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This paper studies the averaging GMM estimator that combines a conservative
GMM estimator based on valid moment conditions and an aggressive GMM esti-
mator based on both valid and possibly misspecified moment conditions, where
the weight is the sample analog of an infeasible optimal weight. We establish
asymptotic theory on uniform approximation of the upper and lower bounds of
the finite-sample truncated risk difference between any two estimators, which is
used to compare the averaging GMM estimator and the conservative GMM es-
timator. Under some sufficient conditions, we show that the asymptotic lower
bound of the truncated risk difference between the averaging estimator and
the conservative estimator is strictly less than zero, while the asymptotic upper
bound is zero uniformly over any degree of misspecification. The results apply
to quadratic loss functions. This uniform asymptotic dominance is established in
non-Gaussian semiparametric nonlinear models.

Keywords. Asymptotic risk, finite-sample risk, generalized shrinkage estimator,
GMM, misspecification, model averaging, nonstandard estimator, uniform ap-
proximation.
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1. Introduction

We are interested in estimating some finite dimensional parameter θF ∈ R
dθ which is

uniquely identified by the moment restrictions

EF

[
g1(W �θF)

] = 0r1×1 (1.1)
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for some known vector function g1(·) : W ×Θ→R
r1 , where Θ is a compact subset of Rdθ ,

W is a random vector with support W and joint distribution F , and EF [·] denotes the
expectation operator under F . Suppose we have i.i.d. data {Wi}ni=1, where Wi has distri-
bution F for i = 1� � � � � n.1 Let g1(θ)= n−1 ∑n

i=1 g1(Wi�θ). An efficient GMM estimator for
θF is

θ̂1 = arg min
θ∈Θ

g1(θ)
′(Ω1)

−1g1(θ)� (1.2)

where Ω1 = n−1 ∑n
i=1 g1(Wi� θ̃1)g1(Wi� θ̃1)

′ − g1(θ̃1)g1(θ̃1)
′ is the efficient weighting ma-

trix with some preliminary consistent estimator θ̃1.2 In a linear instrumental variable
(IV) example, Y = X ′θF + U where the IV Z1 ∈ R

r1 satisfies EF [Z1U] = 0r1×1. The mo-
ments in (1.1) hold with g1(W �θ)=Z1(Y −X ′θ) and θF is uniquely identified if EF [Z1X

′]
has full column rank. Under certain regularity conditions, it is well known that θ̂1 is con-
sistent and achieves the lowest asymptotic variance among GMM estimators based on
the moments in (1.1); see Hansen (1982).

If one has additional moments,

EF

[
g∗(W �θF)

] = 0r∗×1 (1.3)

for some known function g∗(·) :W ×Θ→R
r∗ , imposing them together with (1.1) can fur-

ther reduce the asymptotic variance of the GMM estimator. However, if these additional
moments are misspecified in the sense that EF [g∗(W �θF)] �= 0r∗×1, imposing (1.3) may
result in inconsistent estimation. The choice of moment conditions is routinely faced
by empirical researchers. Take the linear IV model for example. One typically starts with
a large number of candidate IVs but only has confidence that a small number of them
are valid, denoted by Z1. The rest of them, denoted by Z∗, are valid only under certain
economic hypothesis that yet to be tested. In this example, g∗(W �θ) = Z∗(Y − X ′θ).
In contrast to the conservative estimator θ̂1, an aggressive estimator θ̂2 always imposes
(1.3) regardless of its validity. Let g2(Wi�θ) = (g1(Wi�θ)

′� g∗(Wi�θ)
′)′ for i = 1� � � � � n, and

g2(θ) = n−1 ∑n
i=1 g2(Wi�θ). The aggressive estimator θ̂2 takes the form

θ̂2 = arg min
θ∈Θ

g2(θ)
′(Ω2)

−1g2(θ)� (1.4)

where Ω2 is constructed in the same way as Ω1 except that g1(Wi�θ) is replaced by
g2(Wi�θ).3

Because imposing EF [g∗(W �θF)] = 0r∗×1 is a double-edged sword, a data-dependent
decision usually is made to choose between θ̂1 and θ̂2. To study such a decision and the
subsequent estimator, let

δF = EF

[
g∗(W �θF)

] ∈R
r∗ � (1.5)

1The main theory of the paper can be easily extended to time series models with dependent data, as long
as the preliminary results in Lemma B.1 hold.

2For example, θ̃1 could be the GMM estimator similar to θ̂1 but with an identity weighting matrix; see
(B.5) in the Appendix.

3See the first line of equations (E.13) in the Supplemental Appendix for the definition of Ω2. In particular,

Ω2 is constructed using θ̃1, the preliminary consistent estimator based on the valid moment conditions in
(1.1) only.
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Figure 1. Finite sample (n= 500) MSEs of the pre-test and the averaging GMM estimators. Note:
“Pre-test(0.01)” and “Pre-test(0.05)” refer to the pre-test GMM estimator based on the J -test
statistic ng2(θ̂2)

′(�2)
−1g2(θ̂2) with nominal size 0.01 and 0.05, respectively. “Emp-opt” refers to

the averaging GMM estimator with weight defined in (4.3) of the paper. In this simulation, we set
δF = c0ω where c0 is in [0,1] and ω is a real vector. At each c0, we consider 127 different values for
ω and report the largest finite sample MSEs of the estimators. Details of the simulation design
for this figure is provided in Section 6.1.

The pre-testing approach tests the null hypothesis H0 : δF = 0r∗×1 and constructs an
estimator

θ̂pre = 1{Tn > cα}θ̂1 + 1{Tn ≤ cα}θ̂2 (1.6)

for some test statistic Tn with the critical value cα at the significance level α. One popu-
lar test is the J-test (see Hansen (1982)), and cα is the 1 − α quantile of the chi-squared
distribution with degree of freedom r2 − dθ where r2 = r1 + r∗. Because the power of this
test against the fixed alternative is 1, θ̂pre equals θ̂1 with probability 1 asymptotically
(n → ∞) for those fixed misspecified model where δF �= 0r∗×1. Thus, it seems that θ̂pre is
immune to moment misspecification. However, we care about the finite-sample mean
squared error (MSE) of θ̂pre in practice and this standard pointwise asymptotic analysis
(δF is fixed and n → ∞) provides a poor approximation to the former.4 To see the com-
parison between θ̂pre and θ̂1, the dashed line and the dashed-dotted line in Figure 1 plot
the maximum finite-sample (n = 500) MSEs of θ̂pre with α = 0�01 and 0�05, respectively,

4The poor approximation of the pointwise asymptotics to the finite sample properties of the pre-test
estimator has been noted in Shibata (1986), Pötscher (1991), Kabaila (1995, 1998), and Leeb and Pötscher
(2005, 2008), among others.
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while the MSE of θ̂1 is normalized to 1.5 For some values of δF , the MSE of θ̂pre may
be larger than that of θ̂1, sometimes by more than 50%. Note that the pre-test estima-
tors exhibit multiple peaks because the simulation design allows for multiple potentially
misspecified moments and considers two different ways of parametrizing δF . Given c0,
the norm of δF may be different in the two different parametrizations.

The goal of this paper is twofold. First, we propose a data-dependent averaging of θ̂1

and θ̂2 that takes the form

θ̂eo = (1 − ω̃eo)θ̂1 + ω̃eoθ̂2� (1.7)

where ω̃eo ∈ [0�1] is a data-dependent weight specified in (4.7) below. The subscript in
ω̃eo is short for empirical optimal because this weight is an empirical analog of an infea-
sible optimal weight ω∗

F defined in (4.3) below. We plot the finite-sample MSE of this av-
eraging estimator as the solid line in Figure 1. This averaging estimator is robust to mis-
specification in the sense that the solid line is below 1 for all values of δF , in contrast to
the bump in the dashed line that represents the pre-test estimator. Second, we develop
a uniform asymptotic theory to justify the finite-sample robustness of this averaging
estimator. We quantify the upper and lower bounds of the asymptotic risk differences
between the averaging estimator and the conservative estimator, and show that this av-
eraging estimator dominates the conservative estimator uniformly over a large class of
models with different degrees of misspecification in certain asymptotic sense.6 The uni-
form dominance is established under the truncated weighted loss function which is de-
fined in (3.11) below.7 Our uniform dominance result relies on the asymptotic properties
of the GMM estimators, therefore, it is weaker than the exact finite sample dominance
result of the James–Stein estimator established in the Gaussian sampling models.

The rest of the paper is organized as follows. Section 2 discusses the literature related
to our paper. Section 3 defines the parameter space over which the uniform result is es-
tablished and defines uniform dominance. Section 4 introduces the averaging weight.
Section 5 provides an analytical representation of the bounds of the asymptotic risk dif-
ferences and applies it to show that the averaging GMM estimator uniformly dominates
the conservative estimator. Section 6 investigates the finite sample performance of our
averaging estimator using Monte Carlo simulations. Section 7 concludes. Proof of the
main results of the paper and additional simulation results are given in the Appendix.
Analysis of the pre-test estimator, extra simulation studies, and proofs of some auxiliary
results are included in the Online Supplemental Material of the paper (Cheng, Liao, and
Shi (2019)).

Notation. For any real matrix A, we use ‖A‖ to denote the Frobenius norm of A,
that is, ‖A‖ = (tr(A′A))1/2 where tr(·) denotes the trace operator of square matrices.
If A is a real symmetric matrix, ρmin(A) and ρmax(A) denote the smallest and largest

5That is, the dashed line and the dashed-dotted line represent the ratios of the maximum MSEs of the
two pre-test estimators divided by the MSE of θ̂1, respectively.

6The lower and upper bounds of asymptotic risk difference are defined in (3.12) below.
7Truncation at a large number is needed for the asymptotic analysis of the risk of general estimator with-

out imposing stringent conditions such as uniform integrability.
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eigenvalues of A, respectively. For any positive integers d1 and d2, Id1 and 0d1×d2 stand
for the d1 × d1 identity matrix and d1 × d2 zero matrix, respectively. Let vec(·) denote
vectorization of a matrix and vech(·) denotes the half- vectorization of a symmetric
matrix. Let R = (−∞�+∞), R+ = [0�+∞), R∞ = R∪ {±∞}� and R+�∞ = R+∪{+∞}.
For any positive integer d and any set S, Sd denotes the Cartesian product of d many
sets: S1×· · · × Sd with Sj = S for j = 1� � � � � d. For any finite positive integer d and any
set S ⊂ R

d , int(S) denotes the interior of S under the Euclidean norm. We use N to
denote the set of natural numbers and {pn} = {pn : n ∈ N} denote a subsequence of
{n}n∈N. For any (possibly random) positive sequences {an}∞n=1 and {bn}∞n=1, an = Op(bn)

means that supn∈N Pr(an/bn > c) → 0 as c → ∞; an = op(bn) means that for all ε > 0,
limn→∞ Pr(an/bn > ε) = 0. Let “→p” and “→D” stand for convergence in probability and
convergence in distribution, respectively. The notation a ≡ b means a is defined as b.

2. Related literature

Our uniform dominance result is related to the Stein’s phenomenon (Stein (1956)) in
parametric models. The James–Stein (JS) estimator shrinks the maximum likelihood es-
timator (MLE) toward zero and has been shown to dominate the MLE in exact normal
sampling; see James and Stein (1961). Green and Strawderman (1991) proposed an aver-
aging estimator in the Gaussian location model which shrinks an unbiased estimator to-
ward a biased estimator with a JS type of weight, and showed that the averaging estima-
tor dominates the unbiased estimator. Green and Strawderman (1991) assumed that the
unbiased estimator is independent of the biased estimator, which is relaxed in Kim and
White (2001), Judge and Mittelhammer (2004), and Mittelhammer and Judge (2005).8, 9

These papers propose averaging estimators which shrink asymptotically unbiased esti-
mators toward biased estimators in the semiparametric setting, and show that the aver-
aging estimators based on infeasible weights dominate the unbiased estimators in the
Gaussian location models. Kim and White (2001) showed that the infeasible weight can
be consistently estimated when the asymptotic bias of the biased estimator is zero. Judge
and Mittelhammer (2004) and Mittelhammer and Judge (2005) provided approximators
of the infeasible optimal weights and show that these approximators can be consistently
estimated. These estimators and our estimator are all linear combinations of the unbi-
ased estimator and the biased estimator. However, even in the Gaussian location mod-
els, the weights are different and their sufficient conditions and proofs for dominance
are different; see Appendix A for details.10

Hansen (2016) considered the JS-type averaging estimator in general paramet-
ric models and shows the Stein-dominance result in a pointwise local asymptotic

8We thank an anonymous referee who referred Green and Strawderman (1991) and Judge and Mittel-
hammer (2004) to us.

9Judge and Mittelhammer (2007) proposed an averaging estimator which combine different GMM esti-
mators with weights determined by the empirical likelihood method. However, the properties of this aver-
aging estimator are not fully investigated and no dominace results are established in this paper.

10In the Gaussian location model, our dominance results require dθ ≥ 4; Green and Stawderman (1991)
required dθ ≥ 3 by imposing independence between the unbiased and the biased estimators; and Kim and
White (2001), Judge and Mittelhammer (2004) and Mittelhammer and Judge (2005) required dθ ≥ 5.
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sense.11
 Hansen (2017) proposed an averaging estimator that combines the ordinary

least squares (OLS) estimator and the two-stage-least-squares (2SLS) estimator in lin-
ear IV models, and shows that the averaging estimator has smaller local asymptotic
risk than the OLS estimator. DiTraglia (2016) also studied the averaging GMM estima-
tor in the pointwise local asymptotic framework. The averaging weight of his estimator
is based on the focused moment selection criterion with a targeted parameter. The sim-
ulation results in the paper show that this averaging estimator does not uniformly domi-
nate the conservative estimator. Many other frequentist model averaging estimators are
studied in the literature, including Buckland, Burnham, and Augustin (1997), Hjort and
Claeskens (2003, 2006), Hansen (2007), Claeskens and Carroll (2007), Hansen and Racine
(2012), Cheng and Hansen (2015), Lu and Su (2015), to name only a few.

