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A more powerful subvector Anderson Rubin test in linear
instrumental variables regression

Patrik Guggenberger
Department of Economics, Pennsylvania State University

Frank Kleibergen
Amsterdam School of Economics, University of Amsterdam

Sophocles Mavroeidis
Department of Economics, University of Oxford

We study subvector inference in the linear instrumental variables model assum-
ing homoskedasticity but allowing for weak instruments. The subvector Anderson
and Rubin (1949) test that uses chi square critical values with degrees of freedom
reduced by the number of parameters not under test, proposed by Guggenberger,
Kleibergen, Mavroeidis, and Chen (2012), controls size but is generally conserva-
tive. We propose a conditional subvector Anderson and Rubin test that uses data-
dependent critical values that adapt to the strength of identification of the param-
eters not under test. This test has correct size and strictly higher power than the
subvector Anderson and Rubin test by Guggenberger et al. (2012). We provide ta-
bles with conditional critical values so that the new test is quick and easy to use.
Application of our method to a model of risk preferences in development eco-
nomics shows that it can strengthen empirical conclusions in practice.

Keywords. Asymptotic size, linear IV regression, subvector inference, weak in-
struments.

JEL classification. C12, C26.

1. Introduction

Inference in the homoskedastic linear instrumental variables (IV) regression model with
possibly weak instruments has been the subject of a growing literature.1 Most of this lit-
erature has focused on the problem of inference on the full vector of slope coefficients
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of the endogenous regressors. Weak-instrument robust inference on subvectors of slope
coefficients is a harder problem, because the parameters not under test become addi-
tional nuisance parameters, and has received less attention in the literature; see, for ex-
ample, Dufour and Taamouti (2005), Guggenberger et al. (2012) (henceforth GKMC), and
Kleibergen (2019).

The present paper contributes to that part of the literature and focuses on the sub-
vector Anderson and Rubin (1949) (AR) test studied by GKMC. Chernozhukov et al.
(2009) showed that the full vector AR test is admissible; see also Montiel-Olea (2017).
GKMC proved that the use of chi square critical values χ2

k−mW
, where k is the num-

ber of instruments and mW is the number of unrestricted slope coefficients under the
null hypothesis, results in a subvector AR test with asymptotic size equal to the nominal
size, thus providing a power improvement over the projection approach (see Dufour and
Taamouti (2005)) that uses χ2

k critical values.
This paper is motivated by the insight that the largest quantiles of the subvector AR

test statistic, namely the quantiles of a χ2
k−mW

distribution, occur under strong identi-
fication of the nuisance parameters. Therefore, there may be scope for improving the
power of the subvector AR test by using data-dependent critical values that adapt to the
strength of identification of the nuisance parameters. Indeed, we propose a new data-
dependent critical value for the subvector AR test that is smaller than the χ2

k−mW
critical

value in GKMC. The new critical value depends monotonically on a statistic that mea-
sures the strength of identification of the nuisance parameters under the null (akin to a
first-stage F statistic in a model with mW = 1), and converges to the χ2

k−mW
critical value

when the conditioning statistic gets large. We prove that the new conditional subvector
AR test has correct asymptotic size and strictly higher power than the test in GKMC and,
therefore, the subvector AR test in GKMC is inadmissible.

At least in the case mW = 1, there is little scope for exploring alternative approaches,
such as, for example, Bonferroni, for using information about the strength of identifica-
tion to improve the power of the new conditional subvector test. Specifically, in the case
mW = 1, we use the approach of Elliott, Müller, and Watson (2015) to obtain a point-
optimal power bound for any test that only uses the subvector AR statistic and our mea-
sure of identification strength, and find that the power of the new conditional subvector
AR test is very close to it.

Implementation of the new subvector test is trivial. The test statistic is the same as
in GKMC and the critical values, as functions of a scalar conditioning statistic, are tabu-
lated.

Our analysis relies on the insight that the subvector AR statistic is the likelihood ratio
statistic for testing that the mean of a k×p Gaussian matrix with Kronecker covariance is
of reduced rank, where p := 1 +mW . When the covariance matrix is known, this statistic
corresponds to the minimum eigenvalue of a noncentral Wishart matrix. This enables
us to draw on a large related statistical literature; see Muirhead (2009). A useful result
from Perlman and Olkin (1980) establishes the monotonicity of the distribution of the
subvector AR statistic with respect to the concentration parameter which measures the
strength of identification when mW = 1. The proposed conditional critical values are
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based on results given in Muirhead (1978) on approximations of the distribution of the
eigenvalues of noncentral Wishart matrices.

In the Gaussian linear IV model, we show that the finite-sample size of the condi-
tional subvector AR test depends only on a mW -dimensional nuisance parameter. When
mW = 1, it is therefore straightforward to compute the finite-sample size by simula-
tion or numerical integration, and we prove that finite-sample size for general mW is
bounded by the size in the case mW = 1. The conditional subvector AR test depends
on eigenvalues of quadratic forms of random matrices. We combine the method of An-
drews, Cheng, and Guggenberger (2019) that was used in GKMC with results in Andrews
and Guggenberger (2015) to show that the asymptotic size of the new test can be com-
puted from finite-sample size when errors are Gaussian and their covariance matrix is
known.

Three other related papers are Rhodes (1981) that studies the exact distribution of
the likelihood ratio statistic for testing the validity of overidentifying restrictions in a
Gaussian simultaneous equations model; and Nielsen (1999, 2001) that study condi-
tional tests of rank in bivariate canonical correlation analysis, which is related to the
present problem when k= 2 and mW = 1. These papers do not provide results on asymp-
totic size or power.

In ongoing work, Kleibergen (2019) provided power improvements over projection
for the conditional likelihood ratio test for a subvector hypothesis in the linear IV model.
Building on the approach of Chaudhuri and Zivot (2011), Andrews (2017) proposed a
two-step Bonferroni-like method that applies more generally to nonlinear models with
non-i.i.d. heteroskedastic data, and is asymptotically efficient under strong identifi-
cation. Our paper focuses instead on power improvement under weak identification.
Another related recent paper on subvector inference in the linear IV model is Wang
and Tchatoka (2018). Also, see Zhu (2015), whose setup also allows for conditional het-
eroskedasticity and is based on the Bonferroni method. Andrews and Mikusheva (2016)
develop robust subvector inference in nonlinear models. Han and McCloskey (2019)
study subvector inference in nonlinear models with near singular Jacobian. Kaido, Moli-
nari, and Stoye (2016) and Bugni, Canay, and Shi (2017) consider subvector inference in
models defined by moment inequalities.

The analysis in this paper relies critically on the assumption of homoskedasticity.
Allowing for heteroskedasticity is difficult because the number of nuisance parameters
grows with k, and finite-sample distribution theory becomes intractable. When testing
hypotheses on the full vector of coefficients in linear IV regression, robustness to het-
eroskedasticity is asymptotically costless since the heteroskedasticity-robust AR test is
asymptotically equivalent to the nonrobust one under homoskedasticity, and the latter
is admissible. However, in the subvector case, our paper shows that one can exploit the
structure of the homoskedastic linear IV model to obtain more powerful tests, while it
is not at all clear whether this is feasible under heteroskedasticity. Therefore, given the
current state of the art, our results seem to indicate that there is a trade-off between effi-
ciency and robustness to heteroskedasticity for subvector testing in the linear IV model.
Note that the conditional subvector AR test suggested here must have asymptotic size
exceeding the nominal size if one allows for arbitrary forms of heteroskedasticty. This
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follows from the fact that this test has uniformly higher rejection probabilities that the
unconditional subvector AR test in GKMC and the latter test must have asymptotic size
larger than nominal size under heteroskedasticity. The subvector AR statistic here uses
the weighting matrix that is valid only under homoskedasticity. While it converges to
a chi square χ2

k−mW
limiting distribution under strong identification of the parameters

not under test and homoskedasticity, its limiting distribution under heteroskedasticity
would depend on nuisance parameters some of which leading to quantiles that exceed
the corresponding quantiles of a χ2

k−mW
distribution.

The structure of the paper is as follows. Section 2 provides the finite-sample results
with Gaussian errors, fixed instruments, and known covariance matrix. Section 3 gives
asymptotic results. Section 4 provides a Monte Carlo comparison of the power of the
new test and a heteroskedasticity-robust test in a model with conditional homoskedas-
ticity to investigate potential loss of power for robustness to heteroskedasticity. Section 5
provides an empirical application of our method to a model of risk preferences from
Tanaka, Camerer, and Nguyen (2010), and shows that conclusions from previous less
powerful methods can be reversed, namely insignificant effects become significant. The
main goal of this section is to provide a self-contained guide for empirical researchers
on how to implement our procedure to conduct a hypothesis test/build a confidence re-
gion. Finally, Section 6 concludes. All proofs of the main results in the paper and tables of
conditional critical values for the cases k−mW = 1� � � � �5 are provided in the Appendix.
Additional tables of critical values, computational details, and additional numerical re-
sults are given in the Online Supplementary Material (SM) (Guggenberger, Kleibergen,
and Mavroeidis (2019)).

We use the following notation. For a full column rank matrix A with n rows, let
PA = A(A′A)−1A′ and MA = In − PA, where In denotes the n × n identity matrix. If A
has zero columns, then we set MA = In. The chi square distribution with k degrees of
freedom and its 1 − α-quantile are written as χ2

k and χ2
k�1−α, respectively. For an n × n

matrix A, ρ(A) denotes the rank of A and κi(A), i = 1� � � � � n denote the eigenvalues of
A in nonincreasing order. By κmin(A) and κmax(A), we denote the smallest and largest
eigenvalue of A, respectively. We write 0n×k to denote a matrix of dimensions n by k with
all entries equal to zero and typically write 0n for 0n×1.

2. Finite-sample analysis

The model is given by the equations

y = Yβ+W γ + ε�

Y =ZΠY + VY � (2.1)

W =ZΠW + VW �

where y ∈ �n, Y ∈ �n×mY , W ∈ �n×mW , and Z ∈ �n×k. We assume that k − mW ≥ 1. The
reduced form can be written as(

y Y W
)

= Z
(
ΠY ΠW

)(β ImY 0mY×mW

γ 0mW ×mY ImW

)
+
(
vy VY VW

)
︸ ︷︷ ︸

V

� (2.2)
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where vy := VYβ+ VW γ + ε. By Vi we denote the ith row of V written as a column vector
and similarly for other matrices. Let m := mY +mW .

The objective is to test the hypothesis

H0 : β= β0 against H1 : β �= β0� (2.3)

using tests whose size, that is, the highest null rejection probability (NRP) over the un-
restricted nuisance parameters ΠY , ΠW , and γ, equals the nominal size α. In particular,
weak identification and nonidentification of β and γ are allowed for.

Throughout this section, we make the following assumption.

Assumption A. 1. Vi := (vyi� V
′
Yi�V

′
W i)

′ ∼ i.i.d.N(0(m+1)�Ω), i = 1� � � � � n, for some Ω ∈
�(m+1)×(m+1) such that

Ω(β0) :=
⎛⎜⎝ 1 01×mW

−β0 0mY×mW

0mW ×1 ImW

⎞⎟⎠
′

Ω

⎛⎜⎝ 1 01×mW

−β0 0mY×mW

0mW ×1 ImW

⎞⎟⎠ (2.4)

is known and positive definite. 2. The instruments Z ∈ �n×k are fixed and Z′Z ∈ �k×k is
positive definite.

The subvector AR statistic for testing H0 is defined as

ARn(β0) := min
γ̃∈�mW

(Y 0 −W γ̃)′PZ(Y 0 −W γ̃)(
1�−γ̃′)Ω(β0)

(
1�−γ̃′)′ � (2.5)

where Ω(β0) is defined in (2.4) and

Y 0 := y −Yβ0� (2.6)

Denote by κ̂i for i = 1� � � � �p := 1 +mW the roots of the following characteristic polyno-
mial in κ: ∣∣κΩ(β0)− (Y 0�W )′PZ(Y 0�W )

∣∣= 0� (2.7)

ordered nonincreasingly. Then

ARn(β0) = κ̂p� (2.8)

that is, ARn(β0) equals the smallest characteristic root; see, for example, Schmidt
(1976, Chapter 4.8). The subvector AR test in GKMC rejects H0 at significance level α if
ARn(β0) > χ2

k−mW �1−α, while the AR test based on projection rejects if ARn(β0) > χ2
k�1−α.

Under Assumption A, the subvector AR statistic equals the minimum eigenvalue of
a noncentral Wishart matrix. More precisely, we show in the Appendix (Section A.2) that
the roots κ̂i of (2.7) for i = 1� � � � �p, satisfy

0 = ∣∣κ̂iIp −Ξ′Ξ
∣∣� (2.9)

where Ξ ∼ N(M� Ikp) for some nonrandom M ∈ �k×p (defined in (A.11) in the Ap-
pendix). Furthermore, under the null hypothesis H0, M = (0k�ΘW ) for some ΘW ∈



492 Guggenberger, Kleibergen, and Mavroeidis Quantitative Economics 10 (2019)

�k×mW (defined in (A.13) in the Appendix), and thus ρ(M) ≤ mW , where again ρ(M)

denotes the rank of the matrix M. Therefore, Ξ′Ξ ∼ Wp(k� Ip�M′M), where the latter
denotes a noncentral Wishart distribution with k degrees of freedom, covariance matrix
Ip, and noncentrality matrix

M′M =
(

0 01×mW

0mW ×1 Θ′
W ΘW

)
� (2.10)

The joint distribution of the eigenvalues of a noncentral Wishart matrix only de-
pends on the eigenvalues of the noncentrality matrix M′M (see, e.g., Muirhead (2009)).
Hence, the distribution of (κ̂1� � � � � κ̂p) under the null only depends on the eigenvalues
of Θ′

W ΘW , which we denote by

κi := κi

(
Θ′

W ΘW

)
� i = 1� � � � �mW � (2.11)

We can think of Θ′
W ΘW as the concentration matrix for the endogenous regressors W ;

see, for example, Stock, Wright, and Yogo (2002). In the case when mW = 1, Θ′
W ΘW is

a scalar, and corresponds to the well-known concentration parameter (see, e.g., Staiger
and Stock (1997)) that measures the strength of the identification of the parameter vec-
tor γ not under test.

