as the following one-to-one
map:

θ ≡ (β�μ) �→ θ≡ (β�μ)� (3.2)

where (β�μ) = (β�h(μ)). Throughout the paper, we use boldface font for the original
parameters and standard font for the transformed parameters; once all of the relevant
parameters are introduced, we summarize the notation in Table 1. Let π denote the
subvector composed of the final dπ entries of the new parameter μ so that we may
write μ = (ζ�π). We illustrate this reparameterization approach in the following con-
tinuation of Example 2.1. The approach is further illustrated in Examples 2.3–2.4 be-
low.

Table 1. Summary of notation.

(β�μ) = (β�h(μ)) Determines ID ID subject to failure ID not subject to failure

Original parameters
θ≡ (β�μ) ≡ (β�ζ�π)

β μ, π β, ζ

Transformed parameters
θ ≡ (β�μ) ≡ (β�ζ�π)

β μ, π β, ζ

9There are three types of elementary column operations: switching two columns, multiplying a column
with a nonzero constant, and replacing a column with the sum of that column and a multiple of another
column.

10We thank Áureo de Paula for pointing this out.



Quantitative Economics 10 (2019) (Nearly) singular Jacobian 1031

Examples 2.1 and 2.2 (Continued). Since Examples 2.1 and 2.2 are similar in the as-
pects we focus on, we only analyze Example 2.1 in further detail. In the case for which
Fεν(ε� ν;π2) is a bivariate standard normal distribution, the Jacobian for this model with
respect to μ is

J∗(θ) = −Eγ∗

⎡⎢⎣ π2DiXiq
′(ζ) DiXiX

′
i Diq(ζ)Xi

DiX
′
iπ

1q′(ζ)+ (
2π2q(ζ)−Yi

)
Diq

′(ζ) Diq(ζ)X
′
i Diq(ζ)

2

−Li(0�ζ)Zi 0l×k 0l×1

⎤⎥⎦
when β = 0, where Li(β�ζ) is defined in (2.8). Suppose that Eγ∗ [DiXiX

′
i] has full rank.

Then note that r = dμ − 1 since the final column is a scalar multiple of the (l + 1)th
so that dπ = 1. For Step 1 of Procedure 3.1, we set the final column of M(μ) equal to
(0�−q(ζ)�01×(k−1)�1)′. For Step 2, we find the general solution in h(·) to the following
system of ODEs:

∂h(μ)

∂π
= (

0�−q
(
h1(μ)

)
�01×(k−1)�1

)′
�

This yields

h(μ) = (
c1(ζ)�−q

(
c1(ζ)

)
π + c2(ζ)� c3(ζ)′�π + c4(ζ)

)′
�

where c1(ζ), c2(ζ) and c4(ζ) are arbitrary one-dimensional constants of integration that
may depend on ζ and c3(ζ) is an arbitrary (k − 1)-dimensional constant of integration
that may depend on ζ. Upon setting c1(ζ) = ζ1, c2(ζ) = ζ2, c3(ζ) = (ζ3� � � � � ζk+1)

′ and
c4(ζ) = 0, we have

∂h(μ)

∂μ′ =

⎡⎢⎢⎢⎣
1 0 01×(k−1) 0

−q′(ζ1)π 1 01×(k−1) −q(ζ1)

0(k−1)×1 0(k−1)×1 Ik−1 0(k−1)×1
0 0 01×(k−1) 1

⎤⎥⎥⎥⎦
being full rank. Thus, we have found a one-to-one reparameterization function h(·) such
that μ = (ζ�π) = h(μ) = (ζ1� ζ2 − q(ζ1)π�ζ3� � � � � ζk+1�π), or equivalently, ζ1 = ζ , ζ2 =
π1

1 + q(ζ)π2, (ζ3� � � � � ζk+1) = (π1
2� � � � �π

1
k) and π =π2.

Define the population and sample model restrictions and the criterion functions of
the new parameter θ as

g∗(θ) ≡ g∗(β�h(μ)
)
� ḡn(θ) ≡ ḡn

(
β�h(μ)

)
and

Qn(θ) ≡Qn

(
β�h(μ)

)
�

The new Jacobian ∂g∗(θ)/∂μ′ = (∂g∗(θ)/∂μ′)(∂h(μ)/∂μ′) has the same reduced rank
r < dμ = dμ as the original Jacobian J∗(θ) = ∂g∗(θ)/∂μ′ since ∂h(μ)/∂μ = M(h(μ)) has
full rank. But now, by the construction of the reparameterization function h(·) accord-
ing to Procedure 3.1, the rank reduction arises purely from the final dπ columns of
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∂g∗(θ)/∂μ′ being equal to zero. Using this result, in conjunction with Assumption Jac,
the reparametrized criterion function Qn(θ) satisfies a property that is instrumental to
deriving the limit theory detailed below.

Theorem 3.1. Under Assumptions ID, CF, Reg1, and Jac, Qn(θ) does not depend upon π

when β = 0 for all θ = (0� ζ�π) ∈ Θ.

In conjunction with other assumptions, the result of this theorem allows us to apply
the asymptotic results in Theorems 3.1 and 3.2 of AC12 to the reparametrized criterion
function Qn(θ), the new parameter θ and estimator θ̂n, defined by

Qn(θ̂n) = inf
θ∈Θ

Qn(θ)+ o
(
n−1)�

where Θ is the optimization parameter space in the reparametrized estimation problem
and is defined in terms of the original optimization parameter space Θ as follows:

Θ ≡ {
(β�μ) ∈R

dθ : (β�h(μ)
) ∈Θ

}
�

We now provide an algorithm for practical implementation of Procedure 3.1.

Algorithm 3.1. For a given J∗(θ) that satisfies Assumptions ID and Jac, let θ = (β�μ) =
(β�ζ�π) denote a new vector of parameters for which dμ = dμ. Find a reparameteriza-
tion function h(·) as follows:

1. Find a deterministic nonzero dμ × 1 vector m(1) such that when β = 0,

J∗(θ)m(1)(μ) = 0dg×1 (3.3)

for all μ ∈M.

2. Let μ(1) = (ζ(1)�π(1)) denote a new dμ × 1 vector of parameters, where π(1) is a
dπ × 1 subvector. Find the general solution in h(1) : M(1) → M to the following system
of first- order ordinary differential equations (ODEs):

∂h(1)(μ(1))
∂π

(1)
1

= m(1)(h(1)(μ(1))) (3.4)

for all μ(1) ∈ M(1) ≡ {μ(1) ∈ R
dμ : θ= (β�h(1)(μ(1))) for some θ ∈Θ}.

3. From the general solution for h(1) in Step 2, find a particular solution for h(1) such
that the matrix ∂h(1)(μ(1))/∂μ(1)′ has full rank for all μ(1) ∈ M(1).11

4. If dπ = 1 (i.e., π(1)
1 = π(1)), stop and set h = h(1) and μ = μ(1). Otherwise, set θ(1) =

(β�μ(1)), g(1)(θ(1)) = g∗(β�h(1)(μ(1))), Θ(1) = {(β�μ(1)) ∈ R
dθ : (β�h(1)(μ(1))) ∈ Θ} and

i = 2 (moving to the second iteration of the algorithm) and continue to the next step.

11When evaluated at μ = h(1)(μ(1)), the vector m(1)(μ) is a column in the matrix ∂h(1)(μ(1))/∂μ(1)′, de-
noted as M(1) later. The analogous statement applies to m(i) in Steps 5–6. In the special case for which
dπ = 1, m(1)(μ) evaluated at μ= h(1)(μ(1)) is equal to the final column of ∂h(1)(μ(1))/∂μ(1)′.
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5. Find a nonzero dμ × 1 vector m(i) such that when β = 0,

∂g(i−1)(θ(i−1))
∂μ(i−1)′ m(i)

(
μ(i−1))= 0dg×1 (3.5)

for all μ(i−1) ∈ M(i−1).

6. Let μ(i) = (ζ(i)�π(i)) denote a new dμ×1 vector of parameters, where π(i) is a dπ ×1
subvector. Find the general solution in h(i) : M(i) → M(i−1) to the following system of
first order ODEs:

∂h(i)
(
μ(i)

)
∂π(i)

i

= m(i)
(
h(i)

(
μ(i)

))
� (3.6)

for all μ(i) ∈ M(i) ≡ {μ(i) ∈ R
dμ : θ(i−1) = (β�h(i)(μ(i))) for some θ(i−1) ∈ Θ(i−1)}.

7. From the general solution for h(i) in Step 6, find a particular solution for h(i) such
that for all μ(i) ∈ M(i) (1) the matrix ∂h(i)(μ(i))/∂μ(i)′ has full rank and (2)

∂h(i)
(
μ(i)

)
∂
(
π(i)

1 � � � � �π(i)
i−1

) =
⎡⎢⎣ 0(dμ−dπ)×(i−1)

C(i)
(
μ(i)

)
0(dπ−i+1)×(i−1)

⎤⎥⎦ �

where C(i)(μ(i)) is an arbitrary (i − 1)× (i − 1) matrix.

8. If i = dπ , stop and set h = h(1) ◦ · · · ◦ h(dπ) and μ = μ(dπ). Otherwise, set θ(i) =
(β�μ(i)), g(i)(θ(i)) = g(i−1)(β�h(i)(μ(i))), Θ(i) = {(β�μ(i)) ∈ R

dθ : (β�h(i)(μ(i))) ∈ Θ(i−1)}
and i = i + 1 and return to Step 5.

As is the case for Procedure 3.1, the function h(·) is a reparameterization function
that maps the new parameter μ to the original parameter μ in accordance with (3.2),
that is, μ = h(μ). We formally establish the connection between Algorithm 3.1 and Pro-
cedure 3.1.

Theorem 3.2. Define M = M(dπ), where M(dπ) is defined in Step 6 of Algorithm 3.1. The
reparameterization function h : M → M constructed according to Algorithm 3.1 consti-
tutes a solution to Procedure 3.1.

Remark 3.1. Defining the matrix function M(i)(h(i)(μ(i))) = ∂h(i)(μ(i))/∂μ(i)′ for i =
1� � � � � dπ consistently with the notation used in Algorithm 3.1 so that each m(i)(h(i)(μ(i)))

is the (dζ + i)th column of M(i)(h(i)(μ(i))), we note that the matrix performing elemen-
tary operations in Procedure 3.1 can be expressed as

M
(
h(μ)

)= M(1)(h(1) ◦ · · · ◦ h(dπ)(μ)
)× · · · ×M(dπ)

(
h(dπ)(μ)

)
�

We also note that in terms of the recursive parameter spaces of Algorithm 3.1, Θ = Θ(dπ).

When implementing Steps 3 and 7 of Algorithm 3.1, knowledge of the well-identified
parameter ζ in μ = (ζ�π) is useful in making ∂h(i)(μ(i))/∂ζ(i) relatively simple; see Re-
mark 3.5 and the examples below. We note that the reparameterizations resulting from
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Procedure 3.1 or Algorithm 3.1 are not unique though such nonuniqueness poses no
problems for our analysis. A sufficient condition for the existence of such a reparame-
terization is provided as follows.

Assumption Lip. m(i)(·) is Lipschitz continuous on compact M(i−1) for every i =
1� � � � � dπ with M(0) ≡M.

Proposition 3.1. Under Assumptions ID, Jac, and Lip, there exists a reparametrization
function h(·) on M that is an output of Algorithm 3.1 if Assumption Lip holds.

Assumption Lip is related to restrictions on g∗(θ). In practice, one can verify this
assumption by simply calculating m(i)(·) in Steps 2 or 5 in Algorithm 3.1, as these steps
are straightforward to implement.

Remark 3.2. In some cases, it may be difficult to solve the ODEs (3.4) analytically. Nev-
ertheless, an abundance of numerical methods for solving systems of ODEs is readily
available in the literature.12 One can numerically solve for the h(i) functions in (3.4) us-
ing methods in, for example, Quarteroni, Sacco, and Saleri (2010). To summarize a stan-
dard approach to this problem, one can first approximate the h(i) functions using known
basis functions and transform the system of ODEs into a nonlinear system of equations.
Then a Newton–Raphson-type method can be implemented to solve for the coefficients
on the basis functions, thus obtaining a numerical solution for the h(i) functions. See
Chapters 7–11 of Quarteroni, Sacco, and Saleri (2010) for details on the choice of basis
functions and algorithms used to implement this approach as well as other details for
numerical methods with nonlinear ODEs.

Remark 3.3. The nonlinear reparameterization approach we pursue here results in a
new parameter with straightforward identification status when identification fails: ζ

is well identified and π is completely unidentified. When β is close to zero, π will be
weakly identified while (β�ζ) remain strongly identified. Our analysis can be seen as a
generalization of linear rotation-based reparameterization approaches that have been
successfully used to transform linear models in the presence of identification failure so
that the new parameters have the same straightforward identification status. See for ex-
ample, Phillips (1989) and Choi and Phillips (1992) in the context of linear IV models
and Phillips (2016) in the context of the linear regression model with potential multi-
collinearity.

