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Recursive allocations and wealth distribution with multiple
goods: Existence, survivorship, and dynamics

R. Colacito
Kenan-Flagler Business School, University of North Carolina at Chapel Hill and NBER

M. M. Croce
Finance Department, Bocconi University, CEPR, and NBER

Zhao Liu
Department of Economics, Duke University

We characterize the equilibrium of a complete markets economy with multiple
agents featuring a preference for the timing of the resolution of uncertainty. Util-
ities are defined over an aggregate of two goods. We provide conditions under
which the solution of the planner’s problem exists, and it features a nondegener-
ate invariant distribution of Pareto weights. We also show that perturbation meth-
ods replicate the salient features of our recursive risk-sharing scheme, provided
that higher-order terms are included.

Keywords. Recursive preferences, multiple agents, equilibrium.

JEL classification. C62, F37.

1. Introduction

In the context of single-agent economies, recursive preferences have become increas-
ingly relevant for the analysis of issues at the forefront of the macro-finance agenda (see,
among others, Hansen and Sargent (1995), Tallarini (2000), Bansal and Yaron (2004), and
Backus, Routledge, and Zin (2005)). In models populated by multiple agents, in contrast,
the adoption of recursive preferences is less common, as it produces a key challenge in
the characterization of the risk-sharing dynamics.

With recursive preferences, in fact, optimal allocations are a function not only of ag-
gregate endowment, but also of a possibly time-varying distribution of wealth. As docu-
mented by Anderson (2005), in a one-good economy in which agents have risk-sensitive
preferences there is typically a tension between ensuring that a nondegenerate distri-
bution of wealth exists and having interesting heterogeneity across agents. The same
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paper documents that this tension can be relaxed if multiple preference parameters are
changed simultaneously and agents have power-reward functions with risk aversion be-
tween zero and one.

In this paper, we overcome these challenges by focusing on an economy with multi-
ple goods. We show that rich dynamics of Pareto optimal allocations are obtained even
in the case in which all agents share the same risk-sensitivity parameter and have log-
arithmic period reward functions, provided that they feature a different degree of pref-
erence for one of the two goods. Furthermore, we provide conditions under which a
nondegenerate ergodic distribution of Pareto weights exists. This is the case in which
every agent in the economy has a strictly positive wealth in the long run.

An agent with recursive preferences is willing to trade off expected utility for higher
conditional moments of future utility. In a world with a Cobb–Douglas aggregate over
multiple goods, the intensity of this trade-off is stronger for agents that consume a large
share of aggregate resources, that is, agents with high Pareto weights. For example, as
shown in a simple two-period model, when agent 1 has a high initial share of resources,
she will have a strong incentive to buy insurance from agent 2 to mitigate future utility
uncertainty.

In equilibrium, under a preference for early resolution of uncertainty, agent 1 ac-
cepts a reduction in her expected average share of resources (i.e., her Pareto weight is
expected to decline) in exchange for a reduction of future utility variance. This trade-
off between expected utility and conditional volatility of future utility results in a well-
defined invariant distribution of Pareto weights.

Several authors have documented the theoretical properties of one-good versions
of the economy analyzed in this paper (Lucas and Stokey (1984), Ma (1993), and Kan
(1995)). In particular, Anderson (2005) shows that in an economy with heterogenous
agents and recursive preferences it is difficult to ensure the existence of a nondegener-
ate ergodic distribution of wealth, unless very extreme forms of heterogeneity are con-
sidered (see, e.g., Backus, Routledge, and Zin (2008)).

Our focus on the case of a consumption aggregate of multiple goods resolves these
problems, and it is important in many economic applications. In a closed economy, we
may think of agents featuring different propensities across commodities produced by
different firms or sectors. In an open economy, it is common to assume that consumers
located in different countries are biased toward the consumption of the domestically
produced good (see, e.g., Tretvoll (2018)). The economy analyzed in this paper provides
the foundations for the international macro-finance model in Colacito and Croce (2013).
In related work, Backus, Coleman, Ferriere, and Lyon (2016) showed that the endoge-
nous variation in Pareto weights in the type of economies that we consider can be inter-
preted as wedges from the perspective of a frictionless model with additive preferences.