2.1 Motivation for conditional subvector AR test: Case mW = 1

The above established that when mW = 1 the distribution of ARn(β0) under H0 depends
only on the single nuisance parameter κ1. The following result gives a useful monotonic-
ity property of this distribution.

Theorem 1. Suppose that Assumption A holds and mW = 1. Then, under the null hy-
pothesis H0 : β = β0, the distribution function of the subvector AR statistic in (2.5) is
monotonically decreasing in the parameter κ1, defined in (2.11), and converges to χ2

k−1
as κ1 → ∞.

This result follows from Perlman and Olkin (1980, Theorem 3.5), who established
that the eigenvalues of a k × p noncentral Wishart matrix are stochastically increasing
in the nonzero eigenvalue of the noncentrality matrix when the noncentrality matrix is
of rank 1.

Theorem 1 shows that the subvector AR test in GKMC is conservative for all κ1 <

∞, because its NRP Prκ1(ARn(β0) > χ2
k−1�1−α) is monotonically increasing in κ1 and

the worst case occurs at κ1 = ∞. Hence, it seems possible to improve the power of the
subvector AR test by reducing the χ2

k−1 critical value based on information about the
value of κ1.

If κ1 were known, which it is not, one would set the critical value equal to the 1 − α

quantile of the exact distribution of ARn(β0) and obtain a similar test with higher power
than the subvector AR test in GKMC. Alternatively, if there was a one-dimensional min-
imal sufficient statistic for κ1 under H0, one could obtain a similar test by conditioning
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on it. Unfortunately, we are not aware of such a statistic. However, an approximation
to the density of eigenvalues of noncentral Wishart matrices by Leach (1969), special-
ized to this case, implies that the largest eigenvalue κ̂1 is approximately sufficient for
κ1 when κ1 is “large” and κ2 = 0. Based on this approximation, Muirhead (1978, Sec-
tion 6) provides an approximate, nuisance parameter-free, conditional density of the
smallest eigenvalue κ̂2 given the largest one κ̂1. This approximate density (with respect
to Lebesgue measure) of κ̂2 given κ̂1 can be written as

f ∗
κ̂2|κ̂1

(x2|κ̂1) = fχ2
k−1

(x2)(κ̂1 − x2)
1/2g(κ̂1)� x2 ∈ [0� κ̂1]� (2.12)

where fχ2
k−1

(·) is the density of a χ2
k−1 and g(κ̂1) is a function that does not depend on

any unknown parameters; see (A.22) in the Appendix.
Because (2.12) is analytically available, the quantiles of the distribution whose den-

sity is given in (2.12) can be computed easily using numerical integration for fixed values
of κ̂1. Figure 1 plots the 1 − α quantile of that distribution as a function of κ̂1 for α = 5%
and k = 2�5�10, and 20. It is evident that this conditional quantile function is strictly
increasing in κ̂1 and asymptotes to χ2

k−1�1−α.2 We propose to use the above conditional
quantile function to obtain conditional critical values for the subvector AR statistic.

In practice, to make implementation of the test straightforward for empirical re-
searchers, we tabulate the conditional critical value function for different k − 1 and α

Figure 1. Conditional critical value function. The solid line plots c1−α(κ̂1;k−1), the 1−α quan-
tile of the distribution given in (2.12), for α= 0�05. The dotted straight line gives the correspond-
ing 1 − α quantile of χ2

k−1.

2The monotonicity statement is made based on numerical integration without an analytical proof. An
analytical proof of the limiting result is given in Appendix A.3.
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Table 1. 1 − α quantile of the conditional distribution with density given in (2.12), cv =
c1−α(κ̂1�k − 1) at different values of the conditioning variable κ̂1. Computed by numerical in-
tegration.

α = 5%, k− 1 = 4

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1�2 1�1 2�1 1�9 3�2 2�9 4�5 3�9 5�9 4�9 7�4 5�9 9�4 6�9 12�5 7�9 20�9 8�9
1�3 1�2 2�3 2�1 3�5 3�1 4�7 4�1 6�2 5�1 7�8 6�1 9�9 7�1 13�4 8�1 26�5 9�1
1�4 1�3 2�5 2�3 3�7 3�3 5�0 4�3 6�5 5�3 8�2 6�3 10�5 7�3 14�5 8�3 39�9 9�3
1�6 1�5 2�7 2�5 4�0 3�5 5�3 4�5 6�8 5�5 8�6 6�5 11�1 7�5 15�9 8�5 57�4 9�4
1�8 1�7 3�0 2�7 4�2 3�7 5�6 4�7 7�1 5�7 9�0 6�7 11�7 7�7 17�9 8�7 1000 9�48

over a grid of points κ̂1�j , j = 1� � � � � J, say, and conditional critical values for any given κ̂1

are obtained by linear interpolation.3 Specifically, let q1−α�j(k−1) denote the 1−α quan-
tile of the distribution whose density is given by (2.12) with κ̂1 replaced by κ̂1�j . The end
point of the grid κ̂1�J should be chosen high enough so that q1−α�J(k − 1) ≈ χ2

k−1�1−α.

For any realization of κ̂1 ≤ κ̂1�J ,4 find j such that κ̂1 ∈ [κ̂1�j−1� κ̂1�j] with κ̂1�0 = 0 and
q1−α�0(k− 1)= 0, and let

c1−α(κ̂1�k− 1) := κ̂1�j − κ̂1

κ̂1�j − κ̂1�j−1
q1−α�j−1(k− 1)+ κ̂1 − κ̂1�j−1

κ̂1�j − κ̂1�j−1
q1−α�j(k− 1)� (2.13)

Table 1 gives conditional critical values at significance level 5% for a fine grid for the con-
ditioning statistic κ̂1 for the case k− 1 = 4. To mitigate any slight overrejection induced
by interpolation, the reported critical values have been rounded up to one decimal.

We will see that by using c1−α(κ̂1�k − 1) as a critical value for the subvector AR test,
one obtains a close to similar test, except for small values of κ1. Note that κ̂1, the largest
root of the characteristic polynomial in (2.7) is comparable to the first-stage F statistic in
the case mW = 1 for the hypothesis that ΠW = 0k×mW (γ is unidentified) under the null
hypothesis H0 : β = β0 in (2.3). So given α, c1−α(κ̂1�k − 1) is a data-dependent critical
value that depends only on the integer k − 1 (the number of IVs minus the number of
untested parameters), and the nonnegative scalar κ̂1 which is a measure of the strength
of identification of the unrestricted coefficient γ.

2.2 Definition of the conditional subvector AR test for general mW

We will now define the conditional subvector AR test for the general case when mW ≥ 1.
The conditional subvector AR test rejects H0 at nominal size α if

ARn(β0) > c1−α(κ̂1�k−mW )� (2.14)

3For general mW , discussed in the next subsection, the role of k− 1 is played by k−mW .
4When κ̂1 > κ̂1�J , we can define c1−α(κ̂1�k − 1) using nonlinear interpolation between κ̂1�J and ∞, that

is, c1−α(κ̂1�k − 1) := (1 − F(κ̂1 − κ̂1�J))q1−α�J(k − 1) + F(κ̂1 − κ̂1�J)χ
2
k−1�1−α, where F is some distribution

function.
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where c1−α(·� ·) has been defined in (2.13) for any argument consisting of a vector with
first component in �+ ∪ {∞} and second component in N. Tables of critical values for
significance levels α = 10%, 5%, and 1%, and degrees of freedom k − mW = 1 to 5 are
provided in Appendix B, and for degrees of freedom k − mW = 6 to 20 are provided in
Appendix C in the SM. Since ARn(β0) = κ̂p, the associated test function can be written
as

ϕc(κ̂) := 1
[
κ̂p > c1−α(κ̂1�k−mW )

]
� (2.15)

where 1[·] is the indicator function, κ̂ := (κ̂1� κ̂p) and the subscript c abbreviates “con-
ditional”.

The subvector AR test in GKMC that uses χ2
k−mW

critical value has test function

ϕGKMC(κ̂) := 1
[
κ̂p > c1−α(∞�k−mW )

]
� (2.16)

Since c1−α(x� ·) < c1−α(∞� ·) for all x <∞, it follows that E[ϕc(κ̂)] >E[ϕGKMC(κ̂)], that is,
the conditional subvector AR test ϕc has strictly higher power than the (unconditional)
subvector AR test ϕGKMC in GKMC.

2.3 Finite-sample size of ϕc when mW = 1

As long as the conditional critical values c1−α(κ̂1�k − mW ) guarantee size control for
the new test ϕc , the actual quality of the approximation (2.12) to the true conditional
density is not of major concern to us, and the main purpose of (2.12) was to give us a
simple analytical expression to generate data-dependent critical values.

We next compute the size of the conditional subvector AR test, and because we do
not have available an analytical expression of the NRP, we need to do that numerically.
This can be done easily because the nuisance parameter κ1 is one-dimensional, and the
density of the data is analytically available, so the NRP of the test can be estimated ac-
curately by Monte Carlo simulation or numerical integration. Using (low-dimensional)
simulations to calculate the (asymptotic) size of a testing procedure has been used in
several recent papers; see, for example, Elliott, Müller, and Watson (2015).

Figure 2 plots the NRPs of both ϕc and the subvector AR test ϕGKMC of GKMC in (2.16)
at α = 5% as a function of κ1 for k = 5 and mW = 1. The conditional test ϕc is evaluated
using the critical values reported in Table 1 with interpolation.5

We notice that the size of the conditional subvector AR test ϕc is controlled, because
the NRPs never exceed the nominal size no matter the value of κ1. The NRPs of the sub-
vector AR test ϕGKMC are monotonically increasing in κ1 in accordance with Theorem 1.
Therefore, the proposed conditional test ϕc strictly dominates the unconditional test
ϕGKMC. The results for other significance levels and other values of k are the same, and

5For example, if κ̂1 = 2�4 which is an element of [2�3�2�5], then from Table 1 the critical value employed
would be 2�2. To produce Figure 2, we use a grid of 42 points for κ1, evenly spaced in log-scale between
0 and 100. In this figure, the NRPs were computed by numerical integration using the Quadpack in Ox;
see Doornik (2001). The densities were evaluated using the algorithm of Koev and Edelman (2006) for the
computation of hypergeometric functions of two matrix arguments. The NRPs are essentially the same
when estimated by Monte Carlo integration with 1 million replications; see Appendix D in the SM.
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Figure 2. Null rejection probability of 5% level conditional (2.15) (solid) and GKMC subvector
AR (dotted) tests as a function of the nuisance parameter κmW . The number of instruments is
k= 5 and the number of nuisance parameters is mW = 1. Computed by numerical integration of
the exact density.

they are reported in Table 23 in the SM. We summarize this finding in the following the-
orem.

Theorem 2. Under Assumption A and mW = 1, the finite-sample size of the conditional
subvector AR test ϕc defined in (2.15) at nominal size α is equal to α for α ∈ {1%�5%�10%}
and k−mW ∈ {1� � � � �20}.

Comment. To reiterate, the proof of Theorem 2 for given k−mW and nominal size α is
a combination of an analytical step that shows that the null rejection probability of the
new test depends on only a scalar parameter and of a numerical step where it is shown
by numerical integration and Monte Carlo simulation that none of the NRPs exceeds the
nominal size. Using the tables of critical values provided in Appendix B, one can obtain
certain bounds on the p-value of the conditional subvector AR test. With further simula-
tion effort, one can also obtain additional tables for other α and k−mW combinations.6

2.4 Power analysis when mW = 1

One main advantage of the conditional subvector AR test (2.14) is its computational sim-
plicity. For general mW , there are other approaches one might consider based on the
information in the eigenvalues (κ̂1� � � � � κ̂mW ) that, at the expense of potentially much
higher computational cost, might yield higher power than the conditional subvector

6We provide the code to do that in the Online Supplementary Material (SM) (Guggenberger, Kleibergen,
and Mavroeidis (2019)).
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AR test. For example, one could apply the critical value function approach of Moreira,
Mourão, and Moreira (2016) to derive conditional critical values. One could condition
on the largest mW eigenvalues rather than just the largest one. The objective of this sec-
tion is to assess the potential scope for power improvements over the subvector AR test
by computing power bounds of all tests that depend on the data only through the statis-
tic (κ̂1� � � � � κ̂mW ). We first provide some theoretical insights that help to implement this
analysis economically. These insights are valid for arbitrary mW . For the actual compu-
tation of the power bound, we then restrict attention to mW = 1 because the computa-
tional effort for larger mW is overwhelming.

Recall from (2.11) that under H0 : β = β0 in (2.3), the joint distribution of (κ̂1� � � � � κ̂p)

only depends on the vector of eigenvalues (κ1� � � � �κmW ) of Θ′
W ΘW , where ΘW ∈ �k×mW

appears in the noncentrality matrix M = (0k�ΘW ) of Ξ ∼ N(M� Ikp). It follows eas-
ily from (A.13) in the Appendix that if ΠW ranges through all matrices in �k×mW , then
(κ1� � � � �κmW )′ ranges through all vectors in [0�∞)mW .