Remark 3.4. We note that our systematic reparameterization approach may also be
useful in contexts for which a particular model is globally underidentified across its
entire parameter space (not just in the subspace for which a parameter β is equal to
zero). The reparameterization procedure may be useful for analyzing the identification
properties of such models as well as determining the limiting behavior of parameter
estimates and test statistics. For models that are globally underidentified across their

12We thank Andres Santos for pointing this out.
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parameter space with a constant (deficient) rank Jacobian, the subsequent results of
Sections 4–6 could be modified so that no parameter β appears in the analysis and the
relevant limiting distributions would correspond to those derived under weak identi-
fication with the localization parameter b simply set equal to zero. For example, such
an approach may be useful for underidentified DSGE models used in macroeconomics
(see e.g., Komunjer and Ng (2011) and Qu and Tkachenko (2012)). Further analysis of
this approach is well beyond the scope of the present paper.

Remark 3.5. As can be seen from the continuation of Examples 2.1 and 2.3, when we
know the component ζ of μ is well identified for all values of β, we can form h(·) so that
the first dζ elements of h(μ) are equal to the first dζ elements of the new well-identified
parameter ζ = (ζ1� ζ2), namely, ζ = (h1(μ)� � � � �hdζ (μ)) = ζ1. This is the special case de-
scribed in Remark 2.1. In this special case, the reparameterization (3.2) can be written
as a one-to-one map,

θ ≡ (β�ζ�π) �→ θ≡ (β�ζ�π)�

where (β�ζ�π) = (β�ζ1�h2(ζ2�π)) with μ = (ζ1� ζ2�π) = (ζ�π) and ζ is the new always
well identified parameter.

We summarize the notation for the original and transformed parameters in Table 1
and close this section by illustrating the reparameterization algorithm with two other
examples discussed earlier.

Example 2.3 (Continued). Given the specification of a single parameter copula C(·� ·;
π3), this model can be estimated by minimizing the negative (conditional) likelihood
function so that g∗(θ) = ξ∗−g(θ), where ξ∗ is equal to a vector of the probabilities pyd�z ’s
and g(θ) is defined in (2.5).13 The Jacobian for this model with respect to μ is

J∗(θ) = −∂g(θ)

∂μ′

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C2(π2�ζ;π3) 0 C1(π2�ζ;π3) C3(π2�ζ;π3)

C2(π2�ζ;π3) 0 C1(π2�ζ;π3) C3(π2�ζ;π3)

−C2(π1�ζ;π3) 1 −C1(π1� ζ;π3) 0 −C3(π1�ζ;π3)

−C2(π1�ζ;π3) 1 −C1(π1� ζ;π3) 0 −C3(π1�ζ;π3)

1 −C2(π2�ζ;π3) 0 −C1(π2�ζ;π3) −C3(π2�ζ;π3)

1 −C2(π2�ζ;π3) 0 −C1(π2�ζ;π3) −C3(π2�ζ;π3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
when β = 0, where C1(·� ·;π3), C2(·� ·;π3) and C3(·� ·;π3) denote the derivatives of
C(·� ·;π3) with respect to the first argument, the second argument, and π3. This ma-
trix contains only three linearly independent row so that r = dμ − 1. In the follow-
ing analysis, since dπ = 1, we simplify notation by letting h(1) = h, m(1) = m and
μ(1) = μ = (ζ�π). For Step 1 of Algorithm 3.1, we set m(μ) = (0�C3(π1�ζ;π3)/(1 −

13Maximizing the conditional likelihood is equivalent to maximizing the full likelihood for this problem.
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C1(π1�ζ;π3))�−C3(π2�ζ;π3)/C1(π2�ζ;π3)�1)′. For Step 2, a set of general solutions to
the system of ODEs,

∂h(μ)

∂π
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

C3
(
h2(μ)�h1(μ);h4(μ)

)
1 −C1

(
h2(μ)�h1(μ);h4(μ)

)
−C3

(
h3(μ)�h1(μ);h4(μ)

)
C1
(
h3(μ)�h1(μ);h4(μ)

)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.7)

is implied by

h1(μ) = c1(ζ)�

h2(μ)−C
(
h2(μ)�h1(μ);h4(μ)

)= c2(ζ)�

C
(
h3(μ)�h1(μ);h4(μ)

)= c3(ζ)�

h4(μ) = π + c4(ζ)�

(3.8)

where ci(ζ) is an arbitrary one-dimensional function of ζ for i = 1�2�3�4. For Step 3,
upon setting c1(ζ) = ζ1, c2(ζ) = ζ2, c3(ζ) = ζ3 and c4(ζ) = 0, we have

∂h(μ)

∂μ′ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

C2
(
h2(μ)� ζ1;π

)
1 −C1

(
h2(μ)� ζ1;π

) 1
1 −C1

(
h2(μ)� ζ1;π

) 0
C3
(
h2(μ)� ζ1;π

)
1 −C1

(
h2(μ)� ζ1;π

)
−C2

(
h3(μ)� ζ1;π

)
C1
(
h3(μ)� ζ1;π

) 0
1

C1
(
h3(μ)� ζ1;π

) −C3
(
h3(μ)� ζ1;π

)
C1
(
h3(μ)� ζ1;π

)
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
(3.9)

being full rank. Thus, we have found a reparameterization function h(·) satisfying the
conditions of Algorithm 3.1 though its explicit form will depend upon the functional
form of the copula C(·). For example, if we use the Ali–Mikhail–Haq copula, defined for
u1�u2 ∈ [0�1] and π ∈ [−1�1) by

C(u1�u2;π) = u1u2

1 −π(1 − u1)(1 − u2)
� (3.10)

we obtain the following closed-form solution for h(·):

h(μ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ1

−b(μ)+
√
b(μ)2 − 4a(μ)c(μ)

2a(μ)

ζ3(1 −π +πζ1)

ζ1 − ζ3π + ζ1ζ3π
π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (3.11)
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where a(μ) = π(1 − ζ1), b(μ) = (1 − ζ1)(1 − π − πζ2) and c(μ) = ζ2[π(1 − ζ1) − 1].14

For any choice of copula, we can also express the new parameters as a function of the
original ones as follows:

μ = (ζ1� ζ2� ζ3�π) = h−1(ζ�π) = (
ζ�π1 −C(π1�ζ;π3)�C(π2�ζ;π3)�π3

)
� (3.12)

Example 2.4 (Continued). In this example, we again consider GMM estimation so that
g∗(θ) = Eγ∗ϕ(Wi�θ), where the moment function ϕ(w�θ) is given by (2.7). The Jacobian
with respect to μ is

J∗(θ) = −Eγ∗A(Yh�i)

[
π2 +π3 π1 π1

−π2 1 −π1 0

]

when β = 0. Since again r = dμ −1 so that dπ = 1, simplifying notation as in the previous
examples, for Step 1 of Algorithm 3.1, we set m(μ) = (−π1(1 −π1)�−π1π2�π2 +π3(1 −
π1))

′. For Step 2, we need to find the general solution in h(·) to the following system of
ODEs:

∂h(μ)

∂π
= (−h1(μ)

(
1 − h1(μ)

)
�−h1(μ)h2(μ)�h2(μ)+ h3(μ)

(
1 − h1(μ)

))′
�

Given its triangular structure, this system can be solved successively using stan-
dard single-equation ODE methods, starting with the ∂h1(μ)/∂π equation, then the
∂h2(μ)/∂π equation, followed by the ∂h3(μ)/∂π equation. The general solution takes
the form

h(μ) =

⎛⎜⎜⎝
[
1 + c1(ζ)e

π
]−1

c2(ζ)
[
e−π + c1(ζ)

]
c3(ζ)

[
1 + c1(ζ)e

π
]− c2(ζ)

[
e−π + c1(ζ)

]
⎞⎟⎟⎠ �

where ci(ζ) is an arbitrary function of ζ for i = 1�2�3. For Step 3, setting c1(ζ) = 1, c2(ζ) =
eζ1 and c3(ζ) = ζ2 induces a simple triangular structure on the components of h(μ) as
functions of μ, that is, so that h1(μ) is a function of π only and h2(μ) is a function of π
and ζ1 only. Such a triangular structure makes it easier to solve for μ in terms of μ. In
this case, we have

∂h(μ)

∂μ′ =

⎡⎢⎢⎣
0 0 −eπ

(
1 + eπ

)−2

eζ1
(
e−π + 1

)
0 −eζ1−π

−eζ1
(
e−π + 1

)
1 + eπ ζ2e

π + eζ1−π

⎤⎥⎥⎦
being full rank. Thus, we have found a reparameterization function h(·) satisfying the
conditions of Algorithm 3.1 such that μ = h(μ) = (1/(1 + eπ)� eζ1(e−π + 1)� ζ2(1 + eπ) −
eζ1(e−π + 1)), or equivalently, μ = (ζ1� ζ2�π) = (log(π2(1 − π1))�π1(π2 + π3)� log((1 −
π1)/π1)).

14As may be gleaned from this formula, the expression for h2(μ) comes from solving a quadratic equa-
tion. This solution has two solutions, one of which is always negative and one of which is always positive.
Given that h2(μ) = π1 must be positive, h2(μ) is equal to the positive solution.
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The nonuniqueness of the reparameterizations resulting from Procedure 3.1 or Al-
gorithm 3.1 leads to the natural question of how to “choose” the appropriate reparame-
terization in practice. A natural criterion for guidance on the choice of reparameteriza-
tion is interpretability. With this criterion in mind, we recommend choosing a reparam-
eterization function h(·) such that, after suitable permutation of its rows and columns,
∂h(μ)/∂μ′ is triangular. The inverse function theorem implies that (after suitable per-
mutations) ∂h−1(μ)/∂μ′ will similarly be a triangular matrix. This would then imply, for
example, that ζ1 is a function of only one element of μ, ζ2 is a function of two or less el-
ements of μ, and so on. This is desirable from an interpretability perspective as it allows
the user to understand which functions of the original model parameters are identified,
with the goal of keeping these functions as simple as possible. An additional way of do-
ing this is to choose the reparameterization function so that ∂h(μ)/∂μ′ is sparse. Inter-
pretability is likely to be easiest when one chooses h(·) to have both of these properties.
In practice, the “choice” of reparameterization is essentially dictated by the choice of
constants of integration when moving from the general solution to a system of ODEs to a
particular solution, in, for example, steps 3 and 7 of Algorithm 3.1. Note that in the illus-
trative reparameterizations given for Examples 2.1, 2.3, and 2.4 above, we indeed choose
the constants of integration (ci(ζ)’s and ci(ζ)’s) following the general advice given here.

4. Limit theory for extremum estimators

We proceed to derive the limit theory for the extremum estimator θ̂n under a compre-
hensive class of identification strengths by applying results from AC12 to the estimator
of the parameters in the reparametrized model θ̂n and then determining the asymptotic
behavior of the original parameter estimator of interest via the relation θ̂n = (β̂n�h(μ̂n)).
We formally characterize a local-to-deficient rank Jacobian by modeling the β parameter
as local-to-zero. This allows us to fully characterize different strengths of identification,
namely, strong, semistrong, and weak (which includes nonidentification). Our ultimate
goal from deriving asymptotic theory under parameters with different strengths of iden-
tification is to conduct uniformly valid inference that is robust to identification strength.

The true parameter space � for γ takes the form

� = {
γ = (θ�φ) : θ ∈Θ�φ ∈ �(θ)

}
�

where Θ is a subset of Rdθ15 and �∗(θ) ⊂ �∗ for all θ ∈Θ for some compact metric space
�∗ with a metric that induces weak convergence of the bivariate distributions of the data
(Wi�Wi+m) for all i�m ≥ 1.16 We pause here to illustrate the form of this parameter space
in two of our running examples.

15Technically, the true parameter space for θ must be a subspace of the interior of the optimization pa-
rameter space Θ. We suppress this distinction in the main text for ease of notation and refer the interested
reader to the Appendix for further details.

16Technically, there must exist a metric on �∗ such that (Wi�Wi+m) under γ converges in distribution to
(Wi�Wi+m) under γ0 for any γ → γ0.
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Examples 2.1 and 2.2 (Continued). We again focus upon Example 2.1 since the param-
eter space for Example 2.2 has similar features. Here, we also focus on the classic case
for which Fεν is a bivariate standard normal distribution. The parameter space for θ

takes the form Θ = B × Z × Π1 × Π2, where B =×l−1
j=1[bL�j� bH�j] with bL�j� bH�j ∈ R

such that −1 < bL�j ≤ 0 ≤ bH�j < 1 and bL�j �= bH�j for j = 1� � � � � dβ, Z ⊂ R, Π1 ⊂ R
k,

Π2 ⊂ (−1�1), Z , Π1 and Π2 are compact. In this example, φ denotes the joint distribu-
tion of (Xi�Zi� εi� νi). Define ai(β�ζ) ≡ (X ′

i� qi)
′ and let Pφ and Eφ denote probability

and expectation under φ. Then we can define the parameter space for φ as follows:

�(θ) =
{
φ ∈ �∗ : Eφ[εiνi] = π2�

Pφ

(
Z′

ic = 0
)
< 1 for any c �= 0�Eφ

[‖Zi‖4+ε + ‖Xi‖4+ε
]≤ C�

Eφ sup
(β�ζ)∈B×Z

[
q
(
ζ +Z′

1iβ
)4+ε + F−1

ν

(−ζ −Z′
1iβ

)4+ε + ∣∣Li(β�ζ)
∣∣2+ε]≤ C�

Eφ

[
Diai(β�ζ)ai(β�ζ)

′] ∈R
(k+1)×(k+1) has full rank for all

(β�ζ) ∈ B ×Z with β �= 0
}
�

for some constants C < ∞ and ε > 0.

