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Identification of a nonseparable model under endogeneity
using binary proxies for unobserved heterogeneity

Benjamin Williams
Department of Economics, George Washington University

In this paper, I study identification of a nonseparable model with endogeneity
arising due to unobserved heterogeneity. Identification relies on the availability
of binary proxies that can be used to control for the unobserved heterogeneity.
I show that the model is identified in the limit as the number of proxies increases.
The argument does not require an instrumental variable that is excluded from
the outcome equation nor does it require the support of the unobserved hetero-
geneity to be finite. I then propose a nonparametric estimator that is consistent as
the number of proxies increases with the sample size. I also show that, for a fixed
number of proxies, nontrivial bounds on objects of interest can be obtained. Fi-
nally, I study two real data applications that illustrate computation of the bounds
and estimation with a large number of items.

Keywords. Nonseparable model, unobserved heterogeneity, latent variable, bi-
nary, measurement error.

JEL classification. C14, C35, C38.

1. Introduction

This paper considers how multiple binary measurements or proxies can be used to con-
trol for latent heterogeneity in a nonseparable model. I assume a model Y = g(X�θ�U)
where θ ∈R and U are both unobserved, and I assume access to binary proxies of θ, de-
notedM1� � � � �MJ+1. I study nonparametric identification of an average structural func-
tion, E(g(x� t�U)), without imposing restrictions on the dependence betweenX and θ.

This empirical problem arises in many applications in economics. Responses to in-
dividual questions on an exam are binary proxies for latent ability. Responses to each
item on a personality test or psychological assessment are proxies for a particular latent
trait. Responses to items on opinion surveys are proxies for an underlying attitude or
belief. Heckman, Stixrud, and Urzua (2006) and Spady (2007) are typical examples of the
use of such data in economics. See Almlund, Duckworth, Heckman, and Kautz (2011)
on the role of the psychology of personality in economics. The binary proxies could also
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consist of other outcomes that are driven by the same latent variable. For example, in
models of legislative roll call voting (Clinton, Jackman, and Rivers (2004), Heckman and
Snyder (1997), Poole and Rosenthal (1985, 1997)), separate votes are considered binary
proxies of latent legislator preferences.

Binary proxies may also arise in measuring economic primitives that vary across
economic agents. Bloom and Van Reenen (2007), for example, used discrete responses
to survey items to measure the managerial productivity of firms. They aggregate these
responses and use this to control for managerial productivity in estimating a produc-
tion technology. In this context, X represents observed inputs, θ represents the unob-
served managerial productivity, and U represents the residual variation in productiv-
ity. Three important features of this model are addressed in this paper. First, managerial
productivity varies continuously while the survey items are discrete. Second, managerial
productivity is likely correlated with observed inputs if the latter are chosen optimally.
Third, responses to the questions on the survey may be affected by observed inputs con-
ditional on managerial productivity.

There are several common approaches to measuring and controlling for latent vari-
ables when only binary proxies are available. One approach that is common is to control
for the latent variable by conditioning on an average of the proxies or another aggrega-
tion of the proxies, such as an estimate from a parametric item response model.1 This is
typically done ad hoc—plugging estimates from one model into another model—and is
often not justified theoretically. One contribution of this paper is to provide conditions
under which this practice can be justified.

More formal approaches involve jointly modeling the economic outcome and the
binary proxies, assuming that these are conditionally independent given the latent vari-
able (and observed covariates). In some cases, the latent variable is restricted to have
a finite support (Gawade (2007), Hu (2008), Mahajan (2006)). This is a restriction on
the dependence between the latent variable and the observed covariates. Alternatively,
parametric restrictions on the structure of the model can be sufficient to achieve identi-
fication without restricting the support of the latent variable. This approach is common
in empirical work and is analogous to the correlated random effects model for panel
data (see, e.g., Junker, Schofield, and Taylor (2012)).

The model studied in this paper does not impose a finite support for the latent vari-
able, any other restrictions on the dependence between the latent variable and observed
covariates, or any parametric structure in the model. Carneiro, Hansen, and Heckman
(2003) provide an important identification result for this model. Their result uses exoge-
nous variation in an instrumental variable that is excluded from the outcome equation
to identify the distribution of choice-specific outcomes and a large support condition
and additive separability to identify the joint distribution of outcomes and the latent
variable. This paper provides an alternative identification strategy that does not require
an instrument, additive separability, or large support conditions.

1Item response models are similar to random effects models for binary choice panel data. The binary
responses to each item are modeled jointly as a function of the latent variable, item-specific parameters,
and idiosyncratic item-specific shocks. These are typically estimated using maximum likelihood or other
likelihood-based methods. See van der Linden and Hambleton (2013) or Lord (1980).
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The identification problem consists of two parts. The first part deals with the fact
that the proxies are binary while the latent variable is continuous. If the proxies are inde-
pendent of observed covariates conditional on the latent variable and θ∼ Uniform(0�1),
then the percentile of the average of the J proxies converges to θ as J → ∞. As a result,
the model is point identified in the limit as J → ∞ as variation in θ can be obtained from
variation in this percentile score. Thus, the support of θ can be infinite because this per-
centile score varies continuously in the limit. The second part of the identification prob-
lem arises when observed covariates that are present in the structural outcome equation
are also present in the equations for the proxies. As a result, the proxies are not indepen-
dent of observed covariates conditional on the latent variable and, even when J is large,
the percentile of the average of the proxies is no longer a valid estimate of the latent
variable. To solve this problem, I assume that one of the binary proxies,Mj0 , is indepen-
dent of the observed covariates, X , conditional on θ.2 I show that under this exclusion
restriction E(Mj0 | M̄J�X) ≈ E(Mj0 | θ) for large J, where M̄J = J−1 ∑

j �=j0 Mj . Thus, in
the limit, variation in θ can be obtained by varying the percentiles of this conditional ex-
pectation if E(Mj0 | θ = t) is a strictly monotonic function and θ ∼ Uniform(0�1). I also
demonstrate how the proxies can be used to construct other estimates of θ that purge
the proxies ofX under alternative restrictions on the model.

The exclusion restriction is satisfied in many common applications. For example,
suppose the binary proxies are the individual questions on a test of ability. Responses to
questions on the test are likely affected by the individual’s educational level at the time
of the test conditional on ability (Hansen, Heckman, and Mullen (2004)). However, if one
question requires only basic knowledge it is plausible that this item does not depend on
education at the time of the test conditional on ability, provided that all individuals in
the sample have obtained a minimal level of schooling.

I demonstrate the methods developed in this paper through two empirical illustra-
tions. For the first illustration, I use recently released question-level data on the Armed
Forces Qualifying Test from the National Longitudinal Survey of Youth (NLSY79). I use
the methods developed in this paper to estimate the effect of education on responses
to individual questions on the test. In a second empirical application, I revisit an in-
fluential paper on the civic returns to education (Dee (2004)). As argued by Dee (2004),
schooling is determined in part by individual traits that are potentially correlated with
another trait—“civic-mindedness”—that influences later behaviors such as whether the
individual votes. Using the methods developed in this paper and data on civic-related
behavior, I construct bounds on the effect of education on voting behavior at different
points in the distribution of the latent trait.

The remainder of the paper is organized as follows. In Section 2, I lay out a general
model and present the main identification and estimation results for large J. In Sec-
tion 3, I present the empirical illustration of the large J methods. In Section 4, I discuss
some extensions of the model. In Section 5, I show that bounds on objects of interest

2This is different than the usual exclusion restriction satisfied by an instrumental variable. It also differs
from the type of restriction discussed by Carneiro, Hansen, and Heckman (2003) where a covariate that
enters the latent index for one proxy is excluded from the outcome equation and from the latent index for
all other proxies.
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can be constructed from moment conditions, study these bounds numerically in a few
examples, and present an empirical illustration. Section 6 concludes.

2. Large J identification and estimation

In this section, I first outline the general model and discuss the main assumptions. I
then state and discuss the main identification result. Finally, I propose an estimator and
describe its asymptotic properties.

The outcome variable is Y and X denotes a vector of observed covariates. I assume
that

Y = g(X�θ�U)� (2.1)

where θ and U are both unobserved and g is an unknown function. No restrictions will
be placed on the dimension of U but θ is assumed to be scalar.3 In addition, I assume
the availability of binary proxies,M = (M1� � � � �MJ+1) such that, for each j = 1� � � � � J+1,

Mj = 1
(
hj(X�θ)≥ εj

)
� (2.2)

where εj is a scalar unobservable and the function hj is unknown.
While existing methods, such as Carneiro, Hansen, and Heckman (2003), impose

additive separability in equation (2.1), I show identification without such a restriction.
Nonseparability in equation (2.1) is important as it allows ceteris paribus effects of X
on Y (e.g., g(x′� θ�U)− g(x�θ�U)) to vary with the unobservables θ and U . The preva-
lence of unobserved heterogeneity in the effects of choices, actions, or treatments has
been widely recognized by economists (e.g., Heckman (2001), Heckman, Schmierer, and
Urzua (2010)), as well as in other areas of research (see, e.g., Longford (1999)).

The average structural function (ASF), defined by Blundell and Powell (2003) is given
by

∫
g(x� t�u)dFθ�U(t�u). I define the conditional average structural function (CASF) as

the mean outcome averaging only over U , that is,
∫
g(x� t�u)dFU(u).4 The CASF de-

scribes how the structural function varies with θ, averaging out the other components
of the unobserved heterogeneity,U . These two structural functions are the main objects
of interest throughout this paper.

I maintain the following assumptions. I use the notation “⊥⊥” here and throughout
the rest of the paper to denote independence. Let X denote the support of the distribu-
tion of X and let Θ denote the support of the distribution of θ and, for each x ∈ X , let
Θ(x) denote the support of the conditional distribution of θ |X = x.

Assumption 2.1. U ⊥⊥ (X�θ).

Assumption 2.2. For each x ∈X ,Θ(x)=Θ.

These assumptions are sufficient for identification of both the ASF and the CASF
from the distribution of (Y�X�θ) (cf. Matzkin (2003, 2004)). Indeed, under Assump-
tion 2.1, the CASF is given by G(x� t) := E(Y | X = x�θ = t). Moreover, for any x ∈ X ,

3See Williams (2013) for a version of this model that allows multidimensional θ.
4This is similar to the definition of the CASF in Klein (2013).
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under Assumption 2.2, G(x� t) is defined for every t ∈Θ. Therefore, the ASF is given by∫
G(x� t)dFθ(t).5 Thus, the identification problem is reduced to whether the conditional

expectation functionG(x� t) and the distribution function Fθ can be identified from the
distribution of (Y�M�X).