Define A := E(Z′(y −Yβ0�W )) ∈ �k×p and consider the null hypothesis

H ′
0 : ρ(A) ≤mW versus H ′

1 : ρ(A) = p� (2.17)

where again ρ(A) denotes the rank of the matrix A. Clearly, whenever H0 holds, H ′
0

holds too, but the reverse is not true; by (A.14) in the Appendix, H ′
0 holds iff ΠW is

rank deficient or ΠY(β − β0) ∈ span(ΠW ). It is shown in the Appendix (Case 2 in Sec-
tion A.2) that under H ′

0 the joint distribution of (κ̂1� � � � � κ̂p) is the same as the one of the
vector of eigenvalues of a Wishart matrix Wp(k� Ip�M′M) with rank deficient noncen-
trality matrix and, therefore, depends only on the vector of the largest mW eigenvalues
(κ1� � � � �κmW )′ ∈ �mW of M′M. The important implication of that result is that any test
ϕ(κ̂1� � � � � κ̂p) ∈ [0�1] for some measurable function ϕ that has size bounded by α under
H0 also has size (in the parameters (β�γ�ΠY �ΠW )) bounded by α under H ′

0. In partic-
ular, no test ϕ(κ̂1� � � � � κ̂p) that controls size under H0 has power exceeding size under
alternatives H ′

0\H0.
While the theoretical analysis in the previous two paragraphs holds for arbitrary mW ,

we now assume mW = 1 for computational feasibility. To assess the potential scope for
power improvements over the subvector AR test, we compute power bounds of all tests
that depend on the statistic (κ̂1� κ̂2). These are point-optimal bounds based on the least
favorable distribution for the nuisance parameter κ1 under the null that κ2 = 0; see Ap-
pendix D.3 in the SM for details. We consider both the approximately least favorable dis-
tribution (ALFD) method of Elliott, Müller, and Watson (2015) and the one-point least
favorable distribution of Andrews, Moreira, and Stock (2008, Section 4.2), but report here
only the ALFD bound for brevity and because it is very similar to the Andrews, Moreira,
and Stock (2008) upper bound. The results based on the Andrews, Moreira, and Stock
(2008) method are discussed in Appendix E.2 in the SM.

We compute the power of the conditional and unconditional subvector tests ϕc and
ϕGKMC at the 5% level for k = 5 and the associated power bound for a grid of values of
the parameters κ1 ≥ κ2 > 0 under the alternative; see Appendix D.3 in the SM for details.
The power curves are computed using 100,000 Monte Carlo replications without impor-
tance sampling (results for other k are similar and given in the SM). The left panel of
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Figure 3. Power of conditional (2.15) and GKMC (2.16) subvector AR tests, ϕc and ϕGKMC, and
point optimal power envelope computed using the ALFD method of Elliott, Müller, and Watson
(2015). The left panel plots the power of ϕc minus the power bound across all alternatives. The
right panel plots the power curves for both tests and the power bound when κ1 = κ2.

Figure 3 plots the difference between the power function of the conditional test ϕc and
the power bound across all alternatives. Except at alternatives very close to the null, and
when κ1 is very close to κ2 (so the nuisance parameter is weakly identified), the power
of the conditional subvector test ϕc is essentially on the power bound. The fact that the
power of ϕc for small κ1 is somewhat below the power bound can be explained by the
fact that the test is not exactly similar, so its rejection probability can fall below α for
some alternatives. The right panel of Figure 3 plots the power curves for alternatives
with κ1 = κ2, which seem to be the least favorable to the conditional test. The power
of the conditional test is mostly on the power bound, while the subvector test ϕGKMC is
well below the bound. Two-dimensional plots for other values of κ1 −κ2 are provided in
the SM. As κ1 − κ2 gets larger, the power of ϕGKMC gets closer to the power envelope, as
expected.

2.5 Size of ϕc when mW > 1 and inadmissibility of ϕGKMC

We cannot extend the monotonicity result of Theorem 1 to the general case mW > 1. This
is because the distribution of the subvector AR statistic depends on all the mW eigenval-
ues of M′M in (2.10), and the method of the proof of Theorem 1 only works for the
case that ρ(M′M) = 1.7 However, Theorem 3 below provides a theoretical result that
suffices to establish correct finite-sample size of the proposed conditional subvector AR
test (2.15) and the inadmissibility of the subvector test ϕGKMC in (2.16) in the general
case.

To state the result, we first need to introduce some notation. Recall that Ξ ∼
N(M� Ik(mW +1)), with M nonstochastic and ρ(M) ≤ mW under the null hypothesis in

7See (Perlman and Olkin, 1980, p. 1337) for some more discussion of the difficulties involved in extending
the result to the general case.
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(2.3). Partition Ξ as

Ξ =
(
Ξ11 Ξ12

Ξ21 Ξ22

)
� (2.18)

where Ξ11 is (k−mW +1)×2, Ξ12 is (k−mW +1)×(mW −1), Ξ21 is (mW −1)×2, and Ξ22

is (mW − 1)× (mW − 1). Partition M conformably with Ξ. Let μi, i = 1� � � � �mW , denote
the possibly nonzero singular values of M (the order does not matter for the arguments
below). Without loss of generality, we can set

M =
(

M11 0(k−mW +1)×(mW −1)

0(mW −1)×2 M22

)
� (2.19)

where

M11 :=
(

0k−mW ×1 0(k−mW )×1

0 μmW

)
� and M22 := diag(μ1� � � �μmW −1)� (2.20)

Finally, let

O :=
( (

I2 +Ξ′
21Ξ

−1′
22 Ξ−1

22 Ξ21
)−1/2

Ξ′
21Ξ

−1′
22

(
ImW −1 +Ξ−1

22 Ξ21Ξ
′
21Ξ

−1′
22

)−1/2

−Ξ−1
22 Ξ21

(
I2 +Ξ′

21Ξ
−1′
22 Ξ−1

22 Ξ21
)−1/2 (

ImW −1 +Ξ−1
22 Ξ21Ξ

′
21Ξ

−1′
22

)−1/2

)
∈ �p×p� (2.21)

Theorem 3. Suppose that Assumption A holds with mW > 1. Denote by Ξ̃11 ∈
�(k−mW +1)×2 the upper left submatrix of Ξ̃ :=ΞO ∈ �k×p. Then, under the null hypothe-
sis H0 : β= β0,

Ξ̃′
11Ξ̃11|O ∼W2

(
k−mW + 1� I2�M̃′

11M̃11
)
�

where M̃11 is defined in (A.3) in the Appendix and satisfies ρ(M̃′
11M̃11) ≤ 1.

As the next couple of lines establish, Theorem 3 allows us to prove correct size of
the conditional subvector AR test by showing that any null rejection probability of the
new test is bounded by the probability of an event that conditional on O has the same
statistical structure as the event of the conditional subvector AR test rejecting under the
null when mW = 1 studied in the section above. By Theorem 2, we know that the latter
event has probability bounded by the nominal sizeα. Theorem 3 can therefore be viewed
as a dimension reduction tool.

Recall that κmin(A) and κmax(A) denote the smallest and largest eigenvalues of a
matrix A, respectively. Note that

ARn(β0) = κmin
(
Ξ′Ξ

)= κmin
(
Ξ̃′Ξ̃

)≤ κmin
(
Ξ̃′

11Ξ̃11
)

≤ κmax
(
Ξ̃′

11Ξ̃11
)≤ κmax

(
Ξ̃′Ξ̃

)= κmax
(
Ξ′Ξ

)
� (2.22)
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where the first and third inequalities hold by the inclusion principle; see Lütkepohl
(1996, p. 73) and the second and last equalities hold because O is orthogonal. Therefore,
at least for the values of α and k−mW given in Theorem 2,

P
(
ARn(β0) > c1−α

(
κmax

(
Ξ′Ξ

)
�k−mW

))
≤ P

(
κmin

(
Ξ̃′

11Ξ̃11
)
> c1−α

(
κmax

(
Ξ̃′

11Ξ̃11
)
�k−mW

))≤ α� (2.23)

where the first inequality follows from (2.22). The second inequality follows from The-
orem 2 for the case mW = 1 and from Theorem 3 by conditioning on O, where the role
of k is now played by k − mW + 1. Hence, the conditional subvector AR test has correct
size for any mW . Because c1−α(κmax(Ξ

′Ξ)�k−mW ) < χ2
k−mW �1−α, it follows that the sub-

vector AR test ϕGKMC given in (2.16) is inadmissible. We summarize these findings in the
following corollary to Theorems 2 and 3.

Corollary 4. Under Assumption A and mW ≥ 1, (i) the finite-sample size of the con-
ditional subvector AR test ϕc defined in (2.15) at nominal size α is equal to α for α ∈
{1%�5%�10%} and k − mW ∈ {1� � � � �20}. (ii) The subvector AR test ϕGKMC is inadmissi-
ble.

An analogous comment as the one to Theorem 2 applies here, namely that the size
result likely extends to other α and k − mW constellations but would require additional
simulations.

2.6 Refinement

Figure 2 shows that the NRPs of test ϕc for nominal size 5% is considerably below 5%
for small values of κ1, which causes a loss of power for some alternatives that are close
to H0; see Figure 3. However, we can reduce the under-rejection by adjusting the condi-
tional critical values to bring the test closer to similarity.8 For the case k= 5, mW = 1, and
α = 5%, let ϕadj be the test that uses the critical values in Table 1 where the smallest 8
critical values are divided by 5 (e.g., the critical value for κ̂1 = 2�5 becomes 0�46). Figure 4
shows that ϕadj still has size 5%, that it is much closer to similarity than ϕc , and does not
suffer from any loss of power relative to the power bound near H0. This approach can be
applied to all other values of α and k, but needs to be adjusted for each case.

3. Asymptotics

In this section, Assumption A is replaced by the following.

Assumption B. The random vectors (εi�Z
′
i� V

′
Y�iV

′
W�i) for i = 1� � � � � n in (2.1) are i.i.d.

with distribution F .

8We thank Ulrich Müller for this suggestion.
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Figure 4. Left panel: NRP of (2.15), GKMC (2.16) and adjusted subvector AR tests, ϕc , ϕGKMC,
and ϕadj . Right panel: comparison of power curves when κ1 = κ2 to point optimal power enve-
lope computed using the ALFD method of Elliott, Müller, and Watson (2015).

Therefore, the instruments are random, the reduced form errors are not necessarily
normally distributed, and the matrix Ω = EFViV

′
i is unknown. We define the parameter

space F for (γ�ΠW �ΠY �F) under the null hypothesis H0 : β = β0 exactly as in GKMC.9

Namely, for Ui = (εi + V ′
W�iγ�V

′
W�i)

′ (which equals (vyi − V ′
Y�iβ�V

′
W�i)

′) let

F = {
(γ�ΠW �ΠY �F) : γ ∈ �mW �ΠW ∈ �k×mW �ΠY ∈ �k×mY �

EF

(‖Ti‖2+δ
)≤ B� for Ti ∈

{
vec
(
ZiU

′
i

)
�Ui�Zi

}
�

EF

(
ZiV

′
i

)= 0k×(m+1)�EF

(
vec
(
ZiU

′
i

)(
vec
(
ZiU

′
i

))′)= EF

(
UiU

′
i

)⊗EF

(
ZiZ

′
i

)
�

κmin(A) ≥ δ for A ∈ {EF

(
ZiZ

′
i

)
�EF

(
UiU

′
i

)}}
(3.1)

for some δ > 0 and B < ∞, where “⊗” denotes the Kronecker product of two matrices
and vec(·) the column vectorization of a matrix. Note that the factorization of the co-
variance matrix into a Kronecker product in line three of (3.1) is our definition of ho-
moskedasticity, which is a weaker assumption than conditional homoskedasticity. Note
that the role of Ω(β0) is now played by EFUiU

′
i .

Rather than controlling the finite-sample size the objective is to demonstrate that
the new conditional subvector AR test has asymptotic size, that is, the limit of the finite-
sample size with respect to F , equal to the nominal size.

We next define the test statistic and the critical value for the case here where Ω is
unknown. With some abuse of notation (by using the same symbol for another object
than above), the subvector AR statistic ARn(β0) is defined as the smallest root κ̂pn of the
roots κ̂in, i = 1� � � � �p (ordered nonincreasingly) of the characteristic polynomial∣∣κ̂Ip − Ûn(Y 0�W )′PZ(Y 0�W )Ûn

∣∣= 0� (3.2)

where

Ûn := ((n− k)−1(Y 0�W )′MZ(Y 0�W )
)−1/2

(3.3)

9Regarding the notation (γ�ΠW �ΠY �F) and elsewhere, note that we allow as components of a vector
column vectors, matrices (of different dimensions), and distributions.
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and Û−2
n is a consistent estimator (under certain drifting sequences from the parameter

space F ) for Ω(β0) in (2.4), see Lemma 1 in the Appendix for details. The conditional
subvector AR test rejects H0 at nominal size α if

ARn(β0) > c1−α(κ̂1n�k−mW )� (3.4)

where c1−α(·� ·) has been defined in (2.13) and κ̂1n is the largest root of (3.2).

Theorem 5. Under Assumption B, the conditional subvector AR test in (3.4) imple-
mented at nominal size α has asymptotic size equal to α for the parameter space F defined
in (3.1) and for α ∈ {1%�5%�10%} and k−mW ∈ {1� � � � �20}.