Different from the aforementioned papers, our paper is the first to show global dom-
inance based on uniform asymptotic approximation.12 This uniform analysis is similar
to those studied in Andrews, Cheng, and Guggenberger (2011) for uniform size control
for inference in nonstandard problems, but the present paper is for estimation rather
than inference and focuses on a misspecification issue that is not studied in these pa-
pers.

The uniform dominance property of the averaging estimator does not contradict the
risk properties of the post-model-selection estimators found in Yang (2005) and Leeb
and Pötscher (2008). Measured by the MSE, the post-model-selection estimator usually
does better than the unrestricted estimator in part of the parameter space and worse
than the latter in other part of the parameter space. One standard example is the Hodge’s
estimator, whose scaled maximal MSE diverges to infinity with the growth of the sample
size (see, e.g., Lehmann and Casella (1998)). Similar unbounded risk results are estab-
lished in Yang (2005) and Leeb and Pötscher (2008) for post-model-selection estima-
tor based on consistent model selection procedures. Such estimators have unbounded
(scaled) maximal MSE because given the consistent model selection procedure: (i) there
exist DGPs where the restrictions to be tested/selected are (locally) misspecified; (ii) the
model selection procedures select these misspecified restrictions with high probabili-
ties, converging to 1 asymptotically; (iii) the restricted estimator has unbounded (scaled)
MSE under these DGPs.13 In contrast, the empirical optimal weight of our averaging

11For a given real vector d, the pointwise local asymptotic analysis considers a sequence of local DGPs
{Fn}n under which δFn = dn−1/2, and derives the asymptotic (truncated) risk of the averaging estimator
under {Fn}n for the given d. Such analysis will produce a pointwise risk function (on d) for the averaging
estimator. Evaluation of the averaging estimator is then conducted using the pointwise local asymptotic
risk function.

12In the uniform global asymptotic framework, one has to study the asymptotic behavior of the super-
mum and the infimum of the finite sample risk of the averaging estimator, where the supermum and the
infimum are taken over a class of DGPs which include both the locally misspecified and many more severely
misspecified DGPs. See Section 3 for more details.

13The post-model-selection estimator based on a conservative model selection procedure (e.g., hypoth-
esis test with fixed critical value or Akaike information criterion) typically do not have unbounded (scaled)
maximal MSE. However, its asymptotic maximal MSE is not guaranteed to be less than or equal to the
benchmark estimator (e.g., the conservative GMM estimator in the framework of this paper). The pre-test
estimators in Figure 1 are good examples, since they are based on the J -test with nominal size 0�01 and 0�05.
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estimator is based on an infeasible optimal weight that satisfies: (i) when the aggres-
sive/restricted GMM estimator has unbounded (scaled) MSE, the averaging weight on it
is small, converging to 0 asymptotically. The resulting averaging estimator has the same
asymptotic properties as the conservative GMM estimator; (ii) the Stein’s dominance
result applies in the asymptotic sense. Hence our averaging estimator is essentially dif-
ferent from the post-model-selection estimator.

There is a large literature studying the validity of GMM moment conditions. Many
methods can be applied to detect the validity, including the overidentification tests (see,
e.g., Sargan (1958), Hansen (1982), and Eichenbaum, Hansen, and Singleton (1988)), the
information criteria (see, e.g., Andrews (1999), Andrews and Lu (2001), and Hong, Pre-
ston, and Shum (2003)), and the penalized estimation methods (see, e.g., Liao (2013),
Cheng and Liao (2015)). Recently, misspecified moments and their consequences are
considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley, Hansen, and
Rossi (2012), Doko Tchatoka and Dufour (2008, 2014), Guggenberger (2012), Nevo and
Rosen (2012), Kolesar, Chetty, Friedman, Glaeser, Imbens (2015), Small (2007), Small,
Cai, Zhang, and Kang (2016), among others. Moon and Schorfheide (2009) explored
overidentifying moment inequalities to reduce the MSE. This paper contributes to this
literature by providing new uniform results for potentially misspecified semiparametric
models.

There is also a large literature studying adaptive estimation in nonparametric re-
gression model using model averaging; see Yang (2000, 2003, 2004), Leung and Barron
(2006), and the references therein. Since the unknown function can be written as a linear
combination of (possibly infinitely but countably many) basis functions, the nonpara-
metric model may be well approximated by parametric regression models in finite sam-
ples. These papers show that the averaging estimators which combine OLS estimators
from different parametric models with data dependent weights may achieve the optimal
convergence rate up to some logarithm factor. Our paper is different from these papers
since the parameter of interest in our paper is a finite dimensional real value, not an un-
known function, and the bias and variance trade-off of our averaging estimator is due to
the possibly misspecified moment conditions. Moreover, there is a benchmark estima-
tor in our paper, that is, the conservative GMM estimator whose asymptotic properties
are well known. Our goal is to propose an averaging estimator with uniformly smaller
risk than the conservative estimator.

3. Parameter space and uniform dominance

Let g2�j(w�θ) (j = 1� � � � � r2) denote the jth component function of g2(w�θ). We assume
that g2�j(w�θ) for j = 1� � � � � r2 is twice continuously differentiable with respect to θ for
any w ∈ W . The first- and second-order derivatives of g2(w�θ) with respect to θ are de-
noted by

g2�θ(w�θ) ≡

⎛⎜⎜⎜⎜⎝
∂g2�1(w�θ)

∂θ′
���

∂g2�r2(w�θ)

∂θ′

⎞⎟⎟⎟⎟⎠ and g2�θθ(w�θ) ≡

⎛⎜⎜⎜⎜⎜⎝
∂2g2�1(w�θ)

∂θ∂θ′
���

∂2g2�r2(w�θ)

∂θ∂θ′

⎞⎟⎟⎟⎟⎟⎠ � (3.1)
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respectively.14 Let F be a set of distribution functions on W . For k = 1 and 2, define the
expectation of the moment functions, the Jacobian matrix and the variance–covariance
matrix as

Mk�F ≡ EF

[
gk(W �θF)

]
�

Gk�F ≡ EF

[
gk�θ(W �θF)

]
� and (3.2)

Ωk�F ≡ EF

[
gk(W �θF)gk(W �θF)

′] −Mk�FM
′
k�F

for any F ∈ F� respectively. The moments above exist by Assumption 3.2 below.
Let

QF(θ)≡ EF

[
g2(W �θ)

]′
Ω−1

2�FEF

[
g2(W �θ)

]
(3.3)

for any θ ∈ Θ, which denotes the population criterion of the GMM estimation in (1.4).
For any θ ∈ Θ, define Bc

ε(θ) = {θ∗ ∈ Θ : ‖θ∗ − θ‖ ≥ ε}. We consider the risk difference
between two estimators uniformly over F ∈ F , where F satisfies Assumptions 3.1–3.3
below.

Assumption 3.1. The following conditions hold:

(i) for any F ∈ F , EF [g1(W �θF)] = 0r1×1 for some θF ∈ int(Θ);

(ii) for any ε > 0, infF∈F infθ∈Bc
ε(θF ) ‖EF [g1(W �θ)]‖> 0;

(iii) for any F ∈ F , there is θ∗
F ∈ int(Θ) such that

inf
F∈F

inf
θ∈Bc

ε(θ
∗
F )

[
QF(θ)−QF

(
θ∗
F

)]
> 0 for any ε > 0;

(iv) inf{F∈F :‖δF‖>0}
‖G′

2�FΩ
−1
2�Fδ2�F‖

‖δ2�F‖τ > 0 where δ′
2�F = (01×r1� δ

′
F) and τ > 0 is a fixed con-

stant;

(v) 0r∗×1 ∈ int(�δ) where �δ = {δF : F ∈ F}.

Assumptions 3.1(i)–(ii) require that the true unknown parameter θF is uniquely
identified by the moment conditions EF [g1(W �θF)] = 0r1×1 for any DGP F ∈ F . Assump-
tion 3.1(iii) implies that for any F ∈ F , a pseudo-true value θ∗

F is identified by the unique
minimizer of the population GMM criterion QF(θ) under possible misspecification. As-
sumption 3.1(iv) requires that δ2�F is not orthogonal to Ω−1

2�FG2�F , which rules out the
special case that θF may be consistently estimable even with severely misspecified mo-
ment conditions. Assumption 3.1(v) implies that the set of distribution functions F is
rich such that it includes the distributions under which the extra moment conditions are
correctly specified, locally misspecified or severely misspecified. Uniform dominance
can be easily established if we only allow for correctly specified models or severely mis-
specified models, because the desired dominance results hold trivially following a point-
wise analysis. Assumption 3.1(v) ensures that the extra moment conditions may have
different degrees of misspecification in the parameter space.

14By definition, g1�θ(w�θ) and g1�θθ(w�θ) are the leading r1 ×dθ and (r1dθ)×dθ submatrices of g2�θ(w�θ)

and g2�θθ(w�θ), respectively.
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Assumption 3.2. The following conditions hold:

(i) For j = 1� � � � � r2, g2�j(w�θ) is twice continuously differentiable with respect to θ for
any w ∈ W ;

(ii) supF∈F EF [supθ∈Θ(‖g2(W �θ)‖2+γ + ‖g2�θ(W �θ)‖2+γ + ‖g2�θθ(W �θ)‖2+γ)] < ∞ for
some γ > 0;

(iii) infF∈F ρmin(Ω2�F ) > 0;

(iv) infF∈F ρmin(G
′
1�FG1�F ) > 0.

Assumption 3.2(i) requires that the moment functions are smooth. Assumption
3.2(ii) imposes 2 + γ finite moment conditions on the GMM moment functions and
their first and second derivatives. Assumptions 3.2(iii) and 3.2(iv) are important suffi-
cient conditions for the local identification of the unknown parameter in GMM with
valid moment conditions.

The next assumption is on the nuisance parameters of the DGP F ∈F . Write

vF = (
vec(G2�F )

′� vech(Ω2�F )
′� δ′

F

)
(3.4)

for any F ∈ F . It is clear that vF includes the Jacobian matrix, the variance–covariance
matrix, and the measure of misspecification of the moment conditions EF [g∗(W �θF)] =
0r∗×1. Let

vF = (
vec(G2�F )

′� vech(Ω2�F )
′) (3.5)

for any F ∈ F .

Assumption 3.3. The following conditions hold:

(i) For any F ∈ F with δF = 0r∗×1, there exists a constant εF > 0 such that for any
δ̃ ∈ R

r∗ with 0 ≤ ‖δ̃‖ < εF , there is F̃ ∈ F with δF̃ = δ̃ and ‖vF̃ − vF‖ ≤ C‖δ̃‖κ for some
κ > 0;

(ii) The set Λ≡ {vF : F ∈ F} is closed.

Assumption 3.3(i) requires that for any F ∈ F such thatEF [g2(W �θF)] = 0r∗×1 is valid,
there are many DGPs F̃ ∈ F which are close to F . Here, the closeness of any two DGPs
F and F̃ is measured by the distance between vF and vF̃ . Assumption 3.3(i) and (ii) are
useful to derive the exact expression of the asymptotic risk of the GMM estimator.

Example 3.1 (Linear IV model). We study a linear IV model and provide a set of low-
level conditions that imply Assumptions 3.1, 3.2, and 3.3. The parameters of interest θ0
are the coefficients of the endogenous regressors X in

Y = X ′θ0 +U� (3.6)

with some valid IVs Z1 ∈R
r1 and some potentially misspecified IVs Z∗ ∈R

r∗ such that

EF∗ [U] = 0� EF∗ [Z1U] = 0r1×1 and (3.7)

Z∗ =Uδ0 + V � with EF∗ [V ] = 0r∗×1 and EF∗ [V U] = 0r∗×1� (3.8)
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where F∗ denotes the joint distribution of (X ′�Z′
1� V

′�U)′. In the reduced-form equa-
tion (3.8), δ0 is a r∗ × 1 real vector which characterizes the degree of misspecification.
Let F∗ denote a class of distributions containing F∗, and let Θ and �δ denote the pa-
rameter spaces of θ0 and δ0, respectively. The joint distribution of W = (Y�Z′

1�Z
∗′�X ′)′

is denoted as F which is determined by θ0, δ0, and F∗ through the linear equations in
(3.6) and (3.8).

For ease of discussion, we further assume that the random vector (X ′�Z′
1� V

′�U)′
follows the normal distribution with mean φ and variance–covariance matrix Ψ . Under
the normality assumption, each distribution F∗ corresponds to a pair of φ and Ψ .

For notational simplicity, in Lemma 3.1 below, for any finite dimensional random
vectors a1 and a2, let φaj = EF∗ [aj] for j = 1�2, �a1a2 = EF∗ [a1a

′
2], and Ωa1a2 = EF∗ [a1a

′
2]−

φa1φ
′
a2

.

Lemma 3.1. Let F∗ denote the set of normal distributions which satisfies:

(i) φu = 0, �z1u = 0r1×1 and �vu = 0r∗×1;

(ii) infF∗∈F∗ ρmin(�xz1�z1x) > 0, supF∗∈F∗ ‖φ‖2 < ∞ and
0 < infF∗∈F∗ ρmin(Ψ) ≤ supF∗∈F∗ ρmax(Ψ) <∞;

(iii) infF∗∈F∗ inf{‖δ‖≥ε} ‖δ‖−1‖(�xz1�
−1
z1z1

�z1v − �xv)δ − �xu‖ > 0 for some ε > 0 that is
small enough;15

(iv) θ0 ∈ int(Θ) and Θ is compact and large enough such that the pseudo-true value
θ∗
F ∈ int(Θ);16

(v) �δ = [c1���C1��] × · · · × [cr∗���Cr∗��] where {cj���Cj��}r∗j=1 is a set of finite constants
with cj�� < 0 <Cj�� for j = 1� � � � � r∗,

then Assumptions 3.1, 3.2, and 3.3 hold.