Assumption 2.1 can be justified by an economic model where X is a choice made
under imperfect information that includes θ but not U . In the empirical application in
Section 3, Y will denote one of the items on the test while M denotes the remaining
items,X denotes years of completed schooling at the time of the test, and θ denotes the
underlying ability measured by the test. In this case, the assumption is satisfied provided
that U represents idiosyncratic, item-specific knowledge that does not influence the in-
dividual’s educational choices. In the application at the end of Section 5, X denotes
years of schooling,Y is a measure of voting behavior, and θ denotes “civic-mindedness.”
The independence assumption can be justified by a model where U denotes factors not
determined by the time schooling decisions are made nor dependent on any relevant
information that is available at that time.

One advantage of the approach taken in this paper relative to an instrumental vari-
able approach is the ability to identify how structural effects vary with θ. That is, I show
identification of the CASF, not just the ASF. While identification of the ASF would require
only that X is conditionally independent of U given θ, I maintain Assumption 2.1 in
order to show identification of the CASF as well.

Next, I normalize the distribution of θ.

Assumption 2.3. θ∼ Uniform(0�1).

Because there is no observed information on the scale of θ, some normalization in
the model is necessary in order to identify G(x� t). Otherwise, any monotonic transfor-
mation of θ would define an observationally equivalent model. Alternative normaliza-
tions in the model are possible, as discussed in Section 4. This is analogous to the role
of location and scale normalizations in traditional parametric models where θ enters
linearly. On the other hand, no such normalization is necessary for identification of the
ASF (see Corollary 2.1).

There is a more fundamental problem with identification in this model that may be
less apparent and that remains after imposing Assumption 2.3. Namely, it is possible
to define an observationally equivalent model based on θ̃ = H(X�θ) where H(x� ·) is
a monotonic transformation for each x ∈ X and θ̃ is uniformly distributed on the in-
terval [0�1]. While the transformation does not change the marginal distribution, it can
be done in such a way as to change the distribution conditional on X dramatically. For
example, suppose H(x� ·) is the conditional distribution function, H(x� t) = Fθ|X(t | x).

5In many settings, X = (X1�X2) where X1 is a scalar regressor of interest and X2 is a vector of “control
variables.” In this setting, Y = g(X�θ�U) and Assumption 2.1 would be replaced by the conditional in-
dependence assumption, U ⊥⊥ (X1� θ) |X2. Then the object of interest would be E(g(x1�X2� t�U)), which
would be identified from

∫
E(Y | X = x�θ = t) dFX2(x2) if θ were observed. The results in this paper are

still relevant for identification of the conditional expectation function E(Y |X = x�θ= t) in this case. How-
ever, I do not explore how additional restrictions on the role of the control variables, X2, might improve
identification.



532 Benjamin Williams Quantitative Economics 10 (2019)

Then θ̃ |X = x∼ Uniform(0�1). That is, any model satisfying Assumptions 2.1–2.3 with
dependence between θ andX is observationally equivalent to another model satisfying
these assumptions with θ independent ofX .

In order to resolve this problem, I consider models that satisfy an exclusion restric-
tion. Before stating the assumption, I define, for each j, the reduced form conditional
response functions as pj(x� t) := Pr(Mj = 1 | X = x�θ = t) = Fεj |X�θ(hj(x� t) | x� t). The
following assumption states that one of these conditional response functions is invari-
ant to x.

Assumption 2.4. For some 1 ≤ j0 ≤ J + 1, for every x ∈ X , pj0(x� t) = pj0(t) for all t ∈
[0�1].

This assumption is satisfied if hj0(x� t) = hj0(t) and εj0 ⊥⊥ X | θ. Under this restric-
tion, one of the J binary proxies does not depend on X conditional on θ. Suppose that
X denotes years of schooling at the time a test is administered, that everyone in the
sample had attained a minimal level of schooling at the time of the test, and one par-
ticular question on the test pertains to knowledge that would have been accumulated
before that minimal level of schooling. Then this question would satisfy the exclusion
restriction.

Timing is also used to justify the exclusion restriction in the civic returns application.
The population studied is a representative sample of high school sophomores in 1980. In
the first survey, these individuals were all asked a question related to their sense of civic
responsibility. Responses to this question do not depend on whether they finished high
school or attended college conditional on the underlying “civic-mindedness” trait. The
other proxies used are measured later, and hence may depend on whether the individual
attended college. In Section 4, I show how Assumption 2.4 can be replaced by alternative
restrictions.

I next impose the following conditional independence assumption.

Assumption 2.5. (U�ε1� � � � � εJ) are mutually independent conditional on (X�θ).

This implies that (Y�M1� � � � �MJ) are mutually independent conditional on (X�θ).
This assumption is imposed in Carneiro, Hansen, and Heckman (2003), as well as in
many models of measurement error (Chen, Hong, and Nekipelov (2011)) and item re-
sponse models (Sijtsma and Junker (2006)).6 This assumption is relaxed by Assump-
tion 2.8 below.

Next, I assume two monotonicity conditions.

Assumption 2.6.

(i) pj0(·) is strictly increasing.

(ii) For each x ∈X ,
∑J+1
j=1 pj(x� ·) is strictly increasing.

6Note that the model of equations (2.1) and (2.2) can be viewed as a nonstandard measurement error
problem where θ is the “mismeasured” covariate.
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Condition (i) requires a monotonic relationship between θ and the probability of
a positive response on the proxy, j0, that satisfies the exclusion restriction, Assump-
tion 2.4. Under condition (ii), the average of the J + 1 reduced form conditional re-
sponse functions is strictly increasing but individual response functions do not have
to be strictly increasing. Thus, this assumption allows for limited nonmonotonicity in
the response functions. As Sijtsma and Junker (2006) note, this is important in item re-
sponse data, such as test scores. In the roll call voting example, this may be important
if, for example, the most liberal and the most conservative members vote together on a
small fraction of bills. Condition (ii) is relaxed further by Assumption 2.9 below.

Let p̄J(x� t) = J−1 ∑
j �=j0 pj(x� t). Under Assumption 2.6, this function is strictly in-

creasing in t for each x. Therefore, the inverse function p̄−1
J (m;x) can be defined on

the range of p̄J(x� ·). That is, for each x ∈ X and each m in the range of p̄J(x� ·) there
is a unique t∗, which depends on x and m, such that p̄J(x� t∗) =m; I denote this t∗ by
p̄−1
J (m;x). Likewise, under condition (i) of Assumption 2.6, p−1

j0
is uniquely defined on

the range of pj0 . Because pj0 and p̄J(x� ·) are each defined on the interval [0�1], the in-
verse functions can naturally be extended to be defined on [0�1]. For m < pj0(0), let
p−1
j0
(m)= 0 and form>pj0(1), letp−1

j0
(m)= 1. Likewise, form< p̄J(x�0), let p̄−1

J (m;x)=
0 and form> p̄J(x�1), let p̄−1

J (m;x)= 1.
Lastly, I impose the following regularity conditions.

Assumption 2.7. There are constants 0< c < C <∞ such that:

(i) |G(x� t ′)−G(x� t)| ≤ C|t ′ − t| for all x ∈ X and t� t ′ ∈Θ(x),
(ii) c|t ′ − t| ≤ |pj0(t ′)−pj0(t)| ≤ C|t ′ − t| for all t� t ′ ∈ [0�1],

(iii) for each J ≥ 1, c|t ′−t| ≤ |p̄J(x� t ′)−p̄J(x� t)| ≤ C|t ′−t| for all x ∈ X and t� t ′ ∈Θ(x),
(iv) c|t ′ − t| ≤ |Fθ|X(t ′ | x)− Fθ|X(t | x)|, for all x ∈X and t� t ′ ∈Θ(x), and

(v) X is finite and infx∈X Pr(X = x)≥ c.

Conditions (ii) and (iii) imply that the inverse functions p−1
j0

and p̄−1
J are Lipschitz

continuous. Condition (iv) implies that the quantile functionQθ|X(· | x) is Lipschitz con-
tinuous. This assumption is relaxed in Section 2.4.

2.1 Identification

To formally define the notion of identification in the limit that is used, first let P0
J de-

note the true population distribution of (Y�M1� � � � �MJ+1) |X . For γ = (g�h1� � � � �hJ+1�

FU�ε1�����εJ+1|X�θ�Fθ|X), let PJ(γ) denote the distribution given by

∫
1
(
g(x� t�u)≤ y) J+1∏

j=1

1
(
hj(x� t)≥ εj

)mj (hj(x� t) < εj)1−mj dFU�ε1�����εJ+1|X�θ dFθ|X� (2.3)

Let γ0 = (g0�h1�0� � � � �hJ+1�0�F
0
U�ε1�����εJ+1|X�θ�F

0
θ|X) denote the true parameter values so

that P0
J = PJ(γ0). A parameter value γ is observationally equivalent to γ0 if PJ(γ) =

PJ(γ0).
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Let �J denote the parameter space, which is restricted by the assumptions of the
model. In particular, there are fixed constants 0 < c < C <∞ such that the conditions
in Assumption 2.7 hold for all γ ∈ �J , for all J ≥ 1. Then, for any feature of the model
defined by τ = τ(γ) define the identified set, IJ(γ0;τ(·)), as

IJ
(
γ0;τ(·)

) := {
τ(γ) : γ ∈ �J�PJ(γ)= PJ(γ0)

}
� (2.4)

In Section 5, I consider computation of IJ(γ0;τ(·)) through an approximation of the
integrals in (2.3). As J grows, the identified set shrinks. Formally, τ0 = τ(γ0) is said to be
large J identified if

lim
J→∞

sup
γ0∈�J

sup
τ∈IJ(γ0;τ(·))

‖τ− τ0‖ = 0� (2.5)

Theorem 2.1. The CASF is large J identified under Assumptions 2.1 and 2.3–2.7.

Proof. See Appendix A.

Remark 1. Under Assumption 2.1, the CASF is given by G(x� t), which is a func-
tion on X × Θ. In applying the definition (2.5), I use the sup norm, ‖G − G0‖ =
supx∈X �t∈Θ0(x)

|G(x� t) − G(x� t)| where Θ0(x) denotes the support of the distribution

F0
θ|X(· | x).

Remark 2. In the proof of Theorem 2.1, a bound on the rate of convergence of the iden-
tified set is also derived. It is shown that the size of the identified set is bounded by
O(J−1/2+ε) for all ε > 0.

Remark 3. Note that Assumption 2.6 rules out a model with

Mj = 1
(
θ > cj(X)

)
(2.6)

for each j because in that case p̄J(x� t) is piecewise constant in t for each x. However,
it can be shown that, under certain conditions on the thresholds {cj(·)}, the CASF is
still large J identified (Williams (2012)). Essentially, what is required is that cj(x) varies
enough with j for each x.