Comments. (1) The proof of Theorem 5 is given in Section A.4 in the Appendix. It re-
lies on showing that the limiting NRP is smaller or equal to α along all relevant drifting
sequences of parameters from F . This is done by showing that the limiting NRPs equal
finite-sample NRPs under Assumption A. Therefore, the same comment applies to Theo-
rem 5 as the comment below Theorem 2. The analysis is substantially more complicated
here than in GKMC, in part because the critical values are also random.

(2) Theorem 5 remains true if the conditional critical value c1−α(κ̂1n�k−mW ) of the
subvector AR test is replaced by any other critical value, c̃1−α(κ̂1n�k − mW ) say, where
c̃1−α(·�k − mW ) is a continuous nondecreasing function such that the corresponding
test under Assumption A has finite-sample size equal to α. In particular, besides the
critical values obtained from Table 1 by interpolation also the critical values suggested
in Section 2.6 could be used.

4. Power loss for robustness to heteroskedasticity

The heteroskedasticity-robust version of the AR test of hypotheses on the full vector of
the parameters is asymptotically equivalent to the standard AR test when the data is ho-
moskedastic. This is because under homoskedasticity, the heteroskedastic (HAR) and
homoskedastic (AR) test statistics are such that HAR−AR = op(1), and also the criti-
cal values of both tests are the same. The same argument applies to heteroskedasticity-
robust versions of other weak-identification robust tests, such as the CLR test. Therefore,
at least asymptotically, there is no sacrifice of power for robustness to general forms of
heteroskedasticity for full-vector inference. It is interesting to ask whether this prop-
erty applies to the subvector case or whether, unlike the full-vector case, robustness
to heteroskedasticity for subvector testing entails a loss of power when the data is ho-
moskedastic.

We investigate this issue by comparing the power of our conditional subvector AR
test against a comparable test that controls size under general forms of heteroskedastic-
ity. We use a Bonferroni-type test as in Chaudhuri and Zivot (2011) and Andrews (2017),
which controls asymptotic size under heteroskedasticity and is asymptotically efficient
under strong instruments. The test requires two steps. The first step constructs a confi-
dence set for γ of size 1−α1, and the second step performs a size α2 subvector C(α)-type
test on β for each value of γ in the first-step confidence set. To avoid conservativeness
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under strong identification, the second-step size α2 is chosen using the identification
category selection (ICS) rule proposed by Andrews (2017); see Appendix D.4 in the SM
for details. We report results only for the just-identified case, in which the various C(α)-
type tests all coincide. We use an AR test for the first step, for reasons discussed in An-
drews (2017), and denote the resulting two-step test as ϕACZ; see Appendix D.4 in the SM
for details.

We compute the power of the three tests ϕACZ, ϕGKMC, and ϕc of (2.3) in model (2.1)
with the following parameter settings: n= 250, mY =mW = 1, k= 2, Vi ∼ iidN(0�Ω) with

Ω =
⎛⎜⎝ 1 0�8 0�8

0�8 1 0�3
0�8 0�3 1

⎞⎟⎠ �

Zi ∼ iid N(0� I2), ΠY = (πβ/
√
kn)(1�−1)′ and ΠW = (πγ/

√
kn)(1�1)′. The parameters

πβ and πγ govern the strength of identification of β and γ, respectively. We consider
the three cases (πβ�πγ) ∈ {(4�1)� (4�2)� (4�4)} corresponding to weak, moderate, and
strong identification of γ. The first-step size of the ϕACZ test is set to α1 = 0�5% and α2 is
determined by the ICS rule described in Appendix D.4 in the SM. All tests are at nominal
size α = 5%.

Figure 5 reports the results based on 100,000 Monte Carlo replications. We notice
that the power of the conditional subvector AR test ϕc is uniformly above the power of

Figure 5. Comparison of power of the two-step test of Chaudhuri and Zivot (2011) and Andrews
(2017) ϕACZ against the subvector AR test ϕGKMC and the conditional subvector AR test ϕc . k= 2,
n= 250, and 10,000 Monte Carlo replications.
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the heteroskedasticity robust ϕACZ test, and the difference is decreasing in the strength
of identification of γ. Notice that ϕACZ seems to be dominated even by the unconditional
subvector AR test ϕGKMC. This is because the second-step critical value of ϕACZ is either
equal to or higher than that of ϕGKMC.10 All in all, these results seem to indicate that
there is a trade-off between power and robustness to heteroskedasticity in subvector
testing.

5. Empirical illustration

We use an application from a well-cited study in experimental development economics
to illustrate our method. In particular, we consider the homoskedastic linear IV regres-
sions reported in Tanaka, Camerer, and Nguyen (2010, Table 5)—henceforth TCN. Using
experimental data they collected from Vietnamese villages, TCN estimate linear IV re-
gressions to study determinants of risk and time preferences. The dependent variable in
their models is the curvature of the utility function, denoted by σ in their notation. They
report two specifications, replicated in Table 2. Both specifications include the same
exogenous covariates, Chinese, Age, Gender, Education, Distance to market, and South,
and the same excluded exogenous variables used as instruments, Rainfall and “Head
of Household can’t work,” but differ in the way household income enters the model. In-
come is treated as endogenous (indicated by (IV) in the table following TCN’s original
notation) to address the possible simultaneous causation of preferences and economic
circumstances. The first specification contains a single endogenous regressor, Income,
which is simply household income. The second specification uses, instead, a decom-
position of household income into mean village income (Mean income), and relative
income within the village (Relative income). It therefore contains two endogenous re-
gressors. Their sample is random by design and TCN assume homoskedasticity. The co-
efficients in these models are interpreted in the usual way as the marginal effects of each
variable on households’ risk preferences. TCN are particularly interested in the effect of
income on risk preference, but they also comment on other determinants, such as gen-
der (=1 for male).

We start with the first specification which contains a single endogenous regressor
and is overidentified. We consider subvector tests and confidence intervals on single
coefficients in the model. First, we note from Table 2 that the first-stage F statistic
is 5�96. An application of the well-known rule-of-thumb pretest for weak instruments
of F > 10 would lead one to conclude that the instruments are weak, and that t-tests
are unreliable. However, reliable inference can be based on the AR test irrespective of
the outcome of the pretest. Here, both the conditional and the unconditional subvec-
tor AR tests for the coefficient of Income coincide with the usual AR test, since there
are no endogenous regressors to partial out (in the notation of our paper, mW = 0 for
hypotheses on that coefficient). We therefore turn to subvector inference on the co-
efficient of an exogenous regressor. For instance, let β denote the coefficient on Gen-

10It is equal when α2 = 5%, which happens when γ is strongly identified, and it is higher when α2 = 4�5%,
which occurs frequently when γ is weakly identified.
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Table 2. Replication of Tanaka, Camerer, and Nguyen (2010, Table 5). Sample size is 181. Num-
ber of instruments is two, namely, Rainfall and “Head of Household can’t work” (dummy). 2SLS
point estimates reported with 95% Wald (W), conditional subvector AR (C) and unconditional
subvector AR (U) confidence sets.

Dependent variable

σ (value function curvature)

Specification 1 Specification 2

Chinese −0�035 W: [−0�311�0�242] −0�096 [−0�361�0�169]
C: [−0�525�0�294] [−0�394�0�165]
U: [−0�533�0�305] [−0�396�0�166]

Age −0�006 W: [−0�011�−0�001] −0�006 [−0�011�−0�002]
C: [−0�013�0�000] [−0�011�−0�002]
U: [−0�014�0�000] [−0�011�−0�002]

Gender 0�022 W: [−0�119�0�163] −0�006 [−0�120�0�108]
C: [−0�135�0�302] [−0�120�0�117]
U: [−0�140�0�307] [−0�121�0�118]

Edu −0�029 W: [−0�050�−0�009] −0�028 [−0�046�−0�009]
C: [−0�073�−0�008] [−0�055�−0�008]
U: [−0�074�−0�008] [−0�055�−0�008]

Market −0�012 W: [−0�046�0�022] −0�013 [−0�042�0�017]
C: [−0�064�0�031] [−0�044�0�016]
U: [−0�065�0�033] [−0�045�0�016]

South −0�155 W: [−0�335�0�025] −0�148 [−0�301�0�005]
C: [−0�601�0�033] [−0�313�0�008]
U: [−0�609�0�036] [−0�314�0�008]

Constant 0�980 W: [0�646�1�315] 0�992 [0�684�1�299]
C: [0�409�1�389] [0�676�1�363]
U: [0�400�1�402] [0�675�1�366]

Income (IV) 0�010 W: [−0�002�0�021]
C: [−0�002�0�044]
U: [−0�002�0�044]

Relative Income (IV) 0�049 [−0�235�0�333]
[−0�334�0�628]
[−0�339�0�638]

Mean income (IV) 0�010 [−0�000�0�021]
[0�001�0�020]

[−0�001�0�022]
First-stage F statistic 5�963 p-value 0�003
Sub. AR statistic (ID) 11�925 p-value 0�003 6�070 p-value 0�014
Conditioning statistic ∞ 93�098

der (the same procedure obviously applies to test hypotheses on the coefficients of
each of the other exogenous regressors). The size-α conditional subvector AR test of
the hypothesis H0 : β = β0 against H1 : β �= β0 can be performed using the following
steps:
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Algorithm 1.

1. Partial out exogenous regressors: Let X denote the exogenous regressors in the
model other than Gender whose coefficient is under test.11 Set y equal to the residuals
of the orthogonal projection of σ (the dependent variable) on X , y =MXσ , where MX =
I − PX and PX = X(X ′X)−1X ′. Similarly, set Y = MX (Gender), W = MX (Income), and
Z = MX (Gender, Rainfall, Head of household can’t work). Set n = (# of observations) −
(# of variables in X)(= 175) and k= # of variables in Z(= 3).

2. Compute the eigenvalues of the matrix ESS · (n − k)RSS−1, where ESS :=
(Ȳ0�W )′PZ(Ȳ0�W ), RSS := (Ȳ0�W )′MZ(Ȳ0�W ), and Ȳ0 = y − Yβ0. The smallest eigen-
value κ̂2n is the subvector AR statistic and the largest eigenvalue κ̂1n is the conditioning
statistic.

3. Look up critical value c1−α(κ̂1n�k − mW ) corresponding to κ̂1n for k − mW = 2 in
Table 4, and reject H0 if and only if κ̂2n > c1−α(κ̂1n�k−mW ).

The unconditional subvector AR test in GKMC follows the same steps 1–2, but the
final step is replaced with: Reject H0 if and only if κ̂2n > χ2

2�1−α, where χ2
2�1−α is the 1 − α

quantile of the χ2 distribution with 2 degrees of freedom.
A (1 −α)-level confidence set for β can be obtained by grid search over a sufficiently

large range of values for β0. An illustration of this approach is given in Figure 6.
Before discussing Figure 6, we note that both the conditional and unconditional

subvector AR confidence sets can be unbounded when the instruments are sufficiently
weak. The hypothesis of an unbounded confidence set is mathematically equivalent to
the hypothesis that the k× (mY +mW ) coefficient matrix on the instruments in the first-
stage regression – (ΠY �ΠW ) in the notation of equation (2.1)—is of reduced rank; see
Kleibergen (2019). In other words, the hypothesis that the confidence set is bounded is

Figure 6. Subvector AR statistic (solid) for Gender in specification 1 of Table 2, and Mean in-
come in specification 2 of Table 2, with conditional (dashed) and unconditional (dotted) critical
values. Vertical lines indicate 95% confidence intervals reported in Table 2.

11X consists of Constant, Chinese, Age, Education, Distance to market, and South.
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equivalent to the hypothesis that the model is identified. This can be tested using a con-
ditional subvector AR test by applying Algorithm 1 replacing Ȳ0 with Y in step 2. The
resulting test statistic is reported in the row “Sub. AR (ID) statistic” in Table 2, with the
corresponding conditioning statistic in the row “conditioning statistic,” and uncondi-
tional (GKMC) p-value in curly brackets.12 (The value of the “sub. AR (ID) statistic” for
specification 2 is obtained using Algorithm 2 similarly replacing Ȳ0 with Y in step 2).
The (1 − α)-level conditional and unconditional subvector AR confidence sets are un-
bounded if and only if this test fails to reject at level α. The p-value 0�003 of the iden-
tification subvector AR test indicates that the 99% confidence sets on the parameters
are bounded. If, instead, one used the first-stage F rule to discard the model, because
F < 10 (effectively concluding it is unidentified), the resulting inference (unbounded
confidence intervals) would be grossly inefficient.

The graph on the left in Figure 6 plots the subvector AR statistic for the coefficient of
Gender in the first specification, together with the conditional and unconditional 10%,
5%, and 1% critical values. Note that the conditional critical values vary with β0 as the
conditioning statistic changes. The resulting 95% confidence intervals are reported in
Table 2, where we also report the confidence intervals for all the other coefficients in
the model, as well as the corresponding nonrobust Wald confidence intervals. We no-
tice that the conditional confidence intervals are shorter than the corresponding ones
in GKMC (unconditional) as expected, though the difference is small. For Gender, both
confidence intervals are wide and include zero, thus corroborating the finding reported
in TCN that there are no significant effects of gender on risk preferences. Looking across
the confidence intervals for all the coefficients, we notice that the robust ones are some-
what wider than the nonrobust ones (Wald), but the former are still quite informative
(for instance, the effect of Education on risk preferences is significantly negative). This
further demonstrates the pitfalls of using the first-stage F rule to pretest for instrument
strength. Finally, note that the conditional and unconditional AR confidence intervals
for Income coincide because this is not a subvector hypothesis, as explained earlier
(mW = 0 for this case).