Example 2.3 (Continued). The parameter space for θ takes the form

Θ= {
θ = (β�ζ�π1�π2�π3) ∈ [bL�bH] ×Z ×Π : tL ≤ β+ ζ ≤ tH

}
�

where bL�bH� tL� tH ∈ R such that −1 < bL ≤ 0 ≤ bH < 1 with bL �= bH , 0 < tL < tH < 1,
Z ⊆ [tl� th], Π ⊂ R

3, Z and Π are compact. In this example, φ = Pγ(Zi = 1) and �(θ)

does not depend upon θ so that this parameter space can be defined as � = [pL�pH],
where 0 <pL <pH < 1.

The next lemma formally establishes the properties of the reparameterization func-
tion h(·).

Assumption H. (i) h : M → M is proper and continuously differentiable; (ii) Θ is sim-
ply connected.

Sufficient conditions for Assumption H(i) are (i) M is bounded and (ii) h is continu-
ously differentiable.17

Lemma 4.1. Under Assumptions ID, Jac, and H, (i) the function h : M → M is a homeo-
morphism, and hence bijective; (ii) h(μ) is continuously differentiable on M.

17A function is proper if its pre-image of a compact set is compact. If h is continuous, the pre-image of
a closed set under h is closed. Also, if M is bounded, the pre-image of a bounded set under h is bounded.
Therefore, under these sufficient conditions, h is proper.
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Due to this result, we can equivalently derive limit theory under sequences of pa-
rameters in � or in the following transformed parameter space:

� ≡ {
γ = (θ�φ) : θ ∈ Θ�φ ∈ �∗(θ))

}
�

where �∗(θ) ≡ �∗(β�h(μ)) ⊂ �∗ for all θ ∈ Θ.18 Define sets of sequences of parameters
{γn} as follows:

�(γ0) ≡ {{γn ∈ � : n ≥ 1} : γn → γ0 ∈ �
}
�

�(γ0�0� b) ≡ {{γn} ∈ �(γ0) : β0 = 0 and n1/2βn → b ∈R
dβ∞
}
�

�(γ0�∞�ω0) ≡
{
{γn} ∈ �(γ0) : n1/2‖βn‖ → ∞ and

βn

‖βn‖ → ω0 ∈R
dβ

}
�

where γ0 ≡ (θ0�φ0) and γn ≡ (θn�φn), and R∞ ≡ R ∪ {±∞}. When ‖b‖ < ∞, {γn} ∈
�(γ0�0� b) are weak or nonidentification sequences, otherwise, when ‖b‖ = ∞, they
characterize semi-strong identification. Sequences {γn} ∈ �(γ0�∞�ω0) characterize
semi-strong identification when βn → 0, otherwise, when limn→∞ βn �= 0, they are strong
identification sequences.

We characterize the limit theory for subvectors of the original parameter estimator
of interest θ̂n, which we show is equal to (β̂n�h(μ̂n)) by using Lemma 4.1. Toward this
end, we use μ̂s

n to denote a generic ds-dimensional subvector of μ̂n and hs(·) to denote
the corresponding elements of h(·) in the relation μ̂n = h(μ̂n). Let hs

μ(μ) = ∂hs(μ)/∂μ′
and partition hs

μ(μ) conformably with μ = (ζ�π): hs
μ(μ) = [hs

ζ(μ) : hs
π(μ)]. Suppose

rank(hs
π(μ)) = d̃∗

π for all μ ∈ Mε ≡ {μ : (β�μ) ∈ Θ�‖β‖ < ε} for some ε > 0. For μ ∈ Mε,
let Ã(μ) ≡ [Ã1(μ)′ : Ã2(μ)′]′ be an orthogonal ds × ds matrix such that Ã1(μ) is a
(ds − d̃∗

π)×ds matrix whose rows span the null space of hs
π(μ)′ and Ã2(μ) is a d̃∗

π ×ds ma-
trix whose rows span the column space of hs

π(μ). The matrix Ã1(μ) essentially rotates
hs(μ) “off” the π direction of its parameter space while the matrix As

2(μ) rotates hs(μ)

“in” the direction of π. The estimate μ̂s
n = hs(μ̂n) has very different limiting behavior af-

ter being rotated by either of these two matrices, with one “direction” converging at the√
n-rate and the other being inconsistent. Similar asymptotic behavior can be found in

related contexts where parameters of interest are functions of quantities with different
convergence rates. Indeed, the rotation approach used in the limit theory here has an-
tecedents in many distinct but related contexts including Sargan (1983), Phillips (1989),
Choi and Phillips (1992), Sims, Stock, and Watson (1990), Antoine and Renault (2009,
2012), AC14 and Phillips (2016).

The following assumptions impose regularity conditions on the subvector function
hs(·).

Assumption Reg2. rank(hs
π(μ)) = d̃∗

π for some constant d̃∗
π ≤ dπ for all μ ∈ Mε for some

ε > 0.

18In analogy to the remark made in footnote 15, the true parameter space for the transformed parameter
θ actually differs from Θ but the difference is suppressed in the main text for ease of notation. We again
refer the interested reader to the Appendix for details.



Quantitative Economics 10 (2019) (Nearly) singular Jacobian 1041

Define

η̃n(μ) ≡
{√

nÃ1(μ)
{
hs(ζn�π)− hs(ζn�πn)

}
� if d̃∗

π < ds�

0� if d̃∗
π = ds�

Assumption Reg3. Under {γn} ∈ �(γ0�0� b), η̃n(μ̂n)
p−→ 0 for all b ∈R

dβ∞ .

Analogous assumptions can be found in, for example, Assumptions R1 and R2 of
AC14. With an explicit h(·) found, for example, by Algorithm 3.1, Assumption Reg2 is
straightforward to verify. Assumption Reg3 is a high-level assumption that may be veri-
fied via any of the sufficient conditions given in Assumption Reg3* below.

Assumption Reg3*. (i) d̃∗
π = ds.

(ii) ds = 1.

(iii) The column space of hs
π(μ) is the same for all μ ∈ Mε for some ε > 0.

(iv) hs(μ) = Hsμ, where Hs is a ds × dμ matrix with full row rank.

(v) No more than dπ entries of hs(μ) depend upon π and each π-dependent entry
depends on a single different element of π.

Applying results of Lemmas 5.1 and 5.2 of AC14 shows that any of the conditions
of Assumption Reg3*(i)–(iv) is sufficient for Assumption Reg3 to hold. The condition in
Assumption Reg3*(v) is sufficient for the condition in Assumption Reg3*(iii) to hold, as
formalized in the following lemma. This condition is relevant when the reparameteriza-
tion function h(·) is nonlinear and one wishes to obtain the joint limiting behavior of a
larger subvector of μ̂n such that ds > max{d̃∗

π�1}. As may be gleaned from the sufficient
conditions of Assumption Reg3*, the feasibility of rotating a subvector μ̂s

n to obtain a√
n-convergent direction in the parameter space requires restrictions on the number of

entries of μ̂s
n = hs(μ̂n) that are nonlinear functions of π̂n. These types of restrictions will

be important for conducting Wald statistic-based inference in the next section and are
explored in more detail in the context of Example 2.3 after the following lemma.

Lemma 4.2. Assumption Reg3*(v) implies Assumption Reg3*(iii).

Example 2.3 (Continued). We first note that by expression (3.11), Assumption Reg3*(v)
holds for any two-dimensional subvector hs(μ) = (h1(μ)�hj(μ)) for any j = 2�3 or 4.
Thus, we may rotate any corresponding μ̂s

n = (μ̂n�1� μ̂n�j) to find a
√
n-convergent direc-

tion of the parameter space and apply the limit theory of the following theorem, even
for those μj ’s that are nonlinear functions of π (i.e., for j = 2 or 3). On the other hand,
none of the conditions of Assumption Reg3* hold for any μ̂s

n containing more than one
μ̂n�j for j = 2�3, or 4 and it is not possible to find a

√
n-convergent rotation. For illustra-

tion, consider the simplest of these cases for which μ̂s
n = (μ̂n�3� μ̂n�4). In this case under

{γn} ∈ �(γ0�0� b),

Ã1(μ̂n) = S(μ̂n)

(
1�

C3
(
h3(μ̂n)� ζ̂1�n; π̂n

)
C1
(
h3(μ̂n)� ζ̂1�n; π̂n

))�
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where S(μ̂n) ≡ {1 +C3(h3(μ̂n)� ζ̂1�n; π̂n)
2/C1(h3(μ̂n)� ζ̂1�n; π̂n)

2}−1/2 so that

η̃n(μ̂n) = √
nS(μ̂n)

[
η̃N
n (μ̂n)

η̃D
n (μ̂n)

]
(π̂n −πn)�

where

η̃N
n (μ̂n) ≡ ζ2

3�n(ζ1�n − 1)2(ζ1�n − ζ3�n)(π̂n −πn)+Op
(
n−1/2)= Op

(
n−1/2‖βn‖−1)�

η̃D
n (μ̂n) ≡ {

ζ1�n − ζ3�nπ̂n + ζ1�nζ3�nπ̂n +Op
(
n−1/2)}2

(ζ1�n − ζ3�nπ + ζ1�nζ3�nπ) = Op(1)�

and S(μ̂n) = Op(1), which we obtain by using the results from Lemma A.1 in the Online
Appendix B. (The derivations behind the above expressions can be found in the Online
Appendix B as well.) Thus, we have that ‖η̃n(μ̂n)‖ = ‖Op(n

−1/2‖βn‖−1)
√
n(π̂n − πn)‖ =

‖Op(n
−1/2‖βn‖−2)‖ → ∞ if n1/4‖βn‖ → 0, according to Lemma A.1.

Define

ι(β) ≡
{
β� if β is scalar�

‖β‖� if β is a vector.

We are now ready to state the main result of this section.

Theorem 4.1. (i) Suppose Assumptions ID, CF, Reg1, Jac, H, Reg2 and Reg3, and As-
sumptions B1–B3 and C1–C6 of AC12,19 applied to the transformed objects of this paper
including θ and Qn(θ), hold. Under parameter sequences {γn} ∈ �(γ0�0� b) with ‖b‖ < ∞,⎛⎜⎜⎝

√
n(β̂n −βn)√

nÃ1(μ̂n)
(
μ̂s

n −μs
n

)
Ã2(μ̂n)

(
μ̂s

n −μs
n

)
⎞⎟⎟⎠ d−→

⎛⎜⎜⎝
τ
β
0�b

(
π∗

0�b
)

Ã1
(
ζ0�π

∗
0�b
)
hs
ζ

(
ζ0�π

∗
0�b
)
τ
ζ
0�b

(
π∗

0�b
)

Ã2
(
ζ0�π

∗
0�b
)[
hs
(
ζ0�π

∗
0�b
)−μs

0
]
⎞⎟⎟⎠ �

where

π∗
0�b ≡ π∗(γ0� b) ≡ arg min

π∈Π
−1

2
(
G0(π)+K0(π)b

)′
H−1

0 (π)
(
G0(π)+K0(π)b

)
�

τ0�b(π) ≡ τ(π;γ0� b) ≡ −H−1
0 (π)

(
G0(π)+K0(π)b

)− (b�0dζ×1)

with π∗
0�b being a random vector that minimizes a noncentral chi-squared process and

{τ0�b(π) : π ∈ Π} being a Gaussian process for which τ
β
0�b(π) and τ

ζ
0�b(π) denote the first

dβ and final dμ − dπ entries. The underlying Gaussian process G0(·) ≡ G(·;γ0) is defined
in Assumption C3 of AC12 and the underlying functions H0(π) ≡ H(π;γ0) and K0(π) ≡
K(π;γ0) are defined in Assumptions C4(i) and C5(ii) of AC12, respectively.

19Here and below, we refer the reader to the Appendix for the assumptions of AC12. In the Online Ap-
pendix B, we also provide sufficient conditions for all the assumptions used in this paper including those
from AC12 for the threshold crossing model (Example 2.3).
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(ii) Suppose Assumptions ID, CF, Reg1, Jac, H, Reg2 and Reg3, and Assumptions B1–
B3, C1–C5, C7–C8, and D1–D3 of AC12, applied to the θ and Qn(θ) of this paper, hold.
Under parameter sequences {γn} ∈ �(γ0�∞�ω0),

√
n

⎛⎜⎜⎝
β̂n −βn

Ã1(μ̂n)
(
μ̂s

n −μs
n

)
ι(βn)Ã2(μ̂n)

(
μ̂s

n −μs
n

)
⎞⎟⎟⎠ d−→

⎛⎜⎜⎝
Zβ

Ã1(μ0)h
s
ζ(μ0)Zζ

Ã2(μ0)h
s
π(μ0)Zπ

⎞⎟⎟⎠ �

if β0 = 0 and

√
n

(
β̂n −βn

μ̂n −μn

)
d−→
(

Zβ

hζ(μ0)Zζ + ι(β0)
−1hπ(μ0)Zπ

)

if β0 �= 0, where (Zβ�Zζ�Zπ) = Zθ ∼ N (0� J−1(γ0)V (γ0)J
−1(γ0)). The underlying matri-

ces J(γ0) and V (γ0) are defined in Assumptions D2 and D3 of AC12.