A fundamental idea behind Theorem 2.1 has been used in the nonparametric item
response literature (Junker and Ellis (1997)) and has roots in earlier work in statistics
(de Finetti (1931), Diaconis and Freedman (1980)). The idea is that M̄J := J−1 ∑

j �=j0 Mj

can serve as a sort of sufficient statistic for the latent heterogeneity. Douglas (2001) used
this idea to formally prove nonparametric identification of the standard item response
model.7

7Douglas (2001) formalizes an idea used in the psychometrics literature (Douglas (1997), Ramsay (1991))
to nonparametrically estimate item response functions. This result has not previously received attention in
the econometrics literature.
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In Lemma A.1 in Appendix A, I use Hoeffding’s inequality to show that, under As-
sumption 2.5, M̄J − p̄J(X�θ)→p 0 as J → ∞. To provide some intuition for the identifi-
cation result in Theorem 2.1, consider the limiting case where M̄∞ = p̄∞(X�θ). Then, if
the function p̄∞(x� ·) is invertible for each x,

T∞(m�x) := Pr(Mj0 = 1 | M̄∞ =m�X = x)
= pj0

(
x� p̄−1∞ (m;x))

= pj0
(
p̄−1∞ (m;x))� (2.7)

where the final line follows from Assumption 2.4. Then this implies that T∞(M̄∞�X) =
pj0(θ) and

FT∞(t) := Pr
(
T∞(M̄�X)≤ t)

= Pr
(
pj0(θ)≤ t)

= p−1
j0
(t)� (2.8)

where the final line follows from Assumptions 2.3 and 2.6(i). Combining these results,
FT∞(T∞(M̄∞�X)) = p−1

j0
(pj0(θ)) = θ. Thus, the joint distribution of (Y�X�θ) is pinned

down by the joint distribution of (Y�X�FT∞(T∞(M̄∞�X))). The CASF is then identified
in this limiting case because, as argued after the statement of Assumptions 2.1 and 2.2
above, the CASF is given byG(x� t)=E(Y |X�θ).

The proof of Theorem 2.1 is more subtle than this for several reasons. First, M̄∞ can-
not simply be replaced by p̄∞(X�θ); instead we must combine various limiting results.
And, in order to do so, these limiting results must be uniform rather than pointwise. Sec-
ond, the proof is based on TJ(m�x) := Pr(Mj0 = 1 | |M̄J −m|< rJ�X = x) for a sequence
rJ → 0, rather than Pr(Mj0 = 1 | M̄J = m�X = x), because the probability that M̄J = m

cannot be sufficiently bounded away from 0 as J → ∞. Third, while FT∞(t) is a smooth
function of t, the distribution function of TJ(M̄J�X) is not smooth since M̄J is a discrete
random variable for a fixed J.

Nevertheless, this heuristic argument demonstrates the importance of the exclusion
restriction and the monotonicity of pj0 . Because T∞(M̄∞�X) = pj0(θ), which does not
depend on X , individuals can be ordered based on this “score”, rather than on M̄∞.
In Section 4, I show how alternative restrictions can be used to derive different “score”
functions.

This argument also suggests two corollaries to Theorem 2.1. First, under the com-
mon support condition, Assumption 2.2, the ASF, which is given by

∫
G(x� t)dFθ(t), is

identified without Assumption 2.3. That is, to identify the average (across the distribu-
tion of θ) structural function it is not necessary to normalize the distribution of θ.

Second, if the exclusion restriction (Assumption 2.4) holds for p̄J rather than any
particular pj then the CASF is large J identified through a simpler argument. In this
case, if M̄∞ = p̄∞(X�θ) and if FM̄∞ := Pr(M̄∞ ≤m) then FM̄∞(M̄∞) = θ. The following
two corollaries are proved in Appendix B in the Online Supplementary Material located
in the replication file (Williams (2019)).
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Corollary 2.1. Suppose that (i) there is a constant Ȳ <∞ such that |Y | ≤ Ȳ and (ii) θ
has a distribution function Fθ such that |Fθ(t ′)− Fθ(t)| ≤ C|t ′ − t| for all t� t ′ ∈ R. Then,
under Assumptions 2.1, 2.2, 2.4 and 2.5–2.7, the ASF is large J identified.

Corollary 2.2. If p̄J(x� t) = p̄J(t) for all x ∈ X and t ∈ [0�1] then the CASF is large J
identified under Assumptions 2.1, 2.3 and 2.5–2.7.

2.2 Estimation

Consider an i.i.d. sample (Yi�Xi�Mi�1� � � � �Mi�J+1), i = 1� � � � � n from the model of equa-
tions (2.1) and (2.2). In this section, I propose an estimator for the conditional average
structural function, CASF(x� t), that is consistent as n�J → ∞ provided that J is on the
order of a power of n. The estimation strategy is to estimate θi for each i = 1� � � � � n in a
first stage and to use these estimates, θ̂1� � � � � θ̂n, in place of θ1� � � � � θn in a second stage.

First, recall the intuition behind Theorem 2.1. Let M̄iJ = J−1 ∑
j �=j0 Mi�j . As J → ∞,

the conditional probability function, Pr(Mi�j0 = 1 | M̄iJ = m�Xi = x) converges to the
function q(x�m) := pj0(p̄

−1
J (x�m)). Further, q(Xi� M̄iJ) ≈ pj0(θi) for large J and, since

θi ∼ Uniform(0�1), Fq(X�M̄)(q(Xi� M̄iJ)) ≈ θi where Fq(X�M̄) denotes the distribution

function of the random variable q(Xi� M̄iJ). This argument suggests the estimator

θ̂i = F̂q̂(X�M̄)
(
q̂(Xi� M̄iJ)

)
� (2.9)

where q̂(x�m) is the following Nadaraya–Watson kernel estimator of Pr(Mi�j0 = 1 | M̄iJ =
m�Xi = x)

q̂(x�m)=

n∑
i=1

Mi�j0Kh1(M̄iJ −m�Xi − x)
n∑
i=1

Kh1(M̄iJ −m�Xi − x)
� (2.10)

whereKh(u�x)= h−1K(h−1u)1(Xi = x) for a kernel functionK(·) and bandwidth h, and
F̂q̂(X�M̄) is the empirical distribution function

F̂q̂(X�M̄)(p)= 1
n

n∑
i=1

1
(
q̂(Xi� M̄iJ)≤ p)

� (2.11)

My proposed estimator forG(x� t) is

Ĝ(x� t)=

n∑
i=1

YiLh2(θ̂i − t�Xi − x)
n∑
i=1

Lh2(θ̂i − t�Xi − x)
� (2.12)

where Lh(u�x)= h−1L(h−1u)1(Xi = x) for a kernel function L(·) and bandwidth h.
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To demonstrate the type of estimation results that can be obtained for the model,
I derive a bound on the convergence rate of the estimator ĥ(x� t). New results due to
Mammen, Rothe, and Schienle (2012) on nonparametric estimation with regressors gen-
erated in a first stage suggest that the convergence rates derived here could be improved
under certain smoothness conditions. However, because the conditions in that paper
cannot be directly applied in the model of this paper, and since the primary focus of this
paper is identification, I leave this to future research.

Theorem 2.2. Under the assumptions maintained in Theorem 2.1 and Assumptions C.1–
C.6 stated in Appendix C in the Online Supplementary Material,

∣∣Ĝ(x� t)−G(x� t)∣∣ =Op
(

1√
nh2n

+ h2n

)
�

If J < κn−2/3 for some κ > 0, then the bandwidths can be chosen so that Ĝ converges at a
rate no slower than n−1/3+ε for any ε > 0.

Proof. See Appendix C in the Online Supplementary Material.

2.3 Monte Carlo

To demonstrate the performance of the proposed estimator, I carried out a Monte Carlo
exercise. The simulations were based on the model Yi = 0�5Xi + 0�5θ̃i +Ui where Ui ∼
N(0�σ2

U), σU = 0�1. The observed covariate X is binary with Pr(Xi = 1) = 0�5 and θ̃i |
Xi = x∼N(x−0�5�1). The proxies are generated according toM1 = 1(θ̃i ≥ ηi1) andMj =
1(−0�5X + θ̃i ≥ ηij) for j > 1 with ηij

i�i�d�∼ N(0�1). This fits the model of Section 5 with
θi = Fθ̃(θ̃i).

In the simulations, I calculate the estimator proposed above in Section 2.2, Ĝ(x� t),
for x = 0�1 and t ∈ T = {0�05�0�1� � � � �0�95}. Since θ ∼ Uniform(0�1), 1

19
∑
t∈T Ĝ(1� t) −

Ĝ(0� t) provides an estimate of the average treatment effect, ATE = ∫
G(1� t)dFθ(t) −∫

G(0� t)dFθ(t). Further refining the grid did not change the overall results.
Table 1 reports the results of the simulations. I provide results from three other esti-

mators for comparison. For the first column, the ATE was estimated, without controlling
in any way for θ, simply as Ê(Yi |Xi = 1)− Ê(Yi |Xi = 0). For the second column, I es-
timated a nonparametric kernel regression of Yi on the percentiles of M̄iJ . I computed
these estimates on the grid T and averaged to get an estimate of the ATE. The third col-
umn shows results from the infeasible estimator that uses θi directly.

Overall the results suggest a substantial improvement over methods that do not
properly control for θi, even when J = 10. However, there is a nonnegligible bias when
J is small. The simulation exercises also demonstrate that increasing J leads to a bigger
improvement in the MSE when n is larger. And increasing n leads to a bigger improve-
ment in the MSE when J is larger.
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Table 1. Monte Carlo simulations.

No Controls Score Infeasible Proposed Method

n J Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1000
10 0�500 0�501 0�303 0�303 0�000 0�013 0�136 0�142
30 0�502 0�504 0�280 0�280 0�001 0�013 0�082 0�096

100 0�502 0�503 0�268 0�268 0�001 0�013 0�061 0�079

2000
10 0�499 0�499 0�295 0�296 0�000 0�009 0�120 0�123
30 0�501 0�501 0�273 0�273 0�001 0�008 0�076 0�083

100 0�498 0�498 0�260 0�260 0�002 0�010 0�058 0�067

5000
10 0�503 0�503 0�295 0�295 0�000 0�007 0�088 0�092
30 0�500 0�500 0�273 0�273 0�001 0�006 0�049 0�053

100 0�500 0�501 0�259 0�260 0�000 0�007 0�024 0�034

Note: These results were obtained by simulating the model described in Section 2.3 100 times for each pair of n and J. The
first column is the difference in sample means. The second column was obtained by conditioning nonparametrically on the
percentile of the average of the proxies. The third was obtained by conditioning nonparametrically on the true latent variables.
The fourth estimator is the estimator proposed in Section 2.2. All kernel regressions used the Epanechnikov kernel.

2.4 Large J identification under weaker conditions

The CASF is large J identified under conditions weaker than Assumptions 2.5–2.7, al-
though the convergence is at a slower rate and the proof is considerably more complex.
First, conditional independence is too strong in some applications. Consider instead the
following weak dependence assumptions.