Condition (i) lists the moment conditions in (3.7) and (3.8). The inequality in Condi-
tion (ii) rules out DGPs under which ρmin(�xz1�z1x) may be close to zero and (part of) the
unknown parameter θ0 is weakly identified. Condition (ii) also requires that the mean
of the random vector (X ′�Z′

1� V
′�U)′ is uniformly bounded and the eigenvalues of its

variance–covariance matrix are uniformly finite and bounded away from 0. Condition
(iii) requires that the projection residual of the vector �xu on the subspace spanned by
the matrix �xz1�

−1
z1z1

�z1v − �xv is bounded away from zero. It is a sufficient condition for
Assumption 3.1(iv), which ensures that the aggressive estimator is inconsistent under
severe misspecification. Condition (iv) is needed to derive the limit of the aggressive es-
timator under misspecification. The compactness assumption of Θ is not needed for the
linear IV model. However, it is useful to verify Assumptions 3.1, 3.2, and 3.3 which do not

15The constant ε depends on the infimum and supremum in Condition (ii) and it is given in (B.3) in the
Appendix.

16Specific restrictions on Θ which ensure that θ∗
F ∈ int(Θ) are given in (D.8) and Assumption D.1(vi) in

the Supplemental Appendix.
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assume any special structure on the model. Condition (v) specifies that the parameter
space of δ0 is a product space.

Lemma 3.1 provides simple conditions on θ0, δ0, and F∗ on which uniformity results
are subsequently established.17

Now we get back to the general set up. For a generic estimator θ̂ of θ, consider a
weighted quadratic loss function

�(θ̂� θ)= n(θ̂− θ)′Υ(θ̂− θ)� (3.9)

where Υ is a dθ × dθ pre-determined positive semidefinite matrix. For example, if Υ =
Idθ , EF [�(θ̂� θF)] is the MSE of θ̂. If Υ = (Σ1�F − Σ2�F )

−1 where Σk�F (k = 1�2) is defined
in (4.4), the weighting matrix Υ rescales θ̂ by the scale of variance reduction due to the
additional moments. If Υ = EF [XiX

′
i] for regressors Xi, EF [�(θ̂� θF)] is the MSE of X ′

i θ̂,
an estimator of X ′

iθ.
Below we compare the averaging estimator θ̂eo and the conservative estimator θ̂1.

We are interested in the bounds of the truncated finite sample risk difference

RDn(θ̂eo� θ̂1;ζ) ≡ inf
F∈F

EF

[
�ζ(θ̂eo� θF)− �ζ(θ̂1� θF)

]
and

RDn(θ̂eo� θ̂1;ζ) ≡ sup
F∈F

EF

[
�ζ(θ̂eo� θF)− �ζ(θ̂1� θF)

]
�

(3.10)

where

�ζ(θ̂� θF) ≡ min
{
�(θ̂� θF)� ζ

}
(3.11)

denotes the truncated loss function with an arbitrary trimming parameter ζ. The trun-
cated loss function is employed to facilitate the asymptotic analysis of the bounds of the
risk difference. The finite-sample bounds in (3.10) are approximated by

AsyRD(θ̂eo� θ̂1) ≡ lim inf
ζ→∞ lim inf

n→∞ RDn(θ̂eo� θ̂1;ζ) and

AsyRD(θ̂eo� θ̂1) ≡ lim sup
ζ→∞

lim sup
n→∞

RDn(θ̂eo� θ̂1;ζ)�
(3.12)

which are called lower and upper bounds of the asymptotic risk difference respectively
in this paper. The averaging estimator θ̂eo asymptotically uniformly dominates the con-
servative estimator θ̂1 if

AsyRD(θ̂eo� θ̂1) < 0 and AsyRD(θ̂eo� θ̂1)≤ 0� (3.13)

The bounds of the asymptotic risk difference build the uniformity over F ∈ F into
the definition by taking infF∈F and supF∈F before lim infn→∞ and lim supn→∞, respec-
tively. Uniformity is crucial for the asymptotic results to give a good approximation to
their finite-sample counterparts. These uniform bounds are different from pointwise re-
sults which are obtained under a fixed DGP. The sequence of DGPs {Fn} along which the

17Similar results have been established in Section D of the Supplemental Appendix for the linear IV
model when the normality assumption on (X ′�Z′

1� V
′�U)′ is relaxed. Section D of the Supplemental Ap-

pendix also provides proof for Lemma 3.1 with and without the normality assumption.
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supremum or the infimum are approached often varies with the sample size.18 There-
fore, to determine the bounds of the asymptotic risk difference, one has to derive the
asymptotic distributions of these estimators under various sequences {Fn}. Under {Fn},
the observations {Wn�i}ni=1 form a triangular array. For notational simplicity, Wn�i is ab-
breviated to Wi throughout the paper.

To study the bounds of asymptotic risk difference, we consider sequences of DGPs
{Fn} such that δFn satisfies19

(i) n1/2δFn → d ∈R
r∗ or (ii)

∥∥n1/2δFn
∥∥ → ∞� (3.14)

Case (i) models mild misspecification, where δFn is a n−1/2-local deviation from 0r∗×1.
Case (ii) includes the severe misspecification where ‖δFn‖ is bounded away from 0 as
well as the intermediate case in which δFn → 0 and ‖n1/2δFn‖ → ∞. To obtain a uni-
form approximation, all of these sequences are necessary. Once we study the bounds
of asymptotic risk difference along each of these sequences, we show that we can glue
them together to obtain the bounds of asymptotic risk difference.

4. Averaging weight

We start by deriving the joint asymptotic distribution of θ̂1 and θ̂2 under different
degrees of misspecification. We consider sequences of DGPs {Fn} in F such that (i)
n1/2δFn → d ∈ R

r∗ or ‖n1/2δFn‖ → ∞; and (ii) G2�Fn , Ω2�Fn and M2�Fn converges to G2�F ,
Ω2�F and M2�F for some F ∈ F . 20

For k= 1�2 and any F ∈ F , define

�k�F = −(
G′

k�FΩ
−1
k�FGk�F

)−1
G′

k�FΩ
−1
k�F � (4.1)

Let Z2�F denote a zero mean normal random vector with variance–covariance matrix
Ω2�F and Z1�F denote its first r1 components.

Lemma 4.1. Suppose Assumptions 3.1 and 3.2 hold. Consider any sequence of DGPs {Fn}
such that vFn → vF = (vec(G2�F )

′� vech(Ω2�F )
′� δ′

F) for some F ∈ F , and n1/2δFn → d for
d ∈R

r∗∞.

(a) If d ∈ R
r∗ , then(

n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

)
→D

(
ξ1�F

ξ2�F

)
≡

(
�1�FZ1�F

�2�F (Z2�F + d0)

)
�

where d0 = (01×r1� d
′)′.

18In the rest of the paper, we use {Fn} to denote {Fn ∈ F : n= 1�2� � � �}.
19Since Fn ∈ F , by Assumption 3.2(ii), the sequence δFn in (3.14) should satisfy ‖δFn‖ ≤ C for any n.
20The requirement on the convergence of G2�Fn , Ω2�Fn , and M2�Fn is not restrictive. Lemma B.7 in Ap-

pendix B.1 shows that the sequences G2�Fn , Ω2�Fn , and M2�Fn have subsequences that converge to G2�F ,
Ω2�F , and M2�F , respectively, for some F ∈ F . The general result on the lower and upper bounds of the
asymptotic risk difference, Lemma B.14 in Appendix B.2, only requires to consider the subsequence {Fpn }
such that G2�Fpn , Ω2�Fpn , and M2�Fpn are convergent, where {pn} is a subsequence of {n}. The asymptotic
properties of the GMM estimators established in this section under the full sequence of DGPs {Fn} holds
trivially for its subsequence.
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(b) If ‖d‖ = ∞, then n1/2(θ̂1 − θFn)→D ξ1�F and ‖n1/2(θ̂2 − θFn)‖ →p ∞.

Given the joint asymptotic distribution of θ̂1 and θ̂2, it is straightforward to study
θ̂(ω) = (1 −ω)θ̂1 +ωθ̂2 if ω is deterministic. Following Lemma 4.1(a),

n1/2(θ̂(ω)− θFn
) →D ξF(ω) ≡ (1 −ω)ξ1�F +ωξ2�F (4.2)

for n1/2δFn → d, where d ∈ R
r∗ . In Section E of the Supplemental Appendix, a simple

calculation shows that the asymptotic risk of θ̂(ω) is minimized at the infeasible optimal
weight

ω∗
F ≡ tr

(
Υ(Σ1�F −Σ2�F )

)
d′

0
(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
d0 + tr

(
Υ(Σ1�F −Σ2�F )

) � (4.3)

where Υ is the matrix specified in the loss function,

Σk�F ≡ (
G′

k�FΩ
−1
k�FGk�F

)−1
for k= 1�2 and �∗

1�F ≡ [�1�F �0dθ×r∗ ]� (4.4)

To gain some intuition, consider the case where Υ = Idθ such that the MSE of θ̂(ω) is
minimized at ω∗

F . In this case, the infeasible optimal weight ω∗
F yields the ideal bias

and variance trade off. However, the bias depends on d, which cannot be consistently
estimated. Hence, ω∗

F cannot be consistently estimated. Our solution to this problem
follows the popular approach in the literature which replaces d by an estimator whose
asymptotic distribution is centered at d; see Liu (2015) and Charkhi, Claeskens, and
Hansen (2016) for similar estimators in the least square estimation and maximum like-
lihood estimation problems, respectively.

The empirical analog of ω∗
F is constructed as follows. First, for k = 1 and 2, replace

Σk�F by its consistent estimator Σ̂k ≡ (Ĝ′
kΩ̂

−1
k Ĝk)

−1,21 where

Ĝk ≡ n−1
n∑

i=1

gk�θ(Wi� θ̂1) and

Ω̂k ≡ n−1
n∑

i=1

gk(Wi� θ̂1)gk(Wi� θ̂1)
′ − gk(θ̂1)gk(θ̂1)

′�

(4.5)

Note that Ĝk and Ω̂k are based on the conservative GMM estimator θ̂1. Hence they
are consistent regardless of the degree of misspecification of the moment conditions in
(1.3). Second, replace (�2�F − �∗

1�F )d0 by its asymptotically unbiased estimator n1/2(θ̂2 −
θ̂1) because

n1/2(θ̂2 − θ̂1) →D

(
�2�F − �∗

1�F
)
(Z2�F + d0)� (4.6)

for d0 = (01×r1� d
′)′ and d ∈ R

r∗ following Lemma 4.1(a). Then the empirical optimal
weight takes the form

ω̃eo ≡ tr
(
Υ(Σ̂1 − Σ̂2)

)
n(θ̂2 − θ̂1)

′Υ(θ̂2 − θ̂1)+ tr
(
Υ(Σ̂1 − Σ̂2)

) � (4.7)

21The consistency of Σ̂k is proved in the proof of Lemma 4.2.
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and the averaging GMM estimator takes the form

θ̂eo = (1 − ω̃eo)θ̂1 + ω̃eoθ̂2� (4.8)

Next, we consider the asymptotic distribution of θ̂eo under different degrees of mis-
specification.

Lemma 4.2. Suppose that Assumptions 3.1–3.3 hold. Consider any sequence of DGPs {Fn}
such that vFn → vF = (vec(G2�F )

′� vech(Ω2�F )
′� δ′

F) for some F ∈ F , and n1/2δFn → d for
d ∈R

r∗∞.

(a) If d ∈ R
r∗ , then

ω̃eo →D ωF ≡ tr
(
Υ(Σ1�F −Σ2�F )

)
(Z2�F + d0)

′(�2�F − �∗
1�F

)′
Υ

(
�2�F − �∗

1�F
)
(Z2�F + d0)+ tr

(
Υ(Σ1�F −Σ2�F )

)
and

n1/2(θ̂eo − θFn) →D ξF ≡ (1 −ωF)ξ1�F +ωFξ2�F �

(b) If ‖d‖ = ∞, then ω̃eo →p 0 and n1/2(θ̂eo − θFn) →D ξ1�F .

To study the bounds of the asymptotic risk difference between θ̂eo and θ̂1, it is im-
portant to take into account the data-dependent nature of ω̃eo. Unlike Σ̂1 and Σ̂2, the
randomness in ω̃eo is non-negligible in the mild misspecification case (a) of Lemma 4.2.
In consequence, θ̂eo does not achieve the same bounds of asymptotic risk difference as
the ideal averaging estimator (1 −ω∗

F)θ̂1 +ω∗
F θ̂2 does. Nevertheless, below we show that

θ̂eo is insured against potentially misspecified moments because it uniformly dominates
θ̂1.

5. Bounds of asymptotic risk difference under misspecification

In this section, we study the bounds of the asymptotic risk difference defined in (3.12).
Note that the asymptotic distributions of θ̂1 and θ̂eo in Lemmas 4.1 and 4.2 only depend
on d, G2�F , and Ω2�F . For notational convenience, define

hF�d = (
d′� vec(G2�F )

′� vech(Ω2�F )
′) (5.1)

for any F ∈ F and any d ∈ R
r∗∞. For the mild misspecification case, define the parameter

space of hF�d as

H = {
hF�d : d ∈R

r∗ and F ∈ F with δF = 0r∗×1
}
� (5.2)

where δF is defined by (1.5) for a given F .

Theorem 5.1. Suppose that Assumptions 3.1–3.3 hold. The bounds of the asymptotic risk
difference satisfy

AsyRD(θ̂eo� θ̂1) = max
{

sup
h∈H

[
g(h)

]
�0

}
�

AsyRD(θ̂eo� θ̂1) = min
{

inf
h∈H

[
g(h)

]
�0

}
�
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where g(h) ≡ E[ξ′
FΥξF −ξ′

1�FΥξ1�F ], ξ1�F and ξF are given in Lemma 4.1 and Lemma 4.2,
respectively, and the expectation is taken under the joint normal distribution with mean
zero and variance–covariance matrix Ω2�F .