Colacito and Croce (2012) applied the results in this manuscript to the hetero-
geneous-beliefs literature (among others, see Kubler and Schmedders (2012) and
Tsyrennikov (2012)).1 They show that consumption home bias is isomorphic to endoge-
nous disagreement about the fundamentals of the economy. Under the conditions ex-
plored in our paper, the ergodic distribution of wealth is nondegenerate, despite the

1Specifically, Colacito and Croce (2012) interpreted the preferences used in this manuscript as describing
a concern for model misspecification, according to the definition of Hansen and Sargent (2008). This results
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existence of endogenous heterogenous beliefs. For a detailed study of both, the survivor-
ship and risk sharing in economies populated by recursive agents with exogenous het-
erogeneous beliefs see Borovička (2018).

From a computational point of view, the characterization of the risk-sharing ar-
rangement with recursive preferences poses additional challenges, as the state space
includes the relative wealth of the agents, which in turn, depends on the continua-
tion utilities. We compare a global method that uses value-function iterations and a
perturbation-based approach and document that a first-order Taylor expansion about
the stochastic steady state of the economy is not appropriate for capturing the dynam-
ics of the economy. This approximation severely deteriorates in regions distant from the
steady state, and it produces a counterfactual limiting wealth distribution in which ei-
ther agent may find herself with zero wealth with probability one. Higher-order approx-
imations are necessary not only to provide a better period-by-period characterization
of the dynamics of the model, but also to capture the stationarity of the model. These
findings are consistent with the analysis of Anderson, Hansen, and Sargent (2012) and
Pohl, Schmedders, and Wilms (2017).

Additionally, we show that our setting produces endogenous time variation in
higher-order conditional moments of consumption, and hence it offers general equi-
librium foundations for the analyses of Bansal, Kiku, Shaliastovich, and Yaron (2014),
Kuehn and Boguth (2013), Colacito, Ghysels, Meng, and Siwarasit (2016), and Segal,
Shaliastovich, and Yaron (2015).

We also study important extensions of our benchmark model by considering the
case in which agents have intertemporal elasticities of substitution different from 1 and
endowment shocks that are persistent. This means that our analysis can be informative
for the growing body of the literature that has explored the macro-finance implications
of Epstein and Zin (1989) preferences (see, e.g., Bansal et al. (2014)). Furthermore, we
show that the introduction of a moderate degree of heterogeneity in the calibration of
the two countries may still result in a well-defined ergodic distribution of wealth in equi-
librium. This is relevant for the application of our study to economies in which, for ex-
ample, investors in different countries face a heterogeneous degree of fundamental risk
in their endowments or productivities.

Baker and Routledge (2017) studied an economy similar to the one analyzed in this
paper. Like us, they consider the risk-sharing arrangement between two agents with re-
cursive preferences defined over a Cobb–Douglas aggregate of two goods: oil and a gen-
eral consumption good. Since the main focus of their paper is matching the price of oil
and related futures contracts, they rely on asymmetric calibrations of the two agents.
This choice typically results in the survivorship of only one of the two agents in the
economy. In this respect, the results that we provide in Section 5, in which we relax the
symmetry of the calibration, are informative for the general class of model that they
consider.

in agent-specific distorted conditional distributions of the endowment processes. Since each probability
depends on the utility of a specific agent, when preferences feature heterogenous bias across goods, agents
disagree on the transition probabilities across states of the world.
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Our paper is organized as follows. In Section 2, we provide the setup of our bench-
mark economy, featuring unit intertemporal elasticity of substitution and i.i.d. shocks.
In Section 3, we discuss the main intuitions of our framework in the context of a simple
two periods model and provide the set of conditions under which a nondegenerate lim-
iting distribution of Pareto weights exists in the infinite horizon setting. In Section 4, we
compare a numerical solution of the model obtained via value function iteration with
first- and higher-order approximations. In Section 5, we present the results of several
generalized versions of our baseline setup. Section 6 concludes the paper.

2. Setup of the economy

In this section, we describe the assumptions that we use in the benchmark version of
our model. For the purpose of simplifying the analytical proofs and the intuitions of the
model, in our benchmark we assume that the intertemporal elasticity of substitution is
equal to one and that the two countries share a symmetrical calibration. In Section 5, we
use simulations to show that our results apply to more general settings.

The following three assumptions about preferences, consumption, and endow-
ments will be retained throughout the rest of the paper.

Assumption 1 (Preferences). Let there be two agents, indexed by 1 and 2, whose prefer-
ences are recursively defined as

Ui(ci� qi)= (1 − δi) log ci + δiθi log
∑
z′
π
(
z′)exp

{
qi
(
z′)
θi

}
� ∀i ∈ {1�2}� (1)

where qi(z′) gives the utility remaining from the next period on when next-period’s state
is z′. For each agent i, θi < 0.