Assumption 2.8. There exists a decreasing sequence {αk : k ≥ 1} with limk→∞ αk = 0
such that:

(i) E(|E(Mj |X�θ� {Ms : |j − s|>k})−E(Mj |X�θ)|)≤ αk and

(ii) for any η ∈ (0�1/2), there exist J J
Y (η)⊂ {1� � � � � J} for each J such that |J J

Y (η)|−1 =
O(J−1) and

E
(∣∣E(

Y |X�θ�{Mj : j ∈ J J
Y (η)

}) −E(Y |X�θ)∣∣) ≤ α�ηJ��

Condition (i) is a mixing condition on the sequence M1� � � � �MJ conditional on
(X�θ). Mixing conditions are a standard way to model (unconditional) dependence in
time series data.8 Thus, this is a natural notion of dependence in a setting where the
Mj are realized consecutively. For example, ifMj represents the response to the jth item
on a test there may be dependence between consecutive questions due to factors other
than the individual’s ability level, such as learning from the test.

Condition (ii) allows for various forms of dependence between Y and some of the
binary proxies conditional on (X�θ). If Y is independent of only a subset of the proxies
conditional on (X�θ), this condition requires only that this subset grows with J. Alterna-
tively, it allows for Y to be dependent on all of the proxies provided that the dependence

8If the time series process {qt} is strongly mixing with mixing coefficients αt�k, then it can be shown that
E|E(qt | {qs; |t − s| > k})− E(qt)| ≤ αt�k where supt αt�k → 0 (Dvoretzky (1972), McLeish (1975)). Processes
withm-dependence and ARMA processes are examples of processes that are strongly mixing.
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is weak in a specific sense. It allows for the case, for example, where Y is itself one of
the proxies. In that case, J J

Y (η) is {s : |j − s| > ηJ} so that |J J
Y (�ηJ�)| ≥ (1 − 2η)J. Per-

formance on a test may call on basic skills, represented by θ, as well as various specific
pieces of knowledge. Condition (i) specifies the sense in which these specific pieces of
knowledge cannot dominate the test. Condition (ii) allows some of these individual fac-
tors to influence the outcome (e.g., wages).

Both conditions in Assumption 2.5 could also be replaced by lower level conditions
related to the structure in equations (2.1) and (2.2). For example, if (X�θ) is independent
of (ε1� � � � � εJ), then condition (i) could be replaced by a mixing condition on {εj : 1 ≤ j ≤
J}. And if U is independent of (X�θ) conditional on (ε1� � � � � εJ) then condition (ii) can
be stated in terms of weak dependence between U and (ε1� � � � � εJ). See de Jong and
Woutersen (2011) for related results in a dynamic time series binary choice model.

Next, consider the following monotonicity conditions in place of Assumption 2.6.

Assumption 2.9.

(i) pj0(·) is strictly increasing on [0�1].
(ii) There exists a constantη> 0, and subsets J J

m ⊂ J J
Y (η)∩{1 ≤ j ≤ J : |j0 − j|>ηJ} for

each J, such that |J J
m|−1 =O(J−1) and, for each x ∈X ,

∑
j∈J J

m
pj(x� ·) is strictly increasing.

Condition (i) is the same as condition (i) of Assumption 2.6. Condition (ii) states
that, once items near j0, items not indexed by j in J J

Y (η), and a limited number of other
items are excluded, the average of the remaining items is a strictly increasing function,
and that the number of remaining items is proportional to J. Let NJ := |J J

m| and rede-
fine p̄J(x� t) :=N−1

J

∑
j∈J J

m
pj(x� t). Under condition (ii) of Assumption 2.6, this function

is strictly increasing in t for each x. Therefore, the inverse function p̄−1
J (m;x) can be

defined on [0�1] as before.
Lastly, I impose the following regularity conditions, which weaken Lipschitz conti-

nuity to continuity.

Assumption 2.10. (i) G(x� t) is continuous in t for each x ∈ X , (ii) pj0 and p−1
j0

are both

continuous, (iii) p̄J(x� t) is continuous in t for each J and each x ∈ X and p̄−1
J (m;x) is

continuous in m for each J and each x ∈ X , (iv) the quantile function, Qθ|X(τ | x), is de-
fined for all τ ∈ [0�1] and is uniformly continuous in τ for each x ∈ X , and (v) X is finite
and infx∈X Pr(X = x)≥ c.

A slightly stronger version of these regularity conditions, stated as Assumption B.1 in
Appendix B in the Online Supplementary Material, is needed to control the continuity of
functions in the identified set as J → ∞. Assumption 2.10 by itself does not prevent the
limiting identified set from containing discontinuous functions, which would prevent
identification in the limit. Assumption B.1 additionally requires �J to be constructed
from uniformly equicontinuous families of functions, just as it was assumed for Theo-
rem 2.1 that for each γ ∈ �J the relevant functions were Lipschitz continuous with the
same Lipschitz constants.
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Theorem 2.3. The CASF is large J identified under Assumptions 2.1, 2.3–2.4, 2.8–2.10,
and B.1.

Proof. See Appendix B in the Online Supplementary Material.

Remark 4. The rate of convergence of the identified set is slower than the O(J−1/2+ε)
rate attained under the assumptions of Theorem 2.1. The convergence rate depends on
the rate of convergence of the mixing coefficients, αk, and the smoothness of the func-
tions in the parameter space �J .

3. Education, ability, and test scores

There is substantial evidence that education can improve performance on tests of cog-
nitive ability (see, e.g., Neal and Johnson (1996), Winship and Korenman (1997)). Educa-
tion, however, is endogenous if higher ability individuals achieve higher education lev-
els on average. Hansen, Heckman, and Mullen (2004) proposed two methods for dealing
with this endogeneity, both of which are derived from a model that allows the mapping
between latent ability and test scores to depend on the schooling level at the time of the
test. One involves jointly modeling education and test scores in a parametric model and
is closely related to Carneiro, Hansen, and Heckman (2003). The other is a semipara-
metric control function method that relies on the assumption that schooling at the time
the test is taken is independent of latent ability conditional on the final education level
obtained.

In this section, I use data from the National Longitudinal Survey of Youth (NLSY) to
study the effect of education on test scores using the methods described in Section 2.
The NLSY is a representative sample of individuals from the United States between the
ages of 14 and 21 in 1979, when they were first interviewed. In 1980, these individuals
were administered the Armed Services Vocational Aptitude Battery (ASVAB). As an illus-
tration, I use the arithmetic reasoning subcomponent of the Armed Forces Qualifying
Test (AFQT), a test which consists of the verbal and math components of the ASVAB.
The arithmetic reasoning component of the ASVAB consists of 30 questions. Item-level
responses, coded as correct or incorrect, have recently been made publicly available.
See Schofield (2014) for an early analysis of the item-level data. I use the same subsam-
ple used in Hansen, Heckman, and Mullen (2004), which consists of 1927 white non-
Hispanic males. Hansen, Heckman, and Mullen (2004) found that each additional year
of education increases composite AFQT scores by 2–4%.

I study the effect of education on the test score by analyzing each item sepa-
rately. Let Xi denote a binary indicator of schooling level and let M̃i denote the full
vector of 30 items from the arithmetic reasoning component of the ASVAB. For each
item s, I apply the previous analysis in the paper with Yi = M̃is and Mi = M̃i�−s =
(M̃i1� � � � � M̃i�s−1� M̃i�s+1� � � � � M̃i�30). So that the model is consistent as s varies, I assume
throughout the analysis that M̃ij = 1(hj(Xi�θi) ≥ ε̃ij) and ε̃ij ⊥⊥ (Xi�θi) for each j =
1� � � � �30. Then the CASF for each item s is given byGs(x� t)= Fε̃s (hs(x� t))= ps(x� t).9

9Imposing the assumption that ε̃ij ⊥⊥ (Xi�θi) for all j does not aid in identification of Gs because it
does not restrict the item response function pj(x� t) or the conditional dependence among the items given
(Xi�θi).
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The method described in Section 2 involves first using the individual items, Mi, to
estimate θ̂i for each individual and then estimating Gs(x� t) by a nonparametric regres-
sion of the outcome Yi on θ̂i and Xi. I use this method to compute estimates, Ĝs(x� t),
for each 1 ≤ s ≤ 30 except s = j0. In computing Ĝs(x� t), I include the 28 items exclud-
ing item s and item j0 in J J

m, which means that the estimates of θi actually differ for
each s.10 To estimate the schooling effect on each item, I estimate a conditional aver-
age treatment effect as ĈATEs(t) = Ĝs(1� t) − Ĝs(0� t) for each s �= j0. By assumption,
pj0(1� t)= pj0(0� t) for all t. Therefore,

ĈATE(t)= 1
J

∑
s �=j0

ĈATEs(t)

provides an estimate of the conditional average causal effect of schooling on the test
score.11

Figures 1 and 2 show Ĝs(0� t) and Ĝs(1� t) for a selection of the test items, along
with 90% confidence bands computed via 200 bootstrap samples.12 For these results,

Figure 1. The effect of schooling on individual items from the AR component of the ASVAB.

10The theoretical analysis in the paper requires that the outcome variable, Yi, is not included in con-

structing the mean response M̄iJ . However, results using a single set of estimates θ̂i based on all 29 items
excluding j0 do not differ substantially from the reported results.

11“Test score” refers to the simple average, 1
J

∑30
s=1 M̃is . The estimator can be easily modified if the test

score is a weighted average of the individual items.
12The validity of the bootstrap-based confidence intervals for kernel regression estimators has been es-

tablished by Hall (1992), among others. These standard results do not apply immediately here because
(a) the estimation procedure involves the use of a regressor generated in a first step and (b) the estimator is
consistent only if J → ∞ along with n. While formally establishing the validity of the bootstrap-based con-
fidence intervals for the estimator Ĝs(x� t) is beyond the scope of this paper, others have addressed these
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Figure 2. The effect of schooling on individual items from the AR component of the ASVAB.

I use j0 = 4.13 Each of these items shows a clear effect of schooling on the probability

of correctly answering the question. There is heterogeneity in this effect across items,

however. For example, for the three items in Figure 1, there is a statistically significant

effect at all ability levels. For the items in Figure 2, there is a large and significant effect

only for individuals above the median ability level. Figure 3 plots ĈATE(t). Here, we

see that the aggregate effect of schooling on the test score is increasing in ability and is

statistically significant at all ability levels.

Since θi ∼ Uniform(0�1), I can also estimate item-level average treatment effects as

ÂTEs = 1
H

∑H
h=1 ĈATEs(th) and the average treatment effect on the test score as ÂTE =

1
H

∑H
h=1 ĈATE(th), where {th}Hh=1 is an equidistant grid of H = 20 points. Table 2 reports

estimates of these average treatment effects. As in Hansen, Heckman, and Mullen (2004),

I find that there is a substantial education effect on test scores. There is a statistically

significant average effect for all but four of the 29 items (excluding item 4). Having a high

school education (or more) at the time of the test increases the test score by between 4�6
and 10 percentage points, on average. This effect is roughly 7–15% of the average total

score of 0�659. This is consistent with the findings of Hansen, Heckman, and Mullen

(2004), though the effects found here are larger, potentially because I do not control for

demographics and family background beyond restricting the sample to white males.

two issues separately. See Kapetanios (2008) regarding the validity of the (cross sectional) bootstrap in large
n, large T panel data models and see Mammen, Rothe, and Schienle (2016) for a result regarding the validity
of the bootstrap for semiparametric estimators involving a generated regressor.

