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Supplementary Material

Supplement to “Monetary policy switching and indeterminacy”
(Quantitative Economics, Vol. 10, No. 1, January 2019, 353–385)

Jean Barthélemy
Banque de France and Department of Economics, Sciences Po

Magali Marx
Banque de France

Appendix A: Determinacy among Markovian equilibria

In this section, we revisit the results of Davig and Leeper (2007). We first define Marko-
vian equilibria and then we prove a slightly extended proposition.

Definition 1. A solution, zt , is said to be Markovian of order p, if it depends on
the p past regimes, {st� st−1� � � � � st−p}, and all past shocks, εt , that is, there exists
a measurable function, φ, mapping {1� � � � �N}p+1 × (Rp)∞ into R

n such that zt =
φ({st� st−1� � � � � st−p}� εt).

This definition is a generalization of what Branch, Davig, and McGough (2007) call a
“regime dependent equilibrium” and that we denote by M0 in Section 2.3. In our termi-
nology, such an equilibrium is a 0-order Markovian solution.

We introduce a matrix, M, as a combination between transition probabilities matrix,
P , and a (n�N × n�N) real matrix, diagonal by blocks, diag(�1� � � � ��N): M = (P ⊗ 1n)×
diag(�1� � � � ��N). The mathematical symbol ⊗ denotes the standard Kronecker prod-
uct. Proposition 1 refines and complements the main proposition by Davig and Leeper
(2007).

Proposition 1. 1. Model (13) admits a unique Markovian bounded solution, zFt , (but
also a unique bounded equilibrium in M0) if and only if the spectral radius of M, that is,
the largest eigenvalue in absolute value, ρ(M), is strictly less than one.

2. Otherwise, all the bounded Markovian equilibria can be put into the following
form:

zt = zFt + Vstwt� where wt = Jwwt−1 + ξt�
with, the sunspot ξt being any bounded zero mean process (Etξt+1 = 0) independent of
current and past regimes. The sunspot can be either a sunspot shock as defined in Cass and
Shell (1983) or a fundamental disturbance. Matrices Jw and Vst are defined in equations
(30) and (31).
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Proving the first point is done in two steps:

• If φ is a Markovian solution of equation (13), then φ ∈ M0.

• Furthermore if φ ∈ M, then defining � by

�
(
εt

) =
⎡
⎢⎣
φ

(
1st−1� εt

)
���

φ
(
Nst−1� εt

)
⎤
⎥⎦ �

� is the solution of a linear rational expectations model with regime-independent pa-
rameters. We can thus apply the Blanchard and Kahn (1980) technique.

Assuming that there exists a p-order Markovian solution of (13), φ, we define P(q)
as the statement that the solution only depends on the past q regimes:

P(q) :φ(
is1 · · · sqw�εt

) =φ(
is1 · · · sqw′� εt

)
∀(s1� � � � � sq) ∈ {1� � � � �N}q�∀w ∈ {1� � � � �N}∞�∀w′ ∈ {1� � � � �N}∞�∀εt ∈ V ∞�

P(p) is satisfied by assumption. Let us assume that P(q) is met for q ∈ {1� � � � �p}. Since
φ is a solution of (13), for any w, we compute

φ
(
sts1 · · · sq−1w�ε

t
) = �−1

st
(
∑
i

pst i

∫
φ

(
ists1 · · · sq−1w�εε

t
)
dε+ �−1

st
Ωst εt �

Due to P(q), we know that

�−1
st
(
∑
i

pst i

∫
φ

(
ists1 · · · sq−1w�εε

t
)
dε= �−1

st
(
∑
i

pst i

∫
φ

(
ists1 · · · sq−1w

′� εεt
)
dε

for any w′, and hence, φ does not depend on w. P(q− 1) is thus satisfied. By decreasing
induction, we eventually show that φ is Markovian of order 0.

More generally, if the solution is Markovian, its order is the same as ψ0. Here, ψ0 is
Markovian of order 0, thus φ is also Markovian of order 0.