Theorem 4.1 describes the joint limiting behavior of β̂n and μ̂s
n under a compre-

hensive class of identification strengths. By rotating the subvector μ̂s
n in the appropriate

direction of the parameter space via A1(μ̂n), we obtain
√
n-consistency under weak and

semi-strong identification. If the full vector function h(·) satisfies Assumptions Reg2 and
Reg3, then the results of Theorem 4.1 apply to the full parameter vector μ̂n.

Remark 4.1. Note that the results of Theorem 4.1 hold regardless of the choice of repa-
rameterization function h(·), as long as it satisfies the imposed assumptions. This im-
plies that the limiting random variables given in the theorem are invariant to the choice
of reparameterization. Although this statement may seem contradictory because the
reparameterization function h(·) appears in the expressions describing the random vari-
ables, note also that the objects ζ0 and π that also appear in these expressions are dif-
ferent for different choices of reparameterization. An analogous version of this remark
similarly applies to Corollary 4.1 below.

Though nonlinearity of the reparameterization function often makes it impossible
to obtain a

√
n-consistent rotation of the full vector μ̂n under weak and semi-strong

identification, it is still possible to characterize its joint limiting behavior at slower con-
vergence rates without rotation, as in the following corollary. In order to express this
corollary, it is necessary to separate the components of μ= h(ζ�π) according to whether
they depend upon π or not. Without loss of generality, suppose that the first dμ1 compo-
nents of h(ζ�π) do not actually depend upon π (e.g., in cases described by Remark 3.5),
while the final dμ − dμ1 of h(ζ�π) do. Denote the corresponding entries of μ = h(ζ�π)

as μ1 = h1(ζ) and μ2 = h2(ζ�π), respectively.

Corollary 4.1. Suppose all of the assumptions of Theorem 4.1 hold except for Assump-
tion Reg3. Under parameter sequences {γn} ∈ �(γ0�0� b),
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(i) ⎛⎜⎜⎝
√
n(β̂n −βn)√
n
(
μ̂1

n −μ1
n

)
μ̂2

n

⎞⎟⎟⎠ d−→

⎛⎜⎜⎝
τ
β
0�b

(
π∗

0�b
)

h1
ζ(ζ0)τ

ζ
0�b

(
π∗

0�b
)

h2(ζ0�π
∗
0�b
)

⎞⎟⎟⎠
if ‖b‖ < ∞ and

(ii)

√
n

⎛⎜⎜⎝
β̂n −βn

μ̂1
n −μ1

n

ι(βn)
(
μ̂2

n −μ2
n

)
⎞⎟⎟⎠ d−→

⎛⎜⎝ Zβ

h1
ζ(ζ0)Zζ

h2
π(μ0)Zπ

⎞⎟⎠ �

if ‖b‖ = ∞.

Apart from the simpler cases for which dμ2 = dπ that are already covered by the anal-
ysis of AC12, it is interesting to note that the limiting random vectors under both cases
of Corollary 4.1 are singular in some sense. For case (ii), the singularity is straightfor-
ward: the Gaussian limit has a singular covariance matrix. For case (i), the singularity
comes from the fact that dim(π∗

0�b) = dπ < dμ2 = dμ − dμ1 so that the dimension of the

parameter estimator μ̂2
n exceeds the dimension of the “randomness” in its limit.

5. Wald statistics

We are interested in testing general nonlinear hypotheses of the form

H0 : r(θ) = v ∈R
dr

using the Wald statistic. To reduce notation and make assumptions more transparent, it
is useful to view H0 in its equivalent form as a hypothesis on the reparametrized param-
eters θ, namely,

H0 : r(θ) ≡ r
(
β�h(μ)

)= v ∈ R
dr�

With this notation in mind, a standard Wald statistic for H0 based upon θ̂n = (β̂n�h(μ̂n))

can be written as20

Wn(v) ≡ n
(
r(θ̂n)− v

)′(
rθ(θ̂n)B

−1(β̂n)Σ̂nB
−1(β̂n)rθ(θ̂n)

′)−1(
r(θ̂n)− v

)
�

20The Wald statistic Wn(v) is identical to the usual Wald statistic written as a function of θ̂n

that uses an estimator of the asymptotic covariance matrix for θ̂n that takes the natural form
(1�hμ(μ̂n))B

−1(β̂n)Σ̂nB
−1(β̂n)(1�hμ(μ̂n))

′.
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where rθ(θ) ≡ ∂r(θ)/∂θ′ ≡ [rβ(θ) : rζ(θ) : rπ(θ)] ∈ R
dr×dθ , Σ̂n estimates the covariance

matrix of (Z′
β�Z

′
ζ�Z

′
π)

′ and

B(β) =
⎛⎜⎝Idβ 0 0

0 Idζ 0
0 0 ι(β)Idπ

⎞⎟⎠ �

Note that, although the asymptotic distributions we obtain under weak identification
are not pivotal, scaling by Σ̂n in the Wald statistic can still be motivated by asymptotic
pivotality under (semi-)strong identification (see Proposition 5.1(ii)).

Under the assumptions of Theorem 4.1 and R1–R2 of AC14 and V1–V2 of AC12, the
limiting behavior of Wn(v) under {γn} ∈ �(γ0� b) or {γn} ∈ �(γ0�∞�ω0) can be obtained
as a simple application of the results of Theorem 5.1 of that paper. However, the fact
that θ̂n is generally a nonlinear function of θ̂n creates certain peculiarities specific to the
current context of potential underidentification that are worth exploring in more de-
tail. In particular, Assumptions R1 and R2 of AC14 rule out a handful of very standard
null hypotheses that the Wald statistic can be used for in the presence of (near) underi-
dentification. Hence, we repeat these assumptions here and discuss them in the present
context.

Assumption R1. (i) r(θ) is continuously differentiable on Θ.

(ii) rθ(θ) is full row rank dr for all θ ∈ Θ.

(iii) rank(rπ(θ)) = d∗
π for some constant d∗

π ≤ min{dr�dπ} for all θ ∈ Θε ≡ {θ ∈ Θ :
‖β‖ < ε} for some ε > 0.

Assumption R1(i) holds in the present context if the restriction on the original pa-
rameters r(θ) is continuously differentiable on Θ because (β�h(μ)) is continuously dif-
ferentiable on Θ by Lemma 4.1(ii). Since (1�hμ(μ)) is full rank by Lemma 4.1(i), Assump-
tion R1(ii) holds if ∂r(θ)/∂θ′ is full row rank for all θ ∈ Θ. Finally, Assumption R1(iii) re-
quires the product of ∂r(β�h(μ))/∂μ′ and hπ(θ) to have constant rank for all θ ∈ Θε,
which should occur when they each separately have constant rank in the absence of
some perverse interaction between them.

Let A(θ) = [A1(θ)
′ : A2(θ)

′]′ be an orthogonal dr × dr matrix such that A1(θ) is a
(dr − d∗

π) × dr matrix whose rows span the null space of rπ(θ)
′ and A2(θ) is a d∗

π × dr

matrix whose rows span the column space of rπ(θ). Let

ηn(θ) ≡
{
n1/2A1(θ)

{
r(βn� ζn�π)− r(βn� ζn�πn)

}
� if d∗

π < dr�

0� if d∗
π = dr�

Assumption R2. Under {γn} ∈ �(γ0�0� b), ηn(θ̂n)
p−→ 0 for all b ∈R

dβ∞ .

In leading cases of interest, subvector null hypotheses, that is, H0 : θs = v for some
subvector θs of θ, Assumption R2 is equivalent to Assumption Reg3 introduced in the
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previous section.21 Recalling that Assumption Reg3 is used to show a
√
n-convergent

rotation of θ̂
s
n can be constructed, we note that the existence of such a

√
n-convergent ro-

tation is crucial to obtaining the convergence of a subvector Wald statistic under weak
and semi-strong identification sequences. In the potential presence of the more compli-
cated forms of identification failure, we are interested in here, standard Wald statistics
for testing seemingly straightforward (linear) hypotheses can easily diverge under the
null hypothesis and weak or semi-strong identification sequences.

Remark 5.1. In cases for which ‖ηn(θ̂n)‖ diverges, Theorem 5.2 of AC14 tells us that
Wn(v) also diverges. This is particularly important in the context of the nonlinear repa-
rameterizations of this paper. For example, it implies that if the reparameterization func-
tion h(·) is nonlinear, a standard subvector Wald statistic can easily diverge when the
subvector under test is “large enough,” containing more than dπ entries of μ that are
nonlinear functions of π. See the continuation of Example 2.3 in the previous section for
an example. This result is very important in practice. It implies that subvector Wald tests
making use of χ2

dr
CVs exhibit size distortion of the most extreme kind: their asymptotic

size is equal to one if the subvector is large enough (including the full vector θ).

Any one of the following sufficient conditions implies the high-level Assumption R2,
as verified in Lemma 5.1 of AC14.

Assumption R2*. (i) d∗
π = dr .

(ii) dr = 1.

(iii) The column space of rπ(θ) is the same for all θ ∈ Θε for some ε > 0.

In our context, Assumption R2*(i) requires the number of restrictions under test
not exceed dπ and that all restrictions must involve elements of μ that are nontrivial
functions of π. In the case of subvector hypotheses, Assumption R2*(i)–(iii) is identical
to Assumption Reg3*(i)–(iii) and Assumptions Reg3*(iv) and (v) each implies Assump-
tion R2*(iii).22

Assumption RL. r(θ) = Rθ, where R is a dr × dθ matrix with full row rank.

In the present context, Assumption RL essentially requires both the reparameter-
ization function h(·) and the restrictions under test to be linear, viz., h(θ) = Hθ and
r(θ) = Rθ so that r(θ) = RHθ. The reparameterization function h(·) is not generally
linear. However, it is sometimes possible to obtain linear reparameterizations in spe-
cial cases for which the underlying model is linear; see Remark 3.3. In linear models for
which h(θ) = Hθ, the Wald statistic for linear restrictions does not diverge under weak
or semi-strong identification. The potential for Wald statistic divergence for linear (in-
cluding subvector) restrictions under weak or semi-strong identification, as discussed

21This statement holds because if any elements of r(θ) are equal to elements of β, the corresponding
elements of r(βn� ζn�π)− r(βn� ζn�πn) are simply equal to zero.

22These statements hold because β is not a function of π.
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in Remark 5.1, is truly a consequence of the nonlinearity of the models we study in this
paper.

Under a sequence {γn}, we consider the sequence of null hypotheses H0 : r(θ) = vn,
where vn = r(θn). In combination with our reparameterization results, direct application
of Theorem 5.1 of AC14 yields the following results.

Proposition 5.1. (i) Suppose Assumptions CF, ID, Reg1, Jac, H, R1 and R2, and As-
sumptions B1–B3, C1–C6 and V1 of AC12, applied to the θ and Qn(θ) of this paper, hold.
Under {γn} ∈ �(γ0�0� b) with ‖b‖ < ∞,

Wn(vn)
d−→ λ

(
π∗

0�b;γ0� b
)
�

where {λ(π;γ0� b) : π ∈ Π} is a stochastic process defined in the Appendix.