The upper (or lower) bound of the asymptotic risk difference is determined by the
maximum between suph∈H[g(h)] and zero (or the minimum between infh∈H[g(h)] and
zero), where suph∈H[g(h)] (or infh∈H[g(h)]) is related to the mildly misspecified DGPs
and the zero component is associated with the severely misspecified DGPs. Since the
GMM averaging estimator has the same asymptotic distribution as the conservative
GMM estimator θ̂1 under the severely misspecified DGPs, their asymptotic risk differ-
ence is zero.

To show that θ̂eo uniformly dominates θ̂1 following (3.13), Theorem 5.1 implies that
it is sufficient to show that infh∈H[g(h)] < 0 and suph∈H[g(h)] ≤ 0. We can investigate
infh∈H g(h) and suph∈H g(h) by simulating g(h). In practice, we replace G2�F and Ω2�F by
their consistent estimators and plot g(h) as a function of d. Even if the uniform domi-
nance condition does not hold, min{infh∈H[g(h)]�0} and max{suph∈H[g(h)]�0} quantify
the most- and least-favorable scenarios for the averaging estimator.

Theorem 5.2. Let AF ≡ Υ(Σ1�F −Σ2�F ) for any F ∈ F . Suppose that Assumptions 3.1–3.3
hold. If tr(AF) > 0 and tr(AF) ≥ 4ρmax(AF) for any F ∈ F with δF = 0, we have

AsyRD(θ̂eo� θ̂1) < 0 and AsyRD(θ̂eo� θ̂1)= 0�

Thus, θ̂eo uniformly dominates θ̂1.

Theorem 5.2 indicates that: (i) there exists ε1 < 0 and some finite integer nε1 such
that the minimum risk difference between θ̂eo and θ̂1 is less than ε1 for any n larger than
nε1 ; (ii) for any ε2 > 0, there exists a finite integer nε2 such that the maximum risk dif-
ference between θ̂eo and θ̂1 is less than ε2 for any n larger than nε2 . Pre-test estimators
fail to satisfy both properties (i) and (ii) above at the same time. Take the pre-test esti-
mator based on the J -test, for example,22 and consider three scenarios: (a) the critical
value is fixed for any sample size; (b) the critical value diverges to infinity; and (c) the
critical value converges to zero. In the pointwise asymptotic framework, the J -test based
on the critical values in (a), (b), and (c) leads to inconsistent (but conservative) model
selection, consistent model selection, and no model selection results, respectively. The
pre-test estimator based on the J -test violates property (ii) in scenarios (a) and (b), and
violates property (i) in scenario (c).

Different from the finite-sample results for the JS estimator established for the Gaus-
sian location model, our comparison of the two estimators θ̂eo and θ̂1 is based on the
asymptotic bounds of the risk difference. For a given sample size n, we do not pro-
vide results on this asymptotic approximation error and, therefore, our results do not
state how the finite-sample upper bound RDn(θ̂eo� θ̂1;ζ) approaches to zero as n → ∞
and then ζ → ∞ (e.g., from above or from below). For the Gaussian location model,

22See Section F in the Supplemental Appendix for definition and analysis of this estimator.
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the asymptotically uniform dominance here is weaker than the classical finite-sample
results established for the JS estimator. However, the asymptotic results here apply to
general nonlinear econometric models with nonnormal random variables.23

To shed light on the sufficient conditions in Theorem 5.2, let us consider a scenario
similar to the JS estimator: Σ1�F = σ2

1�F Idθ , Σ2�F = σ2
2�F Idθ , and Υ = Idθ . In this case, the

sufficient conditions become σ1�F > σ2�F and dθ ≥ 4. The first condition tr(AF) > 0,
which is reduced to σ1�F > σ2�F , requires that the additional moments EF [g∗(Wi�θF)] = 0
are nonredundant in the sense that they lead to a more efficient estimator of θF . The
second condition tr(AF) ≥ 4ρmax(AF), which is reduced to dθ ≥ 4, requires that we
are interested in the total risk of several parameters rather than that of a single one.
In a more general case where Σ1�F and Σ2�F are not proportional to the identity ma-
trix, the sufficient conditions are reduced to Σ1�F > Σ2�F and dθ ≥ 4 under the choice
Υ = (Σ1�F −Σ2�F )

−1, which rescales θ̂ by the variance reduction Σ1�F −Σ2�F . In a simple
linear IV model (Example 3.1) where Z∗

i is independent of Z1�i and the regression er-
ror Ui is homoskedastic conditional on the IVs, Σ1�F > Σ2�F requires that EF∗ [Z∗

i X
′
i] and

EF∗ [Z∗
i Z

∗′
i ] both have full rank.

6. Simulation studies

In this section, we investigate the finite sample performance of our averaging GMM esti-
mator in linear IV models. In addition to the empirical optimal weight ω̃eo, we consider
another averaging estimator based on the JS type of weight. Define the positive part of
the JS weight:24

ωJS = 1 −
(

1 − tr(Â)− 2ρmax(Â)

n(θ̂2 − θ̂1)
′Υ(θ̂2 − θ̂1)

)
+
� (6.1)

where (x)+ = max{0�x} and Â is the estimator of AF using Σ̂k for k = 1�2. In the sim-
ulation study of this paper, we consider an alternative averaging estimator with the re-
stricted JS weight

ωR�JS = (ωJS)+� (6.2)

By construction, ωJS ≤ 1 and 0 ≤ ωR�JS ≤ 1. We compare the finite-sample (truncated
and untruncated) MSEs of our proposed averaging estimator with the empirical opti-
mal weight, the JS type of averaging estimator with the restricted weight in (6.2), the
conservative GMM estimator θ̂1, and the pre-test GMM estimator based on the J-test.
The finite-sample MSE of the conservative GMM estimator is normalized to 1. That is,
we report the ratios of various MSEs to the MSE of the conservative GMM estimator and
call these ratios as relative MSEs. Three different simulation designs are considered in
this section.

23In Section A of the Appendix, we show that the averaging GMM estimator has similar finite sample
dominance results in the Gaussian location model.

24This formula is a GMM analog of the generalized JS-type shrinkage estimator in Hansen (2016) for
parametric models. The shrinkage scalar τ is set to tr(Â)− 2ρmax(tr(Â)) in a fashion similar to the original
JS estimator.
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6.1 Simulation model 1

We consider a linear regression model with i.i.d. observed data

Wi =
(
Yi�X1�i� � � � �X6�i�Z1�i� � � � �Z12�i�Z

∗
1�i� � � � �Z

∗
6�i

)′
for i = 1� � � � � n� (6.3)

where Y is the dependent variable, (X1� � � � �X6) are 6 endogenous regressors, (Z1� � � � �

Z12) are 12 valid IVs, and (Z∗
1 � � � � �Z

∗
6) are 6 potentially invalid IVs. The data are gener-

ated as follows. The regression model is

Y =
6∑

j=1

θjXj + u� (6.4)

where (θ1� � � � � θ6) is set to 2�5 × 11×6 and Xj is generated by

Xj = 2−1(Zj +Zj+6)+Zj+12 + εj for j = 1� � � � �6� (6.5)

We first draw (Z1� � � � �Z18� ε1� � � � � ε6�u
∗)′ from normal distribution with mean zero and

variance–covariance matrix diag(I18×18�Σ7×7) where

Σ7×7 =
(

I6×6 0�25 × 16×1

0�25 × 11×6 1

)
� (6.6)

We consider two designs for generating the structural error u in (6.4). The first de-
sign (S1 hereafter) has non-Gaussian errors. Draw η from exponential distribution with
mean 1 and η is independent of (Z1� � � � �Z18� ε1� � � � � ε6�u

∗). Generate the structural er-
ror

u = (
u∗ +η0

)
/2� (6.7)

where η0 is the demeaned version of η to ensure that the mean of u is zero. The second
design (S2 hereafter) has normal error

u = u∗� (6.8)

The potentially invalid IVs are generated by

Z∗
j = (

1 − c2
j

)1/2
Zj+12 + cj(εj + u)� (6.9)

where cj ∈ [0�1] for j = 1� � � � �6. In this simulation study, we consider different DGPs by
choosing various values for c = (c1� � � � � c6) where cj ∈ [0�1] for j = 1� � � � �6. Therefore,

E
[
uZ∗

j

] =
{

5cj/8 under (6.7)�

5cj/4 under (6.8)�
(6.10)

From the above expression, we see that Z∗
j is a valid IV if cj is zero while increasing cj to

1 will enlarge the correlation coefficient between Z∗
j and u, and hence the endogeneity

of Z∗
j .



948 Cheng, Liao, and Shi Quantitative Economics 10 (2019)

Given the sample size n, different DGPs of the simulated data {Wi : i = 1� � � � � n} are
employed in the simulation study by changing the values of (c1� � � � � c6). We consider

cj = c0ωj for j = 1� � � � �6 (6.11)

where c0 is a scalar that takes values on the grid points between 0 and 1 with the grid
length 0�02, and (ω1� � � � �ω6) is parametrized in two different ways. In the first one, we set
ωj = 0 or 1 for j = 1� � � � �6 and rule out the case that ωj = 0 for all j (since this is the same
as the case which sets c0 = 0). In the second one, we consider the polar transformation
and set

ω1 = sin(α1) sin(α2) sin(α3) sin(α4) sin(α5)�

ωj = cos(αj−1) sin(αj)× · · · × sin(α5) for j = 2� � � � �5� (6.12)

ω6 = cos(α5)�

where α1 ∈ {π/4, 3π/4, 5π/4, 7π/4} and αj ∈ {π/4, 3π/4} for j = 2� � � � �5. Therefore, there
are 127 different values for (ω1� � � � �ω6) for each of the 51 different values of c0. For each
DGP, we consider sample size n = 50, 100, 250, 500, 1000 and use 10�000 simulation repe-
titions.

Given the sample size and the value of c0, we report the minimum and the maximum
of the 127 values of the finite sample relative MSEs for each estimator, and the weight ω̃eo

in our averaging estimator in the DGP with the maximum relative MSE. Given each sam-
ple size, the maximum/minimum finite sample relative MSE and the weight are plotted
as functions of c0; see Figure 2 for S1 and Figure 3 for S2. In each figure, the left three
panels and the right three panels include the results with sample size n = 100 and 500, re-
spectively.25 For each sample size, we also report the upper bound and the lower bound
of the finite sample relative MSEs (among all 127 × 51 DGPs) of the averaging estimators
and the pre-test estimator in Table 1.26

Our findings in the simulation designs S1 and S2 are summarized as follows. First,
in both Figure 2 and Figure 3, we see that the minimum relative MSE of the averaging
GMM estimator θ̂eo is smaller than 1 (which is the normalized finite sample MSE of the
conservative GMM estimator θ̂1) for all c0 considered in both simulation designs. The
maximum relative MSE of θ̂eo is smaller than 1 when c0 is small and approaches 1 when
c0 is close to 1. Table 1 provides detailed information on the lower and upper bounds
of the relative MSE of θ̂eo. In both simulation designs S1 and S2, the lower bound stays
far below 1 while the upper bound approaches 1 with increasing sample size. These re-
sults are predicted by our theory because the key sufficient condition is satisfied in both

25We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S1 and
S2 with n = 50, 250, and 1000 can be found in Figure C.1 and Figure C.2 in Section C of the Appendix, and
the truncated MSEs (ζ = 1000) in S1 and S2 with n = 50, 100, 250, 500, and 1000 can be found in Figure G.1,
Figure G.2, Figure G.4, and Figure G.5 in Section G of the Supplemental Appendix. The simulation results on
truncated MSEs are very similar to what we get without truncation. The maximum finite sample bias and
finite sample variance for each c0 are reported in Figure C.4 and Figure C.5 in Section C of the Appendix.

26The upper bound and the lower bound of the finite sample relative truncated MSEs are reported in
Table G.1 in Section G of the Supplemental Appendix.
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Figure 2. Finite sample MSEs of the pre-test and averaging GMM estimators in S1. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.

S1 and S2.27 Second, the pre-test GMM estimator has nonshrinking maximum relative
MSE in S1 or S2 and, therefore, it fails to dominate the conservative GMM estimator θ̂1

in the asymptotic sense. For example, when n = 500, the pre-test GMM estimator in S1
has relative MSE above 1.5 when c0 is between 0�2 and 0�4. From Table 1, we see that the
upper bound of its relative MSE does not converge to 1 with increasing sample size. It
stays around 1�61 and 1�69 in S1 and S2, respectively, when the sample size is large (e.g.,
n = 500 or 1000). Third, comparing the two averaging estimators, we find that the re-
stricted JS estimator does not reduce the MSE as much as the averaging estimator based
on ω̃eo. Fourth, the weight ω̃eo becomes close to zero when c0 is close to 1 for large n,
which is clearly illustrated by the simulation with n = 500 in both S1 and S2. Last, the
maximum relative MSE of the pre-test GMM estimator may show multiple peaks in Fig-
ure 2 and Figure 3, because given c0 the Euclidean norm of (c1� � � � � c6) may be different

27It is easy to show that when δF = 0 and Υ is the identity matrix, we have tr(AF) = 4 and tr(AF) −
4ρmax(AF) = 4/3 for S1 and tr(AF) = 8 and tr(AF)− 4ρmax(AF)= 8/3 for S2.
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Figure 3. Finite sample MSEs of the pre-test and averaging GMM estimators in S2. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.

under the two different parametrizations of (ω1� � � � �ω6). In the polar transformation,
the Euclidean norm of (c1� � � � � c6) is c0. However, the Euclidean norm of (c1� � � � � c6) is
c0(ω1 + · · · + ω6)

1/2 in the other design and it may take 5 different values when we set
ωj = 0 or 1 for j = 1� � � � �6 and rule out the case that ωj = 0 for all j. This also explains the
kinks of the weight ω̃eo in the averaging estimator associated with the maximum MSE.