This class of preferences can be interpreted in several ways. First, they correspond
to the case of risk-sensitive preferences studied by, among others, Hansen and Sar-
gent (1995), Tallarini (2000), and Anderson (2005). Second, they coincide with a log-
transformation of Epstein and Zin (1989) preferences in the case in which the intertem-
poral elasticity of substitution is equal to one. In this case, the risk-sensitive parameter,
θ, is related to risk aversion, γ, by imposing

θ= 1
1 − γ �

In this paper, we focus on a discrete time setting as opposed to the continuous time
approach of Epstein (1987), Duffie, Geoffard, and Skiadas (1994), Geoffard (1996), and
Dumas, Uppal, and Wang (2000).

Since these preferences depart from the expected utility case, higher moments of
continuation utilities matter for the determination of optimal risk sharing. As as exam-
ple, if continuation utilities qi(z′) are normally distributed, the functional form in (1)
can be written as

Ui(ci� qi)= (1 − δi) log ci + δiEi(qi)+ δi
2θi
Vi(qi)� ∀i ∈ {1�2}� (2)
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where

Ei(qi) =
∑
z′
π
(
z′)qi(z′)�

Vi(qi) =
∑
z′
π
(
z′)[qi(z′)−(∑

z′
π
(
z′)qi(z′))]2

are the conditional mean and variance of the continuation utility, respectively.
Although we will work with the general specification in (1), equation (2) is instruc-

tive, since it intuitively shows that when the parameters θi’s are less than zero, the risk-
sharing scheme must account for an efficient endogenous trade-off between utility level
and utility variance.

As the dynamics of second-order moments are crucial for characterizing the equi-
librium of the model, in Section 4 we also assess the accuracy of several approximations
based on how well they can account for the dynamics of volatilities.

Assumption 2 (Consumption Bundles). Let consumption ci be an aggregate of two
goods, xi and yi. Specifically, let

ci = (xi)λi(yi)1−λi (3)

be the consumption bundle, with λ1 > 1/2 and λ2 < 1/2 so that the two agents have a bias
for different goods.

This assumption generalizes the one-good framework studied by Anderson (2005),
which obtains as the special case in which λi = 1/2, ∀i, that is, the case in which there is
no preference bias across goods, and hence we are effectively in a one-good economy.

The next assumption pertains to the endowment process and is common to Ander-
son (2005).

Assumption 3 (Endowments). The endowment of the two goods follows a first-order
time-homogenous Markov process (z0� z1� � � �) which takes values in a finite set N =
{1� � � � � n}. The aggregate supply of the two goods at time t is such that 0<Xt =X(zt) <∞,
and 0<Yt = Y(zt) <∞.

Finally, we need to make sure that the preference parameters are chosen so that the
utility recursion converges:

Assumption 4 (Contraction). The parameters {λi�γi� δi} are such that the right-hand
side of equation (1) has a modulus smaller than one, ∀i= {1�2}.

Recursive planner’s problem

Let logW ∗
i (z� ci� {qi�z′ }z′) be the right-hand side of equation (1). Given the conditions

specified by Ma (1993) and Ma (1996), the social planner’s value function, denoted as
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Qp(z�μ1) : N × [0�1] → R, satisfies the following functional equation proposed by Lu-
cas and Stokey (1984) and Kan (1995):

Qp(z�μ1)= max{xi�yi�qi�z′ }i∈{1�2}�z′∈N

2∑
i=1

μi logW ∗
i

(
z� ci� {qi�z′ }z′

)
(4)

subject to

μ2 = 1 −μ1�

0 ≤ x1 ≤X(z)� 0 ≤ x2 ≤X(z)− x1�

0 ≤ y1 ≤ Y(z)� 0 ≤ y2 ≤ Y(z)− y1� (5)

ci = (xi)
λi(yi)