(ii) Suppose Assumptions CF, ID, Reg1, Jac, H, R1 and R2, and Assumptions B1–B3,
C1–C5, C7–C8, D1–D3 and V2 of AC12, applied to the θ and Qn(θ) of this paper, hold.
Under {γn} ∈ �(γ0�∞�ω0),

Wn(vn)
d−→ χ2

dr
�

Remark 5.2. For some hypotheses, one may use the Wald statistic and robust CVs de-
scribed in the following section to conduct tests that uniformly control asymptotic size
in the potential presence of general identification failure. To better fit this result into the
current literature on hypothesis testing that is robust to general forms of identification
failure, we remark here on three leading categories of hypotheses that are of typical in-
terest in applied work: (i) one-dimensional hypotheses, (ii) subvector hypotheses, and
(iii) full vector hypotheses. Our results are the first we are aware of that allow one to di-
rectly conduct one-dimensional hypothesis tests for general moment condition or like-
lihood models that fall into the framework of this paper. The methods of Andrews and
Mikusheva (2016b) can only be used for these cases when the estimation problem can
be formulated in a MD framework. To use the methods of Andrews and Guggenberger
(Forthcoming) and Andrews and Mikusheva (2016a), one must rely on a power-reducing
projection or Bonferroni bound-based approach. For subvector hypotheses, our results
allow one to directly conduct hypothesis tests for a class of subvectors that are typically
not “too large” (see Example 2.3 in Section 4 and Remark 5.1). On the other hand, one
may “concentrate out” well-identified parameters to directly conduct hypothesis tests
for a different class of subvectors in moment condition models using the methods of An-
drews and Guggenberger (Forthcoming) and Andrews and Mikusheva (2016a).23 There
is an interesting complementarity here between our results and those of Andrews and
Guggenberger (Forthcoming) and Andrews and Mikusheva (2016a): to use the approach
of these latter papers, the subvector must contain all parameters subject to identifica-
tion failure so that, in some sense, the subvectors cannot be “too small.” Finally, we note
that except for models that already fall under the framework of AC12, the results of our

23Andrews and Mikusheva (2016a) cannot handle moment conditions for which the asymptotic variance
matrix of the moments is singular. This occurs for the ML estimators of this paper.
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paper do not allow one to directly conduct full vector hypotheses (due to the divergence
of ηn(θ̂n)) whereas the methods of Andrews and Guggenberger (Forthcoming) and An-
drews and Mikusheva (2016a) do. We should also note that the frameworks of our paper
and Andrews and Guggenberger (Forthcoming) or Andrews and Mikusheva (2016a) are
nonnested and a key limiting feature of our approach that is not present in any of the
other papers mentioned in this remark is that our approach applies only to models for
which a parameter governs identification strength.

Remark 5.3. We restrict focus in this paper to Wald statistics (rather than, e.g., Lan-
grange multiplier or likelihood ratio statistics) since they do not require estimation un-
der the null hypothesis. This allows us to use the results of Section 4 and avoid restric-
tive assumptions on the reparameterization function h(·) and/or the restrictions under
test r(·). For example, AC12 impose Assumption RQ1(iii) to analyze the likelihood ratio
statistic. Though somewhat restrictive even in their setting, such an assumption would
be especially restrictive in ours since it would typically require the separate elements of
h(·) to be functions of ζ or π only, but not both at the same time.

6. Robust Wald inference

The limit distribution of λ(π∗
0�b;γ0� b) given in Proposition 5.1(i) provides a good approx-

imation to the finite-sample distribution of Wn(v). This limit distribution depends upon
the unknown nuisance parameters b and γ0. Letting c1−α(b�γ0) denote the 1−α quantile
of this distribution, a standard approach to CV construction for a test of size α would be
to evaluate c1−α(·) at a consistent estimate of (b�γ0). However, the nuisance parameter
b and some elements in γ0 are not consistently estimable under {γn} ∈ �(γ0�0� b) with
‖b‖ < ∞, lending such an approach to size distortions. This feature of the problem leads
us to consider more sophisticated CV construction methods that lead to correct asymp-
totic size for the test. We will restrict our focus to testing problems for which the dis-
tribution function of λ(π∗

0�b;γ0� b) in Proposition 5.1(i) only depends upon γ0 through
the parameters ζ0 and π0 and an additional consistently-estimable finite-dimensional
parameter δ0. This is the case in all of the examples we have encountered.24

Assumption FD. The distribution function of λ(π∗
0�b;γ0� b) depends upon γ0 only

through ζ0, π0, and some δ0 ∈R
dδ∞ such that under {γn} ∈ �(γ0�0� b) or {γn} ∈ �(γ0�∞�ω0)

there is an estimator δ̂n with δ̂n
p−→ δ0.

Given the above assumption, we may now redefine c1−α(·) to be a function of only
the finite-dimensional parameter (b� ζ0�π0� δ0). That is, let �0 = (b� ζ0�π0� δ0) and let
c1−α(�0) denote the 1 − α quantile of λ(π∗

0�b;γ0� b). We will “plug-in” consistent esti-

mators for ζ0 and δ0, ζ̂n, and δ̂n, when constructing the CVs. The first construction is
more computationally straightforward while the second leads to tests with better finite-
sample properties because it accounts for the fact that in any finite sample, using the

24It is possible to relax this restriction and modify the CVs accordingly. However, we have not found an
example where this is necessary.
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data to determine identification strength comes with a positive probability of miscate-
gorizing the identification strength. Neglecting this fact can induce overrejection of the
null hypothesis in finite samples.

6.1 Identification category selection CVs

The first type of CV we consider is the direct analog of AC12’s (plug-in and null-imposed)
Type I Robust CV. Define tn ≡ (nβ̂′

nΣ̂
−1
ββ�nβ̂n/dβ)

1/2, where Σ̂ββ�n is equal to the upper left

dβ × dβ block of Σ̂n and suppose {κn} is a sequence of constants such that κn → ∞ and
κn/n

1/2 → 0 (Assumption K of AC12). Then the ICS CV for a test of size α is defined as
follows:

cICS
1−α�n ≡

{
χ2
dr
(1 − α)−1 if tn > κn�

cLF
1−α�n if tn ≤ κn�

where χ2
dr
(1 − α)−1 is the (1 − α) quantile of a χ2

dr
-distributed random variable and

cLF
1−α�n ≡ sup

�∈L̂n∩L(v)
c1−α(�) with L̂n ≡ {� = (b� ζ�π�δ) ∈ L : (ζ�δ) = (ζ̂n� δ̂n)}, L(v) ≡ {� ∈

L : r(θ) = v}, and L ≡ {� = (b� ζ�π�δ) ∈ R
dβ+dζ+dπ+dδ∞ : there is some γ0 ∈ � such that ζ =

ζ0�π = π0� δ = δ0 and for some {γn} ∈ �(γ0)�n
1/2βn → b}. That is, we both impose H0

and “plug-in” consistent estimators ζ̂n and δ̂n of ζ0 and δ0 in the construction of the CV.
This leads to tests with smaller CVs, and hence better power (see, e.g., AC12 for a discus-
sion).25 A typical choice for κn is κn = (logn)1/2 as it is analogous to the penalty term in
the Bayesian information criterion. Under the assumptions of Proposition 5.1, Assump-
tion FD and the following assumption, we can establish the correct asymptotic size of
tests using the Wald statistic and ICS CVs.

Assumption DF1. The distribution function of λ(π∗
0�b;γ0� b) is continuous at χ2

dr
(1 −

α)−1 and sup�∈L0∩L(v) c1−α(�), where L0 ≡ {� = (b� ζ�π�δ) ∈ L : (ζ�δ) = (ζ0� δ0)}.

This assumption is assured to hold, for example, if the distribution function of
λ(π∗

0�b;γ0� b) is absolutely continuous. This both holds and is easy to check in most ex-
amples.

Proposition 6.1. Under the assumptions of Proposition 5.1, Assumption K of AC12 and
Assumptions FD and DF1, lim supn→∞ supγ∈�:r(θ)=v Pγ(Wn(v) > cICS

1−α�n) = α.

This proposition shows that for certain, namely low-dimensional, null hypotheses,
a test that rejects when the standard Wald statistic Wn(v) exceeds the ICS CV cICS

1−α�n de-
scribed in this section has correct asymptotic size.

25As in AC12, one may also choose not to impose H0 in the CV construction since it is misspecified under

the alternative. Then, simply replace L̂n ∩ L(v) with L̂n in the expression for cLF
1−α. Also, any consistent

estimators of the components of γ0 may be analogously “plugged-in.”



1050 Han and McCloskey Quantitative Economics 10 (2019)

6.2 Adjusted-Bonferroni CVs

The second type of CV we consider is a modification of the adjusted-Bonferroni CV

of McCloskey (2017). The basic idea here is to use the data to narrow down the set

of localization parameters b and parameters π from the entire space P(ζ̂n� δ̂n) ≡
{(b�π) ∈ R

dβ+dπ∞ : for some γ0 ∈ � with ζ0 = ζ̂n and δ0 = δ̂n� π = π0 and for some {γn} ∈
�(γ0)�n

1/2βn → b}, as in the construction of least-favorable CVs, to a data-dependent

set. Then one subsequently maximizes c1−α(�) over b and π in this restricted set. Intu-

itively, this allows the CV to randomly adapt to the data to determine how “guarded” we

should be against potential weak identification and which part of the parameter space

Π is relevant to the finite-sample testing problem.

Let b̂n = n1/2β̂n. Using the results of Theorem 4.1, we can determine the joint asymp-

totic distribution of (b̂n� π̂n) under sequences {γn} ∈ �(γ0�0� b) with ‖b‖ < ∞, and con-

sequently construct an asymptotically valid confidence set for (b�π0). In the context

of this paper, the adjusted-Bonferroni CV of McCloskey (2017) uses such a confidence

set for (b�π0) as the data-dependent set to maximize c1−α(�) over. Though this may

be feasible in principle, the formation of such a confidence set would be quite com-

putationally burdensome in our context since the quantiles of the limit random vec-

tor (τ
β
0�b(π

∗
0�b)�π

∗
0�b) depend upon the underlying parameters (b�π0) themselves.26 As a

modification, here we instead propose the use of either one of two sets as follows. For

notational simplicity, we will denote either of the two sets as Îan(b̂n� π̂n), though the sec-

ond one does not depend directly on π̂n. The first is Îan(b̂n� π̂n) = {(b�π) ∈ P(ζ̂n� δ̂n) :
[(b̂n − b)′� (π̂n −π)′] ˆ̄

Σ−1
n [(b̂n − b)′� (π̂n −π)′]′ ≤ χ2

dβ+dπ
(1 − a)−1}, where

ˆ̄
Σn ≡

(
Σ̂ββ�n n−1/2‖β̂n‖−1Σ̂βπ�n

n−1/2‖β̂n‖−1Σ̂′
βπ�n n−1‖β̂n‖−2Σ̂ππ�n

)

with Σ̂βπ�n denoting the upper right dβ × dπ block of Σ̂n and Σ̂ππ�n denoting the lower

right dπ ×dπ block of Σ̂n. This set is akin to an a-level Wald confidence set for (b�π0). The

second set we propose can ease later computations: Îan(b̂n� π̂n) = {(b�π) ∈ P(ζ̂n� δ̂n) :
(b̂n − b)′Σ̂−1

ββ�n(b̂n − b) ≤ χ2
dβ

(1 − a)−1}. Though neither of these confidence sets has

asymptotically correct coverage (at level 1 − a) under {γn} ∈ �(γ0�0� b) with ‖b‖ < ∞
sequences, they attain nearly correct coverage as ‖b‖ → ∞. Similar to the ICS CV in the

previous subsection, one may also impose H0 and “plug-in” the values of ζ̂n and δ̂n since

they are consistent estimators.

Let L̃a
n(b�γ0) = {� = (b̃� ζ�π�δ) ∈ L̂n : (b̃�π) ∈ Îan(b + τ

β
0�b(π

∗
0�b)�π

∗
0�b)} and L̂a

n = {� =
(b� ζ�π�δ) ∈ L̂n : (b�π) ∈ Îan(b̂n� π̂n)}. For a size-α test, the construction of the CV pro-

ceeds in two steps:

26A similar complication arises in, for example, the formation of an asymptotically valid confidence set
for the localization parameter in a local-to-unit root autoregressive model.
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1. Compute the smallest value ς = ς(ζ̂n� δ̂n�
ˆ̄
Σn) such that

sup
(b�γ0)∈R

dβ∞ ×�:(b�ζ0�π0�δ0)∈L̂n∩L(v)

P
(
λ
(
π∗

0�b;γ0� b
)≥ sup

�∈L̃a
n(b�γ0)∩L(v)

c1−α(�)+ ς
)

≤ α�

2. Construct the quantity cAB
1−α�n = sup

�∈L̂a
n∩L(v)

c1−α(�) + ς(ζ̂n� δ̂n�
ˆ̄
Σn). This is the

adjusted-Bonferroni CV.

By Assumption FD, the computations in Step 1 can be achieved by simulating from
the joint distribution of λ(π∗

0�b;γ0� b), τβ0�b(π
∗
0�b), and π∗

0�b over a grid of (b�γ0) values

such that (b� ζ0�π0� δ0) ∈ L̂n ∩ L(v) or by using more computationally efficient global
optimization methods such as response surface analysis (see, e.g., Jones, Schonlau, and
Welch (1998) and Jones (2001)). See Algorithm Bonf-Adj in McCloskey (2017) for addi-
tional details on the computation of this CV. Under the assumptions of Proposition 5.1,
Assumption FD and the following assumption, we can establish the correct asymptotic
size of tests using the Wald statistic and adjusted-Bonferroni CVs.