If φ ∈ M0 is a solution of (13), φ is a solution of

∀i ∈ {1� � � � �N}φ(
i� εt

) − �−1
i

(
pi1

∫
φ

(
1� εεt

)
dε+pi2

∫
φ

(
2� εεt

)
dε

)
= �−1

i Ωiεt �

We consider

�
(
εt

) =

⎡
⎢⎢⎢⎢⎣
φ

(
1� εt

)
φ

(
2� εt

)
���

φ
(
N�εt

)

⎤
⎥⎥⎥⎥⎦ � (27)
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Thus, by introducing

D =
⎡
⎢⎣
�−1

1 Ω1
���

�−1
N ΩN

⎤
⎥⎦ �

the system is rewritten as

�
(
εt

) − M
∫

�
(
εεt

)
dε=Dεt� (28)

where � is defined in equation (27). Model (28) is a standard linear rational expectations
model with constant parameters. We hence easily prove Proposition 1 by applying the
Blanchard and Kahn (1980) technique.

We denote by B0 the set of bounded functions on V ∞, and by F the bounded opera-
tor acting in B0:

F : � �→
((
εt

) �→
∫

�
(
εεt

)
dε

)
�

We rewrite equation (28) as [1 + MF]� = Ψ0, where Ψ0(εt) = Dεt . The solution � is
then �= ∑∞

k=0[−MF]kΨ0. Knowing that

(
FkΨ0

)
(εt)= DEtεt+k�

The solution is then given by

�
(
εt

) = −
∞∑
k=0

MkDEtεt+k

thus,

φ
(
st� ε

t
) =Ust

∞∑
k=0

MkDEtεt+k�

where ⎡
⎢⎢⎢⎢⎣
U1

U2
���

UN

⎤
⎥⎥⎥⎥⎦ = −1�

Defining

zFt =Ust
∞∑
k=0

MkDEtεt+k (29)

we notice that the solution zFt only depends on st and εt . In existing literature, zFt is
called the fundamental or the minimum state variable solution.
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In the case where ρ(M) > 1, we apply the strategy of solving linear rational expecta-
tions models (see Blanchard and Kahn (1980) and Lubik and Schorfheide (2004)). There
exists an invertible matrixQ such that

M = Q ×
[
�u Ru
0 �s

]
Q−1

with ρ(�u) > 1 and ρ(�s) < 1. Writing Zt =Q
[Zut
Zst

]
, Zs and Zu are such that

Zst =
∞∑
k=0

(−�s)k[0 1]QΩEtεt+k�

�uEtZ
u
t+1 +RuEtZst+1 +Zut = [1 0]QΩεt�

A general solution of the previous equation is then

Zut =Zu�0t +
∑
k=0

(−�u)−kξt−k�

where ξt is a zero mean sunspot and solution Zu�0t is such that

Zu�0t =
∞∑
k=0

(−�u)−k[1 0]QΩεt−k−1 −
∞∑
k=0

(−�u)−kZst−k�

Then the solutions are given by

Zt = zFt −Q
[
1
0

]
(−�u)−kξt−k�

And finally,

zt = zFt + Vstwt
with

V1 = −[1 0]Q
[
1
0

]
and V2 = −[0 1]Q

[
1
0

]
� (30)

w satisfies

wt = (−�u)−1wt−1 + ξt�
Defining Jw by

Jw = (−�u)−1 (31)

leads to the result.
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Appendix B: Proof of Proposition 1

In this section, we prove Proposition 1. Assuming that �i is invertible for any i ∈
{1� � � � �N}, we rewrite (13) as

zt − �−1
st

Etzt+1 = −�−1
st
Ωst εt � (32)

Then, considering zt = z(st� εt) as a function of all the past shocks {εt� � � � � ε−∞} and
regimes {st� � � � � s−∞}, introducing ψ0 such that ψ0(s

t� εt) = �−1
st
Ωst εt and defining the

operator R as

R : z �→ ((
st� εt

) �→ �−1
st

Etz
(
st+1� εt+1))� (33)

Equation (32) is equivalent to the functional equation:

(1 −R)z =ψ0� (34)

This equation admits a unique solution if the operator 1−R is invertible, and thus, if
1 /∈ σ(R). Consequently, conditions of existence and uniqueness of a solution of (13) rely
on the spectrum of R, this spectrum depending on the space of solutions we consider.