6.2 Simulation model 2

In this subsection, we investigate the finite sample properties of the pre-test GMM es-
timator and the averaging GMM estimators when the key uniform dominance con-
dition in Theorem 5.2 does not hold. In this simulation design, the structural equa-
tion takes the same form as (6.4) with (θ1� � � � � θ6) = 2�5 × 11×6, but the regressors
Xj (j = 1� � � � �6) are generated in a different way. We draw i.i.d. random vectors
(Z1� � � � �Z13� ε1� � � � � ε5�u) from normal distribution with mean zero and variance–
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Table 1. The lower and upper bounds of the finite sample relative MSEs.

Design S1 Design S2 Design S3

Lower Upper Lower Upper Lower Upper

n= 50 θ̂oe 0�5732 0�7968 0�6113 0�8980 0�9302 1�0012
θ̂JS 0�9755 0�9959 0�9776 0�9978 0�9995 1�0003
θ̂pret 0�4424 0�9574 0�5057 1�0973 1�0324 1�4283

θ̂oe 0�5325 0�8789 0�5513 0�9781 0�9733 1�0040
n= 100 θ̂JS 0�9208 0�9911 0�9202 0�9956 0�9996 1�0002

θ̂pret 0�3586 1�1940 0�3937 1�3539 0�9990 1�4709

θ̂oe 0�5316 0�9587 0�5384 1�0118 0�9720 1�0079
n= 250 θ̂JS 0�7591 0�9787 0�7506 0�9923 0�9999 1�0000

θ̂pret 0�3360 1�5106 0�3598 1�6392 0�9753 1�4394

θ̂oe 0�5331 0�9846 0�5355 1�0112 0�9700 1�0096
n= 500 θ̂JS 0�6443 0�9823 0�6359 0�9953 1�0000 1�0000

θ̂pret 0�3368 1�6196 0�3495 1�6937 0�9562 1�4236

θ̂oe 0�5335 0�9934 0�5341 1�0082 0�9681 1�0119
n= 1000 θ̂JS 0�5803 0�9890 0�5737 0�9978 1�0000 1�0000

θ̂pret 0�3395 1�6433 0�3451 1�6864 0�9473 1�3953

Note: 1. θ̂JS and θ̂pret denote the GMM averaging estimator based on the weight in (6.1) and the pre-testing GMM estimator
based on J -test with nominal size 0.01, respectively; 2. the “Upper” and “Lower” refer to the upper bound and the lower bound
of the finite sample relative MSEs among all DGPs considered in the simulation design given the sample size.

covariance matrix diag(I13×13�Σ6×6), where

Σ6×6 =
(

I5×5 0�25 × 15×1

0�25 × 11×5 1

)
� (6.13)

The observed data are W = (Y�X1� � � � �X6�Z6�Z7�Z8�Z
∗
1 � � � � �Z

∗
5), where (X1� � � � �X5)

are exogenous regressors and X6 is an endogenous regressor, (X1� � � � �X5�Z6�Z7�Z8)

are valid IVs and (Z∗
1 � � � � �Z

∗
5) are potentially invalid IVs. The exogenous variables are

generated by

Xj = 3− 1
2 (Zj +Zj+1 +Zj+8)� for j = 1� � � � �4�

X5 = 3− 1
2 (Z5 +Z1 +Z13)�

(6.14)

The endogenous variable X6 is generated by

X6 = 2−1
8∑

j=6

Zj + 10−1/2
5∑

j=1

(Zj+8 + εj)� (6.15)

The potentially invalid IVs are generated by

Z∗
j = (

1 − c2
j

)1/2
Zj+8 + cj(εj + u) for j = 1� � � � �5� (6.16)
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Note that the key sufficient condition in Theorem 5.2 is not satisfied for this design.28

We call the simulation design in this subsection as S3.
Given the sample size n, we consider different DGPs of the simulated data {Wi : i =

1� � � � � n} by changing the values of (c1� � � � � c5). We consider the following parametriza-
tion:

cj = c0ωj for j = 1� � � � �5� (6.17)

where c0 is a scalar that takes values on the grid points between 0 and 1 with the grid
length 0�02, (ω1� � � � �ω5) is parametrized in two different ways. In the first one, we set
ωj = 0 or 1 for j = 1� � � � �5 and rule out the case that ωj = 0 for all j (since this is the same
as the case which sets c0 = 0). In the second one, we consider the polar transformation
and set

ω1 = sin(α1) sin(α2) sin(α3) sin(α4)�

ωj = cos(αj−1) sin(αj)× · · · × sin(α4) for j = 2� � � � �4� (6.18)

ω5 = cos(α4)�

where α1 ∈ {π/4, 3π/4, 5π/4, 7π/4} and αj ∈ {π/4, 3π/4} for j = 2� � � � �5. Therefore, there
are 63 different values for (ω1� � � � �ω5) for each of the 51 different values of c0. For each
DGP, we consider sample size n = 50, 100, 250, 500, 1000, and use 10�000 simulation rep-
etitions.

Given the sample size and the value of c0, we report the minimum and maximum of
the 63 values of the finite sample relative MSEs for each estimator, and the weight ω̃eo

in our averaging estimator in the DGP with maximum relative MSE. Given each sam-
ple size, the maximum/minimum finite sample relative MSE and the weight are plotted
as functions of c0; see Figure 4.29 For each sample size, the upper bound and the lower
bound of the finite sample relative MSEs (among all 127×51 DGPs) of the averaging esti-
mators and the pre-test estimator in this simulation design are also reported in Table 1.

Our findings in this simulation design are summarized as follows. First, compared
to the conservative GMM estimator, the improvement of the pre-test GMM estimator or
the averaging GMM estimator is small even when all the IVs Z∗

j (j = 1� � � � �5) are valid.
This is because there is only one endogenous regressor and the improvement of using
Z∗
j (j = 1� � � � �5) is mainly through the estimation of its coefficient. Second, both the pre-

test GMM estimator and our averaging GMM estimator fail to dominate the conservative
GMM estimator. However, the overall performance of the averaging GMM estimator is
better than the pre-test GMM estimator. For example, when the sample size is 500, the
maximum MSE of the pre-test GMM estimator is 1�4 times of that of the conservative

28It is easy to show that, when δF = 0, we have tr(AF)= 0�4916 and tr(AF)− 4ρmax(AF) = −1�4748 < 0.
29We only report the untruncated MSEs with n = 100 and n = 500 here. The untruncated MSEs in S3

with n = 50, 250 and 1000 can be found in Figure C.3 in Section C of the Appendix, and the truncated MSEs
(ζ = 1000) in S3 with n = 50, 100, 250, 500, and 1000 can be found in Figure G.3 and Figure G.6 in Section G
of the Supplemental Appendix. The simulation results on truncated MSEs are very similar to what we get
without truncation. The maximum finite sample bias and finite sample variance for each c0 are reported in
Figure C.6 in Section C of the Appendix.
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Figure 4. Finite sample MSEs of the pre-test and averaging GMM estimators in S3. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.

GMM estimator. In contrast, the maximum MSE of our averaging GMM estimator is only
slightly higher than (1.01 times of) that of the conservative GMM estimator. Third, the
MSE of the JS-type averaging estimator is identical to the conservative GMM estimator
even when all the IVs Z∗

j (j = 1� � � � �5) are valid. Therefore, this estimator performs the
same as the conservative GMM estimator. Fourth, as c0 goes to 1, the weight ω̃eo goes to
zero for large sample size, which is well illustrated by the simulation with n = 500. Last,
the maximum MSE of the pre-test GMM estimator and the weight ω̃eo in our averag-
ing estimator may show multiple peaks for the same reason explained in the previous
subsection.

7. Conclusion

This paper studies the averaging GMM estimator that combines the conservative esti-
mator and the aggressive estimator with a data-dependent weight. The averaging weight
is the sample analog of an optimal nonrandom weight. We provide a sufficient class of
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drifting DGPs under which the pointwise asymptotic results combine to yield uniform
approximations to the finite-sample risk difference between two estimators. Using this
asymptotic approximation, we show that the proposed averaging GMM estimator uni-
formly dominates the conservative GMM estimator for quadratic loss functions such as
the mean square errors.

Inference based on the averaging estimator is an interesting and challenging prob-
lem. As pointed out in Pötscher (2006), the finite sample density of the averaging esti-
mator cannot be consistently estimated, which implies that directly applying an estima-
tor of the finite-sample density may not yield uniformly valid inference. In addition to
the uniform validity, a desirable confidence set should have smaller volume than that
obtained from the conservative moments alone. We leave the inference issue to future
investigation.

Appendix A: Illustration in Gaussian location model

This section shows that in a Gaussian location model, the averaging GMM estimator
dominates the conservative GMM estimator in finite samples, that is, it exhibits the JS
phenomenon.

Suppose that we have one observation (X ′�Y ′)′ from the normal distribution(
X

Y

)
∼ N

((
θ

θ+ d

)
�σ2I2k

)
� (A.1)

where σ2 is a known positive value, θ and d are k×1 vectors, and I2k is a 2k×2k identity
matrix (k≥ 3). It is clear that dθ = k in model (A.1). We are interested in estimating θ.

Green and Strawderman (1991) considered the same model defined in (A.1). They
propose the following JS type of estimator:

θ̂GS =X − τσ2

(X −Y)′(X −Y)
(X −Y)� (A.2)

where τ is a real constant in (0�2(k − 2)). Apparently, the above estimator θ̂GS is an av-
eraging estimator which combines an unbiased estimator X with a biased estimator
Y with weight τσ2‖X − Y‖−2 on the biased estimator. Green and Strawderman (1991)
showed that when k ≥ 3, θ̂GS has smaller MSE than the unbiased estimator X (which is
the MLE of θ) for any θ ∈ R

k, any d ∈ R
k and any σ2 > 0, and hence it uniformly domi-

nates the MLE of θ.
Kim and White (2001), Judge and Mittelhammer (2004), and Mittelhammer and

Judge (2005) proposed averaging estimators which shrink the (asymptotic) unbiased es-
timator toward the biased estimator in semiparametric regression models. These papers
show the dominance of the averaging estimator over the (asymptotic) unbiased estima-
tor in the Gaussian location models using the joint normal distribution of the unbiased
and biased estimators. In these papers, X and Y are the unbiased and biased estima-
tors, respectively, with general variance–covariance matrix that allows for correlation
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between X and Y . The averaging estimator proposed in Kim and White (2001) is

θ̂KW =X −
(
c1 + c2

(X −Y)′(X −Y)

)
(X −Y)� (A.3)

where c1 and c2 constants. When k ≥ 5, Kim and White (2001) showed that there exist
optimal values for c1 and c2 such that θ̂KW dominates the unbiased estimator X . In the
semiparametric setting, they show that these optimal values can be consistently esti-
mated when E[Y ] = θ. In Judge and Mittelhammer (2004) and Mittelhammer and Judge
(2005), the averaging estimator takes the same form as θ̂GS in (A.2) except τσ2 is replaced
by a constant. They show that when k≥ 5, there exists an optimal constant under which
their averaging estimator dominates the unbiased estimator X . They provide an approx-
imator of the infeasible constant and show that the approximator can be consistently
estimated.

We next consider our averaging GMM estimator. Let Υ be the k× k identity matrix.
The conservative GMM estimator θ̂1 = X has risk σ2 tr(ΥIk) = σ2k. On the other hand,
the aggressive GMM estimator is θ̂2 = (X + Y)/2, which has risk σ2k/2 + ‖d‖2/4. The
empirical optimal weight defined in (4.7) becomes

ω̃eo = 2kσ2

2kσ2 + (X −Y)′(X −Y)
� (A.4)

which together with the conservative and aggressive GMM estimators leads to the aver-
aging GMM estimator

θ̂eo =X − kσ2

2kσ2 + (X −Y)′(X −Y)
(X −Y)� (A.5)

From (A.2) and (A.5), we see that both θ̂GS and θ̂eo shrink the same unbiased estimator
X to the same biased estimator Y but with different weights.

Lemma A.1. When k≥ 4, the averaging estimator θ̂eo defined in (A.5) satisfies

E
[‖θ̂eo − θ‖2 − ‖θ̂1 − θ‖2]< 0 (A.6)

for any θ ∈R
k, any d ∈R

k and any σ2 > 0.

The inequality (A.6) shows that the risk of the averaging GMM estimator is strictly
smaller than that of the conservative GMM estimator if k ≥ 4, for any θ ∈ R

k, any d ∈ R
k

and any σ2 > 0, and hence it uniformly dominates the MLE of θ. The condition on k

for the uniform dominance result of our averaging estimator is slightly stronger than
the condition for Green and Strawderman (1991)’s estimator. The proof of Lemma A.1 is
given in Section E of the Supplemental Appendix. It is different from the proof for that
in Green and Strawderman (1991) and Judge and Mittelhammer (2004) because the two
averaging estimators are different. This proof is analogous to the proof of Theorem 5.2
for the general case. Thus we put it in the Appendix in the Online Supplemental Material
of the paper (Cheng, Liao, and Shi (2019)).
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Appendix B: Proof of results in Section 4 and Section 5

In Lemma 3.1, define

cρ ≡ min
F∗∈F∗

{
ρmin(�xz1�z1x)�ρmin(Ψ)

}
�

Cρ ≡ max
F∗∈F∗

{‖φ‖2�ρmax(Ψ)
}
� (B.1)

C� ≡ sup
δ0∈�δ

‖δ0‖2�

Let

C∗�W ≡ 2(dθ + r2 + 1)Cρ� c∗�ρ ≡ min
{
1� c2

ρ

}
and C∗�ρ ≡ C2

∗�W
(
2 +C

1/2
�

)2
� (B.2)

Then, in Lemma 3.1(iii), the constant ε is given by

ε = c∗�ρC−1∗�ρC−1
� � (B.3)

that is, we require the condition to hold on a set bounded away from 0 by ε. The details
of the proofs are given in Section D of the Supplemental Appendix.