Next, turn to the second specification in Table 2, with two endogenous regressors,
Relative income and Mean income. A conditional subvector AR test of the coefficient on
Mean income can be implemented with the following modification of Algorithm 1.

Algorithm 2.

1. Partial out all of the included exogenous regressors X :13 Set y = MXσ , Y =
MX (Mean Income), W = MX (Relative income), Z = MX (Rainfall, Head of household
can’t work). Set n= 174 and k= 2.

2–3. Same as in Algorithm 1, but for k−mW = 1.

12In the present example where Y is an exogenous variable (Gender) and W consists of only one endoge-
nous variable (Income), it turns out that κ̂1n = ∞, and hence the conditional subvector AR test of identifica-
tion coincides with the unconditional one. Moreover, κ̂2n = 2F where F is the standard first-stage F statistic
for testing the exclusion of the additional instruments (Rainfall and Head of household can’t work) from the
first-stage regression for W .

13X consists of Constant, Chinese, Age, Gender, Education, Distance to market, and South.
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95% confidence sets for each coefficient in the second specification are reported
in Table 2. The results mostly agree with the conclusions from the non-robust Wald
confidence sets, except for the significance of Mean Income, for which our method pro-
duces a confidence interval that is entirely above zero, unlike the Wald and GKMC meth-
ods.

The graph on the right in Figure 6 plots the subvector AR statistic for the coeffi-
cient of Mean income in the second specification, alongside conditional and uncon-
ditional critical values. The resulting 95% confidence intervals are reported in Table 2.
We notice that the GKMC test fails to reject the null hypothesis that the coefficient is
zero at the 5% level, while the conditional test does. Moreover, it is remarkable that
the conditional subvector AR confidence interval is even smaller than the nonrobust
Wald confidence interval. Therefore, use of our conditional subvector AR test strength-
ens the results reported in TCN. Finally, notice that both the conditional and the un-
conditional subvector AR confidence sets are unbounded at 99% coverage, but the latter
contains the entire real line, while the former excludes two intervals, thus being non-
convex.

All of the above results together took less than 5 seconds to compute (using a pre-
cision of at least three decimal points) on a standard computer. This application is yet
another example of a setting where one can do informative inference, that is, not leading
to unbounded confidence sets, using weak-instrument-robust methods, as opposed to
unreliable inference using Wald/t-tests.

6. Conclusion

We show that the subvector AR test of GKMC is inadmissible by developing a new con-
ditional subvector AR test that has correct size and uses data-dependent critical values
that are always smaller than the χ2

k−mW
critical values in GKMC. The critical values are

increasing in a conditioning statistic that relates to the strength of identification of the
parameters not under test. Our proposed test has considerably higher power under weak
identification than the GKMC procedure. We show, using an empirical example, that the
implementation of our method is easy and fast, and can make a difference to empiri-
cal conclusions in practice, in the sense that effects that are insignificant using GKMC
become significant using our new method. A crucial assumption maintained through-
out the paper is homoskedasticity. If one allows for arbitrary forms of heteroskedasticity
both the GKMC test and the new conditional subvector AR test suffer from size distor-
tion. We are currently working on extending these methods to heteroskedastic settings,
which is a much harder problem.

Appendix A: Proofs and derivations

A.1 Proofs of Theorems 1 and 3

Proof of Theorem 1. The monotonicity follows from Perlman and Olkin (1980, The-
orem 3.5). The proof relies on the following result, available in Muirhead (2009, Theo-
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rem 10.3.8), which states that a 2 × 2 noncentral Wishart matrix with noncentrality ma-
trix of rank 1 can be expressed as T ′T , where

T =
(
t11 t12

0 t22

)
�

t2
11 ∼ χ2

k(κ1) (noncentral χ2 with noncentrality parameter κ1), t2
22 ∼ χ2

k−1, t12 ∼ N(0�1),
and t11, t12, t22 are mutually independent. The minimum eigenvalue of T ′T , κ̂min, is given
by

κ̂min = t2
11 + t2

12 + t2
22 −

√(
t2
11 + t2

12 + t2
22

)2 − 4t2
11t

2
22

2
�

It is straightforward to show that κ̂min ≤ t2
22, which establishes the upper bound in the

distribution of κ̂min in GKMC. It is also straightforward to establish that κ̂min is mono-
tonically increasing in t2

11, and since t2
11 is stochastically increasing in κ1 (see, e.g., John-

son and Kotz (1970, Chapter 28)), then κ̂min is stochastically increasing in κ1, as shown

formally in Perlman and Olkin (1980, Theorem 3.5). Finally, κ̂min − t2
22

p→ 0 as κ1 → ∞
(because t2

11
p→ ∞) and, therefore, κ̂min

d→ χ2
k−1, as required.

Proof of Theorem 3. Using (2.18) and (2.21), we have

Ξ̃ := ΞO =
(
Ξ̃11 Ξ̃12

0 Ξ̃22

)
� (A.1)

where

Ξ̃11 := (Ξ11 −Ξ12Ξ
−1
22 Ξ21

)(
I2 +Ξ′

21Ξ
−1′
22 Ξ−1

22 Ξ21
)−1/2

� (A.2)

Moreover, since Ξ21 and Ξ22 are independent of Ξ11 and Ξ12, and O′O = ImW +1, con-

ditional on O, Ξ̃11 ∈ �(k−mW +1)×2 is Gaussian with covariance matrix I2(k−mW +1) and
mean

M̃11 := (
M11 −M12Ξ

−1
22 Ξ21

)(
I2 +Ξ′

21Ξ
−1′
22 Ξ−1

22 Ξ21
)−1/2

= M11
(
I2 +Ξ′

21Ξ
−1′
22 Ξ−1

22 Ξ21
)−1/2

� (A.3)

Since ρ(M11) ≤ 1 by (2.20), the same holds for ρ(M̃11). Hence, conditional on O,
Ξ̃′

11Ξ̃11 ∼ W2(k−mW + 1� I2�M̃′
11M̃11) with ρ(M̃′

11M̃11)≤ 1.

A.2 Joint distribution of the vector of eigenvalues of eigenproblem (2.7)

We study the joint distribution of the vector of eigenvalues (κ̂1� � � � � κ̂mW ) of the eigen-
problem that defines the subvector statistic ARn(β0) when the hypothesized β0 does
not necessarily equal the true slope parameter β. Recall the model (2.1) and the eigen-
problem of the subvector AR statistic (2.7). Pre/post-multiplying (2.7) by∣∣∣∣∣

(
1 0

−γ ImW

)∣∣∣∣∣ yields 0 = ∣∣κΣ− (u�W )′PZ(u�W )
∣∣ (A.4)
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an equivalent eigenproblem, where

u := y −Yβ0 −W γ = ε+Y(β−β0)� Σ :=
(

σuu ΣuVW

Σ′
uVW

ΣVW VW

)
� (A.5)

and σuu and Σ′
uVW

∈ �mW denote the variance of u and the covariance between u and
VW , respectively. Note that u does not equal the structural error ε in (2.1) unless β = β0.
Note that for

C :=
(

σ
−1/2
uu 0

−Σ
−1/2
VW VW �uΣ

′
uVW

σ−1
uu Σ

−1/2
VW VW �u

)
with

ΣVW VW �u := ΣVW VW −Σ′
uVW

ΣuVW σ−1
uu ∈ �mW ×mW � (A.6)

CΣC ′ = Ip holds. Therefore, pre and postmultiplying (A.4) by |C| leads to

0 =
∣∣∣∣κIp −

(
u/σ

1/2
uu �

(
W − u

ΣuVW

σuu

)
Σ

−1/2
VW VW �u

)′

× PZ

(
u/σ

1/2
uu �

(
W − u

ΣuVW

σuu

)
Σ

−1/2
VW VW �u

)∣∣∣∣ (A.7)

or

0 =
∣∣∣∣∣κI1+mW

−
(

ξ′
uξu ξ′

uξW �u

ξ′
W �uξu ξ′

W �uξW �u

)∣∣∣∣∣ � (A.8)

where

ξu := (Z′Z
)−1/2

Z′u/σ1/2
uu ∈ �k and

ξW �u := (Z′Z
)−1/2

Z′
(
W − u

ΣuVW

σuu

)
Σ

−1/2
VW VW �u ∈ �k×mW �

(A.9)

Now,

E(ξu) =E
(
Z′Z

)−1/2
Z′Y(β−β0)/σ

1/2
uu

= (Z′Z
)1/2

ΠY(β−β0)/σ
1/2
uu and (A.10)

E(ξW �u) = (Z′Z
)1/2

(
ΠW −ΠY(β−β0)

ΣuVW

σuu

)
Σ

−1/2
VW VW �u�

Hence,

Ξ := [ξu�ξW �u] ∼ N(M� Ikp) and Ξ′Ξ ∼ Wp
(
k� Ip�M′M

)
� where

M := (
Z′Z

)1/2
[
ΠY(β−β0)/σ

1/2
uu �

(
ΠW −ΠY(β−β0)

ΣuVW

σuu

)
Σ

−1/2
VW VW �u

]
� (A.11)

Case 1. Assume that H0 in (2.3) holds. In that case, u= ε and we write

Σ=
(

σεε ΣεVW

Σ′
εVW

ΣVW VW

)
(A.12)
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and ΣVW VW �ε := ΣVW VW −Σ′
εVW

ΣεVW σ−1
εε . Defining

ΘW := (Z′Z
)1/2

ΠW Σ
−1/2
VW VW �ε ∈ �k×mW � (A.13)

it follows that M = (0k, ΘW ).
Case 2. Assume instead that H ′

0 in (2.17) holds. Note that

A =Z′Z
[
ΠY(β−β0)+ΠW γ�ΠW

]
(A.14)

and, therefore, for M defined in (A.11)

M = (Z′Z
)−1/2

AT for T :=

⎛⎜⎜⎜⎝
1/σ1/2

uu −ΣuVW

σ
1/2
uu

Σ
−1/2
VW VW �u

−γ/σ
1/2
uu

(
ImW + γ

ΣuVW

σ
1/2
uu

)
Σ

−1/2
VW VW �u

⎞⎟⎟⎟⎠ � (A.15)

Because (Z′Z)−1/2 and T are both of full rank it follows that ρ(M) = ρ(A).14

A.3 The approximate conditional distribution

This section replicates the analysis in Muirhead (1978, Section 6). As a special case of
James (1964, equation (68)), the joint density of the eigenvalues κ̂1 and κ̂2 of Ξ′Ξ ∼
W2(k� I2�M′M) can be written as

fκ̂1�κ̂2(x1�x2;κ1�κ2)

= π2

2k�2(k/2)�2(1)
exp

(
−1

2
(x1 + x2)

)
x

k−3
2

1 x
k−3

2
2 (x1 − x2)

× exp
(

−1
2
(κ1 + κ2)

)
0F

(2)
1

(
1
2
k; 1

4

(
κ1 0
0 κ2

)
�

(
x1 0
0 x2

))
(A.16)

for x1 ≥ x2 ≥ 0, where �m(a) := πm(m−1)/4∏m
i=1 �(a − 1

2(i − 1)) and 0F
(2)
1 is the hyper-

geometric function of two matrix arguments. Thus, �2(a) := π1/2�(a)�(a − 1
2), �2(1) :=

π1/2�(1)�( 1
2) = π and �2(k/2) = π1/2�(k/2)�(k−1

2 ). So, the joint density (A.16) can also

14To see the former, note that T is of full rank iff

T̃ :=
(

1 −c′

−γ Σ
−1/2
VW VW �u + γc′

)

is of full rank, where c′ := ΣuVW Σ
−1/2
VW VW �uσ

−1/2
uu . But whenever T̃ (a1� a

′
2)

′ = 0p, it follows that a1 − c′a2 = 0 and

−γa1 + Σ
−1/2
VW VW �ua2 + γc′a2 = 0mW . Inserting the former into the latter equality yields Σ

−1/2
VW VW �ua2 = 0mW and

thus a2 = 0mW . The latter implies a1 = 0. Finally, (Z′Z)−1/2 is of full rank by Assumption A 2.
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be written as

π1/2

2k�(k/2)�
(
k− 1

2

) exp
(

−1
2
(x1 + x2)

)
x

k−3
2

1 x
k−3

2
2 (x1 − x2)

× exp
(

−1
2
(κ1 + κ2)

)
0F

(2)
1

(
1
2
k; 1

4

(
κ1 0
0 κ2

)
�

(
x1 0
0 x2

))
� (A.17)

Under the assumption that κ1 > κ2 = 0, where κ1 is large, Leach (1969) has shown
that

0F
(2)
1

(
1
2
k; 1

4

(
κ1 0
0 κ2

)
�

(
x1 0
0 x2

))
∼ 2

k−2
2

π
�(k/2)exp

(
(x1κ1)

1
2
)

× (κ1x1)
2−k

4
(
κ1(x1 − x2)

)− 1
2 � (A.18)

Substituting equation (A.18) into equation (A.17) gives an asymptotic representation for
the density function of κ̂1 and κ̂2 under the assumption that κ1 is large,

π−1/2

2
k+2

2 �

(
k− 1

2

) exp
(

−1
2
κ1

)
κ

− k
4

1 κ̂
k−4

4
1 exp

[
−1

2
x1 + (x1κ1)

1
2

]