Before characterizing this spectrum, we first show that the sequence (uk) in equa-
tion (17) is convergent.

B.1 Behavior of the sequence uk

In this section, we prove the following result.

Lemma 1. The sequence (uk) in equation (17) has the following properties:

• The sequence (uk)k is submultiplicative ((um+n)m+n ≤ ummu
n
n), and thus, conver-

gent.

• The limit, ν, does not depend on the chosen norm.

We first show that (ukk) is submultiplicative. Using the submultiplicativity of a matri-
cial norm, um+n

m+n satisfies

∑
(i1�����im�im+1�����im+n)∈{1�����N}m+n

pi1i2 · · ·pim−1im

×pimim+1 · · ·pim+n−1im+n
∥∥�−1

i1
· · ·�−1

im
�−1
im+1

· · ·�−1
im+n

∥∥
≤

∑
(i1�����im�im+1)∈{1�����N}m+1

pi1i2 · · ·pim−1impimim+1

∥∥�−1
i1

· · ·�−1
im

∥∥

×
( ∑
(im+2�����im+n)∈{1�����N}n−1

pim+1im+2 · · ·pim+n−1im+n
∥∥�−1

im+1
· · ·�−1

im+n
∥∥)
�
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We find an upper bound for the second term by adding up im+1 and as all the terms are
positive: ∑

(im+2�����im+n)∈{1�����N}n−1

pim+1im+2 · · ·pim+n−1im+n
∥∥�−1

im+1
· · ·�−1

im+n
∥∥

≤
∑

(im+1�im+2�����im+n)∈{1�����N}n−1

pim+1im+2 · · ·pim+n−1im+n
∥∥�−1

im+1
· · ·�−1

im+n
∥∥ = (un)n�

Thus,

(un+m)n+m ≤ unn
∑

(i1�����im�im+1)∈{1�����N}m+1

pi1i2 · · ·pim−1impimim+1

∥∥�−1
i1

· · ·�−1
im

∥∥ = unn × umm

since
∑
im+1∈{1�����N}pimim+1 = 1.

This shows that (ukk) is submultiplicative.
Besides, if a sequence of nonnegative real numbers (vk) is submultiplicative, then

v
1/k
k is converging and limk→+∞ v

1/k
k = infk v

1/k
k ; see, for instance, Lemma 21, page 8 in

Müller (2003). Thus, (uk) is convergent.
Finally, because of the equivalence of the norms in Mn(R), it is immediate that ν

does not depend on the chosen norm.

B.2 Characterization of the spectral radius of R

We will prove the following lemma, describing the spectrum of R in B.

Lemma 2. The operator R is bounded in B and its spectrum is given by

σ(R)= [−ν� ν]�

First, R is bounded as the expectation operator is a bounded operator. The rest of
the proof is based on two main arguments:

• The spectrum of R is symmetric convex.

•
lim

k→+∞
∥∥Rk

∥∥1/k = ν�

The second point ensures that ρ(R)= ν by applying the Gelfand characterization of the
spectral radius for an operator (see, for instance, Theorem 22, page 8 in Müller (2003)),
while the first point leads to the equality σ(R)= [−ν� ν].