B.1 Proof of the results in Section 4

Let μn(g2(W �θ))= n−1/2 ∑n
i=1(g2(Wi�θ)−EFn[g2(Wi�θ)]). In the rest of the Appendix, we

use C to denote a generic fixed positive finite constant which does not depend on any
F ∈ F or n.

Lemma B.1. Suppose that Assumption 3.2(ii) holds and Θ is compact. Then we have:

(i) supθ∈Θ ‖g2(θ)−EFn[g2(Wi�θ)]‖ = op(1);

(ii) supθ∈Θ ‖n−1 ∑n
i=1 g2(Wi�θ)g2(Wi�θ)

′ −EFn[g2(Wi�θ)g2(Wi�θ)
′]‖ = op(1);

(iii) supθ∈Θ ‖n−1 ∑n
i=1 g2�θ(Wi�θ)−EFn [g2�θ(Wi�θ)]‖ = op(1);

(iv) μn(g2(W �θ)) is stochastic equicontinuous over θ ∈ Θ;

(v) Ω
−1/2
2�Fn

μn(g2(W �θFn)) →D N(0r2×1� Ir2).

Proof of Lemma B.1. See Lemmas 11.3–11.5 of Andrews and Cheng (2013).

DefineMk�F(θ) = EF [gk(W �θ)],Gk�F(θ) = EF [gk�θ(W �θ)] andΩk�F(θ)= VarF [gk(W �

θ)], for any F ∈ F , for any θ ∈ Θ and for k = 1�2. The next lemma shows that M2�F (·),
G2�F (·) and Ω2�F (·) are Lipschitz continuous uniformly over F ∈ F .

Lemma B.2. Under Assumptions 3.2(i)–(ii), for any F ∈ F and any θ1� θ2 ∈Θ, we have:

(i) ‖M2�F (θ1)−M2�F (θ2)‖ ≤ C‖θ1 − θ2‖;

(ii) ‖G2�F (θ1)−G2�F (θ2)‖ ≤ C‖θ1 − θ2‖;

(iii) ‖Ω2�F (θ1)−Ω2�F (θ2)‖ ≤ C‖θ1 − θ2‖.
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Proof of Lemma B.2 is included in Section E of the Supplemental Appendix.

Lemma B.3. Suppose that Assumptions 3.1(i)–(ii) and 3.2(i)–(ii) hold. Then for any se-
quence of DGPs {Fn}, we have

θ̃1 − θFn = op(1) and Ω2 =Ω2�Fn + op(1)� (B.4)

where θ̃1 is a preliminary estimator defined as

θ̃1 = arg min
θ∈Θ

g1(θ)
′g1(θ) (B.5)

and Ω2 is defined in (E.13) of the Supplemental Appendix.

Proof of Lemma B.3 is included in Section E of the Supplemental Appendix.

Lemma B.4. Suppose that Assumptions 3.1(i)–(ii) and 3.2 hold. Then for any sequence of
DGPs {Fn}, we have

n1/2(θ̂1 − θFn) = �1�Fnμn
(
g1(W �θFn)

) + op(1)� (B.6)

where �1�Fnμn(g1(W �θFn)) ≡ −(G′
1�Fn

Ω−1
1�Fn

G1�Fn)
−1G′

1�Fn
Ω−1

1�Fn
= Op(1).

Proof of Lemma B.4 is included in Section E of the Supplemental Appendix.

Lemma B.5. Suppose that Assumptions 3.1(iii) and 3.2(i)–(iii) hold. Then for any sequence
of DGPs {Fn}, we have

θ̂2 − θ∗
Fn

= op(1)� (B.7)

Proof of Lemma B.5 is included in Section E of the Supplemental Appendix.

Lemma B.6. Suppose that Assumptions 3.1(i)–(ii) and 3.2(i)–(iii) hold. Consider any se-
quence of DGPs {Fn} such that δFn = o(1). Then we have

θ̂2 − θFn = op(1)� (B.8)

If we further have Assumption 3.2(iv), then

n1/2(θ̂2 − θFn)= (
�2�Fn + op(1)

){
μn

(
g2(W �θFn)

) + n1/2δ2�Fn
} + op(1)� (B.9)

where �2�Fn = −(G′
2�Fn

Ω−1
2�Fn

G2�Fn)
−1G′

2�Fn
Ω−1

2�Fn
and δ2�Fn = (01×r1� δ

′
Fn
)′.

Proof of Lemma B.6 is included in Section E of the Supplemental Appendix.

Lemma B.7. Under Assumptions 3.2(ii) and 3.3(ii), for any sequence of DGPs {Fpn} with
Fpn ∈ F where {pn} is a subsequence of {n}, there is a subsequence {p∗

n} of {pn} such that
vFp∗

n
(θFp∗

n
) → vF(θF) as p∗

n → ∞, where F ∈ F .
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Proof of Lemma B.7. Recall that Λ = {vF : F ∈ F}. By Assumptions 3.2(ii) and 3.3(ii), Λ
is compact. Hence for any sequence {vFpn (θFpn )} in Λ, it has a convergent subsequence
{vFp∗

n
(θFp∗

n
)} such that vFp∗

n
(θFp∗

n
) → vF(θF) as p∗

n → ∞, where F ∈ F .

Lemma B.8. Suppose that Assumptions 3.1(i)–(ii) and 3.2 hold. Consider any sequence of
DGPs {Fn} such that vFn → vF for some F ∈ F , and n1/2δFn → d for d ∈R

r∗ . Then(
n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

)
→D

(
ξ1�F

ξ2�F

)
≡

(
�1�FZ1�F

�2�F (Z2�F + d0)

)
�

where d0 = (01×r1� d
′)′.

Proof of Lemma B.8. In the proof, we use

G2�Fn →G2�F and Ω2�Fn →Ω2�F (B.10)

for some F ∈ F , which is assumed in the lemma. Under Assumptions 3.1(i)–(ii) and 3.2,
for the sequence of DGPs {Fn} considered in the lemma, we can apply Lemma B.4 and
Lemma B.6 to deduce that(

n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

)
=

(
�1�Fnμn

(
g1(W �θFn)

)(
�2�Fn + op(1)

){
μn

(
g2(W �θFn)

) + n1/2δ2�Fn
}) + op(1)� (B.11)

where δ2�Fn = (01×r1� δ
′
Fn
)′. By (B.10) and Assumption 3.2, we have

�1�Fn = �1�F + o(1) and �2�Fn = �2�F + o(1)� (B.12)

where �k�F = −(G′
k�FΩ

−1
k�FGk�F)

−1G′
k�FΩ

−1
k�F for k = 1�2. Collecting the results in Lem-

mas B.1(v), (B.11) and (B.12), and then applying the continuous mapping theorem
(CMT), we have (

n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

)
→D

(
�∗

1�F
�2�F

)
(Z2�F + d0)� (B.13)

where Z2�F ∼ N(0r2×1�Ω2�F ), �∗
1�F = (�1�F �0dθ×r∗) and d0 = (01×r1� d

′)′. The claimed re-
sult follows from (B.13) and the definitions of �∗

1�F and Z2�F .

Proof of Lemma 4.1. The claimed result in Part (a) has been proved in Lemma B.8.
We next consider the case that n1/2δFn → d with ‖d‖ = ∞. Note that the results in

(B.6) and (B.12) do not depend on ‖d‖ < ∞ or ‖d‖ = ∞. Using (B.6), (B.12), Lemma
B.1(v), and the CMT, we have

n1/2(θ̂1 − θFn)→D �1�FZ1�F � (B.14)

To study the properties of θ̂2, we have to consider two separate scenarios: (1) δFn =
o(1); and (2) ‖δFn‖ > cδ for some cδ > 0. In scenario (1), Assumption 3.2, Lemma B.1(v),
and Lemma B.6 imply that

n1/2(θ̂2 − θFn)= (
�2�Fn + op(1)

)
n1/2δFn +Op(1)� (B.15)
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By Assumption 3.1(iv) and ‖n1/2δFn‖ → ∞,

nδ′
Fn
�′

2�Fn�2�FnδFn ≥ C−2nδ′
Fn
δFn → ∞� (B.16)

which together with (B.15) implies that ‖n1/2(θ̂2 − θFn)‖ →p ∞.
Finally, we consider the scenario (2) where ‖δFn‖> cδ. By Assumption 3.1(iv),∥∥G′

2�FnΩ
−1
2�Fn

δFn
∥∥>C−1‖δFn‖> cδC

−1 (B.17)

for any n. As θ∗
Fn

is the minimizer of QFn(θ), it has the following first-order condition:

0dθ×1 =G2�Fn
(
θ∗
Fn

)′
Ω−1

2�Fn
M2�Fn

(
θ∗
Fn

)
� (B.18)

which implies that

G′
2�FnΩ

−1
2�Fn

δFn = G2�Fn(θFn)
′Ω−1

2�Fn
M2�Fn(θFn)−G2�Fn

(
θ∗
Fn

)′
Ω−1

2�Fn
M2�Fn

(
θ∗
Fn

)
= [

G2�Fn(θFn)−G2�Fn
(
θ∗
Fn

)]′
Ω−1

2�Fn
M2�Fn(θFn)

+G2�Fn
(
θ∗
Fn

)′
Ω−1

2�Fn

[
M2�Fn(θFn)−M2�Fn

(
θ∗
Fn

)]
� (B.19)

By Lemma B.2, the Cauchy–Schwarz inequality and Assumption 3.2(ii)–(iii), we have∥∥[
G2�Fn(θFn)−G2�Fn

(
θ∗
Fn

)]′
Ω−1

2�Fn
M2�Fn(θFn)

∥∥
≤ ∥∥G2�Fn(θFn)−G2�Fn

(
θ∗
Fn

)∥∥∥∥Ω−1
2�Fn

M2�Fn(θFn)
∥∥ ≤ C

∥∥θFn − θ∗
Fn

∥∥� (B.20)

where C is a fixed constant. Similarly, we have∥∥G2�Fn
(
θ∗
Fn

)′
Ω−1

2�Fn

[
M2�Fn(θFn)−M2�Fn

(
θ∗
Fn

)]∥∥
≤ ∥∥M2�Fn(θFn)−M2�Fn

(
θ∗
Fn

)∥∥‖Ω−1
2�Fn

G2�Fnθ
∗
Fn
)‖ ≤ C

∥∥θFn − θ∗
Fn

∥∥� (B.21)

Combining the results in (B.19), (B.20), and (B.21), and using the triangle inequality, we
have ∥∥θFn − θ∗

Fn

∥∥ ≥ cδC (B.22)

for some fixed constant C. Using θ̂2 = θ∗
Fn

+ op(1) (which is proved in Lemma B.5) and
the triangle inequality, we obtain

‖θ̂2 − θFn‖ ≥ ∣∣∥∥θ̂2 − θ∗
Fn

∥∥ − ∥∥θ∗
Fn

− θFn
∥∥∣∣ = ∥∥θ∗

Fn
− θFn

∥∥(
1 + op(1)

)
� (B.23)

which together with (B.22) implies that n1/2‖θ̂2 − θFn‖ →p ∞. This completes the proof.

Lemma B.9. (a) �∗
1�Fd0 = 0dθ×1; (b) �∗

1�FΩ2�F�
∗′
1�F = Σ1�F ; (c) �∗

1�FΩ2�F�
′
2�F = Σ2�F ;

(d) �2�FΩ2�F�
′
2�F = Σ2�F .

Proof of Lemma B.9 is included in Section E of the Supplemental Appendix.
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B.2 Proof of the results in Section 5

We first present some generic results on the bounds of asymptotic risk difference be-
tween two estimators under some high-level conditions. Then we apply these generic
results to the two specific estimators we consider in this paper: θ̂eo and θ̂1. The proof
uses the subsequence techniques used to show the asymptotic size of a test in Andrews,
Cheng, and Guggenberger (2011) but we adapt the proof and notation to the current
setup and extend results from test to estimators.

Recall that hF�d = (d′� vec(G2�F )
′� vech(Ω2�F )

′) and vF = (vec(G2�F )
′� vech(Ω2�F )

′) for
any F ∈ F and any d ∈R

r∗∞. We have defined

H = {
hF�d : d ∈R

r∗ and F ∈ F with δF = 0r∗×1
}
� (B.24)

where δF is defined by (1.5) for a given F . Define

H∗∞ = {
hF�d : d ∈R

r∗∞ with ‖d‖ = ∞ and F ∈ F
}
� (B.25)

Let dh = r∗ + dθr2 + (r2 + 1)r2/2. It is clear that hF�d is a dh-dimensional vector.

Condition B.1. (i) For any sequence of DGPs {Fpn} with Fpn ∈ F where {pn} is a subse-
quence of {n}, there exists a subsequence {p∗

n} of {pn} and some F ∈ F such that vFp∗
n

→ vF
as p∗

n → ∞:
(ii) M1�F (θ) = 0r1×1 has a unique solution at θF ∈Θ for any F ∈ F ;

(iii) M2�F (·) is uniform equicontinuous over F ∈ F ;
(iv) for any subsequence {pn} of {n}n∈N, if (pn)

1/2δFpn → d for d ∈ R
r∗∞ and vFpn → vF ,

then

lim
n→∞EFpn

[
�ζ(θ̂� θFpn )

] =Rζ(hF�d) and lim
n→∞EFpn

[
�ζ(θ̃� θFpn )

] = R̃ζ(hF�d)�

where Rζ(hF�d) and R̃ζ(hF�d) are some nonnegative functions that are bounded from
above by ζ for any F ∈F and any d ∈R

r∗∞;
(v) for any F ∈ F with δF = 0r∗×1, there exists a constant εF > 0 such that for any

δ̃ ∈ R
r∗ with 0 ≤ ‖δ̃‖ < εF , there is F̃ ∈ F with δF̃ = δ̃ and ‖vF − vF̃‖ ≤ C‖δ̃‖κ for some

κ > 0;
(vi) for any hF�d ∈H∗∞ and hF�d̃ ∈H∗∞, we have

Rζ(hF�d) =Rζ(hF�d̃) and R̃ζ(hF�d)= R̃ζ(hF�d̃)

for any ζ > 0.