13See Appendix D in the Online Supplementary Material where I describe a data-driven approach to this
choice.
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Figure 3. The effect of schooling on the AR component of the ASVAB.

4. Extensions of the model

The model of Section 2 can be extended in several ways. In this section, I discuss two
types of extensions. First, I introduce an alternative normalization that can be used to
identify and estimate the model instead of normalizing θ to be Uniform(0�1). Second,

Table 2. Average treatment effect of schooling on the Arithmetic
Reasoning component of the AFQ.T in the NLSY79.

Item ATE 90% Conf. Int.

1 0�011 [−0�008�0�031]
2 0�029 [0�008�0�049]
3 0�032 [−0�004�0�058]
5 0�045 [−0�002�0�078]
6 0�042 [0�001�0�087]
7 0�027 [−0�008�0�061]
8 0�062 [0�021�0�104]
9 0�072 [0�029�0�109]
10 0�057 [0�028�0�097]
11 0�046 [0�005�0�086]
12 0�054 [0�005�0�095]
13 0�108 [0�053�0�16]
14 0�067 [0�015�0�119]
15 0�078 [0�04�0�119]
16 0�057 [0�005�0�105]

Item ATE 90% Conf. Int.

17 0�109 [0�068�0�155]
18 0�114 [0�039�0�164]
19 0�069 [0�025�0�113]
20 0�122 [0�061�0�172]
21 0�106 [0�034�0�151]
22 0�141 [0�076�0�177]
23 0�148 [0�095�0�2]
24 0�142 [0�064�0�205]
25 0�085 [0�025�0�142]
26 0�071 [0�009�0�112]
27 0�119 [0�05�0�165]
28 0�114 [0�046�0�164]
29 0�113 [0�034�0�138]
30 0�106 [0�054�0�156]
avg. 0�081 [0�046�0�104]

Note: This table reports estimates of the the average treatment effect (ATE) of high
school graduation on the probability of a correct response to each item. For each item,
ATE was estimated as described in the text. The 90% confidence intervals were com-
puted from simulating 200 bootstrap samples. The estimates are based on a sample of
1927 white males from the NLSY. See the text for a further description of the sample.
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I discuss alternatives to the exclusion restriction in Assumption 2.4. Williams (2013) con-
sidered some additional extensions of the model.

4.1 Alternative normalizations

Suppose the distribution of θ is not normalized, as imposed by Assumption 2.3 and in-
stead assume that, for some x0 ∈ X and some j1 ∈ {1� � � � � J+1},pj1(x0� t)= π(t)whereπ
is a known function. Recall from the discussion following the statement of Theorem 2.1
that for large J,

E(Y | M̄J ≈m�X = x)≈G(
x� p̄−1

J (m;x)) (4.1)

and

Pr(Mj0 = 1 | M̄J ≈m�X = x)≈ pj0
(
p̄−1
J (m;x))� (4.2)

Likewise, under this alternative normalization,

Pr(Mj1 = 1 | M̄J ≈m�X = x)≈ π(
x0� p̄

−1
J (m;x0)

)
� (4.3)

Since π is known this implies that p̄−1
J (m;x0) is approximately identified for large J.

Then applying (4.2) for x = x0, pj0(t) is identified as well. Applying (4.2) again for any
other value of x produces p̄−1

J (m;x). And applying (4.1), G(x� t) can then be obtained.
While this is merely a heuristic argument, the result can be proved formally under suffi-
cient regularity conditions just as the discussion following the statement of Theorem 2.1
was formalized in the proof of the theorem.

Suppose θ represents ability and each Mj is an item on a test. This shows how one
item on the test can be used to set the scale of latent ability θ. Then the distribution
of θ can be identified and estimated rather than normalized, and, if the item satisfying
the normalization is chosen carefully, then this can provide a more easily interpretable
model. Alternatively, Mj1 might represent a binary outcome rather than an item on the
test, or a similar restriction on the function g, rather than onpj1 , could be used to set the
scale of θ. In a model of the technology of skill formation, Cunha, Heckman, and Schen-
nach (2010) emphasized the importance of anchoring test scores in an interpretable
metric in this way.

4.2 Alternative restrictions

Next, I consider two restrictions that can be used in place of Assumption 2.4.

4.2.1 Conditional independence in the measurement Suppose thatX1 is a subvector of
X such that pj0 varies only with X1 and θ ⊥⊥ X1 |X−1 where X−1 denotes the compo-
nents of the vectorX excluding the components ofX1.

Under this restriction,

Pr(Mj0 = 1 | M̄J ≈m�X = x)≈ pj0
(
x1� p̄

−1
J (m;x)) (4.4)
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and pj0(X1� p̄
−1
J (M̄J;X))≈ pj0(X1� θ). Then

Pr
(
pj0

(
X1� p̄

−1
J (M̄J;X)

) ≤ π |X = x) ≈ Pr
(
pj0(X1� θ)≤ π |X = x)

= Fθ|X−1

(
p−1
j0
(π;x1) | x−1

)
� (4.5)

Then, since θ ∼ Uniform(0�1), averaging this over the distribution of X−1 produces
p−1
j0
(π;x1). This implies that p̄−1

J (m;x) is identified, and hence the CASF is identified.
Hansen, Heckman, and Mullen (2004) use this type of normalization to estimate the

effect of education on performance on a standardized test. This was extended to a model
of the effect of education on economic and social outcomes as an adult (Y ) by Heckman,
Stixrud, and Urzua (2006). In these models, the score on a standardized test depends on
the individual’s education level at the time the test was taken (X1). However, the indi-
vidual’s ability (θ) is also correlated withX1 becauseX1 is dependent on the individual’s
final level of education, X2, which is influenced by ability. So, for example, an individ-
ual with X1 = 12 must have X2 ≥ 12 and, therefore, will have a higher θ on average than
someone with X1 = 10. If the problem of retention is ignored, conditional on X2, X1 is
a deterministic function of the student’s age at the time of the test. Because the age at
which the test was administered is exogenous, θ⊥⊥X1 |X2, and the identification strat-
egy just described can be applied ifX contains bothX1 andX2.

4.2.2 Linking exclusion restrictions According to Assumption 2.4 one item, Mj0 , must
be independent of X conditional on θ. In some cases, however, each item may be de-
pendent on some components ofX conditional on θ. In this case, it is sufficient that, for
each of the K components ofX , there is one item which is independent of that compo-
nent conditional on θ.

Here, I provide a sketch of the argument for X = (X1�X2). Suppose that X2 is ex-
cluded from pj1 andX1 is excluded from pj2 . First,

Pr(Mj1 = 1 | M̄J ≈m�X = x)≈ pj1
(
x1� p̄

−1
J (m;x)) (4.6)

and

Pr(Mj2 = 1 | M̄J ≈m�X = x)≈ pj2
(
x2� p̄

−1
J (m;x))� (4.7)

From the right-hand side of these two equations, one can obtain pj1(x1�p
−1
j2
(π;x2)).

Furthermore,

Pr
(
pj1

(
X1� p̄

−1
J (M̄J;X)

) ≤ π |X = x) ≈ Fθ|X
(
p−1
j1
(π;x1) | x)�

Averaging this over the distribution ofX2 |X1 = x1 produces Fθ|X(p−1
j1
(π;x1) | x1). Then,

plugging in pj1(x1�p
−1
j2
(π;x2)) and averaging over the marginal distribution ofX1,

∫
Fθ|X

(
p−1
j2
(π;x2) | x1

)
dFX1(x1)= p−1

j2
(π;x2)

since θ∼ Uniform(0�1). With p−1
j2
(π;x2) identified, p̄−1

J (m;x) and the rest of the model
can be determined.
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This argument can be extended to the case where every component ofX is excluded
from the equation for at least one item. Suppose, for example, that θ represents a risk
aversion parameter and the items M1� � � � �MJ represent participation in different risky
behaviors in a population of young adults. In estimating a causal effect of education on
risky behaviors, it is important to control for this latent risk aversion parameter, in ad-
dition to parents’ income. The strategy discussed in this section can be used to identify
such a model if at least one of the risky behaviors is not affected by education (perhaps
because the risks involved are readily apparent) and at least one of the risky behaviors
is not affected by parents’ income (perhaps because there is no monetary cost of par-
ticipation). The exclusion restriction is much weaker than the exclusions required by
Carneiro, Hansen, and Heckman (2003).

5. The identified set when J is small

In this section, I show that, even with a small number of proxies, this model has identify-
ing power under the conditional independence of Assumption 2.5. I maintain equations
(2.1) and (2.2) and Assumptions 2.1–2.5 but I modify Assumptions 2.6 and 2.7.

Assumption 2.1 and 2.5 are sufficient to derive moment conditions that can be used
to define the identified set for G. This is formalized in the following theorem, which is
proved in Appendix A.

Theorem 5.1. Under Assumption 2.1, the CASF is given by G(x� t)= E(Y |X = x�θ= t)
and under Assumption 2.5, for any J ⊆ {1� � � � � J + 1} and any c ∈ {0�1},

E

(
Yc

∏
j∈J

Mj

∣∣∣X = x
)

=
∫
G(x� t)cpJ (x� t)dFθ|X(t | x)� (5.1)

where pJ := ∏
j∈J pj .

The identified set for the CASF is then the set of functionsG that are consistent with
these 2J+1 − 1 moment conditions. See Appendix D in the Online Supplementary Mate-
rial for a careful definition and a description of how this set can be approximated.14 In
these examples, I focus on identification of two scalar objects—the CATE at a fixed t, that
is, G(x′� t)−G(x� t), and the ATE, that is,

∫ 1
0 (G(x

′� t)−G(x� t))dt. For the former, if not
also for the latter, it is clear that some sort of shape restriction is essential.15 Therefore,
I consider models that are monotonic in the latent variable. A separate monotonicity
assumption is used in the large J analysis (see Assumptions 2.6 and 2.9 above). Here, I
assume the following.

14I use an approximation method that extends methods implemented in Honore and Tamer (2006) and
Chernozhukov, Fernández-Val, Hahn, and Newey (2013) for a semiparametric panel data model.

15Consider the following example: For each j, let pj(x� t)= 1
2
∑d
k=0 ajk(x)ψk(t)+ 1

2 where {ψk(·)}∞k=0 are

the shifted Legendre polynomials defined on [0�1] and 0 ≤ maxx∈X
∑d
k=0 ajk(x) < 1. In addition, suppose

that G(x� t) = ∑d
k=0 a

C
k (x)ψk(t). Since pJ (x� t) can then be written as a linear combination of the first Jd

shifted Legendre polynomials, an observationally equivalent model can be defined by taking G∗(x� t) :=
G(x� t)+λ(x)ej(t)where ej(t)=ψk∗(t) for any k > Jd. But |G(x� t)−G∗(x� t)| ≥ |λ(x)|. This works because
of the orthogonality of the Legendre polynomials, which requires nonmonotonicity.
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Assumption 5.1. For each x ∈ X , each of the functions G(x� ·)�p1(x� ·)� � � � �pJ+1(x� ·) is
weakly increasing on the support of θ |X = x.