First, we introduce operators Fi, for i ∈ {1� � � �N}, F and L on B defined by

Fi :φ �→ (
(
st� εt

) �→
∫
V
φ

(
ist � εεt

)
dε�

L :φ �→ (
(
st� εt

) �→φ
(
st−1� εt−1)�

F(φ)
(
st� εt

) = (pst1F1 +pst2F2)(φ)
(
st� εt

)
�
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Operators Fi and L have the following straightforward properties:

1. FiL = 1, and FL = 1,

2. |||Fi||| = 1 and |||L||| = 1,

where ||| · ||| is the triple norm associated with the infinite norm ‖ · ‖∞ on B. Then R can
be rewritten as

R(φ)
(
st� εt

) = �−1
st
(pst1F1 +pst2F2)(φ)

(
st� εt

)
�

We define R̃ by

R̃ :φ �→ �st−1L(φ)
(
st� εt

)
�

We have that

R̃R = LF� RR̃ = 1�

We copy the techniques used to study the spectrum of isometries in Banach spaces such
as that of Conway (1990). We refer to this publication and to Müller (2003) for the differ-
ent types of spectrum. We know that the spectrum of R is a closed subset of [−‖R‖�‖R‖],
and that the boundary ∂σ(R) of σ(R) is included in the point approximate spectrum,
that is, the set of values λ such that R − λ1 is neither injective nor bounded below. We
assume that σ(R) is not convex, and that there exists λ0 ∈ (0� ν) such that λ ∈ ∂σ(R). We
then prove that λ0 is an eigenvalue. Actually, R− λ1 is bounded below for any λ < ‖R‖.
R is the composition of an invertible operator and an isometry, and is thus bounded
below. Moreover, we notice that

‖R‖ = sup
v∈Im(R̃)

‖Rv‖
‖v‖ =

(
inf
u

‖R̃u‖
‖u‖

)−1

which implies that

‖u− λR̃u‖ ≤
(

1 − λ

‖R‖
)

‖u‖�

We show now that for any α such that |α|< 1, then λα belongs to σ(R). We know that λ
is an eigenvalue of R, let φ0 ∈ B an eigenvector of R associated with λ,

Rφ0 = λφ0�

We define f by

f =φ0 − λR̃φ0�

We notice that R(f )= o, and that ‖(λR̃)k(f )‖ ≤ ‖φ0‖. Fix α such that |α|< 1. We define
φ̃0 by

φ̃0 =
∞∑
k=0

αk(λR̃)k(f )�
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We compute

R(φ̃0) =
∞∑
k=0

αkR(λR̃)k(f )�

R(φ̃0) = αλ

∞∑
k=0

αk(λR̃)k(f )= αλφ̃0�

Thus, αλ is an eigenvalue of R, which contradicts λ ∈ ∂σ(R), and ∂σ(R)= ν.
As regards the second point, we first prove that limk→+∞ ‖Rk‖1/k ≤ ν. We then con-

struct, for any k, a function φk, such that

∥∥Rk(φk)
∥∥1/k ≥ ρ(Sk)1/k�

This construction is a generalization to the multivariate cases of Farmer, Waggoner, and
Zha (2009) and Farmer, Waggoner, and Zha (2010).

We compute

Rk(φ)
(
st

) =
∑
i1�����ik

pst i1pi1i2 · · ·pik−1ik�
−1
st
�−1
i1
Ai1 · · ·�−1

ik−1
Fi1 · · ·Fik(φ)

(
st

)
�

We will find an upper bound and a lower bound for ‖Rk‖, in terms of a sequence (uk)
associated with well-chosen norms on Mn(R). First, we consider the triple norm asso-
ciated with the infinite norm on Mn(R) and the associated sequence uk. For anyφ such
that ‖φ‖∞ = 1, we obtain by subadditivity of the norm,

∥∥Rk(φ)
∥∥∞ ≤

∑
i1�����ik

pst i1pi1i2 · · ·pik−1ik

∣∣∣∣∣∣�−1
st
�−1
i1

· · ·�−1
ik−1

∣∣∣∣∣∣ = ukk

which leads to limk→+∞ ‖Rk‖1/k ≤ ν.
Reciprocally, we consider on Mr�s(R) the norm | · | defined by

|M| =
∑
i�j

|mi�j|� whereM = [mi�j](i�j)∈{1�����r}×{1�����s}�

This norm satisfies:

• |M| ≤ r|||M|||∞
• If we write M = [M1�M2� � � � �Ml] by blocks, we notice the following useful prop-

erty:

|M| =
l∑
i=1

|Mi|�
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Fix st ∈ {1� � � � �N} and let us denote by {wi1···ik+1�∀(i1 · · · ik+1 ∈ {1� � � � �N})} a family of
n× 1 vectors and rewrite the following sum as a product of matrices by blocks:

∑
(i1�����ik)∈{1�����N}k

pst i1pi1i2 · · ·pik−1ikAstAi1 · · ·Aik−1wsti1···ik−1

=
[
pst1 · · ·p11

[
�−1
st

· · ·�−1
1

] · · · |pstN · · ·pNN
[
�−1
st

· · ·�−1
N

]] ×
⎡
⎢⎣
wst1···1
���

wstN···N

⎤
⎥⎦ �

Thus,

sup
‖wi1 ···ip‖∞≤1

∥∥∥∥ ∑
i1�����ik

pst i1pi1i2 · · ·pik−1ikAstAi1 · · ·Aik−1wi1···ip
∥∥∥∥∞

= sup
‖wi1 ···ip‖∞≤1

∥∥∥∥∥∥∥
[
pst1 · · ·p11

[
�−1
st

· · ·�−1
1

] · · · |pstN · · ·pNN
[
�−1
st

· · ·�−1
N

]]

×
⎡
⎢⎣
wst1···1
���

wstN···N

⎤
⎥⎦

∥∥∥∥∥∥∥
∞

=
∣∣∣∣∣∣∣∣∣[pst1 · · ·p11

[
�−1
st

· · ·�−1
1

] · · · |pstN · · ·pNN
[
�−1
st

· · ·�−1
N

]]∣∣∣∣∣∣∣∣∣∞
≥ 1
Nn

∣∣∣[pst1 · · ·p11
[
�−1
st

· · ·�−1
1

] · · · |pstN · · ·pNN
[
�−1
st

· · ·�−1
N

]]∣∣∣
≥ 1
Nn

∑
i1�����ik

pst i1pi1i2 · · ·pik−1ik |AstAi1 · · ·Aik−1 |�

Furthermore, as the considered space is a bounded subset of finite-dimensional
vectorial space, the supremum is reached and there exist Nk vectors (wst i1···ik−1) for
(i1� � � � � ik−1) ∈ {1� � � � �N}k−1 such that

∥∥∥∥ ∑
i1�����ik

pst i1pi1i2 · · ·pik−1ik�
−1
st
�−1
i1

· · ·�−1
ik−1

wi1···ip
∥∥∥∥

≥ 1
Nn

∑
i1�����ik

pst i1pi1i2 · · ·pik−1ik

∣∣�−1
st
�−1
i1

· · ·�−1
ik−1

∣∣�
We define the function φ0 by φ0(s

t) = wstst−1st−2···st−k . This function is bounded and
of norm 1. Moreover, φ0 satisfies

∑
st

∥∥Rk(φ0)
(
st

)∥∥ ≥ 1
Nn

∑
st �i1�����ik

pst i1pi1i2 · · ·pik−1ik

∣∣�−1
st
�−1
i1

· · ·�−1
ik−1

∣∣ = 1
Nn

(ũk)
k
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which leads to ∥∥Rk(φ0)
∥∥∞ ≥ 1

N2n
(ũk)

k�

Finally, this implies that ∥∥Rk
∥∥1/k ≥ (

N2n
)−1/k

ũk�

Taking the limit, we obtain limk→+∞ ‖Rk‖1/k ≥ ν. This completes the proof of Lemma 2.

B.3 Proof of Proposition 1

A consequence of Lemma 2 is that 1 ∈ σ(R) if and only if ν ≥ 1, and thus, (1 − R) is
invertible if and only if ν < 1, which proves Proposition 1.

Appendix C: Asymptotic behavior of uk

For computational reasons, it is often quicker to compute eigenvalues rather than sums
with an increasing number of terms.