Let La
0(b�γ0) = {� = (b̃� ζ�π�δ) ∈ L0 : (b̃�π) ∈ Ia0 (b+τ

β
0�b(π

∗
0�b)�π

∗
0�b)}. When using the

first Îan(b̂n� π̂n) described above,

Ia0
(
b+ τ

β
0�b

(
π∗

0�b
)
�π∗

0�b
)

= {
(b�π) ∈ P(ζ0� δ0) :[
(τ

β
0�b

(
π∗

0�b
)′
�
(
π∗

0�b −π
)′]

Σ̄−1
0

(
b+ τ

β
0�b

(
π∗

0�b
)
� θ∗

0�b
)[
(τ

β
0�b

(
π∗

0�b
)′
�
(
π∗

0�b −π
)′]′

≤ χ2
dβ+dπ

(1 − a)−1}
with

Σ̄0
(
b+ τ

β
0�b

(
π∗

0�b
)
� θ∗

0�b
)

≡
⎛⎝ Σββ�0

(
θ∗

0�b
) ∥∥b+ τ

β
0�b

(
π∗

0�b
)∥∥−1

Σβπ�0
(
θ∗

0�b
)

∥∥b+ τ
β
0�b

(
π∗

0�b
)∥∥−1

Σβπ�0
(
θ∗

0�b
)′ ∥∥b+ τ

β
0�b

(
π∗

0�b
)∥∥−2

Σππ�0
(
θ∗

0�b
)
⎞⎠

and Σββ�0(θ
∗
0�b) denoting the upper left dβ × dβ block of Σ0(θ

∗
0�b), Σβπ�0(θ

∗
0�b) denoting

the upper right dβ × dπ block of Σ0(θ
∗
0�b), and Σππ�0(θ

∗
0�b) denoting the lower right dπ ×

dπ block of Σ0(θ
∗
0�b). (The function Σ0(·) is defined in Assumption V1 of AC12.) When

using the second Îan(b̂n� π̂n) described above,

Ia0
(
b+ τ

β
0�b

(
π∗

0�b
)
�π∗

0�b
)

= {
(b�π) ∈ P(ζ0� δ0) : τβ0�b

(
π∗

0�b
)′
Σ−1
ββ�0

(
θ∗

0�b
)
τ
β
0�b

(
π∗

0�b
)≤ χ2

dβ
(1 − a)−1}�

Assumption DF2. There exists some (b∗�γ∗
0) ∈ R

dβ∞ × � such that for some {γn} ∈ �(γ∗
0),

n1/2βn → b∗ and:
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(i) P(λ(π∗
0�b∗;γ∗

0� b
∗) ≥ sup�∈La

0(b
∗�γ∗

0)∩L(v) c1−α(�)+ ς(ζ∗
0 � δ

∗
0� Σ̄(b∗�γ∗

0))) = α,

(ii) P(λ(π∗
0�b∗;γ∗

0� b
∗) = sup�∈La

0(b
∗�γ∗

0)∩L(v) c1−α(�) + ς(ζ∗
0 � δ

∗
0� Σ̄(b∗�γ∗

0))) = 0.

This assumption is a similar distributional continuity condition to Assumption DF1
that holds in most examples.

Proposition 6.2. Under the assumptions of Proposition 5.1 and Assumptions FD and
DF2, lim supn→∞ supγ∈�:r(θ)=v Pγ(Wn(v) > cAB

1−α�n) = α.

Similar to Proposition 6.1, this proposition shows that for certain null hypothe-
ses of interest, a test that rejects when the Wald statistic Wn(v) exceeds the adjusted-
Bonferroni CV cAB

1−α�n, whose construction is detailed in this section, has correct asymp-
totic size.

Remark 6.1. In combination with the standard Wald statistic, the two CV construction
methods detailed in this section allow one to conduct subvector inference for subvec-
tors of the model parameters θ. One of the main alternative approaches to subvector in-
ference with proven asymptotic size control would be to use an existing identification-
robust test for the entire parameter vector θ, such as those advanced by Andrews and
Guggenberger (Forthcoming) and Andrews and Mikusheva (2016a), and “project the
test” onto the space generated by the lower-dimensional null hypothesis. Apart from
their well-known poor power properties when the dimension of the full parameter vec-
tor is substantially larger than the subvector under test, projection-based tests can also
be computationally costly. The computation of a projection-based typically involves
minimizing a nonlinear test statistic function over the space of nuisance parameters
that are not under a test. Our CV constructions also require the optimization of a non-
linear function c1−α(�) but the dimension of the space over which the optimization is
performed is equal to dβ + dπ , which is typically of lower dimension than the nuisance
parameters, at least for low-dimensional hypotheses. Nevertheless, c1−α(�) must typi-
cally be computed via Monte Carlo simulation. So there is no general rule for which of
the two tests is easier to compute.

7. Threshold-crossing model example

To illustrate our approach, we examine the threshold crossing model of a triangular sys-
tem (Example 2.3) in this section. Weak identification and robust inference have been
extensively studied in the literature (e.g., Staiger and Stock (1997), Kleibergen (2002),
Moreira (2003)) for linear models of a triangular system (i.e, linear IV models), but not
in this nonlinear setting. The latter, however, is empirically relevant when the depen-
dent variable and/or endogenous regressor are/is binary (e.g., Evans and Schwab (1995),
Goldman, Bhattacharya, Mccaffrey, Duan, Leibowitz, Joyce, and Morton (2001), Lochner
and Moretti (2004), Altonji, Elder, and Taber (2005), Rhine, Greene, and Toussaint-
Comeau (2006)) and instruments are potentially weak. This section contains some of the
objects that appear in the general results of this paper, applied to the threshold crossing
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model. The full verification of the assumptions imposed in the theoretical results of this
paper and other technical details are contained in Online Appendix B.

The random sample is given by the vector Wi ≡ (Yi�Di�Zi) for i = 1� � � � � n. The ML
estimator θ̂n minimizes the following criterion function in θ = (β�ζ�π1�π2�π) over the
parameter space Θ ≡ {θ = (β�ζ�π1�π2�π) ∈ [−0�98 − ε�0�98 + ε] × [0�01 − ε�0�99 + ε] ×
[0�01 − ε�0�99 + ε]× [0�01 − ε�0�99 + ε]× [−0�99 − ε�0�99 + ε] : 0�01 − ε ≤ β+ ζ ≤ 0�99 + ε}:

Qn(θ) = 1
n

n∑
i=1

ρ(Wi�θ)

for ε = 0�005, where ρ(w�θ) is a function of g(θ) via ρ(w�θ) ≡ −∑y�d�z=0�1 1ydz(w)×
logpyd�z(θ), the logarithm of density function27 with 1ydz(w) ≡ 1{w = (y�d� z)}, and the
set of pyd�z(θ)’s are defined in (2.5)–(2.6). The parameter space Θ is chosen here to be
unrestrictive while still satisfying the conditions imposed in Online Appendix B. These
latter conditions are mainly imposed to avoid boundary issues in the estimation of θ.
See Online Appendix B and AC12 for further details.

7.1 Asymptotic distributional approximations for the estimators

In this subsection, we describe the quantities composing the asymptotic distributions
of the estimators in the threshold-crossing model example under {γn} ∈ �(γ0�0� b) with
‖b‖ < ∞ found in Theorem 4.1 and Corollary 4.1. The derivations used to obtain these
quantities are given in Online Appendix B.

After the transformation, the transformed fitted probabilities pyd�z(θ) ≡
pyd�z(β�h(μ)) can be expressed as

p11�0(θ) = ζ3�

p11�1(θ) = C
(
h3(ζ1� ζ3�π)� ζ1 +β;π)�

p10�0(θ) = ζ2� (7.1)

p10�1(θ) = h2(ζ1� ζ2�π)−C
(
h2(ζ1� ζ2�π)� ζ1 +β;π)�

p01�0(θ) = ζ1 − ζ3�

p01�1(θ) = ζ1 +β−p11�1(θ)�

and

p00�0(θ) = 1 −p11�0(θ)−p10�0(θ)−p01�0(θ) = 1 − ζ1 − ζ2�

p00�1(θ) = 1 −p11�1(θ)−p10�1(θ)−p01�1(θ) = 1 − ζ1 −β−p10�1(θ)�
(7.2)

The first deterministic function appearing in the results of Theorem 4.1 and Corollary 4.1
is

H(π;γ0) = −
∑

y�d�z=0�1

φz�0

pyd�z(θ0)
Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)′�

27The log density would originally be ρ(w�θ�φ) ≡∑
y�d�z=0�11ydz(w){logpyd�z(θ) + logφz}, but the term

logφz is dropped since it does not affect the optimization problem.
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where φz�0 ≡ Pγ0(Zi = z), ψ ≡ (β�ζ), ψ0 ≡ (0� ζ0) and Dψpyd�z(ψ0�π) ≡ ∂pyd�z(ψ0�

π)/∂ψ. The second one is

K(π;γ0) = −
∑

y�d�z=0�1

φz�0

pyd�z(θ0)

∂pyd�z(θ0)

∂β0
Dψpyd�z(ψ0�π)�

Finally, G(·;γ0) is a mean zero Gaussian process indexed by π ∈ Π = [−0�99�0�99] with
bounded continuous sample paths and covariance kernel for π1�π2 ∈ Π equal to

Ω(π1�π2;γ0) = SψV
†((ψ0�π1)� (ψ0�π2);γ0

)
S′
ψ�

where Sψ ≡ [Idψ : 0dψ×1] is a selector matrix that selects the subvector ψ from θ and

V †(θ1� θ2;γ0)

≡ Eγ0

[( ∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ1)

pyd�z(θ1)

)( ∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ2)

′

pyd�z(θ2)

)]

−Eγ0

[ ∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ1)

pyd�z(θ1)

]
Eγ0

[ ∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ2)

′

pyd�z(θ2)

]

=
∑

y�d�z=0�1

pyd�z(θ0)φz�0

pyd�z(θ1)pyd�z(θ2)
Dθp

†
yd�z(θ1)p

†
yd�z(θ2)

′

−
( ∑
y�d�z=0�1

pyd�z(θ0)φz�0

pyd�z(θ1)
Dθp

†
yd�z(θ1)

)( ∑
y�d�z=0�1

pyd�z(θ0)φz�0

pyd�z(θ2)
Dθp

†
yd�z(θ2)

′
)

with Dθp
†
yd�z(θ) ≡ B−1(β)∂pyd�z(θ)/∂θ.

We conclude this subsection with a brief simulation study illustrating how well the
weak identification asymptotic distributions for the parameter estimators approximate
their finite sample counterparts. Here, we specialize the results to the model that uses
the Ali–Mikhail–Haq copula defined in (3.10). Figures 1–3 provide the simulated finite-
sample density functions of the estimators of the threshold-crossing model parame-
ters in the top row and their asymptotic approximations in the bottom row. For the
finite-sample distributions, we examine the true parameter values β ∈ {0�0�1�0�2�0�4},
ζ = 0�2 and π = (0�6�0�4�0�4). Under {γn} ∈ �(γ0�0� b) the asymptotic distributional
approximations use the corresponding parameter values with b = √

nβ, ζ0 = ζ and
π0 = π. Since θ̂n = (β̂n� μ̂n) = (β̂n�h(ζ̂n� π̂n)), we use the distributions of the elements
of β0 + τ

β
0�b(π

∗
0�b)/

√
n and h(ζ0 + τ

ζ
0�b(π

∗
0�b)/

√
n�π∗

0�b) as our asymptotic approximations

to the finite sample distributions of the elements of β̂n and μ̂n. This approximation
is asymptotically equivalent to using the limiting objects in Corollary 4.1(i) but per-
forms better in finite samples by capturing the additional “randomness” arising from
the

√
n-consistent parameter estimate ζ̂n in the distribution of μ̂n. Figures 1–3 show

that (i) the distributions of the parameter estimators can be highly non-Gaussian under
weak/nonidentification; (ii) as β grows larger, the distributions become approximately
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Figure 1. Threshold crossing model parameter estimator densities when b = 0.

Gaussian; and (iii) the new asymptotic distributional approximations perform well over-
all, especially in contrast with usual Gaussian approximations.

7.2 Asymptotic distributional approximations for Wald statistics

Similar to the previous subsection, we now describe the additional quantities needed
to obtain the asymptotic distributions of the Wald statistics in the threshold-crossing
model example. The derivations can similarly be found in Online Appendix B.

Recalling the function λ is defined in the Appendix, the only new object appearing
in λ(π∗

0�b;γ0� b) in Proposition 5.1 that is not a function of the specific restrictions un-
der test r(·) or objects described in the previous subsection is the deterministic func-
tion Σ(π;γ0). For the threshold-crossing model, this function is given by Σ(π;γ0) =

Figure 2. Threshold crossing model parameter estimator densities when b = √
n0�1.



1056 Han and McCloskey Quantitative Economics 10 (2019)

Figure 3. Threshold crossing model parameter estimator densities when b = √
n0�2.