Condition B.1(i) requires that for any sequence of {vFpn }, it has a convergent subse-
quence {vFp∗

n
} with limit being vF for some F ∈ F . This condition is verified under As-

sumptions 3.2(ii) and 3.3(ii) in Lemma B.7. Condition B.1(ii) is the unique identification
condition of θF which holds under Assumptions 3.1(i)–(ii). Condition B.1(iii) holds un-
der Assumption 3.2(ii) by Lemma B.2. Condition B.1(iv) is a key assumption to derive an
explicit upper bound of asymptotic risk. This condition can be verified by using Lemma
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4.1 as we shall show in the proof of Theorem 5.1. Condition B.1(v) enables us to show
that the upper bound we derived for the asymptotic risk is also a lower bound. This con-
dition is assumed in Assumption 3.3(i). Condition B.1(vi), in our context, requires that
the asymptotic (truncated) risk of θ̂ (or θ̃) under the subsequences of DGPs {Fpn} satis-
fying the restrictions in Condition B.1(iv) are identical whenever (pn)

1/2δFpn → d with
‖d‖ = ∞. Condition B.1 is verified in the proof of Theorem 5.1 below.

Lemma B.10. Under Conditions B.1(i)–B.1(iv), we have

AsyRζ(θ̂) ≤ max
{

sup
h∈H

Rζ(h)� sup
h∈H∗∞

Rζ(h)
}
� (B.26)

where AsyRζ(θ̂)≡ lim supn→∞ supF∈F EF [�ζ(θ̂� θF)].

Proof of Lemma B.10. Let {Fn} be a sequence such that

lim supn→∞EFn

[
�ζ(θ̂� θFn)

] = lim supn→∞
(

sup
F∈F

EF

[
�ζ(θ̂� θF)

]) ≡ AsyRζ(θ̂)� (B.27)

Such a sequence always exists by the definition of supremum. The sequence {EFn[�ζ(θ̂�
θFn)]: n ≥ 1} may not converge. However, by the definition of limsup, there exists a sub-
sequence of {n}n∈N, say {pn}, such that {EFpn [�ζ(θ̂� θFpn )]: n≥ 1} converges and

lim
n→∞EFpn

[
�ζ(θ̂� θFpn )

] = AsyRζ(θ̂)� (B.28)

Below we show that for any subsequence {pn} of {n}n∈N such that {EFpn [�ζ(θ̂� θFpn )]: n ≥
1} is convergent, there exists a subsequence {p∗

n} of {pn} such that

lim
n→∞EFp∗

n

[
�ζ(θ̂� θFp∗

n
)
] =Rζ(h) for some h ∈H or H∗∞� (B.29)

Because limn→∞ EFp∗
n
[�ζ(θ̂� θFp∗

n
)] = limn→∞ EFpn [�ζ(θ̂� θFpn )], which combined with

(B.28) and (B.29) implies that

AsyRζ(θ̂)= Rζ(h) for some h ∈ H or H∗∞� (B.30)

The desired result in (B.26) follows immediately by (B.30).
To show that there exists a subsequence {p∗

n} of {pn} such that (B.29) holds, it suffices
to show that for any sequence {Fn} and any subsequence {pn} of {n}n∈N, there exists a
subsequence {p∗

n} of {pn} for which we have(
p∗
n

)1/2
δFp∗

n
→ d for d ∈ R

r∗∞ and vFp∗
n

→ vF (B.31)

for some F ∈ F . If (B.31) holds, then we can use Condition B.1(iv) to deduce that

lim
n→∞EFp∗

n

[
�ζ(θ̂� θFp∗

n
)
] =Rζ(hF�d) (B.32)

for the sequence of DGPs {Fp∗
n
} that satisfies (B.31). As d ∈R

r∗∞, we have either ‖d‖<∞ or
‖d‖ = ∞. In the first case, ‖d‖< ∞ together with (p∗

n)
1/2δFp∗

n
→ d and δFp∗

n
→ δF (which
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is implied by vFp∗
n

→ vF ) implies that δF = 0r∗×1, which implies that hF�d ∈ H by the
definition of H. In the second case, hF�d ∈ H∗∞ by the definition of H∗∞. We have proved
that hF�d in (B.32) belongs either to H or H∗∞ which together with (B.32) proves (B.29).

Finally, we show that for any sequence {Fn} and any subsequence {pn} of {n}n∈N,
there exists a subsequence {p∗

n} of {pn} for which (B.31) holds. Let δpn�j denote the jth

component of δpn and p1�n = pn for any n ≥ 1. For j = 1, either (a) lim supn→∞ |p1/2
j�n ×

δpj�n�j| < ∞; or (b) lim supn→∞ |p1/2
j�n δpj�n�j| = ∞. If (a) holds, then for some subsequence

{pj+1�n} of {pj�n}, p1/2
j+1�nδpj+1�n�j → dj for some dj ∈ R. If (b) holds, then for some sub-

sequence {pj+1�n} of {pj�n}, p1/2
j+1�nδpj+1�n�j → ∞ or −∞. As r∗ is a fixed positive integer,

we can apply the same arguments successively for j = 1� � � � � r∗ to obtain a subsequence
{pr∗�n} of {pn} such that (pr∗�n)1/2δpr∗�n → d ∈ R

r∗∞. By Condition B.1(i), we know that
there exists a subsequence {p∗

n} of {pr∗�n} such that vp∗
n

→ vF for some F ∈ F , which
completes the proof of (B.31).

Lemma B.11. Suppose that Condition B.1(v) holds. Then (i) for any hF�d ∈ H, there exists
a sequence of DGPs {Fn} with Fn ∈ F such that

n1/2δFn → d� G2�Fn →G2�F and Ω2�Fn →Ω2�F ; (B.33)

(ii) for any hF�d ∈ H∗∞, there exists a sequence of DGPs {Fn} with Fn ∈ F such that∥∥n1/2δFn
∥∥ → ∞� G2�Fn →G2�F � Ω2�Fn →Ω2�F and δFn → δF � (B.34)

Proof of Lemma B.11. (i) By the definition of H, we have δF = 0r∗×1 for any F such that
hF�d ∈H. Let NεF be the smallest n such that ‖d‖n−1/2 < εF . By Condition B.1(v), for any
n ≥NεF we can find a DGP Fn such that

δFn = n−1/2d and ‖vFn − vF‖ ≤ n−κ/2C‖d‖κ� (B.35)

For any n <NεF such that ‖d‖n−1/2 ≥ εF , we let Fn = F . The desired properties in (B.33)
holds under the constructed sequence of DGPs {Fn} by (B.35), because C is a fixed con-
stant and κ > 0.

(ii) For any hF�d ∈ H∗∞, we have either δF = 0r∗×1 or ‖δF‖ > 0. We first consider the
case that δF = 0r∗×1. Let 1r∗×1 denote the r∗ × 1 vector of ones. Let NεF be the smallest
n such that n−1/4(r∗)1/2 < εF . By Condition B.1(v), for any n ≥ NεF we can find a DGP Fn

such that

δFn = n−1/41r∗×1 and ‖vFpn − vF‖ ≤Cn−κ/4(r∗)κ/2
� (B.36)

For any n < NεF such that n−1/4(r∗)1/2 ≥ εF , we let Fn = F . The desired properties in
(B.34) holds under the constructed sequence of DGPs {Fn} by (B.36), because C is a fixed
constant and κ > 0. When ‖δF‖ > 0, we define a trivial sequence of DGPs {Fn} as Fn = F

for any n. It is clear that (B.34) holds trivially in this case.

Lemma B.12. Under Condition B.1, we have

AsyRζ(θ̂) = max
{

sup
h∈H

Rζ(h)� sup
h∈H∗∞

Rζ(h)
}
� (B.37)
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Proof of Lemma B.12. In view of the upper bound in (B.26) in Lemma B.10, it is suffi-
cient to show that

AsyRζ(θ̂) ≥ max
{

sup
h∈H

Rζ(h)� sup
h∈H∗∞

Rζ(h)
}
� (B.38)

First, we note that for any hd�F = (d′� vec(G2�F )
′� vech(Ω2�F )

′) ∈ H, there exists a se-
quence {Fn ∈ F : n ≥ 1} such that

n1/2δFn → d ∈ R
r∗ and vFn → vF (B.39)

by Lemma B.11(i). The sequence EFn[�ζ(θ̂� θFn)] may not be convergent, but there exists
a subsequence {pn} of n such that EFpn [�ζ(θ̂� θFpn )] is convergent and

lim
n→∞EFpn

[
�(θ̂� θFpn )

] = lim sup
n→∞

EFn

[
�(θ̂� θFn)

]
� (B.40)

As {pn} is a subsequence of {n}n∈N, by (B.39)

(pn)
1/2δFpn → d ∈R

r∗ and vFpn → vF � (B.41)

By Condition B.1(iv), we have that

lim
n→∞EFpn

[
�(θ̂� θFpn )

] =Rζ(hF�d)� (B.42)

which combined with (B.40) and the definition of AsyRζ(θ̂) gives

AsyRζ(θ̂)= lim sup
n→∞

sup
F∈F

EF

[
�ζ(θ̂� θF)

] ≥ lim sup
n→∞

EFn

[
�(θ̂� θFn)

] =Rζ(hF�d)� (B.43)

Second, consider any hd�F = (d′� vec(G2�F )
′� vech(Ω2�F )

′) ∈ H∗∞. By Lemma B.11(ii),
there exists a sequence of DGPs {Fn} such that∥∥n1/2δFn

∥∥ → ∞ and vFn → vF � (B.44)

Using the same arguments in proving (B.40) to (B.42), we can show that for some subse-
quence {pn} of {n}n∈N, ∣∣p1/2

n δFpn |
∣∣ → ∞ and vpn → vF (B.45)

and

lim sup
n→∞

EFn

[
�(θ̂� θFn)

] = lim
n→∞EFpn

[
�(θ̂� θFpn )

] = Rζ(hF�d)� (B.46)

for ‖d‖ = ∞ by Conditions B.1(vi). By the definition of AsyRζ(θ̂) and (B.46),

AsyRζ(θ̂)= lim sup
n→∞

sup
F∈F

EF

[
�ζ(θ̂� θF)

] ≥ lim sup
n→∞

EFn

[
�(θ̂� θFn)

] =Rζ(hF�d)� (B.47)

Combining the results in (B.43) and (B.47), we immediately get (B.37).
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Lemma B.13. Under Conditions B.1(i)–B.1(iv), the upper and lower bounds of the asymp-
totic risk difference between θ̂ and θ̃ satisfy

AsyRD(θ̂� θ̃) ≤ lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
� sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
� (B.48)

AsyRD(θ̂� θ̃) ≥ lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
� inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
� (B.49)

where

R̃ζ(h) ≡ E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]

and Rζ(h) ≡
{
E

[
min

{
ξ

′
FΥξF�ζ

}]
� ‖d‖<∞�

E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]
� ‖d‖ = ∞�

for any h ∈H ∪H∗∞.

Proof of Lemma B.13. Define

Rζ
(
H�H∗∞

) ≡ max
{

sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
� sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
� (B.50)

Rζ

(
H�H∗∞

) ≡ min
{

inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
� inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
� (B.51)

By the definition of AsyRD(θ̂� θ̃), to show (B.48) it is sufficient to show that for any ζ > 0

lim sup
n→∞

sup
F∈F

EF

[
�ζ(θ̂� θF)− �ζ(θ̃� θF)

] ≤Rζ
(
H�H∗∞

)
� (B.52)

which can be proved using the same arguments in the proof of Lemma B.10 (but re-
placing �ζ(θ̂� θF) and Rζ(h) by �ζ(θ̂� θF) − �ζ(θ̃� θF) and Rζ(h) − R̃ζ(h), respectively).
Similarly, by the definition of AsyRD(θ̂� θ̃), for (B.49) it is sufficient to show that for any
ζ > 0,

lim inf
n→∞ inf

F∈F
EF

[
�ζ(θ̂� θF)− �ζ(θ̃� θF)

] ≥Rζ

(
H�H∗∞

)
� (B.53)

which can be proved using the same arguments in the proof of Lemma B.10 (but replac-
ing lim supn, supF∈F , �ζ(θ̂� θF), and Rζ(h) by lim infn, infF∈F , �ζ(θ̂� θF) − �ζ(θ̃� θF), and
Rζ(h)− R̃ζ(h), respectively).

Lemma B.14. Under Condition B.1, the upper and lower bounds of the asymptotic risk
difference between θ̂ and θ̃ have the following representations:

AsyRD(θ̂� θ̃) = lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
� sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
� (B.54)

AsyRD(θ̂� θ̃) = lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
� inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
� (B.55)
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Proof of Lemma B.14. By Lemma B.13, it is sufficient to show that

lim sup
n→∞

sup
F∈F

EF

[
�ζ(θ̂� θF)− �ζ(θ̃� θF)

] ≥ Rζ
(
H�H∗∞

)
� (B.56)

lim inf
n→∞ inf

F∈F
EF

[
�ζ(θ̂� θF)− �ζ(θ̃� θF)

] ≤ Rζ

(
H�H∗∞

)
� (B.57)

for any ζ > 0. Equation (B.56) can be proved using the same arguments in the proof of
Lemma B.12 by replacing �ζ(θ̂� θF) and Rζ(h) by �ζ(θ̂� θF)−�ζ(θ̃� θF) and Rζ(h)− R̃ζ(h),
respectively. Similarly, (B.57) can be proved sing the same arguments in the proof
of Lemma B.12 by replacing lim supn, supF∈F , �ζ(θ̂� θF) and Rζ(h) by lim infn, infF∈F ,
�ζ(θ̂� θF)− �ζ(θ̃� θF) and Rζ(h)− R̃ζ(h), respectively.