Let us start with the univariate case. In this case, the sequence ukk is the sum of the
terms of a matrix Sk where S is defined as follows:

S = (
pij

∥∥�−1
i

∥∥)
ij
�

Actually, matrices �−1
i reduce to scalars in this case, and hence, are commutative. Thus,

for univariate model, ukk behaves as ‖Sk‖ and limit ν is equal to the spectral radius of S,
ρ(S). Farmer, Waggoner, and Zha (2009) find a comparable result in the specific context
of the Fisherian model of inflation determination.

In the general case, we introduce matrix Sk.

Sk =
( ∑
(i1�����ik−1)∈{1�����N}k−1

pii1 · · ·pik−1j

∥∥�−1
i �

−1
i1

· · ·�−1
ik−1

∥∥)
ij

�

For any k, an (i� j) element of matrix Sk corresponds to an upper bound of the ex-
pected impact (expressed as a norm) of the endogenous variables along trajectories
from regime i to regime j in k steps weighted by the probability of each trajectory.

The following result links the behavior of uk to that of the spectral radius ρ(Sk).

Lemma 3. Sequence (ρ(Sk)1/k) is equivalent to (uk) when k tends to ∞.

We now consider norm | · |∞ on M2(R) defined by |M|∞ = ∑
i�j |mij|. One may ob-

serve that

|Sk|∞ =
∑

i�i1�����ik−1�j

pii1 · · ·pik−1j

∥∥�−1
i �

−1
i1

· · ·�−1
ik−1

∥∥ = uk−1
k−1� (35)

As the spectral radius is the infimum of matricial norms, Equation (35) leads to

ρ(Sk)≤ uk−1
k−1� (36)
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Furthermore,

(
S
q
k

)
ij

=
∑

i1�����ik−1�ik�ik+1�����i2k�����ik(q−1)+1�����ikq−1

pii1 · · ·pik−1ikpi(q−1)ki(q−1)k+1 · · ·piqk−1j

× ∥∥�−1
i · · ·�−1

ik−1

∥∥ · · ·∥∥�−1
i(q−1)k

· · ·�−1
iqk−1

∥∥�
And using the submultiplicativity of matricial norms:

(
S
q
k

)
ij

≥
∑

i1�����ik−1�ik�ik+1�����i2k�����ik(q−1)+1�����ikq−1

pii1 · · ·pik−1ikpi(q−1)ki(q−1)k+1 · · ·piqk−1j

× ∥∥�−1
i · · ·�−1

ik−1
· · ·�−1

i(q−1)k
· · ·�−1

iqk−1

∥∥
and hence, ∣∣Sqk∣∣∞ ≥ ukq−1

kq−1� (37)

Equation (36) can be rewritten as follows:

∣∣Sqk∣∣(1/q)∞ ≥ (ukq−1)
k−1/q�

For any norm, Gelfand’s theorem shows that limq→∞ ‖Xq‖(1/q)∞ = ρ(X). Thus, when
q tends to infinity, (36) leads to

lim
p→∞u

k
p ≤ ρ(Sk)�

Thus, as k> 1,

lim
p→∞up ≤ ρ(Sk)1/k� (38)

Combining equations (36) and (38), we find the following upper and lower bounds:

lim
p→∞up ≤ ρ(Sk)1/k ≤ u1−1/k

k−1

and thus, (ρ(Sk)1/k) is convergent and has the same limit as (uk).

Appendix D: Proof of Proposition 2

Proposition 2 follows directly from equation (38).
To prove Proposition 2, we notice that

ukk =
∑

(i1�����ik�ik+1)∈{1�����N}k
pi1i2 · · ·pik−1ikpikik+1

∥∥�−1
i1

· · ·�−1
ik

∥∥�
Then by considering the multiples of p (k= np) and by only keeping the diverging tra-
jectory (the hypothesis of the lemma), we can rewrite the above equation as follows:

u
np
np ≥ [

pi0i1pi1i2 · · ·pip0 i0

∥∥�−1
i0

· · ·�−1
ip0

∥∥]n
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and hence,

unp ≥ [
pi0i1pi1i2 · · ·pip0 i0

∥∥�−1
i0

· · ·�−1
ip0

∥∥]1/p
�

Besides,[
pi0i1pi1i2 · · ·pip0 i0

∥∥�−1
i0

· · ·�−1
ip0

∥∥]1/p ≥ ρ(pi0i1pi1i2 · · ·pip0 i0
�−1
i0

· · ·�−1
ip0

)
�

Thus,

lim
n→∞unp ≥ ρ(pi0i1pi1i2 · · ·pip0 i0

�−1
i0

· · ·�−1
ip0

)
�

The right-hand side of the inequality is larger than one by hypothesis which implies
that ν > 1.