If it is known a priori that some of the proxies are positively related to the latent vari-
able while others are negatively related, then the latter can be redefined so that the as-
sumption is still satisfied as stated. However, this assumption does rule out the scenario
where the correct orientation is neither known a priori nor prescribed by an economic
model. While it is possible that, given only an assumption of monotonicity in unknown
direction, the correct orientation is identified in the model, and I do not pursue this here.

Assumption 5.1 is still not sufficient for bounds to be nontrivial in all cases because
it allows for the extreme case where each pj(x� ·) is a constant function. Indeed, in this
case it can be shown that the identified set is the trivial set. However, computation of
the bounds is not tractable if we instead require the functions to be strictly increasing
because this would entail optimization over a noncompact parameter space.

I now illustrate features of the identified set by way of several examples. The details
of the computations presented here are also contained in Appendix D in the Online Sup-
plementary Material. In each case, I calculate the population moments according to the
following data generating process:

X = 1(sθ≥ V )�

Y = 1
(
βX +μY + αY�−1(θ)+

√
1 − α2

YU ≥ 0
)
� and (5.2)

Mj = 1
(
βjX +μj + αj�−1(θ)+

√
1 − α2

j εj ≥ 0
)
� j = 1� � � � � J�

where V , U , ε1� � � � � εJ are mutually independent, V ∼ Uniform(0�1) and U , ε1� � � � � εJ
are each drawn from the standard normal distribution.

Figures 4 and 5 show bounds on the ATE,
∫ 1

0 (G(1� t)−G(0� t))dt.16 For each example,
I compute the trivial bounds, the bounds based on observing (Y�M1�X) and bounds
based on (Y�M1�M2�X). Several features of the identified set that are common to these
examples are apparent. First, the bounds are generally nontrivial even when only one
binary proxy is observed. Second, if a second binary proxy is observed, the bounds typ-
ically become more narrow. The relative benefit of this second proxy depends on the
model though. Third, when two binary proxies are observed, the bounds tend to be the
most narrow when αY = 0�01.17

5.1 An empirical example

Dee (2004) provided evidence that college attendance substantially increases civic-
related behavior. OLS estimates using data from the High School and Beyond (HSB)

16Rather than imposing the common support condition (Assumption 2.2), I instead impose that G(x� t)
is bounded between 0 and 1 to obtain nontrivial bounds on the ASF. The boundedness condition translates
to a bound on the size of the effect outside of the common support. Neither condition is needed to obtain
nontrivial bounds onG(x� t) for t ∈Θ(x).

17In this case,Y is nearly independent ofMj conditional onX , and hence, it can be inferred thatY varies
little, if at all, with θ. From this, it can further be inferred that dependence betweenY andX must be largely
due to the structural relationship.
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Figure 4. Bounds on the ATE, examples 1 and 2.

longitudinal study indicate that attending college by the age of 20 increases the prob-
ability of being registered to vote at age 28 by roughly 12 percentage points, for example.
Dee (2004) also provided instrumental variables estimates that suggest a larger effect, an
increase of roughly 22 percentage points. Identification is based on variation in college
availability, which is assumed to be exogenous.

The instrumental variable analysis in Dee (2004) is motivated in part by the observa-
tion that regressions using civic-related behaviors that preceded the college attendance
decision as the dependent variable produce positive and significant college attendance
effects. This is what we would expect if civic-related behaviors are driven by a latent
“civic-mindedness” trait that is formed in high school. If there is heterogeneity in the
civic returns to education then the IV estimates in Dee (2004) are estimates of the ef-
fect for those who would be induced to attend college by a reduction in the distance
to nearby colleges as IV estimates are a weighted average of marginal treatment effects
(Heckman, Urzua, and Vytlacil (2006)).

I analyze similar data from the same High School and Beyond (HSB) longitudinal
study. The data consists of a sample of high school sophomores in 1980. Individuals in
this sample who reported having attended college by 1984 (when the majority were 20
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Figure 5. Bounds on the ATE, examples 3–5.

years old) were 23 percentage points more likely to have voted in an election between

March of 1984 and February of 1986 than those who did not report having attended

college. I consider the nonseparable model of equation (2.1),

Votedi = g(SomeCollegei� θi�Ui)� (5.3)
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Table 3. Civic returns to education.

Model OLS ATE Bounds

No proxies 0�23
M1 only 0�23 −0�34 0�56
M1 and M2 0�21 −0�26 0�22
M1, M2, and M3 0�20 −0�06 0�21

Note: The first column in this table reports the coefficient
on SomeCollege in an OLS regression that uses the proxies as
controls. The outcome is an indicator for whether the individual
has voted in and election in the past two years. The sample size
is 10,515.

where θi is the individual’s latent “civic-mindedness.” In addition, I use data from the
HSB on other civic-related behaviors. Specifically, I find three proxies that are appro-
priate to measure θi. The first proxy (Mi1) is whether the individual answered that
correcting social and economic inequalities was very important, as opposed to some-
what or not important, in the baseline survey in 1980. The second proxy (Mi2) indicates
whether the individual participated in service organizations, political clubs, neighbor-
hood groups, or other volunteer work in the 1986 follow-up. The third proxy (Mi3) indi-
cates whether the individual reported at least sometimes discussing public problems in
the country or their own community with others in the 1986 follow-up. Identification re-
lies on the exclusion restriction (Assumption 2.4) which requires that college attendance
does not enter the equation for the first proxy. This assumption is satisfied because Mi1
was measured when the entire sample was still enrolled in high school.

I consider three models that use the first proxy only, the first two proxies only, and
all three proxies. For comparison, the first column in Table 3 reports the results of a re-
gression of Votedi on SomeCollegei that also controls for each of these sets of the three
proxies. Controlling for these measures of civic behaviors and attitudes reduces the co-
efficient slightly, from 0�23 to 0�2. The second column reports estimated bounds on the
ATE. I estimate the bounds using the method describe in Appendix D in the Online Sup-
plementary Material.

Overall, while the bounds narrow as more proxies are included in the model, the
bounds are quite wide. The bounds on the ATE do not exclude 0 in any of the three
models and the width of the bounds narrows from 0�9 to 0�27. The OLS estimates are at
the upper end of the identified set for models 2 and 3. Figure 6 shows pointwise bounds
on the CATE. These bounds are not informative for model 1 and narrow only slightly for
model 2. The bounds for the CATE in model 3 are substantially more narrow. The lower
bound for the CATE at points above 0�5 is near 0.

6. Conclusion

This paper introduces new results that demonstrate how binary proxies can be used
to obtain identification in a nonseparable model with endogeneity. It provides an ap-
proach that assumes neither exogeneity conditional on a vector of observed covariates
nor requires an instrument that is excluded from the outcome equation. Nor does this
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Figure 6. Bounds on the conditional ATE of education on the probability of voting.

approach require any covariates with large support. The model has identifying power,
in the sense that the identified set is nontrivial, with even a few binary proxies. How-
ever, the empirical results in Section 5.1 suggest that the identifying power in the model
can be weak. This suggests that, in these cases, identification in the standard parametric
models is primarily imposed by the parametric structure. The more positive result com-
ing from this paper is that the model is identified in the limit so that it can be estimated
consistently with a large number of proxies. The paper also shows how the model can be
nonparametrically estimated as n�J→ ∞.

These results also suggest an alternative use of high-dimensional data in the context
of an economic model with heterogeneity to current work (see Belloni, Chernozhukov,
Fernández-Val, and Hansen (2017), for a different approach). In a setting where big data
can be quickly and inexpensively generated, the identification conditions provide a road
map for how to produce data that will facilitate identification.

Appendix

Appendix A: Identification proofs

This Appendix contains proofs of the main identification results. A separate Online Sup-
plementary Appendix provides the remaining proofs and results on computation of the
identified set. Appendices B, C, D, and E may be found in the Online Supplementary
Material located in the replication file.

A.1 Preliminary results and a sketch of the proof of Theorem 2.1

Lemma A.1. Under Assumption 2.5, for any ε > 0,

Pr
(∣∣M̄J − p̄J(X�θ)

∣∣> ε) ≤ 2 exp
(−2Jε2)�
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Proof. First,

Pr
(∣∣M̄J − p̄J(x�θ)

∣∣> ε |X = x�θ= t)
= Pr

(∣∣M̄J −E(M̄J |X = x�θ= t)∣∣> ε |X = x�θ= t)
≤ 2 exp

(−2Jε2)� (A.1)

where the equality follows from the definition of p̄J and the inequality follows from
Hoeffding’s inequality since M̄J = J−1 ∑

j �=j0 Mj where the Mj are independent random
variables conditional on (X�θ) (by Assumption 2.5) and are bounded between 0 and 1.

Second, by the law of iterated expectations,

Pr
(∣∣M̄J − p̄J(X�θ)

∣∣> ε) =E(
Pr

(∣∣M̄J − p̄J(x�θ)
∣∣> ε |X�θ))

≤E(
2 exp

(−2Jε2))
= 2 exp

(−2Jε2)� (A.2)

Lemma A.2. Suppose that A and B are two random variables such that Pr(|A − B|
> x) ≤ y. Suppose the distribution function for B is Lipschitz continuous with Lipschitz
constant f̄B (i.e., |Pr(B ≤ x′) − Pr(B ≤ x)| ≤ f̄B|x′ − x|). Then for any z, z′ such that
|z′ − z| ≤w, ∣∣Pr(A≤ z)− Pr

(
B≤ z′)∣∣ ≤ y + (x+w)f̄B�

Proof. See Appendix B in the Online Supplementary Material.

By Lemma A.1, M̄J − p̄J(X�θ)→p 0 as J → ∞. Consider any x ∈ X and t ∈Θ(x). In
Lemma A.4 below, I also show that∣∣m− p̄J(x� t)

∣∣ ≤ rJ/2 =⇒ lim
J→∞

E
(
Y | |M̄J −m|< rJ�X = x) −G(x� t)= 0 (A.3)

for a sequence rJ → 0. A similar result is shown in Douglas (2001) though the observed
covariates,X , are not present in that paper.