× exp
(

−1
2
x2

)
x

k−3
2

2 (x1 − x2)
1
2 � (A.19)

This is a special case of Muirhead (1978, (6.5)) with his k, m, and n corresponding to 1,
p = 2, and k, respectively, and using κ2 = 0. Integrating the second line of (A.19) w.r.t. x2

yields

∫ κ̂1

0
exp

(
−1

2
x2

)
x

k−3
2

2 (x1 − x2)
1
2 dx2

= π
1
2

2
x
k/2
1

�

(
k− 1

2

)
�

(
k+ 2

2

) 1F1

(
k− 1

2
�
k+ 2

2
;−x1

2

)
� (A.20)

where 1F1(a� c;z) is the confluent hypergeometric function. Combined with (A.19), the
approximate conditional distribution of κ̂2 given κ̂1 is

f ∗
κ̂2|κ̂1

(x2|κ̂1) =
�

(
k+ 2

2

)
�

(
k− 1

2

) 2 exp
(

−1
2
x2

)
x

k−3
2

2 (κ̂1 − x2)
1
2

κ̂
k
2
1
√
π1F1

(
k− 1

2
�
k+ 2

2
;−

k

2
2

) � (A.21)
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The last equation reduces to (2.12) if we use the definition of the density of χ2
k−1,

fχ2
k−1

(x2) = 1

2
k−1

2 �( k−1
2 )

x
k−3

2
2 e− x2

2 . Hence, the integrating constant g(κ̂1) in the approxi-

mate conditional density (2.12) is given by

g(κ̂1)=
�

(
k+ 2

2

)
2

k+1
2

κ̂
k
2
1
√
π1F1

(
k− 1

2
�
k+ 2

2
;− κ̂1

2

) � (A.22)

The result that c1−α(∞�k − 1) = χ2
k−1�1−α follows from the fact that

limκ̂1→∞ f ∗
κ̂2|κ̂1

(·|κ̂1) = fχ2
k−1

(·). This can be proven using the property that 1F1(a� c;
−z)za → �(c)/�(c − a) as z → ∞ (Olver (1997), p. 257, equation (10.08)). It follows that

2
k+1

2 (x1−x2)
1/2�( k+2

2 )

x
k
2

1
√
π1F1(

k−1
2 � k+2

2 ;− x1
2 )

→ 2
k+1

2 �( k+2
2 − k−1

2 )

√
π2

k−1
2

= 2�( 3
2 )√
π

= 1 as x1 → ∞.

A.4 Proof of Theorem 5

Uniformity reparametrization To prove that the new subvector AR test has asymptotic
size bounded by the nominal size α, we use a general result in Andrews, Cheng, and
Guggenberger (2019, ACG from now on). To describe it, consider a sequence of arbitrary
tests {ϕn : n ≥ 1} of a certain null hypothesis and denote by RPn(λ) the null rejection
probability of ϕn when the DGP is pinned down by the parameter vector λ ∈Λ, where Λ

denotes the parameter space of λ. By definition, the asymptotic size of ϕn is defined as

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ)� (A.23)

Let {hn(λ) : n ≥ 1} be a sequence of functions on Λ, where hn(λ) = (hn�1(λ)� � � � �hn�J(λ))
′

with hn�1(λ) ∈ � ∀j = 1� � � � � J. Define

H = {h ∈ (� ∪ {±∞})J : hwn(λwn) → h for some subsequence {wn}
of {n} and some sequence {λwn ∈Λ : n ≥ 1}}� (A.24)

Assumption B in ACG: For any subsequence {wn} of {n} and any sequence {λwn ∈
Λ : n ≥ 1} for which hwn(λwn) → h ∈ H, RPwn(λwn) → [RP−(h)�RP+(h)] for some
RP−(h)�RP+(h) ∈ (0�1).15

The assumption states, in particular, that along certain drifting sequences of param-
eters λwn indexed by a localization parameter h the NRP of the test cannot asymptoti-
cally exceed a certain threshold RP+(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2). Suppose Assumption B in ACG
holds. Then infh∈H RP−(h) ≤ AsySz ≤ suph∈H RP+(h).

15By definition, the notation xn → [x1�∞�x2�∞] means that x1�∞ ≤ lim infn→∞ xn ≤ lim supn→∞ xn ≤ x2�∞.
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We next verify Assumption B in ACG for the subvector AR test and establish that
suph∈H RP+(h) = α when the test is implemented at nominal size α. To do so, we use
Andrews and Guggenberger (2015, AG from now on), namely Proposition 12.5 in AG,
to derive the joint limiting distribution of the eigenvalues κ̂in, i = 1� � � � �p in (3.2). We
reparameterize the null distribution F to a vector λ. The vector λ is chosen such that for
a subvector of λ convergence of a drifting subsequence of the subvector (after suitable
renormalization) yields convergence in distribution of the test statistic and the critical
value. For given F , define

QF := (EFZiZ
′
i

)1/2
and UF := Ω(β0)

−1/2 := (EFUiU
′
i

)−1/2
� (A.25)

Let

BF denote a p×p orthogonal matrix of eigenvectors of

U ′
F(ΠW γ�ΠW )′Q′

FQF(ΠW γ�ΠW )UF (A.26)

ordered so that the p corresponding eigenvalues (η1F� � � � �ηpF) are nonincreasing. Let

CF denote a k× k orthogonal matrix of eigenvectors of

QF(ΠW γ�ΠW )UFU
′
F(ΠW γ�ΠW )′Q′

F �
16 (A.27)

The corresponding k eigenvalues are (η1F� � � � �ηpF�0� � � � �0). Let

(τ1F� � � � � τpF) denote the singular values of QF(ΠW γ�ΠW )UF ∈ �k×p� (A.28)

which are nonnegative, ordered so that τjF is nonincreasing. (Some of these singular
values may be zero.) As is well known, the squares of the p singular values of a k × p

matrix A equal the p largest eigenvalues of A′A and AA′. In consequence, ηjF = τ2
jF for

j = 1� � � � �p. In addition, ηjF = 0 for j = p+ 1� � � � �k.
Define the elements of λ to be17

λ1�F := (τ1F� � � � � τpF)
′ ∈ �p�

λ2�F := BF ∈ �p×p�

λ3�F := CF ∈ �k×k�

λ4�F := (λ4�1F� � � � �λ4�p−1F)
′

:=
(
τ2F

τ1F
� � � � �

τpF

τp−1F

)′
∈ [0�1]p−1� where 0/0 := 0� (A.29)

16The matrices BF and CF are not uniquely defined. We let BF denote one choice of the matrix of eigen-
vectors of U ′

F (ΠW γ�ΠW )′Q′
FQF(ΠW γ�ΠW )UF and analogously for CF .

Note that the role of EFGi in AG, Section 12, is played by (ΠW γ�ΠW ) ∈ Rk×p and the role of WF is played
by QF .

17For simplicity, as above, when writing λ= (λ1�F � � � � � λ10�F ) or λ5�F = (λ5�1�F � � � � � λ5�3�F ) (and likewise in
similar expressions) we allow the elements to be scalars, vectors, matrices, and distributions.
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λ5�F := QF ∈ �k×k�

λ6�F := UF ∈ �p×p�

λ7�F := F� and

λ := λF := (λ1�F � � � � � λ7�F )�

The parameter space Λ for λ and the function hn(λ) (that appears in Assumption B
in ACG) are defined by

Λ := {λ : λ = (λ1�F � � � � � λ7�F ) for some F ∈ F
}
�

hn(λ) := (n1/2λ1�F �λ2�F �λ3�F � � � � � λ6�F
)
�

(A.30)

We define λ and hn(λ) as in (A.29) and (A.30) because, as shown below, the asymp-
totic distributions of the test statistic and conditional critical values under a sequence
{Fn : n ≥ 1} for which hn(λFn) → h depend on limn1/2λ1�Fn and limλm�Fn for m = 2� � � � �9.
Note that we can view h ∈ (� ∪ {±∞})J (for an appropriately chosen finite J ∈N).

For notational convenience, for any subsequence {wn : n ≥ 1},

{λwn�h : n≥ 1} denotes a sequence {λwn ∈ Λ : n≥ 1} for which hwn(λwn) → h� (A.31)

It follows that the set H defined in (A.24) is given as the set of all h ∈ (� ∪ {±∞})J such
that there exists {λwn�h : n≥ 1} for some subsequence {wn : n≥ 1}.

We decompose h analogously to the decomposition of the first six components of
λ: h = (h1� � � � �h6), where λm�F and hm have the same dimensions for m = 1� � � � �6. We
further decompose the vector h1 as h1 = (h1�1� � � � �h1�p)

′, where the elements of h1 could
equal ∞. Again, by definition, under a sequence {λn�h : n≥ 1}, we have

n1/2τjFn → h1�j ≥ 0 ∀j = 1� � � � �p� λm�Fn → hm ∀m = 2� � � � �6� (A.32)

Note that h1�p = τpFn = 0 because ρ(ΠW γ�ΠW ) < p. By Lyapunov-type WLLNs and CLTs,
using the moment restrictions imposed in (3.1), we have under λn�h

n−1/2 vec
(
Z′U

)=
(
n−1/2Z′(ε+ VW γn)

vec
(
n−1/2Z′VW

) )
→
d

(
ξε�h
ξVW �h

)
∼N

(
0pk×1�h−2

6 ⊗ h2
5
)
�

λ−1
5�F

(
n−1Z′Z

)→
p

Ik�

(A.33)

where the random vector (ξε�h�ξ′
VW �h)

′ is defined here.

Asymptotic distributions Let q = qh ∈ {0� � � � �p− 1} be such that

h1�j = ∞ for 1 ≤ j ≤ qh and h1�j <∞ for qh + 1 ≤ j ≤ p� (A.34)

where h1�j := limn1/2τjFn ≥ 0 for j = 1� � � � �p by (A.32) and the distributions {Fn : n ≥ 1}
correspond to {λn�h : n ≥ 1} defined in (A.31). This value q exists because {h1�j : j ≤ p} are
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nonincreasing in j (since {τjF : j ≤ p} are nonincreasing in j, as defined in (A.28)). Note
that q is the number of singular values of QFn(ΠWnγn�ΠWn)UFn ∈ �k×p that diverge to
infinity when multiplied by n1/2. Note again that q < p because ρ(ΠWnγn�ΠWn) < p.

An analogue to Lemma 12.4 in AG is given by the following statement. Define

D̂n := (Z′Z
)−1

Z′(Y 0�W ) and Q̂n := (n−1Z′Z
)1/2

� (A.35)

Lemma 1. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ, n1/2(D̂n − (ΠWnγn�ΠWn)) →d

Dh, where

Dh ∼ h−2
5

(
ξε�h� vec−1

k�mW
(ξVW �h)

) ∈ �k×p�

Û−2
n −Ω(β0) →p 0p×p, and Q̂n −QFn →p 0k×k, where vec−1

k�mW
(·) denotes the inverse vec

operation that transforms a kmW vector into a k×mW matrix and Ûn is defined in (3.3).

Proof. We have

n1/2(D̂n − (ΠWnγn�ΠWn)
)

= n1/2((Z′Z
)−1

Z′(y −Yβ0�W )− (ΠWnγn�ΠWn)
)

= n1/2((Z′Z
)−1

Z′(ZΠWnγn + VW γn + ε�ZΠWn + VW )− (ΠWnγn�ΠWn)
)

= (n−1Z′Z
)−1

n−1/2Z′(VW γn + ε�VW )→d Dh� (A.36)

where the first equality uses the definition of D̂n in (A.35), the second equality uses the
formulas in (2.1), and the convergence results holds by the (triangular array) CLT and
WLLN in (A.33). Also,

Û−2
n = (n− k)−1(Y 0�W )′MZ(Y 0�W )

= (n− k)−1(VW γn + ε�VW )′MZ(VW γn + ε�VW )

= (n− k)−1(VW γn + ε�VW )′(VW γn + ε�VW )+ op(1)� (A.37)

where the first equality uses the formulas in (2.1) and the fact that MZZ = 0n×k

and the second equality follows directly from (A.33). Because Ω(β0) = E(V ′
W�iγ +

εi�V
′
W�i)

′(V ′
W�iγ+εi�V

′
W�i) an application of WLLNs as in (A.33) yields the desired conver-

gence result. Likewise, an application of a WLLN using the uniform moment conditions
on Zi in F in (3.1) and the continuous mapping theorem immediately imply the desired
result Q̂n −QFn →p 0k×k.

Note that the matrix nÛnD̂
′
nQ̂nQ̂nD̂nÛn equals the matrix Ûn(Y 0�W )′PZ(Y 0�W )Ûn

that appears in (3.2). Thus, κ̂in for i = 1� � � � �p equals the ith eigenvalue of
nÛ ′

nD̂
′
nQ̂

′
nQ̂nD̂nÛn, ordered nonincreasingly, and κ̂pn is the subvector AR test statistic. To
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describe the limiting distribution of (̂κ1n� � � � � κ̂pn), we need additional notation, namely:

h2 = (h2�q�h2�p−q)� h3 = (h3�q�h3�k−q)�

h�
1�p−q : =

⎡⎢⎣ 0q×(p−q)

Diag{h1�q+1� � � � �h1�p−1�0}
0(k−p)×(p−q)

⎤⎥⎦ ∈ �k×(p−q)�

�h : = (�h�q��h�p−q) ∈ �k×p� �h�q := h3�q ∈ �k×q�

�h�p−q := h3h
�
1�p−q + h5Dhh6h2�p−q ∈ �k×(p−q)�

(A.38)

where h2�q ∈ �p×q, h2�p−q ∈ �p×(p−q), h3�q ∈ �k×q, h3�k−q ∈ �k×(k−q), �h�q ∈ �k×q, and
�h�p−q ∈ �k×(p−q).18

Let Tn := BFnSn and Sn := Diag{(n1/2τ1Fn)
−1� � � � � (n1/2τqFn)

−1�1� � � � �1} ∈ �p×p. The
same proof as the one of Lemma 12.4 in AG shows that n1/2QFnD̂nUFnTn →d �h under
all sequences {λn�h : n ≥ 1} with λn�h ∈ Λ. The following proposition is an analogue to
Proposition 12.5 in AG.