Appendix E: Proof of Proposition 3

The existence of a set of matrix {Rh1 � � � � �RhN } satisfying equation (18) whose joint spectral
radius ρ({Rh}) is less than one ensures that there exists at least one stable equilibrium
defined by equation (21). Then Proposition 1 proves that this equilibrium is unique if
and only if the limit ν({Rh}) is less than one. In some cases, however, it is not possible
to find such a set of matrices. If instead we find a set of matrices satisfying equation
(18) associated with a greater than one joint spectral radius ρ({Rh}), it may be because
there is no stable equilibria. It is the case when the associated limit ν({Rh}) is lower
than one. In such a case, we know that if zt is bounded then wt as defined by equation
(19) is also bounded. However, there exists only one stable solution to equation (20),
wt = −(Rhst )−1Dst εt , because ν({Rh}) is less than one. Thus, any bounded equilibrium
can be written recursively as zt = (Rhst )−1Cst zt−1 − (Rhst )−1Dst εt . This later solution is not
bounded because the joint spectral radius ρ({Rh}) > 1, there is thus a contradiction, and
hence no bounded equilibrium.

Appendix F: Proof of Proposition 4

This section is devoted to the proof of Proposition 4.

• First point is a consequence of Theorem 2.35 in Bini, Iannazzo, and Meini (2011).
In Bini, Iannazzo, and Meini (2011), this is shown that if:

(i) There exists a stable solution P (ρ(P) < 1) of

AP2 +BP +C = [0]� (39)

(ii) There exists a stable solutionQ (ρ(Q) < 1) of

A+QB+Q2C = [0]� (40)

Then the quadratic matrix polynomial Az2 + Bz + C admits a strong (n�n) splitting of
eigenvalues

|λ1| ≤ · · · ≤ |λn|< 1< |λn+1| ≤ · · · ≤ |λ2n|�
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These eigenvalues correspond to the generalized eigenvalues of the pencil 〈F�G〉. This
means that the conditions of Blanchard–Kahn are satisfied.

• To prove second point, we assume that there exists Rh solution of (23), and such
that ρ((Rh)−1C) < 1, and such that ρ(A(Rh)−1) > 1 then we consider two bounded so-
lutions w1

t and w2
t of

wt =
(
Rh

)−1
AEtwt+1 − (

Rh
)−1
Dεt�

They induce two solutions of model (22). Precisely, introducing λ and w0 such that

(
Rh

)−1
Aw0 = λw0� λ > 1�

Then, for any t0, we can build several bounded solutions

z1
t =

∞∑
k=0

((
Rh

)−1
C

)k((
Rh

)−1
C

)
εt−k� z2

t = z1
t +

(
1 −

(
Rh

)−1
C

λ

)−1 w0

λt−t0
1t≥t0 �

• To prove the third point, let us assume now that all the solutions Rh satisfy
ρ((Rh)−1C) > 1, and that there exists at least one Rh such that ρ(A(Rh)−1) < 1. In this
case, there are strictly less than n roots of the matrix polynomial

Az2 +Bz+C = [0]

which are inside the unit disk. According to Blanchard–Kahn, there is no bounded solu-
tion.