Likewise, in the proof of Lemma A.3 below, it is shown that∣∣m− p̄J(x� t)
∣∣ ≤ rJ/2 =⇒ lim

J→∞
TJ(m�x)−pj0(t)= 0� (A.4)

where TJ(m�x) := Pr(Mj0 = 1 | |M̄J −m|< rJ�X = x) for a sequence rJ → 0. This is then
used to show that, for anym in the range of p̄J(x� ·),

lim
J→∞

Pr
(
TJ(M̄J�X)≤ TJ(m�x)

) − p̄−1
J (m;x)= 0� (A.5)

Intuitively, (A.5) follows because (A.4) implies that TJ(m�x)≈ pj0(p̄−1
J (m;x)), and hence

Pr
(
TJ(M̄J�X)≤ TJ(m�x)

) ≈ Pr
(
pj0

(
p̄−1
J (M̄J;X)

) ≤ pj0
(
p̄−1
J (m;x)))

≈ Pr
(
pj0

(
p̄−1
J

(
p̄J(θ�X);X

)) ≤ pj0
(
p̄−1
J (m;x)))
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= Pr
(
pj0(θ)≤ pj0

(
p̄−1
J (m;x)))

= p̄−1
J (m;x)� (A.6)

Now, let S1(m�x) = E(Y | |M̄J − m| < rJ�X = x) and S2(m�x) = Pr(TJ(M̄J�X) ≤
TJ(m�x)) and suppose, for the sake of argument, that S2 is invertible inm. Then∣∣S1

(
S−1

2 (t;x)�x) −G(x� t)∣∣
≤ ∣∣S1

(
S−1

2 (t;x)�x) −G(
x� p̄−1

J

(
S−1

2 (t;x);x))∣∣
+ ∣∣G(

x� p̄−1
J

(
S−1

2 (t;x);x)) −G(
x� p̄−1

J

(
p̄J(x� t);x

))∣∣� (A.7)

But S2 is not invertible since, for a fixed J, the support of M̄J is finite. Thus the proof of
Theorem 2.1 involves showing (a) that a similar expansion still holds (b) that the con-
vergence in (A.3) holds uniformly so that the first term in this expansion converges to 0,
and (c) that the convergence in (A.5) and continuity of G(x� p̄−1

J (m;x)), as a function of
m, imply that the second term in the expansion converges to 0.

A.2 Proof of Theorem 2.1

When considering two models γ0�γ ∈ �J , I will use notation pj�0, p̄J0, F0
θ|X , Θ0(x), etc.

to denote the elements of the model corresponding to γ0 and pj , p̄J , Fθ|X , Θ(x), etc. to
denote the parameters of the model corresponding to γ.

Proof of Theorem 2.1. Under Assumption 2.1, the CASF is given by

G(x� t) := E(Y |X = x�θ= t)

=
∫
g(x� t�u)dFU |X�θ(u | x� t)

=
∫
g(x� t�u)dFU(u)� (A.8)

Given this mapping from the model parameter γ to the object G and given an arbitrary
γ0 ∈ �J , the identified set IJ(γ0;G(·)) is defined by equation (2.4). Let G ∈ IJ(γ0;G(·)).
Then there exists γ ∈ �J such that PJ(γ) = PJ(γ0) and G(x� t) = ∫

g(x� t�u)dFU(u) and
G0(x� t)= ∫

g0(x� t�u)dF
0
U(u).

Fix x ∈ X and t0 ∈ Θ0(x) and define m0 := p̄J0(x� t0). By the triangle inequality, for
any rJ > 0, ∣∣G0(x� t0)−G(x� t0)

∣∣ ≤ ∣∣G0(x� t0)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣

+ ∣∣G(x� t)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣� (A.9)

By Lemma A.3, there exists a constantA> 0 such that, for J sufficiently large,

∣∣m0 − p̄J(x� t0)
∣∣ = ∣∣p̄J0(x� t0)− p̄J(x� t0)

∣∣ ≤A(
log(J)/J

)1/2
�
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Then for rJ = 2 max{A�1 + ε}(log(J)/J)1/2, for ε > 0,

sup
γ0∈�J�G∈IJ(γ0;G(·))

‖G0 −G‖

≤ 2 sup
P

0
J

sup
γ:PJ(γ)=P

0
J

sup
x∈X �t∈Θ(x)

m0∈[0�1]:|m0−p̄J(x�t)|≤rJ/2

∣∣G(x� t)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣

=O(rJ) (A.10)

by Lemma A.4 and, therefore, limJ→∞ supγ0∈�J�G∈IJ(γ0;G(·)) ‖G0 −G‖ = 0, as desired.

Lemma A.3. Under the assumptions of Theorem 2.1,

sup
γ0�γ∈�J :PJ(γ)=PJ(γ0)

sup
x∈X �t0∈Θ0(x)

∣∣p̄J0(x� t0)− p̄J(x� t0)
∣∣ =O((

log(J)/J
)1/2)

�

Lemma A.4. Under the assumptions of Theorem 2.1, for rJ =A∗(log(J)/J)1/2, forA∗ > 2,

sup
P

0
J

sup
γ:PJ(γ)=P

0
J

sup
x∈X �t∈Θ(x)

m0∈[0�1]:|m0−p̄J(x�t)|≤rJ/2

∣∣G(x� t)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣ =O(rJ)�

A.3 Proof of Lemmas A.3 and A.4

Proof of Lemma A.3. Step 1: I will first show that there exists J0(c�C) such that, for all
x ∈ X and t0 ∈Θ0(x) and all J ≥ J0(c�C), ∃t ∈Θ(x) such that

∣∣p̄J0(x� t0)− p̄J(x� t)
∣∣ ≤ 2

(
log(J)
J

)1/2
� (A.11)

Fix x ∈X and t0 ∈Θ0(x) and let aJ = ( log(J)
J )1/2. I will first show that

Pr
(∣∣M̄J − p̄J0(x� t0)

∣∣ ≤ aJ |X = x) ≥ caJ
C

− 2c−1 exp
(

−1
2
Ja2
J

)
� (A.12)

First, by iterating expectations and then restricting the range of θ,

Pr
(∣∣M̄J − p̄J0(x� t0)

∣∣ ≤ aJ |X = x)
=

∫
Pr

(∣∣M̄J − p̄J0(x� t0)
∣∣ ≤ aJ |X = x�θ= τ)dF0

θ|X=x(τ)

≥
∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

Pr
(∣∣M̄J − p̄J0(x� t0)

∣∣ ≤ aJ |X = x�θ= τ)dF0
θ|X=x(τ)

=
∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

(
1 − Pr

(∣∣M̄J − p̄J0(x� t0)
∣∣> aJ |X = x�θ= τ))dF0

θ|X=x(τ)

≥
∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

(
1 − Pr

(∣∣M̄J − p̄J0(x�τ)
∣∣> aJ/2 |

X = x�θ= τ))dF0
θ|X=x(τ)� (A.13)
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where the last inequality follows because |M̄J − p̄J0(x�τ)| ≥ |M̄J − p̄J0(x� t0)| − |p̄J0(x�

τ)− p̄J0(x� t0)|.
Next, applying the law of iterated expectations in reverse,∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

(
1 − Pr

(∣∣M̄J − p̄J0(x�τ)
∣∣> aJ/2 |X = x�θ= τ))dF0

θ|X=x(τ)

=
∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

dF0
θ|X=x(τ)

−
∫
τ:|p̄J0(x�τ)−p̄J0(x�t0)|≤aJ/2

Pr
(∣∣M̄J − p̄J0(x�τ)

∣∣> aJ/2 |X = x�θ= τ)dF0
θ|X=x(τ)

≥ Pr
(∣∣p̄J0(x�θ)− p̄J0(x� t0)

∣∣ ≤ aJ/2 |X = x)
− Pr

(∣∣M̄J − p̄J0(x�θ)
∣∣> aJ/2 |X = x)� (A.14)

By Assumption 2.7,

Pr
(∣∣p̄J0(x�θ)− p̄J0(x� t0)

∣∣ ≤ aJ/2 |X = x) ≥ F0
θ|X=x

(
t0 + aJ

2C

)
− F0

θ|X=x
(
t0 − aJ

2C

)

≥ caJ
C
� (A.15)

and, applying Lemma A.1,

Pr
(∣∣M̄J − p̄J0(x�θ)

∣∣> aJ/2 |X = x) ≤ Pr
(∣∣M̄J − p̄J0(X�θ)

∣∣> aJ/2�X = x)
Pr(X = x)

≤ 2c−1 exp
(

−1
2
Ja2
J

)
� (A.16)

Inequality (A.12) follows from (A.13)–(A.16).
On the other hand, consider the model parameterized by γ ∈ �J . If |M̄J− p̄J0(x� t0)| ≤

aJ then for any τ either |p̄J(x� τ)− p̄J0(x� t0)| ≤ 2aJ or |M̄J − p̄J(x� τ)|> aJ . Therefore,

Pr
(∣∣M̄J − p̄J0(x� t0)

∣∣ ≤ aJ |X = x)
=

∫
Pr

(∣∣M̄J − p̄J0(x� t0)
∣∣ ≤ aJ |X = x�θ= τ)dFθ|X=x(τ)

≤
∫

Pr
(∣∣p̄J(x� τ)− p̄J0(x� t0)

∣∣ ≤ 2aJ |X = x�θ= τ)dFθ|X=x(τ)

+
∫

Pr
(∣∣M̄J − p̄J(x� τ)

∣∣> aJ |X = x�θ= τ)dFθ|X=x(τ)

= Pr
(∣∣p̄J(x�θ)− p̄J0(x� t0)

∣∣ ≤ 2aJ |X = x)
+ Pr

(∣∣M̄J − p̄J(x�θ)
∣∣> aJ |X = x)� (A.17)

Since γ must also satisfy Assumption 2.5,

Pr
(∣∣M̄J − p̄J(x�θ)

∣∣> aJ |X = x) ≤ 2c−1 exp
(−2Ja2

J

)
� (A.18)
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To prove the result by contradiction, suppose that |p̄J(x� τ)− p̄J0(x� t0)|> 2aJ for all
τ ∈Θ(x). Then Pr(|p̄J(x�θ)− p̄J0(x� t0)|< 2aJ |X = x)= 0 and (A.12), (A.17), and (A.18)
together imply that

c

C
aJ − 2c−1 exp

(
−1

2
Ja2
J

)
≤ Pr

(∣∣M̄J − p̄J0(x� t0)
∣∣ ≤ aJ |X = x)

≤ 2c−1 exp
(−2Ja2

J

)
(A.19)

which implies that

c

C

(
log(J)
J

)1/2
≤ 2c−1J−2 + 2c−1J−1/2 (A.20)

which implies a contradiction for large enough J. I can conclude that for all sufficiently
large J, ∃t ∈Θ(x) such that |p̄J0(x� t0)− p̄J(x� t)| ≤ 2aJ .