Proposition 2. Under all sequences {λn�h : n ≥ 1} with λn�h ∈Λ,

(a) κ̂jn →p ∞ for all j ≤ q,

(b) the (ordered) vector of the smallest p− q eigenvalues of nÛ ′
nD̂

′
nQ̂nQ̂nD̂nÛn, that is,

(̂κ(q+1)n� � � � � κ̂pn)
′, converges in distribution to the (ordered) p− q vector of the eigenval-

ues of �
′
h�p−qh3�k−qh

′
3�k−q ×�h�p−q ∈ �(p−q)×(p−q),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 1,
and

(d) under all subsequences {wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ, the
results in parts (a)–(c) hold with n replaced with wn.

Comments. 1. The proof of Proposition 2 follows directly from Proposition 12.5 in AG.
Note that Assumption WU in AG is fulfilled with the roles of W2F , WF , U2F , and UF in
AG played here by QF , QF , UF = Ω(β0)

−1/2, and UF while the roles of W1 and U1 in AG
are played by the identity function. The roles of Ŵ2n and Ŵn in AG are both played by Q̂n

and those of both Û2n and Ûn by Ûn. Lemma 1 shows consistency Ŵ2n − W2Fn →p 0k×k

and Û2n − U2Fn →p 0p×p under sequences {λn�h : n ≥ 1} with λn�h ∈ Λ and trivially the
functions W1 and U1 are continuous in our case. Note that by the restrictions in F in (3.1)
the requirements in the parameter space FWU in AG, namely “κmin(QF) and κmin(UF) are
uniformly bounded away from zero and ‖QF‖ and ‖UF‖ are uniformly bounded away
from infinity,” are fulfilled.

2. Proposition 2 yields the desired joint limiting distribution of the p eigenvalues in
(3.2). Using repeatedly the general formula (C ′ ⊗ A) vec(B) = vec(ABC) for three con-

18There is some abuse of notation here, for example, h2�q and h2�p−q denote different matrices even if
p− q equals q.
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formable matrices A, B, C, we have

vec(h5Dhh6)= vec
(
h−1

5

(
ξε�h� vec−1

k�mW
(ξVW �h)

)
h6
)

= (h6 ⊗ h−1
5

)( ξε�h
ξVW �h

)
∼ vec(v1� � � � � vp)� (A.39)

where, by definition, vj , j = 1� � � � �p are i.i.d. normal k-vectors with zero mean and co-
variance matrix Ik, and the distributional statement follows by straightforward calcu-
lations using (A.33). Therefore, by Lemma 1, the definition of �h�p−q in (A.38), and by
noting that

h′
3�k−qh3h

�
1�p−q =

(
Diag{h1�q+1� � � � �h1�p−1�0}

0(k−p)×(p−q)

)
(A.40)

we obtain

h′
3�k−q�h�p−q =

(
Diag{h1�q+1� � � � �h1�p−1�0}

0(k−p)×(p−q)

)
+ h′

3�k−q(v1� � � � � vp)h2�p−q

∼
(

Diag{h1�q+1� � � � �h1�p−1�0}
0(k−p)×(p−q)

)
+ (w1� � � � �wp−q)� (A.41)

where, by definition, wj , j = 1� � � � �p−q are i.i.d. normal (k−q)-vectors with zero mean
and covariance matrix Ik−q. The distributional equivalence in the second line holds be-
cause (v1� � � � � vp)h2�p−q ∼ (̃v1� � � � � ṽp−q), where ṽj , j = 1� � � � �p − q are i.i.d. N(0k� Ik)
as h2�p−q has orthogonal columns of length 1. Analogously, h′

3�k−q(̃v1� � � � � ṽp−q) ∼
(w1� � � � �wp−q) because h3�k−q has orthogonal columns of length 1.

For example, when q = p− 1 = mW (which could be called the “strong IV” case), we
obtain from (A.41) h′

3�k−q�h�p−q = w1 ∈ �k−mW . Therefore, �
′
h�p−qh3�k−qh

′
3�k−q�h�p−q ∼

χ2
k−mW

, and thus by part (b) of Proposition 2 the limiting distribution of the subvector AR

statistic is χ2
k−mW

in that case, while all the larger roots in (3.2) converge in probability
to infinity by part (a).

Proof of Theorem 5. By construction, for α ∈ (0�1), c1−α(z�k − mW ) is an increasing
continuous function in z on (0�∞), where c1−α(z�k − mW ) is defined in (2.13) with κ̂1
replaced by z. Furthermore, c1−α(z�k − mW ) → χ2

k−mW �1−α as z → ∞. Thus, defining

c1−α(∞�k−mW ) := χ2
k−mW �1−α, we can view c1−α(z�k−mW ) as a continuous function in

z on (0�∞]. Finally, for α ∈ (0�1) we have P(κ̂p = c1−α(κ̂1�k−mW )) = 0 whenever κ̂p and
κ̂1 are the smallest and largest eigenvalues of the Wishart matrix Ξ′Ξ ∼ Wp(k� Ip�M′M)

and any choice of eigenvalues (κ1� � � � �κmW �0) of M′M ∈ �p×p.
According to Proposition 1 in order to show that AsySz ≤ α it is sufficient to estab-

lish that RP+(h) ≤ α for all h ∈ H, where RP+(h) appears in Assumption B in ACG.
We therefore need to establish that for every drifting sequence {λwn�h ∈ Λ : n ≥ 1} the



Quantitative Economics 10 (2019) A more powerful subvector 519

Table 3. 1 − α quantile of the conditional distribution, with density given in (2.12), cv =
c1−α(κ̂1�k − mW ) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

k−mW = 1

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

α= 10%
0�3 0�2 0�9 0�6 1�7 1�0 2�7 1�4 4�0 1�8 6�4 2�2 15�2 2�6
0�4 0�3 1�1 0�7 1�9 1�1 3�0 1�5 4�5 1�9 7�4 2�3 27�6 2�7
0�5 0�4 1�3 0�8 2�1 1�2 3�3 1�6 5�0 2�0 8�8 2�4 1000 2�703
0�7 0�5 1�5 0�9 2�4 1�3 3�6 1�7 5�6 2�1 11�0 2�5 ∞ 2�706

α = 5%
0�5 0�4 1�3 1�0 2�3 1�6 3�6 2�2 5�5 2�8 9�8 3�4 ∞ 3�841
0�6 0�5 1�5 1�1 2�5 1�7 3�9 2�3 6�0 2�9 11�4 3�5
0�7 0�6 1�6 1�2 2�7 1�8 4�1 2�4 6�5 3�0 13�9 3�6
0�9 0�7 1�8 1�3 2�9 1�9 4�4 2�5 7�0 3�1 18�5 3�7
1�0 0�8 2�0 1�4 3�1 2�0 4�8 2�6 7�8 3�2 29�7 3�8
1�2 0�9 2�1 1�5 3�4 2�1 5�1 2�7 8�6 3�3 1000 3�838

α = 1%
1�0 0�9 2�0 1�8 3�2 2�7 4�5 3�6 6�2 4�5 9�0 5�4 19�3 6�3
1�1 1�0 2�1 1�9 3�3 2�8 4�7 3�7 6�5 4�6 9�5 5�5 23�8 6�4
1�2 1�1 2�2 2�0 3�4 2�9 4�8 3�8 6�7 4�7 10�0 5�6 32�2 6�5
1�3 1�2 2�4 2�1 3�6 3�0 5�0 3�9 7�0 4�8 10�6 5�7 53�1 6�6
1�4 1�3 2�5 2�2 3�7 3�1 5�2 4�0 7�2 4�9 11�3 5�8 1000 6�628
1�5 1�4 2�6 2�3 3�9 3�2 5�4 4�1 7�5 5�0 12�2 5�9 ∞ 6�635
1�6 1�5 2�8 2�4 4�0 3�3 5�6 4�2 7�9 5�1 13�3 6�0
1�8 1�6 2�9 2�5 4�2 3�4 5�8 4�3 8�2 5�2 14�7 6�1
1�9 1�7 3�0 2�6 4�3 3�5 6�0 4�4 8�6 5�3 16�6 6�2

null rejection probability of the conditional subvector AR test RPwn(λwn�h) satisfies
RPwn(λwn�h) → [RP−(h)�RP+(h)] for some RP+(h) ≤ α. We also show that under strong
IV sequences the limiting rejection probability equals α which then implies that the
asymptotic size equals α. For notational simplicity, we write n instead of wn.

By the discussion below Proposition 2 when q = p − 1 = mW , the strong IV case,
ARn(β0) →d χ

2
k−mW

under {λn�h ∈Λ : n ≥ 1} while the largest root κ̂1n goes off to infinity
in probability. Thus, by the definition of convergence in distribution and the features of
c1−α(z�k−mW ) described above

RPn(λn�h)= PFn

(
ARn(β0) > c1−α(κ̂1n�k−mW )

)
→ RP+(h) = P

(
χ2
k−mW

> χ2
k−mW �1−α

)= α� (A.42)

When 0 < q < mW , then, just like above, the largest root κ̂1n goes off to infinity
in probability and c1−α(κ̂1n�k − mW ) →p χ2

k−mW �1−α. By Proposition 2(b), the limiting
distribution of κ̂pn = ARn(β0) in (3.2) equals the distribution of the smallest eigen-

value, κ(p − q) say, of �
′
h�p−qh3�k−qh

′
3�k−q�h�p−q ∈ �p−q×p−q, where h′

3�k−q�h�p−q =
(w̃1� � � � � w̃p−q), where w̃j ∈ �k−q for j = 1� � � � �p − q are independent N(mj� Ik−q) with
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Table 4. 1 − α quantile of the conditional distribution, with density given in (2.12), cv =
c1−α(κ̂1�k − mW ) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

k−mW = 2

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

α = 10%
0�5 0�4 1�4 1�1 2�5 1�8 3�9 2�5 5�7 3�2 9�2 3�9 47�2 4�6
0�6 0�5 1�6 1�2 2�7 1�9 4�1 2�6 6�1 3�3 10�1 4�0 1000 4�601
0�7 0�6 1�7 1�3 2�9 2�0 4�3 2�7 6�5 3�4 11�2 4�1 ∞ 4�605
0�8 0�7 1�9 1�4 3�1 2�1 4�6 2�8 6�9 3�5 12�7 4�2
1�0 0�8 2�0 1�5 3�3 2�2 4�8 2�9 7�3 3�6 15�0 4�3
1�1 0�9 2�2 1�6 3�5 2�3 5�1 3�0 7�9 3�7 18�6 4�4
1�3 1�0 2�4 1�7 3�7 2�4 5�4 3�1 8�5 3�8 25�9 4�5

α = 5%
0�7 0�6 1�6 1�4 2�7 2�2 4�0 3�0 5�5 3�8 7�8 4�6 13�0 5�4
0�8 0�7 1�8 1�5 2�9 2�3 4�2 3�1 5�8 3�9 8�2 4�7 14�5 5�5
0�9 0�8 1�9 1�6 3�0 2�4 4�3 3�2 6�0 4�0 8�6 4�8 16�5 5�6
1�0 0�9 2�0 1�7 3�2 2�5 4�5 3�3 6�3 4�1 9�1 4�9 19�5 5�7
1�1 1�0 2�2 1�8 3�3 2�6 4�7 3�4 6�5 4�2 9�7 5�0 24�7 5�8
1�3 1�1 2�3 1�9 3�5 2�7 4�9 3�5 6�8 4�3 10�3 5�1 35�4 5�9
1�4 1�2 2�4 2�0 3�6 2�8 5�1 3�6 7�1 4�4 11�0 5�2 1000 5�985
1�5 1�3 2�6 2�1 3�8 2�9 5�3 3�7 7�5 4�5 11�9 5�3 ∞ 5�991

α = 1%
1�6 1�5 2�9 2�7 4�6 4�1 6�5 5�5 9�2 6�9 15�3 8�3 ∞ 9�210
1�7 1�6 3�1 2�9 4�8 4�3 6�9 5�7 9�7 7�1 17�5 8�5
1�8 1�7 3�3 3�1 5�1 4�5 7�2 5�9 10�3 7�3 21�1 8�7
2�0 1�9 3�6 3�3 5�4 4�7 7�5 6�1 11�0 7�5 28�3 8�9
2�2 2�1 3�8 3�5 5�6 4�9 7�9 6�3 11�7 7�7 49�5 9�1
2�4 2�3 4�1 3�7 5�9 5�1 8�3 6�5 12�6 7�9 89�0 9�2
2�7 2�5 4�3 3�9 6�2 5�3 8�7 6�7 13�8 8�1 1000 9�201

mj = (0j−1′�h1�q+j�0k−q−j′)′ for j < p− q and mp−q = 0k−q, respectively. Therefore,

RPn(λn�h)= PFn

(
ARn(β0) > c1−α(κ̂1n�k−mW )

)
→ RP+(h) = P

(
κ(p− q) > χ2

k−mW �1−α

)
� (A.43)

where the convergence holds by the features of c1−α(z�k − mW ) described above.
Consider a finite-sample scenario as in (2.9) in Section 2 with the roles of k, p,
Ξ and M played by k − q, p − q, h′

3�k−q�h�p−q, and (m1� � � � �mp−q), respectively.
From the discussion below Theorem 3, we know that P(κ(p − q) > c1−α(κ(1)�k −
mW )) ≤ α for any choice of κ(1) ≥ 0, where κ(1) denotes the largest eigenvalue of
�

′
h�p−qh3�k−qh

′
3�k−q�h�p−q. But given that c1−α(κ(1)�k − mW ) is increasing in κ(1) and

converges to χ2
k−mW �1−α as κ(1) → ∞, it must also hold that P(κ(p − q) >

χ2
k−mW �1−α) ≤ α.