• It remains to show that the case where the solutions Rh satisfying (22) cannot all
satisfy ρ(A(Rh)−1) > 1 and ρ((Rh)−1C) > 1. (−A(Rh)−1) is solution of

A+QB+Q2C = [0]

so the matrix polynomial

A+Bz+Cz2 = z2(A(1/z)2 +B(1/z)+C)
admits at least (n+1) eigenvalues outside the unit disk. Similarly, the matrix (−(Rh)−1C)

is solution of

AP2 +BP +C = [0]
so the matrix polynomial

Az2 +Bz+C
admits at least n+ 1 roots outside the unit disk. Noticing that both polynomials are dual
and with degree 2n, we get a contradiction.
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Appendix G: Sunspot equilibria of order q

In this section, we prove Proposition 6.
For α = [α(i0� i1� � � � � iq−1� iq)](i0�i1�����iq−1�iq)∈{1�����N}q+1 , we denote by K(α) the matrix

introduced in Proposition 6 as follows:

K(α)=
[ ∑
(i1�����iq−1)∈{1�N}q−1

pii1pi1i2 · · ·piq−1j�
−1
i · · ·�−1

iq−1
α(i� i1� � � � � iq−1� j)

]
(i�j)

� (41)

The assumptions of Proposition 6 imply that, for a certain integer q, there existNq+1

real numbers in the (interior of the) unit disk, α(i0� � � � � iq), and a (nN×1) column vector,
U , satisfying:

K(α)U =U� (42)

Then we introduce, for k ∈ {0� � � � � q} the (k + 1)N vectors V (st−k� � � � � st). For k = q,
V (st−q� � � � � st) satisfies

V (st−q� � � � � st)= α(st−q� � � � � st)Ust (43)

and, for k from q− 1 to 0, V (st−k� � � � � st) is defined by backward induction by

�st V (st−k� � � � � st)= pst1V (st−k� � � � � st�1)+pst2V (st−k� � � � � st�2)� (44)

By construction, we see that

V (st)=Ust �
Now, we construct some specific solutions.

Lemma 4. Under the assumptions of Proposition 6, a unique Markovian stable equilib-
rium co-exists with multiple stable cyclical equilibria. An example of such bounded equi-
libria is, for any given t0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zt = zFt � for t < t0�

zt = zFt +wt� for t ≥ t0�
wt = V ′(st−1−(t−1−t0)[q]� � � � � st−1)wt−1

V ′(st−1−(t−1−t0)[q]� � � � � st−1)V (st−1−(t−1−t0)[q]� � � � � st−1)
V (st−(t−t0)[q]� � � � � st)

+ V (st−(t−t0)[q]� � � � � st)ξt�

where (t − t0)[q] represents the rest of the division of (t − t0) by q. Vectors V are defined in
equations (43), ξt is any bounded real-valued zero mean sunspots independent of st .

Lemma 4 gives the explicit form of sunspots, and thus implies Proposition 6. More-
over, we notice that for any λ ∈ ]1� 1

max(α) [, matrixK(λα) has an eigenvalue larger than 1,
thus according to (43), there exists a continuum of solutions w.

To prove Lemma 4, we have to check that w is a solution.
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We first notice that by construction, wt is collinear with V (st−(t−t0)[q]� � � � � st), for any
t ≥ t0. Moreover, we notice that (t − t0)[q] belongs to {0� � � � � q− 1}, thus:

Et (wt+1) =
(

V ′(st−(t−t0)[q]� � � � � st)wt
V ′(st−(t−t0)[q]� � � � � st)V (st−(t−t0)[q]� � � � � st)

+Etξt+1

)

×EtV (st+1−(t+1−t0)[q]� � � � � st+1)�

We know that Et (ξt+1)= 0, and according to equation (44), that

EtV (st+1−(t+1−t0)[q]� � � � � st+1)= �st V (st+1−(t+1−t0)[q]� � � � � st)�

And finally,

Et (wt+1) = V ′(st−(t−t0)[q]� � � � � st)wt
V ′(st−(t−t0)[q]� � � � � st)V (st−(t−t0)[q]� � � � � st)

�st V (st+1−(t+1−t0)[q]� � � � � st)

= �stwt�

We represent in Figure 3, the different determinacy regions, for q = 1 and q = 6 for
the calibration chosen in Davig and Leeper (2007).
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