Lemma B.15. Under Assumptions 3.2(ii) and 3.2(iv), we have

sup
h∈H

E
[(
ξ′

1�FΥξ1�F
)2] ≤ C and sup

h∈H
E

[(
ξ

′
FΥξF

)2] ≤ C� (B.58)

Lemma B.16. Let gζ(h) ≡ E[min{ξ′
FΥξF�ζ} − min{ξ′

1�FΥξ1�F � ζ}]. Under Assumptions
3.2(ii) and 3.2(iv), we have

lim
ζ→∞ sup

h∈H

[∣∣gζ(h)− g(h)
∣∣] = 0� (B.59)

where suph∈H[|g(h)|] ≤ C.

Proof of Theorem 5.1. The proof consists of two steps. The first step is to apply
Lemma B.14 to show (B.60) and (B.61) below, and the second step is to apply Lemma
B.16 to show (B.75) and (B.76) below.

In the first step, we apply Lemma B.14 with θ̂ = θ̂eo and θ̃ = θ̂1 to show that

AsyRD(θ̂eo� θ̂1) = lim
ζ→∞ max

{
sup
h∈H

[
gζ(h)

]
�0

}
and (B.60)

AsyRD(θ̂eo� θ̂1) = lim
ζ→∞ min

{
inf
h∈H

[
gζ(h)

]
�0

}
� (B.61)

To prove (B.60) and (B.61), we now verify Condition B.1 under Assumptions 3.1–3.3.
Condition B.1(i) is verified by Lemma B.7 under Assumptions 3.2(ii) and 3.3(ii). Con-
dition B.1(ii) is implied by Assumptions 3.1(i) and 3.1(ii). Condition B.1(iii) is implied
by Assumptions 3.2.(i)–(ii) as a result of Lemma B.2. Condition B.1(v) is assumed in As-
sumption 3.3(ii). We next verify Conditions B.1(iv) and B.1(vi).

Consider any sequence of DGPs {Fpn} with

(pn)
1/2δFpn → d for d ∈R

r∗∞ and vFpn → vF (B.62)

for some F ∈ F , where {pn} is a subsequence of {n}n∈N. First, we consider the case that
d ∈R

r∗ . By Lemma 4.1(a) and 4.2(a),

(pn)
1/2(θ̂1 − θFpn ) →D ξ1�F and (pn)

1/2(θ̂eo − θFpn )→D ξF� (B.63)
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which combined with the continuous mapping theorem implies that

�(θ̂1� θFpn ) →D ξ′
1�FΥξ1�F and �(θ̂eo� θFpn ) →D ξ

′
FΥξF � (B.64)

Since Υ is positive semidefinite, ξ′
1�FΥξ1�F and ξ

′
FΥξF are both nonnegative. The func-

tion fζ(x) = min{x�ζ} is a bounded continuous function for x≥ 0. By (B.64) and the Port-
manteau lemma (see Lemma 2.2 in van der Vaart (1998)),

EFpn

[
�ζ(θ̂eo� θFpn )

] → E
[
min

{
ξ

′
FΥξF�ζ

}]
and

EFpn

[
�ζ(θ̂1� θFpn )

] → E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]
�

(B.65)

Second, we consider the case that ‖d‖ = ∞. Then under Lemma 4.1(b) and 4.2(b),

(pn)
1/2(θ̂1 − θFpn ) →D ξ1�F and (pn)

1/2(θ̂eo − θFpn ) →D ξ1�F � (B.66)

Using the same arguments in showing (B.65), we get

EFpn

[
�ζ(θ̂eo� θFpn )

] → E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]

and

EFpn

[
�ζ(θ̂1� θFpn )

] → E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]
�

(B.67)

Define

R̃ζ(hF�d) = E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]

and

Rζ(hF�d) =
{
E

[
min

{
ξ

′
FΥξF�ζ

}]
� ‖d‖<∞�

E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]
� ‖d‖ = ∞�

(B.68)

Collecting the results in (B.65) and (B.67), we deduce that under the sequence of DGPs
{Fpn} satisfying (B.62),

EFpn

[
�ζ(θ̂eo� θFpn )

] → Rζ(hF�d) and EFpn

[
�ζ(θ̂1� θFpn )

] → R̃ζ(hF�d)� (B.69)

where Rζ(hF�d) and R̃ζ(hF�d) are nonnegative and bounded from above by ζ for any
d ∈R

r∗∞ and any F ∈ F . This verifies Condition B.1(iv).
By definition, R̃ζ(hF�d) in (B.68) does not depend on d for any F . Moreover, for any

d and d̃ with ‖d‖ = ∞ and ‖d̃‖ = ∞, by the definition of Rζ(hF�d) in (B.69),

Rζ(hF�d)= E
[
min

{
ξ′

1�FΥξ1�F � ζ
}] =Rζ(hF�d̃)� (B.70)

Hence, Condition B.1(vi) is also verified.
We next apply Lemma B.14 to get (B.60) and (B.61) above. By (B.68),

Rζ(h)− R̃ζ(h) = E
[
min

{
ξ

′
FΥξF�ζ

}] −E
[
min

{
ξ′

1�FΥξ1�F � ζ
}]

for any h ∈H (B.71)

and

Rζ(h)− R̃ζ(h)= E
[
min

{
ξ′

1�FΥξ1�F � ζ
}] −E

[
min

{
ξ′

1�FΥξ1�F � ζ
}] = 0

for any h ∈H∗∞� (B.72)
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By Lemma B.14, (B.71), and (B.72), we have

AsyRD(θ̂eo� θ̂1) = lim
ζ→∞ max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
� sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
= lim

ζ→∞ max
{

sup
h∈H

E
[
min

{
ξ

′
FΥξF�ζ

} − min
{
ξ′

1�FΥξ1�F � ζ
}]
�0

}
(B.73)

and

AsyRD(θ̂eo� θ̂1) = lim
ζ→∞ min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
� inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
= lim

ζ→∞ min
{

inf
h∈H

E
[
min

{
ξ

′
FΥξF�ζ

} − min
{
ξ′

1�FΥξ1�F � ζ
}]
�0

}
� (B.74)

which proves (B.60) and (B.61).
In the second step, we show that

lim
ζ→∞ max

{
sup
h∈H

[
gζ(h)

]
�0

}
= max

{
sup
h∈H

[
g(h)

]
�0

}
� and (B.75)

lim
ζ→∞ min

{
inf
h∈H

[
gζ(h)

]
�0

}
= min

{
inf
h∈H

[
g(h)

]
�0

}
� (B.76)

By Lemma B.16,

lim
ζ→∞ sup

h∈H

[
gζ(h)

] = sup
h∈H

[
g(h)

]
and lim

ζ→∞ inf
h∈H

[
gζ(h)

] = inf
h∈H

[
g(h)

]
� (B.77)

where suph∈H[g(h)] and infh∈H[g(h)] are finite real numbers. Let f (x) = max(x�0) and
f (x) = min(x�0). It is clear that f (x) and f (x) are continuous function onR. The asserted

results in (B.75) and (B.76) follow by (B.77), and the continuity of f (x) and f (x).

Proof of Theorem 5.2. For any F ∈ F , define

BF = (
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)

and DF = (
�2�F − �∗

1�F
)′
Υ�∗

1�F � (B.78)

Recall that we have defined AF = Υ(Σ1�F −Σ2�F ) in Theorem 5.2. By the definition of ξF ,

E
[
ξ

′
FΥξF

] = tr(ΥΣ1�F )+ 2 tr(AF)J1�F + tr(AF)
2J2�F � (B.79)

where

J1�F = E

[ Z ′
d�2�FDFZd�2�F

Z ′
d�2�FBFZd�2�F + tr(AF)

]
and

J2�F = E

[ Z ′
d�2�FBFZd�2�F(

Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]
�

(B.80)

We provide a upper bound for J1�F defined in (B.80). Define a function

η(x)≡ x

x′BFx+ tr(AF)
for any x ∈R

r2 � (B.81)
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Its derivative is

∂η(x)′

∂x
= 1

x′BFx+ tr(AF)
Ir2 − 2BF(

x′BFx+ tr(AF)
)2xx

′� (B.82)

Then J1�F = E[η(Zd�2�F )
′DFZd�2�F ]. Note that DFZd�2�F = DFZ2�F by construction be-

cause the last r∗ columns of �∗
1�F are zeros. Applying Lemma B.9 yields

tr(DFΩ2�F ) = tr
((
�2�F − �∗

1�F
)′
Υ�∗

1�FΩ2�F
)

= tr
(
Υ

(
�∗

1�FΩ2�F�
′
2�F − �∗

1�FΩ2�F�
∗
1�F

))
= tr

(
Υ(Σ2�F −Σ1�F )

) = − tr(AF)� (B.83)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s lemma (Stein
(1981)),

J1�F = E
(
η(Zd�2�F )

′DFZd�2�F
) = E

[
tr

(
∂η(Zd�2�F )

′

∂x
DFΩ2�F

)]
� (B.84)

Plugging (B.81)–(B.83) into (B.84), we have

J1�F = E

[
tr(DFΩ2�F )

Z ′
d�2�FBFZd�2�F + tr(AF)

]
− 2E

[ tr
(
BFZd�2�FZ ′

d�2�FDFΩ2�F
)

(
Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]

= E

[ − tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

]
+ 2E

[ −Z ′
d�2�FDFΩ2�FBFZd�2�F(

Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]
� (B.85)

where the second equality is by (B.83). By definition and Lemma B.9

−Z ′
d�2�FDFΩ2�FBFZd�2�F

= −Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ�∗

1�FΩ2�F
(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F

= Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ(Σ1�F −Σ2�F )Υ

(
�2�F − �∗

1�F
)
Zd�2�F

≤ ρmax
(
Υ 1/2(Σ1�F −Σ2�F )Υ

1/2)(Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F

)
= ρmax(AF)Z ′

d�2�FBFZd�2�F � (B.86)

where the last equality is by ρmax(Υ
1/2(Σ1�F − Σ2�F )Υ

1/2) = ρmax(Υ(Σ1�F − Σ2�F )). Com-
bining the results in (B.85) and (B.86), we get

J1�F ≤ E

[ − tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

]
+ 2E

[
ρmax(AF)Z ′

d�2�FBFZd�2�F(
Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]

= E

[ − tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

]

+ 2E
[[

Z ′
d�2�FBFZd�2�F + tr(A)

]
ρmax(AF)− tr(AF)ρmax(AF)(

Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]
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= E

[
2ρmax(AF)− tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

]

−E

[
2ρmax(AF) tr(AF)(

Z ′
d�2�FBFZd�2�F + tr(AF)

)2

]
� (B.87)

Next, note that

J2�F = E

[ Z ′
d�2�FBFZd�2�F∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

]

= E

[Z ′
d�2�FBFZd�2�F + tr(AF)− tr(AF)∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

]

= E

[
1

Z ′
d�2�FBFZd�2�F + tr(AF)

]

−E

[
tr(AF)∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

]
� (B.88)

Combining (B.79), (B.87), (B.88), and the definition of g(h) (in Theorem 5.1), we obtain

that

g(hd�F) = 2 tr(AF)J1�F + tr(AF)
2J2�F

≤ 2 tr(AF)

(
E

[
2ρmax(AF)− tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

]
−E

[
2 tr(AF)ρmax(AF)∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

])

+ tr(A)2
(
E

[
1

Z ′
d�2�FBFZd�2�F + tr(AF)

]
−E

[
tr(AF)∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

])

= E

[
tr(AF)

(
4ρmax(AF)− tr(AF)

)
Z ′
d�2�FBFZd�2�F + tr(AF)

]

−E

[
tr(AF)

2(4ρmax(AF)+ tr(AF)
)∣∣Z ′

d�2�FBFZd�2�F + tr(AF)
∣∣2

]
� (B.89)

For all G2 and Ω2 such that h = (d� vec(G2)
′� vech(Ω2)

′) ∈ H, we have G2 = G2�F

and Ω2 = Ω2�F for some F ∈ F by the definition of H. If tr(AF) > 0, then ρmax(AF) > 0,

and thus the second term in the right-hand side of the last equality of (B.89) will be

negative. If in addition tr(AF) ≥ 4ρmax(AF), then the first term in the right-hand side

of the last equality of (B.89) will be nonnegative. As a result, when tr(AF) > 0 and

4ρmax(AF)− tr(AF) ≤ 0 for ∀F ∈ F , we have suph∈H[g(h)] < 0. This combined with The-

orem 5.1 implies the results of this theorem.
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Appendix C: Supplementary simulation results

Figure C.1. Finite sample MSEs of the pre-test and averaging GMM estimators in S1. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.
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Figure C.2. Finite sample MSEs of the pre-test and averaging GMM estimators in S2. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.
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Figure C.3. Finite sample MSEs of the pre-test and averaging GMM estimators in S3. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.
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Figure C.4. Finite sample biases and variances in S1. Note: “Pre-test(0.01)” refers to the pre-test
GMM estimator based on the J -test with nominal size 0.01; “Emp-opt” refers to the averaging
GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging estima-
tors based on the restricted James–Stein weight, respectively.
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Figure C.5. Finite sample biases and variances in S2. Note: “Pre-test(0.01)” refers to the pre-test
GMM estimator based on the J-test with nominal size 0.01; “Emp-opt” refers to the averaging
GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging estima-
tors based on the restricted James–Stein weight, respectively.
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Figure C.6. Finite sample biases and variances in S3. “Pre-test(0.01)” refers to the pre-test
GMM estimator based on the J -test with nominal size 0.01; “Emp-opt” refers to the averaging
GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging estima-
tors based on the restricted James–Stein weight, respectively.
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