By Proposition 2(b) when q = 0, the limiting distribution of the two roots
(̂κ1n�ARn(β0)) in (3.2) equals the distribution of the largest and smallest eigenvalues,
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Table 5. 1 − α quantile of the conditional distribution, with density given in (2.12), cv =
c1−α(κ̂1�k − mW ) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

k−mW = 3

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

α= 10%
0�6 0�5 1�7 1�4 2�9 2�3 4�4 3�2 6�2 4�1 9�1 5�0 18�8 5�9
0�7 0�6 1�8 1�5 3�1 2�4 4�6 3�3 6�5 4�2 9�6 5�1 22�6 6�0
0�8 0�7 1�9 1�6 3�2 2�5 4�7 3�4 6�8 4�3 10�2 5�2 29�6 6�1
0�9 0�8 2�1 1�7 3�4 2�6 4�9 3�5 7�0 4�4 10�8 5�3 46�0 6�2
1�0 0�9 2�2 1�8 3�5 2�7 5�1 3�6 7�3 4�5 11�5 5�4 1000 6�245
1�2 1�0 2�3 1�9 3�7 2�8 5�3 3�7 7�6 4�6 12�3 5�5 ∞ 6�251
1�3 1�1 2�5 2�0 3�9 2�9 5�6 3�8 8�0 4�7 13�3 5�6
1�4 1�2 2�6 2�1 4�0 3�0 5�8 3�9 8�3 4�8 14�6 5�7
1�5 1�3 2�8 2�2 4�2 3�1 6�0 4�0 8�7 4�9 16�3 5�8

α = 5%
0�9 0�8 2�1 1�9 3�5 3�0 5�1 4�1 7�1 5�2 10�2 6�3 20�9 7�4
1�0 0�9 2�3 2�0 3�7 3�1 5�3 4�2 7�4 5�3 10�6 6�4 24�5 7�5
1�1 1�0 2�4 2�1 3�8 3�2 5�5 4�3 7�6 5�4 11�1 6�5 30�4 7�6
1�2 1�1 2�5 2�2 3�9 3�3 5�6 4�4 7�8 5�5 11�6 6�6 41�9 7�7
1�3 1�2 2�6 2�3 4�1 3�4 5�8 4�5 8�1 5�6 12�1 6�7 73�6 7�8
1�4 1�3 2�7 2�4 4�2 3�5 6�0 4�6 8�3 5�7 12�8 6�8 1000 7�807
1�5 1�4 2�9 2�5 4�4 3�6 6�2 4�7 8�6 5�8 13�5 6�9 ∞ 7�815
1�6 1�5 3�0 2�6 4�5 3�7 6�3 4�8 8�9 5�9 14�4 7�0
1�8 1�6 3�1 2�7 4�7 3�8 6�5 4�9 9�2 6�0 15�4 7�1
1�9 1�7 3�3 2�8 4�8 3�9 6�7 5�0 9�5 6�1 16�7 7�2
2�0 1�8 3�4 2�9 5�0 4�0 6�9 5�1 9�8 6�2 18�5 7�3

α = 1%
2�2 2�1 3�7 3�5 5�5 5�1 7�6 6�7 10�3 8�3 15�1 9�9 1000 11�334
2�3 2�2 3�9 3�7 5�8 5�3 7�9 6�9 10�7 8�5 16�3 10�1 ∞ 11�345
2�4 2�3 4�1 3�9 6�0 5�5 8�2 7�1 11�2 8�7 17�7 10�3
2�6 2�5 4�4 4�1 6�3 5�7 8�5 7�3 11�6 8�9 19�8 10�5
2�8 2�7 4�6 4�3 6�5 5�9 8�8 7�5 12�2 9�1 22�9 10�7
3�0 2�9 4�8 4�5 6�8 6�1 9�2 7�7 12�8 9�3 28�3 10�9
3�2 3�1 5�0 4�7 7�1 6�3 9�5 7�9 13�4 9�5 40�3 11�1
3�5 3�3 5�3 4�9 7�3 6�5 9�9 8�1 14�2 9�7 85�4 11�3

κ(1) and κ(p) say, of �
′
h�ph3�kh

′
3�k�h�p ∈ �p×p, where h′

3�k�h�p = (w̃1� � � � � w̃p), where

w̃j ∈ �k for j = 1� � � � �p are independent N(mj� Ik) with mj = (0j−1′�h1�j�0k−j′)′ for j < p

and mp = 0k, respectively. Consider a finite-sample scenario as in (2.9) in Section 2
with the roles of Ξ and M played by h′

3�k�h�p and (m1� � � � �mp), respectively. From the
discussion below Theorem 3, we know that P(κ(p) > c1−α(κ(1)�k − mW )) ≤ α. There-
fore,

RPn(λn�h)= PFn

(
ARn(β0) > c1−α(κ̂1n�k−mW )

)
→ RP+(h) = P

(
κ(p) > c1−α

(
κ(1)�k−mW

))≤ α� (A.44)
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Table 6. 1 − α quantile of the conditional distribution, with density given in (2.12), cv =
c1−α(κ̂1�k − mW ) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

k−mW = 4

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

α = 10%
0�8 0�7 2�1 1�8 3�5 2�9 5�2 4�0 7�2 5�1 10�3 6�2 19�7 7�3
0�9 0�8 2�2 1�9 3�7 3�0 5�3 4�1 7�4 5�2 10�7 6�3 22�4 7�4
1�0 0�9 2�3 2�0 3�8 3�1 5�5 4�2 7�7 5�3 11�1 6�4 26�6 7�5
1�1 1�0 2�5 2�1 3�9 3�2 5�7 4�3 7�9 5�4 11�6 6�5 33�9 7�6
1�2 1�1 2�6 2�2 4�1 3�3 5�8 4�4 8�2 5�5 12�1 6�6 49�3 7�7
1�3 1�2 2�7 2�3 4�2 3�4 6�0 4�5 8�4 5�6 12�7 6�7 1000 7�772
1�5 1�3 2�8 2�4 4�4 3�5 6�2 4�6 8�7 5�7 13�4 6�8 ∞ 7�779
1�6 1�4 3�0 2�5 4�5 3�6 6�4 4�7 9�0 5�8 14�2 6�9
1�7 1�5 3�1 2�6 4�7 3�7 6�6 4�8 9�3 5�9 15�1 7�0
1�8 1�6 3�2 2�7 4�8 3�8 6�8 4�9 9�6 6�0 16�3 7�1
1�9 1�7 3�4 2�8 5�0 3�9 7�0 5�0 9�9 6�1 17�7 7�2

α = 5%
1�2 1�1 2�5 2�3 4�2 3�7 6�2 5�1 8�6 6�5 12�5 7�9 39�9 9�3
1�3 1�2 2�7 2�5 4�5 3�9 6�5 5�3 9�0 6�7 13�4 8�1 57�4 9�4
1�4 1�3 3�0 2�7 4�7 4�1 6�8 5�5 9�4 6�9 14�5 8�3 1000 9�478
1�6 1�5 3�2 2�9 5�0 4�3 7�1 5�7 9�9 7�1 15�9 8�5 ∞ 9�488
1�8 1�7 3�5 3�1 5�3 4�5 7�4 5�9 10�5 7�3 17�9 8�7
2�1 1�9 3�7 3�3 5�6 4�7 7�8 6�1 11�1 7�5 20�9 8�9
2�3 2�1 4�0 3�5 5�9 4�9 8�2 6�3 11�7 7�7 26�5 9�1

α = 1%
2�7 2�6 4�4 4�2 6�4 6�0 8�7 7�8 11�4 9�6 16�0 11�4 83�7 13�2
2�8 2�7 4�6 4�4 6�6 6�2 8�9 8�0 11�8 9�8 16�8 11�6 1000 13�264
2�9 2�8 4�8 4�6 6�9 6�4 9�2 8�2 12�2 10�0 17�8 11�8 ∞ 13�277
3�1 3�0 5�0 4�8 7�1 6�6 9�5 8�4 12�6 10�2 19�1 12�0
3�3 3�2 5�3 5�0 7�4 6�8 9�8 8�6 13�0 10�4 20�7 12�2
3�5 3�4 5�5 5�2 7�6 7�0 10�1 8�8 13�5 10�6 22�9 12�4
3�7 3�6 5�7 5�4 7�9 7�2 10�4 9�0 14�0 10�8 26�3 12�6
3�9 3�8 5�9 5�6 8�1 7�4 10�7 9�2 14�6 11�0 32�0 12�8
4�1 4�0 6�2 5�8 8�4 7�6 11�1 9�4 15�2 11�2 44�1 13�0

where the convergence holds again from the features of c1−α(z�k − mW ) described
above.

Appendix B: Tables of critical values

10%, 5%, and 1% conditional critical values c1−α(κ̂1�k − mW ) were computed by nu-
merically integrating the density (2.12) at different values of the conditioning variable
κ̂1 for the cases k− mW = 1� � � � �5. The results are reported in Tables 3–7. Tables of crit-
ical values for the cases k − mW = 6� � � � �20 are reported in Appendix C in the SM. The
conditional quantiles are rounded upwards to one decimal place, and the initial value of
κ̂1 in each table is the smallest κ̂1 for which the rounded quantile is less than κ̂1.
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Table 7. 1 − α quantile of the conditional distribution, with density given in (2.12), cv =
c1−α(κ̂1�k − mW ) at different values of the conditioning variable κ̂1. Computed by numerical
integration.

k−mW = 5

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

α= 10%
0�9 0�8 2�2 2�0 4�0 3�4 6�0 4�8 8�4 6�2 12�4 7�6 34�8 9�0
1�0 0�9 2�5 2�2 4�3 3�6 6�3 5�0 8�9 6�4 13�2 7�8 74�9 9�2
1�1 1�0 2�7 2�4 4�5 3�8 6�6 5�2 9�3 6�6 14�3 8�0 1000 9�227
1�3 1�2 3�0 2�6 4�8 4�0 6�9 5�4 9�8 6�8 15�6 8�2 ∞ 9�236
1�5 1�4 3�2 2�8 5�1 4�2 7�3 5�6 10�4 7�0 17�4 8�4
1�8 1�6 3�5 3�0 5�4 4�4 7�7 5�8 11�0 7�2 20�1 8�6
2�0 1�8 3�7 3�2 5�7 4�6 8�0 6�0 11�6 7�4 24�6 8�8

α = 5%
1�4 1�3 2�9 2�7 4�8 4�3 6�9 5�9 9�5 7�5 13�4 9�1 31�8 10�7
1�5 1�4 3�1 2�9 5�0 4�5 7�2 6�1 9�8 7�7 14�1 9�3 49�1 10�9
1�6 1�5 3�4 3�1 5�3 4�7 7�5 6�3 10�2 7�9 15�0 9�5 73�0 11�0
1�8 1�7 3�6 3�3 5�6 4�9 7�8 6�5 10�7 8�1 16�0 9�7 1000 11�060
2�0 1�9 3�8 3�5 5�8 5�1 8�1 6�7 11�1 8�3 17�3 9�9 ∞ 11�070
2�2 2�1 4�1 3�7 6�1 5�3 8�4 6�9 11�6 8�5 18�9 10�1
2�5 2�3 4�3 3�9 6�3 5�5 8�8 7�1 12�1 8�7 21�2 10�3
2�7 2�5 4�5 4�1 6�6 5�7 9�1 7�3 12�7 8�9 24�9 10�5

α = 1%
3�2 3�1 5�1 4�9 7�3 6�9 9�7 8�9 12�7 10�9 17�3 12�9 62�8 14�9
3�3 3�2 5�3 5�1 7�5 7�1 10�0 9�1 13�0 11�1 18�0 13�1 90�8 15�0
3�4 3�3 5�5 5�3 7�7 7�3 10�2 9�3 13�4 11�3 18�8 13�3 1000 15�072
3�6 3�5 5�7 5�5 8�0 7�5 10�5 9�5 13�7 11�5 19�8 13�5 ∞ 15�086
3�8 3�7 5�9 5�7 8�2 7�7 10�8 9�7 14�1 11�7 21�1 13�7
4�0 3�9 6�2 5�9 8�5 7�9 11�1 9�9 14�6 11�9 22�6 13�9
4�2 4�1 6�4 6�1 8�7 8�1 11�4 10�1 15�0 12�1 24�7 14�1
4�4 4�3 6�6 6�3 9�0 8�3 11�7 10�3 15�5 12�3 27�7 14�3
4�6 4�5 6�8 6�5 9�2 8�5 12�0 10�5 16�0 12�5 32�5 14�5
4�8 4�7 7�1 6�7 9�5 8�7 12�3 10�7 16�6 12�7 41�4 14�7
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