V −1(ψ0�π;γ0), where

V (ψ0�π;γ0) =
∑

y�d�z=0�1

φz�0

pyd�z(θ0)
Dθp

†
yd�z(ψ0�π)Dθp

†
yd�z(ψ0�π)′�

Similar to the previous subsection, we provide a brief simulation study to illustrate
how well the random variable λ(π∗

0�b;γ0� b) from Proposition 5.1, arising as the limit
of the Wald statistic under weak identification, approximates its finite-sample counter-
parts. Figures 4–6 provide the simulated finite sample density functions of Wn(v) for one-
dimensional null hypotheses on the separate elements of the parameter vector θ. This
type of null hypothesis is a special case of those satisfying Assumptions R1–R2 in Sec-
tion 5. We emphasize the one-dimensional subvector testing case here, since it is often
of primary interest in applied work and, to the best of our knowledge, no other studies in

Figure 4. Wald statistic densities for the threshold crossing model when b = 0.
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Figure 5. Wald statistic densities for the threshold crossing model when b = √
n0�1.

the literature have developed weak identification asymptotic results for test statistics of
this form. As in the previous subsection, the finite-sample density functions for the Wald
statistics are given in the top row and the densities of λ(π∗

0�b;γ0� b) are given in the bot-

tom row. In addition, the solid black line graphs the density function of a χ2
1 distribution

for comparison. We look at identical true parameter values as in the previous subsec-
tion. Figures 4–6 show similar features to the corresponding figures for the estimators
(Figures 1–3): (i) the distributions of the Wald statistics can depart significantly from the
usual asymptotic χ2

1 approximations in the presence of weak/nonidentification; (ii) as
β grows larger, the distributions become approximately χ2

1; and (iii) the new asymptotic
distributional approximation perform very well, especially compared to the usual χ2

1 ap-
proximation when β is small. One interesting additional feature to note is that, although
the distributions of the parameter estimates when β = 0�2 in Figure 3 appear highly non-

Figure 6. Wald statistic densities for the threshold crossing model when b = √
n0�2.
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Gaussian (especially for π1 and π3), the corresponding distributions in Figure 6 look well
approximated by the χ2

1 distribution. This is perhaps due to the self-normalizing nature
of Wald statistics.

7.3 Power performance for one-dimensional robust Wald tests

In this subsection, we provide a brief analysis of the power of one of our proposed robust
Wald tests when applied to the one-dimensional parameter π2 of the threshold crossing
model. Since the current literature does not contain tests with proven uniform size con-
trol for directly testing one-dimensional hypotheses in the maximum likelihood setting,
we can only compare the power of our robust Wald test to a projected version of a full
vector test. And since this model is estimated by maximum likelihood, the only test we
could find in the literature for the full parameter vector θ with proven asymptotic size
control is the singularity-robust Anderson Rubin (SR-AR) test of Andrews and Guggen-
berger (Forthcoming) that uses the score function of the log-likelihood as the moment
function. Thus, as a baseline performance measure, we compare the power of our robust
test to the projected version of the SR-AR test.28

For testing the null hypothesis, H0 : π2 = 0�4 at the α = 0�05 level, we examine the
power of the robust Wald test that uses the (modified and) adjusted-Bonferroni CV de-
scribed in Section 6.2, where we implement the CV with the second Îan(b̂n� π̂n) set de-
scribed there with a = 0�5. We examine power under both weak and strong identifica-
tion, corresponding here to β = 0�2 and 0�4. For these two values of β, the finite sample
distributions of the data are generated identically to those in Sections 7.2–7.3 except that
in order to produce power curves, we vary the true underlying value of π2 across a space
of alternative hypotheses. These power curves, along with those of the projected SR-AR
test are shown in Figure 7. Here, we can see the clear dominance of the robust Wald
test in comparison to projected SR-AR under strong identification. Under weak identi-
fication, though the robust Wald test does not dominate, it exhibits higher power over
most of the alternative space, with especially pronounced power differences occurring
at more local alternatives.

8. Empirical application: The effect of education on crime

We now provide an identification-robust empirical analysis that revisits some of the
analysis of Lochner and Moretti (2004) on how educational attainment affects an indi-
vidual’s subsequent participation in crime. Lochner and Moretti (2004) studied whether
increasing one’s education level tends to reduce their engagement in criminal behavior
and whether a policy aimed at doing so would be cost-effective relative to other crime
prevention policies. These questions relate to measuring the social returns to educa-
tion that incorporate spill-over effects or externalities. As part of their analysis, Lochner
and Moretti (2004) measured the effect of schooling on incarceration using Census data.
Since schooling is likely to be correlated with some of the nonmeasurable factors that

28Specifically, we minimize the SR-AR statistic over the remaining nuisance parameters β, ζ , π1, and π3
and compare it to χ2

5(0�95)−1.
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Figure 7. Power curves for testing π2 in the threshold crossing model.

determine incarceration, they use differences in state compulsory attendance laws to
instrument for endogenous schooling. They find that schooling significantly reduces
the probability of incarceration. For this application, we use the same US Census data
(Lochner and Moretti’s, 2004 “inmates” data). All data and descriptions thereof are freely
available on Enrico Moretti’s website (http://eml.berkeley.edu/~moretti/).

Of the many sets of variables examined by these authors, one fits particularly neatly
into the following threshold crossing model of a triangular system (Example 2.3) we ex-
amine in detail in this paper:

Yi = 1[π1 + π̃2Di − εi ≥ 0]�
Di = 1[ζ +βZi − νi ≥ 0]�

(εi� νi)
′ ∼ C(εi� vi;π3)�

where C(ε�v;π3) = εv/[1 − π3(1 − ε)(1 − v)] denotes the Ali–Mikhail–Haq copula. In
terms of the variables of this model, Yi is an indicator variable that equals one if the
individual is in prison (labeled “prison” in the authors’ dataset), Di is an indicator vari-
able that equals one if the individual is a high school dropout (labeled “drop”) and Zi

is an indicator variable that equals one if the individual’s high school required at least
11 years of schooling (labeled “ca11”). In this model, π2 ≡ π1 + π̃2 captures the coun-
terfactual probability that an individual would be incarcerated had they dropped out of
high school, π1 is the counterfactual probability that an individual would be incarcer-
ated had they not dropped out, β measures how compulsory schooling laws affect the
decision to drop out from high school, ζ is equal to the probability of dropping out for
an individual attending a school without a compulsory schooling law and π3 measures
the dependence between the unobserved components driving the high school drop out
decision and whether an individual becomes incarcerated.

A weak identification problem arises in the context of this application when the
compulsory schooling laws have little (or no) effect on whether students drop out from
high school, relative to the variability of the underlying data. The weakness of compul-
sory schooling laws as IVs for educational attainment decisions has been widely docu-
mented in previous literature (e.g., Staiger and Stock (1997)). When weak identification
is present in this model, the usual large sample normal and chi-squared distributions

http://eml.berkeley.edu/~moretti/
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fail to produce good approximations to the sampling distributions of parameter estima-
tors and Wald statistics, respectively (see Sections 7.1–7.2). This is analogous to a weak
instruments problem in the standard linear IV model. However, the nonlinearity of the
threshold crossing model complicates the analysis by making it difficult to determine
exactly which (functions of) parameters are weakly versus strongly identified. This is
precisely what our reparameterization method can be used to determine.

We focus on the subpopulation of black individuals as the response of black individ-
uals to schooling may be different than that of white individuals. Lochner and Moretti
(2004) also provide separate analyses for white versus black individuals. We further fo-
cus on the subpopulation of black individuals turning age 14 in 1958 or later to account
both for the impact of the Supreme Court decision Brown v. Board of Education and to
mitigate cohort and/or time effects (see Lochner and Moretti (2004) for further details).
This leaves us with a final subpopulation of n = 184,171 individuals.

From this subpopulation, the maximum likelihood point estimates of the thresh-
old crossing model parameters are as follows: β̂n = −0�0137, ζ̂n = 0�3060, π̂1�n = 0�0260,
π̂2�n = 0�0782, and π̂3�n = 0�0394. Loosely speaking, note that the value of β̂n may be in-
dicative of weak identification since |√nβ̂n| = 5�879, roughly in line with b values that
produce nonstandard densities in our simulation analysis of Sections 7.1–7.2. In other
words, the data indicate that although there is evidence that the presence of a compul-
sory schooling law decreases the probability that a student drops out, this effect is weak
enough to produce sampling distributions for parameter estimators and test statistics
that are not well approximated by the usual normal and chi-squared approximations.
The nonrobust inference methods used in the original study by Lochner and Moretti
(2004) rely upon the usual large sample normal and chi-squared approximations. In
weakly identified scenarios, these types of approximations are likely to produce, for ex-
ample, significance tests with actual size in exceedance of their nominal level and con-
fidence intervals that undercover.

We perform robust Wald inference for the main parameter of interest π2. Rather than
comparing the Wald statistic for this parameter to the upper quantiles of a chi-squared
distribution (with one degree of freedom), we approximate the null distribution by a
stochastic process evaluated at the minimizer of a noncentral chi-squared process to
form a confidence interval. General expressions for these processes are given in Theo-
rem 4.1(i) and Proposition 5.1(i). Expressions for the quantities entering these processes
that are specific to the threshold-crossing model are given in Sections 7.1–7.2. Though
their expressions are involved, these processes and the resulting distributional approx-
imations are straightforward to simulate. By using this more accurate nonstandard ap-
proximation to the null distribution of the Wald statistic, we produce a confidence in-
terval with true coverage much closer to the nominal level than would obtain under the
usual chi-squared distributional approximation.

Though they are straightforward to compute via simulation, the upper quantiles of
the nonstandard distributional approximations depend upon nuisance parameters φ1,
β, ζ, b, and π. To implement our robust inference procedures, we must determine the
values of these nuisance parameters at which to simulate the distributions. The nui-
sance parameters φ1 = P(Zi = 1), β and ζ = (ζ�π1 −C(π1�ζ;π3)�C(π2�ζ;π3)) are con-
sistently estimable via ML estimation and we evaluate the nonstandard distributions at
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consistent estimates for these parameters. On the other hand, the nuisance parameters
b and π are not consistently estimable. For these parameters, we compute the 0�5-level
confidence set Î0�5

n = {b ∈R : (√nβ̂n − b)′Σ̂−1
ββ�n(

√
nβ̂n − b) ≤ χ2

1(0�5)
−1} ×R, where Σ̂ββ�n

is
√
n times the usual standard error for the ML estimator β̂n and χ2

1(0�5)
−1 is the 50th

percentile of a chi-squared distribution with one degree of freedom. This set provides us
with the range of identification-strength parameters b that the data indicate as the most
relevant to this particular application. We find the largest 1 − α quantile of the nonstan-
dard distribution across the confidence set Î0�5

n . Finally, to correct for the fact that (b�π)

may not lie in the confidence set, we add a small constant to this largest quantile. This
constant is determined by jointly simulating the nonstandard null asymptotic distribu-
tion of the Wald statistic and β̂n according to Steps 1 and 2 in Section 6.2. The sum of this
constant and largest quantile is equal to the identification-robust adjusted-Bonferroni
CV. The robust Wald test rejects when the standard Wald statistic exceeds this CV.

For a test of nominal size α = 0�05, the adjusted-Bonferroni CV just described is
cAB

1−α�n ≈ 11�5.29 Forming a robust confidence interval for π2, by finding all hypothe-
sized values of π2 that are not rejected by the robust Wald test, we obtain a 95% con-
fidence interval equal to [lb∗�0�326], where lb∗ > 0 is some small number that provides
the lower bound on the true parameter space for π2 (lb∗ must be strictly greater than
zero to satisfy the parameter space conditions in Online Appendix B). For comparison,
the standard Wald confidence interval that is not robust to weak identification is equal
to [0�036�0�12]. It is interesting to note that, in contrast to the standard confidence in-
terval, the robust confidence interval implies that we fail to reject any small value of the
counterfactual probability. That is, no matter how close lb∗ is to zero, we cannot reject
the null hypothesis H0 : π2 = lb∗.

Appendix: Assumptions in Andrews and Cheng (2012)

For the reader’s convenience, we restate the assumptions of AC12 that appear in the
theorems in Sections 4–6 of the current paper. At the end of this subsection, we also
restate the expression for the limit distribution of the Wald statistic of AC14 that is used
in Sections 5–6. “With respect to” is abbreviated as “w.r.t.”

Recall h̄(θ) ≡ (β�h(μ)). As noted in footnotes 15 and 18, the true parameter spaces
for θ and θ differ from the parameter spaces Θ and Θ. Specifically, let Θ∗ denote the
true parameter space for θ and Θ∗ ≡ h̄−1(Θ∗) denote the true parameter space for θ.
Lemma 4.1(i) implies the bijectivity of h̄ : Θ∗ → Θ∗, since we assume that the true pa-
rameter space is contained in the optimization parameter space (see Assumption B1
below). We assume that Θ∗ is a compact subset of Rdθ . All statements made throughout
the main text should technically be written with Θ∗ and Θ∗ replacing Θ and Θ in the
definitions of � and �.

Define Θ∗
δ ≡ {θ ∈ Θ∗ : ‖β‖ < δ}, where Θ∗ is the true parameter space for θ.

Assumption B1 (AC12). (i) int(Θ) ⊃ Θ∗. (ii) For some δ > 0, Θ ⊃ {β ∈ R
dβ : ‖β‖ < δ} ×

Z0 ×Π ⊃ Θ∗
δ for some nonempty open set Z0 ⊂R

dζ . (iii) Π is compact.