Step 2: I will next show that, because |p̄J0(x� t0) − p̄J(x� t)| ≤ 2( log(J)
J )1/2, it follows

that

|t − t0| =O(rJ)� (A.21)

For any x′ ∈ X andm′
0 ∈ [0�1], define TJ(m′

0�x
′; rJ) :=E(Mj0 | |M̄J −m′

0| ≤ rJ�X = x′).
I will show below that for any t ′0 ∈Θ0(x

′), if |p̄J0(x
′� t ′0)−m′

0|< rJ/2 where rJ = 4( log(J)
J )1/2

then ∣∣TJ(m′
0�x

′; rJ
) −pj0�0

(
t ′0

)∣∣
≤ δJ := 2B exp

(−2Jr2
J

)
c2

2C
rJ − 2 exp

(
−1

8
Jr2
J

) + 3C
c
rJ� (A.22)

This implies that

Pr
(∣∣TJ(M̄J�X; rJ)−pj0�0(θ)

∣∣> δJ) ≤ Pr
(∣∣p̄J0(X�θ)− M̄J

∣∣> rJ/2)
≤ ρJ := 2 exp

(
−1

2
Jr2
J

)
� (A.23)

where the second line follows from Lemma A.1.
Since γ is observationally equivalent to γ0, the same argument shows that for any

t ′ ∈Θ(x′), if |p̄J(x′� t ′)−m′
0| ≤ rJ/2 then∣∣TJ(m′

0�x
′; rJ

) −pj0
(
t ′
)∣∣ ≤ δJ (A.24)

and hence

Pr
(∣∣TJ(M̄J�X; rJ)−pj0(θ)

∣∣> δJ) ≤ Pr
(∣∣p̄J(X�θ)− M̄J

∣∣> rJ/2) ≤ ρJ� (A.25)

It can also be concluded from (A.22) and (A.24) that for m0 = p̄J0(x� t0), since, by as-
sumption, |m0 − p̄J(x� t)| ≤ rJ/2,∣∣pj0�0(t0)−pj0(t)

∣∣ ≤ ∣∣TJ(m0�x; rJ)−pj0�0(t0)
∣∣ + ∣∣TJ(m0�x; rJ)−pj0(t)

∣∣ ≤ 2δJ� (A.26)
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Then (A.23) implies that

∣∣Pr
(
TJ(M̄J�X; rJ)≤ pj0�0(t0)

) − t0
∣∣ ≤ δJ

c
+ ρJ (A.27)

by an application of Lemma A.2 with A = TJ(M̄J�X; rJ), B = pj0�0(θ), and z = z′ =
pj0�0(t0) since Pr(pj0�0(θ) ≤ pj0�0(t0)) = t0 and the distribution function Pr(pj0�0(θ) ≤ z)
is Lipschitz continuous with fB̄ = 1/c.

Similarly, (A.25) and (A.26) imply that

∣∣Pr
(
TJ(M̄J�X; rJ)≤ pj0�0(t0)

) − t∣∣ ≤ 3δJ
c

+ ρJ (A.28)

by an application of Lemma A.2 with A = TJ(M̄J�X; rJ), B = pj0(θ), z = pj0�0(t0) and

z′ = pj0(t).
Then (A.27) and (A.28) imply that |t− t0| ≤ 4δJ

c +2ρJ . The desired result follows since,

plugging in rJ = 4( log(J)
J )1/2,

4δJ
c

+ 2ρJ = 4
c

⎛
⎜⎜⎝ 2BJ−32

2c2

C

(
log(J)/J

)1/2 − 2J−2
+ 3C

c
rJ

⎞
⎟⎟⎠ + 4J−8 =O(rJ)� (A.29)

It remains to show that (A.22) holds for any x′ ∈ X , anym′
0 ∈ [0�1] and any t ′0 ∈Θ0(x

′)
for which |p̄J0(x

′� t ′0) −m′
0| < rJ/2. The proof of this is almost identical to the proof of

Lemma A.4, so I will provide only a sketch.

First, by Assumption 2.5, E(Mj0 | |M̄J −m′
0| ≤ rJ�X = x′) = E(E(Mj0 | X�θ) | |M̄J −

m′
0| ≤ rJ�X = x′). Therefore, since, by Assumption 2.4, E(Mj0 |X = x′� θ)= pj0�0(θ),

∣∣pj0�0(t ′0) −E(
Mj0 | ∣∣M̄J −m′

0

∣∣ ≤ rJ�X = x′)∣∣
= ∣∣pj0�0(t ′0) −E(

E
(
Mj0 |X = x′� θ

) | ∣∣M̄J −m′
0

∣∣ ≤ rJ�X = x′)∣∣
≤

∣∣∣∣
∫ (
pj0�0

(
t ′0

) −pj0�0(τ)
)
dF0

θ||M̄J−m′
0|≤rJ�X=x′(τ)

∣∣∣∣
≤ 3C

c
rJ +BPr

(∣∣p̄J0
(
x′� θ

) − p̄J0
(
x′� t ′0

)∣∣> 3rJ | ∣∣M̄J −m′
0

∣∣ ≤ rJ�X = x′)
≤ 3C

c
rJ +BPr

(∣∣M̄J − p̄J0
(
x′� θ

)∣∣> rJ | ∣∣M̄J −m′
0

∣∣ ≤ rJ�X = x′)

≤ 3C
c
rJ + 2B exp

(−2Jr2
J

)
c2

2C
rJ − 2 exp

(
−1

8
Jr2
J

) � (A.30)

where the third inequality follows because |p̄J0(x
′� t ′0)−m′

0|< rJ/2.
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Step 3: Combining equations (A.11) and (A.21),

∣∣p̄J0(x� t0)− p̄J(x� t0)
∣∣ ≤ ∣∣p̄J0(x� t0)− p̄J(x� t)

∣∣ + ∣∣p̄J(x� t)− p̄J(x� t0)
∣∣

≤ C|t0 − t| + 2
(

log(J)
J

)1/2

=O
((

log(J)
J

)1/2)
� (A.31)

where the second line uses Assumption 2.7.

Proof of Lemma A.4. Consider any x ∈ X and t ∈ Θ(x) and let m0 be such that |m0 −
p̄J(x� t)| ≤ rJ/2.

First, since PJ(γ) = P0
J and γ satisfies Assumptions 2.1 and 2.5, E(Y | |M̄J −m0| ≤

rJ�X = x)= ∫
G(x�τ)dFθ||M̄J−m0|≤rJ �X=x(τ). Therefore,

∣∣G(x� t)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣

=
∣∣∣∣
∫ (
G(x� t)−G(x�τ))dFθ||M̄J−m0|≤rJ �X=x(τ)

∣∣∣∣
≤

∫
τ:|p̄J(x�τ)−p̄J(x�t)|≤3rJ

∣∣G(x�τ)−G(x� t)∣∣dFθ||M̄J−m0|≤rJ�X=x(τ)

+
∫
τ:|p̄J(x�τ)−p̄J(x�t)|>3rJ

∣∣G(x�τ)−G(x� t)∣∣dFθ||M̄J−m0|≤rJ�X=x(τ)

≤ 3C
c
rJ +BPr

(∣∣p̄J(x�θ)− p̄J(x� t)
∣∣> 3rJ | |M̄J −m0| ≤ rJ�X = x)� (A.32)

The first term in the final line follows because |G(x�τ)−G(x� t)| ≤ C|τ− t| and because

|p̄J(x� τ)− p̄J(x� t)| ≥ c|τ− t|. The second term in the final line of (A.35) follows because

G(x� ·) is uniformly continuous on a compact subset of R for each x and |X | is finite and,

therefore, there is some positive constant B <∞ such that supx∈X �t∈Θ(x) |G(x� t)| ≤ B/2.

Next, if |m0 − p̄J(x� t)| ≤ rJ/2, |p̄J(x�θ)− p̄J(x� t)|> 3rJ , and |M̄J −m0| ≤ rJ then

∣∣M̄J − p̄J(x�θ)
∣∣ ≥ ∣∣p̄J(x�θ)− p̄J(x� t)

∣∣ − |M̄J −m0| −
∣∣m0 − p̄J(x� t)

∣∣
> rJ (A.33)

and, therefore,

Pr
(∣∣p̄J(x�θ)− p̄J(x� t)

∣∣> 3rJ | |M̄J −m0| ≤ rJ�X = x)
≤ Pr

(∣∣M̄J − p̄J(x�θ)
∣∣> rJ | |M̄J −m0| ≤ rJ�X = x)� (A.34)
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Next,

Pr
(∣∣M̄J − p̄J(x�θ)

∣∣> rJ | |M̄J −m0| ≤ rJ�X = x)
= Pr

(∣∣M̄J − p̄J(X�θ)
∣∣> rJ� |M̄J −m0| ≤ rJ�X = x)

Pr
(|M̄J −m0| ≤ rJ�X = x)

≤ Pr
(∣∣M̄J − p̄J(X�θ)

∣∣> rJ)
Pr

(|M̄J −m0| ≤ rJ�X = x) � (A.35)

Applying Lemma A.1, since γ must satisfy Assumption 2.5,

Pr
(∣∣M̄J − p̄J(X�θ)

∣∣> rJ) ≤ 2 exp
(−2Jr2

J

)
� (A.36)

Combining this with equations (A.32)–(A.35),∣∣G(x� t)−E(
Y | |M̄J −m0| ≤ rJ�X = x)∣∣

≤ 2B exp
(−2Jr2

J

)
Pr(|M̄J −m0| ≤ rJ�X = x) + 3C

c
rJ� (A.37)

The desired result follows because Pr(|M̄J −m0| ≤ rJ�X = x) = Pr(|M̄J −m0| ≤ rJ |
X = x)Pr(X = x), Pr(X = x)≥ c, and

Pr
(|M̄J −m0| ≤ rJ |X = x) ≥ crJ

2C
− 2c−1 exp

(
−1

8
Jr2
J

)
� (A.38)

The proof is concluded by proving (A.38) since

2B exp
(−2Jr2

J

)
c2rJ
2C

− 2 exp
(

−1
8
Jr2
J

) = 2BJ−2A∗2

A∗c2

2C
(
log(J)/J

)1/2 − 2J−A∗2/8
=O(rJ)� (A.39)

sinceA∗ > 2.
Since |m0 − p̄J(x� t)| ≤ rJ/2, Pr(|M̄J −m0| ≤ rJ |X = x) ≥ Pr(|M̄J − p̄J(x� t)| ≤ rJ/2 |

X = x). Following the arguments in lines (A.13) and (A.14) of the proof of Lemma A.3,

Pr
(∣∣M̄J − p̄J(x� t)

∣∣ ≤ rJ/2 |X = x)
≥ Pr

(∣∣p̄J(x�θ)− p̄J(x� t)
∣∣ ≤ rJ/4 |X = x)

− Pr
(∣∣M̄J − p̄J(x�θ)

∣∣> rJ/4 |X = x)� (A.40)

By Assumption 2.7,

Pr
(∣∣p̄J(x�θ)− p̄J(x� t)

∣∣ ≤ rJ/4 |X = x)
≥ Fθ|X=x

(
p̄J(x� t)+ rJ

4C

)
− Fθ|X=x

(
p̄J(x� t)− rJ

4C

)

≥ crJ
2C
� (A.41)
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and, applying Lemma A.1,

Pr
(∣∣M̄J − p̄J(x�θ)

∣∣> rJ/4 |X = x) ≤ 2c−1 exp
(

−1
8
Jr2
J

)
� (A.42)

This proves inequality (A.38) and completes the proof.
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