29Due to the structure of the parameter space, the CV does not depend upon the null hypothesized value
for π2.
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Assumption B2 (AC12). (i) � is compact and � = {γ = (θ�φ) : θ ∈ Θ∗�φ ∈ �∗(θ)}. (ii) For
some δ > 0, γ = (β�ζ�π�φ) ∈ � with 0 ≤ ‖β‖ < δ implies that γ̃ = (β̃� ζ�π�φ) ∈ � for all
β̃ ∈R

dβ with 0 ≤ ‖β̃‖ < δ. (iii) For δ > 0 as in (ii), ∃γ = (β�ζ�π�φ) ∈ � with 0 < ‖β‖ < δ.

Assumption B3. (i) For some nonstochastic real-valued function Q(θ;γ0) on Θ × �,
supθ∈Θ |Qn(θ) − Q(θ;γ0)| →p 0 under {γn} ∈ �(γ0) ∀γ0 ∈ �. (ii) When β0 = 0, for ev-
ery neighborhood Ψ0(⊂ R

dψ) of ψ0 = (β0� ζ0), infπ∈Π(infψ∈Ψ(π)/Ψ0 Q(ψ�π;γ0)−Q(ψ0�π;
γ0)) > 0 ∀γ0 = (ψ0�π0�φ0) ∈ �. (iii) When β0 �= 0, for every neighborhood Θ0(⊂ Θ) of
θ0 = (β0� ζ0�π0), infθ∈Θ/Θ0 Q(θ;γ0)−Q(θ0;γ0) > 0 ∀γ0 = (θ0�φ0) ∈ �.

Assumption C1. Under {γn = (βn� ζn�πn�φn)} ∈ �(γ0�0� b), for some δ > 0, ∀θ =
(ψ�π) ∈ Θδ = {θ ∈ Θ : ‖β‖ < δ}, the following statements hold: (i) The sample criterion
function Qn(ψ�π) has a quadratic expansion in ψ around ψ0�n = (0� ζn) for given π,

Qn(ψ�π) = Qn(ψ0�n�π)+DψQn(ψ0�n�π)′(ψ−ψ0�n)

+ 1
2
(ψ−ψ0�n)

′DψψQn(ψ0�n�π)(ψ−ψ0�n)+Rn(ψ�π)�

where DψQn(ψ0�n�π) ∈ R
dψ is a stochastic generalized first partial-derivative vector, and

DψψQn(ψ0�n�π) ∈ R
dψ×dψ is a generalized second partial-derivative matrix that is sym-

metric and may be stochastic or nonstochastic. (ii) The remainder, Rn(ψ�π), satisfies

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

∣∣a2
n(γn)Rn(ψ�π)

∣∣(
1 + ∥∥an(γn)(ψ −ψ0�n)

∥∥)2 = opπ(1)

for all constants δn → 0, (iii) DζQn(θ) and DζζQn(θ) do not depend on π when β = 0,
where θ = (β�ζ�π) ∈ Θ, DζQn(θ) denotes the last dζ elements of DψQn(θ), and DζζQn(θ)

is the lower dζ × dζ block of DψψQn(θ).

Assumption C2. (i) DψQn(θ) takes the form DψQn(θ) = n−1∑n
i=1 m(Wi�θ) for some

function m(Wi�θ) ∈ R
dψ ∀θ ∈ Θδ, for any true parameter γ∗ ∈ �. (ii) Eγ∗m(Wi�ψ

∗�π) = 0
∀π ∈ Π, ∀i ≥ 1 when the true parameter is γ∗ ∀γ∗ = (ψ∗�π∗�φ∗) ∈ � with β∗ = 0.

Define an empirical process {Gn(π) : π ∈ Π} by

Gn(π) = n−1/2
n∑

i=1

(
m(Wi�ψ0�n�π)−Eγnm(Wi�ψ0�n�π)

)
�

Assumption C3. Under {γn} ∈ �(γ0�0� b), Gn(·) ⇒ G(·;γ0), where G(·;γ0) is a mean
zero Gaussian process indexed by π ∈ Π with bounded continuous sample paths and
some covariance kernel Ω(π1�π2;γ0) for π1�π2 ∈ Π.

Assumption C4. (i) Under {γn} ∈ �(γ0�0� b), supπ∈Π ‖DψψQn(ψ0�n�π)−H(π;γ0)‖ →p 0
for some nonstochastic symmetric dψ × dψ matrix-valued function H(π;γ0) on Π × �

that is continuous on Π ∀γ0 ∈ �. (ii) λmin(H(π;γ0)) > 0 and λmax(H(π;γ0)) < ∞ ∀π ∈ Π,
∀γ0 ∈ � with β0 = 0.
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Define the dψ × dβ matrix of partial derivatives of the average population moment
function w.r.t. the true β value, β∗, to be

Kn
(
θ;γ∗)= n−1

n∑
i=1

∂

∂β∗′Eγ∗m(Wi�θ)�

The domain of the function Kn(θ;γ∗) is Θδ × �0, where �0 = {γa = (aβ�ζ�π�φ) ∈ � : γ =
(β�ζ�π�φ) ∈ � with ‖β‖ < δ and a ∈ [0�1]}, and δ > 0 is as in Assumption B2(ii).

Assumption C5. (i) Kn(θ;γ∗) exists ∀(θ�γ∗) ∈ Θδ ×�0, ∀n ≥ 1. (ii) For some nonstochas-
tic dψ × dβ matrix-valued function K(ψ0�π;γ0), K(ψ̄n�π; γ̃n) → K(ψ0�π;γ0) uniformly
over π ∈ Π for all nonstochastic sequences {ψ̄n} and {γ̃n} such that γ̃n ∈ �, γ̃n → γ0 =
(0� ζ0�π0�φ0) for some γ0 ∈ �, (ψ̄n�π) ∈ Θ, and ψ̄n → ψ0 = (0� ζ0). (iii) K(ψ0�π;γ0) is
continuous on Π ∀γ0 ∈ � with β0 = 0.

Define a “weighted noncentral chi-squared” process {ξ(π;γ0� b) : π ∈ Π} by

ξ(π;γ0� b) ≡ −1
2
(
G(π;γ0)+K(π;γ0)b

)′
H−1(π;γ0)

(
G(π;γ0)+K(π;γ0)b

)
�

Assumption C6. Each sample path of the stochastic process {ξ(π;γ0� b) : π ∈ Π} in some
set A(γ0� b) with Prγ0(A(γ0� b)) = 1 is minimized over Π at a unique point (which may
depend on the sample path), denoted π∗(γ0� b), ∀γ0 ∈ � with β0 = 0, ∀b with ‖b‖ < ∞.

Define a nonstochastic function {η(π;γ0�ω0) : π ∈ Π} by

η(π;γ0�ω0) ≡ −1
2
ω′

0K(π;γ0)
′H−1(π;γ0)K(π;γ0)ω0�

Assumption C7. The nonstochastic function η(π;γ0�ω0) is uniquely minimized over
π ∈ Π at π0 ∀γ0 ∈ � with β0 = 0.

Assumption C8. Under {γn} ∈ �(γ0�0� b), ∂
∂ψ′ EγnDψQn(ψ�πn)|ψ=ψn → H(π0;γ0).

Assumption D1. When the true parameters are {γn} ∈ �(γ0�∞�ω0), the following state-
ments hold: (i) The sample criterion function Qn(θ) has a quadratic expansion in θ

around θn:

Qn(θ) = Qn(θn)+DQn(θn)
′(θ − θn)

+ 1
2
(θ − θn)D

2Qn(θn)(θ − θn)+R∗
n(θ)�

where DQn(θn) ∈ R
dθ is a stochastic generalized first derivative vector and D2Qn(θn) ∈

R
dθ×dθ is a generalized second derivative matrix that is symmetric and may be stochastic

or nonstochastic. (ii) The remainder, R∗
n(θ), satisfies

sup
θ∈Θn(δn)

∣∣nR∗
n(θ)

∣∣(
1 + ∥∥n1/2B(βn)(θ − θn)

∥∥)2 = op(1)

for all constants δn → 0, where Θn(δn) = {θ ∈ Θ : ‖ψ−ψn‖ ≤ δn‖βn‖ and ‖π −πn‖ ≤ δn}.
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Assumption D2. Under {γn} ∈ �(γ0�∞�ω0), Jn = B−1(βn)D
2Qn(θn)×B−1(βn) →p

J(γ0) ∈R
dθ×dθ , where J(γ0) is nonsingular and symmetric.

Assumption D3. (i) Under {γn} ∈ �(γ0�∞�ω0), n1/2B−1(βn)DQn(θn) →d G∗(γ0) ∼
N(0dθ�V (γ0)) for some symmetric dθ × dθ matrix V (γ0). (ii) V (γ0) is positive definite
∀γ0 ∈ �.

Let

Σ(θ;γ0) = J−1(θ;γ0)V (θ;γ0)J
−1(θ;γ0)�

Σ(π;γ0) = Σ(ψ0�π;γ0)�

Assumption V1—Scalar β. (i) Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n) for some (stochastic) dθ × dθ

matrix-valued functions Ĵn(θ) and V̂n(θ) on Θ that satisfy supθ∈Θ ‖Ĵn(θ)− J(θ;γ0)‖ →p 0
and supθ∈Θ ‖V̂n(θ) − V (θ;γ0)‖ →p 0 under {γn} ∈ �(γ0�0� b) with ‖b‖ < ∞. (ii) J(θ;γ0)

and V (θ;γ0) are continuous in θ on Θ ∀γ0 ∈ � with β0 = 0. (iii) λmin(Σ(π;γ0)) > 0 and
λmax(Σ(π;γ0)) < ∞ ∀π ∈ Π, ∀γ0 ∈ � with β0 = 0.

When β is a vector, we reparametrize β as (‖β‖�ω), where ω = β/‖β‖ if β �= 0 and
by definition ω = 1dβ/‖1dβ‖ with 1dβ = (1� � � � �1) ∈ R

dβ if β = 0. Correspondingly, θ is
reparametrized as θ+ = (‖β‖�ω�ζ�π). Let Θ+ = {θ+ : θ+ = (‖β‖�β/‖β‖� ζ�π)�θ ∈ Θ}.
Let θ̂+

n and θ+
0 be the counterparts of θ̂n and θ0 after reparametrization. Let J(θ+;γ0)

and V (θ+;γ0) denote some nonstochastic dθ × dθ matrix-valued functions such that
J(θ+;γ0) = J(γ0) and V (θ+;γ0) = V (γ0). Let

Σ
(
θ+;γ0

)= J−1(θ+;γ0
)
V
(
θ+;γ0

)
J−1(θ+;γ0

)
�

Σ(π�ω;γ0) = Σ
(‖β0‖�ω�ζ0�π;γ0

)
�

and let Σββ(π�ω;γ0) denote the upper left dβ × dβ submatrix of Σ(π�ω;γ0).

Assumption V1—Vector β. (i) Ĵn = Ĵn(θ̂
+
n ) and V̂n = V̂n(θ̂

+
n ) for some (stochastic) dθ ×

dθ matrix-valued functions Ĵn(θ̂
+
n ) and V̂n(θ̂

+
n ) on Θ+ that satisfy supθ+∈Θ+ ‖Ĵn(θ̂+

n ) −
J(θ+;γ0)‖ →p 0 and supθ+∈Θ+ ‖V̂n(θ̂

+
n ) − V (θ+;γ0)‖ →p 0 under {γn} ∈ �(γ0�0� b) with

‖b‖ < ∞. (ii) J(θ+;γ0) and V (θ+;γ0) are continuous in θ+ on Θ+ γ0 ∈ � with β0 = 0.
(iii) λmin(Σ(π�ω;γ0)) > 0 and λmax(Σ(π�ω;γ0)) < ∞ ∀π ∈ Π, ∀ω ∈ R

dβ with ‖ω‖ = 1,
∀γ0 ∈ � with β0 = 0. (iv) Pr[τβ(π∗(γ0� b)�γ0� b) = 0] = 0 ∀γ0 ∈ � with β0 = 0 and ∀b with
‖b‖ < ∞.

Assumption V2. Under {γn} ∈ �(0�∞�ω0), Ĵn →p J(γ0) and V̂n →p V (γ0).

Assumption K. (i) κn → ∞ and (ii) κn/n
1/2 → 0.

Lastly, we restate the expression for the limit distribution of the Wald statistic. Define
a stochastic process {λ(π;γ0� b) : π ∈ Π} by

λ(π;γ0� b)

= τA(π;γ0� b)
′B̄(π;γ0� b)

(
r∗θ(ψ0�π)Σ̄(π;γ0� b)r

∗
θ(ψ0�π)′

)−1
B̄(π;γ0� b)τ

A(π;γ0� b)�
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where

τA(π;γ0� b) =
(

r∗ψ(ψ0�π)τ(π;γ0� b)

A2(ψ0�π)
(
r(ψ0�π)− r(ψ0�π0)

)) ∈ R
dr �

B̄(π;γ0� b) =
[
I(dr−d∗

π)
0

0 ι
(
τβ(π;γ0� b)

)
Id∗

π

]
�

Σ̄(π;γ0� b) =
{
Σ(π;γ0) if β is a scalar�

Σ
(
π�ω∗(π;γ0� b);γ0

)
if β is a vector�

ω∗(π;γ0� b) = τβ(π;γ0� b)∥∥τβ(π;γ0� b)
∥∥ �
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