1−λi � ∀i= {1�2}�
0 ≤ min

μ1(z′)∈[0�1]
Qp
(
z′�μ1

(
z′))−μ1

(
z′)q1�z′ − (1 −μ1

(
z′))q2�z′� ∀z′ ∈ N �

Differentiability and first-order conditions

Let the ratio of the Pareto weights be defined as

S = μ1

μ2
= μ1

1 −μ1
�

Let Ui(z�S), i = 1�2, denote the utility function of agent i evaluated at the optimum
when the exogenous state is z, and S ∈ (0�∞). On a consumption path that is bounded
away from zero, Ui(z�S) is differentiable (see Kan (1995) and Anderson (2005)) and

dUi
dμi

> 0� μ1 ∈ (0�1)�μ2 = 1 −μ1�

On a consumption path that is bounded away from zero for both agents, Qp(s�μ1) is
also differentiable with respect to μ1 ∈ (0�1). The optimality condition in equation (5)
implies that

dQp

dμ1
(z�μ1) = U1(z�S)−U2(z�S)� μ1 ∈ (0�1)� (6)

d2Qp

dμ2
1

(z�μ1) = dU1

dμ1
(z�S)+ dU2

dμ2
(z�S) > 0� (7)

Therefore, Qp(s�μ1) is strictly convex with respect to μ1, as in Lucas and Stokey (1984).
This is relevant because it implies that the unique optimal policy of the planner can be
characterized using first-order conditions.

According to the first-order conditions, for a given S, the optimal allocation of goods
satisfies the following system of equations common to all static Pareto problems with
two goods and two agents:

(1 − δ1)
∂ log c1

∂x1
· S = (1 − δ2)

∂ log c2

∂x2
�
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(1 − δ1)
∂ log c1

∂y1
· S = (1 − δ2)

∂ log c2

∂y2
� (8)

X = x1 + x2� Y = y1 + y2�

The optimal dynamic adjustment of the ratio of the pseudo-Pareto weights is then given
by

S′ = S ·M(
z′� S′) (9)

where

M
(
z′� S′)≡ δ1 exp

{
U1
(
z′� S′)/θ1

}∑
z′
π
(
z′)exp

{
U1
(
z′� S′)/θ1

} ·

∑
z′
π
(
z′)exp

{
U2
(
z′� S′)/θ2

}
δ2 exp

{
U2
(
z′� S′)/θ2

} �

Equation (9) determines the dynamics of the ratio of the Pareto weights and implicitly
generates a continuous function that we denote by fS(z′� ·) : [0�+∞)→ [0�+∞):

S′ = fS
(
z′� S

)
� (10)

Characterizing the planner’s problem through first-order conditions is useful be-
cause it allows us to represent the planner’s problem in (4) as a simple system of first-
order stochastic difference equations, namely (1), (3), (8), and (9). In the next section, we
use perturbation methods to solve our dynamic system of equations.

Relative price of the two goods

The relative price of the two goods, p, is the equilibrium marginal rate of substitution
across goods

p= (1 − λ1)

λ1
· x1

y1
�

Given the optimal allocations of x1 and y1, we can write the relative price as

p= p̃ · X
Y
�

where

p̃≡ (1 − λ1)/λ1 ·
[

1 + S · (1 − λ1)

(1 − λ2)

]/[
1 + S · λ1

λ2

]
�

When the supply of good X relative to good Y is high, the price of good Y increases for
two reasons. First, the last term (X/Y ) directly affects the relative price. This channel
would be at work even for λ1 = 1/2, in which case p̃ = 1, and p = X/Y . Second, since
λ1 > λ2 it follows that

∂p̃

∂S
= −1 − λ1

λ1
· λ2

1 − λ2
· (λ1 − λ2)

(λ2 + λ1 · S)2 < 0�
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This means that the price will further increase as long as the ratio of Pareto weights (S)
declines when X/Y is large (we prove this statement formally in Proposition 1). Equiv-
alently, the price of good Y is large whenever its supply is low. This effect is magnified
in the context of our model since λ1 > 1/2, λ2 < 1/2, and the ratio of Pareto weights can
move away from a symmetric wealth distribution. This enhanced price adjustment al-
lows agent 2 to purchase a larger share of resources whenever the supply of its most
preferred good is low.

Share of world consumption (SWC)

We note that under our Cobb–Douglas aggregator across goods, the relative share of
world consumption of agent 1, SW C, evolves as follows:

SW C = x1 +py1

X +pY = S

1 + S = μ1� (11)

According to equations (8) and (11), the Pareto weight of agent 1 has a simple economic
interpretation, namely, the relative size of consumption allocated to agent 1.

Symmetry

So far, we have not imposed any specific assumptions on the conditional probability
of the Markov chain governing the supply of the two goods, nor have we imposed any
special restrictions on the preference parameters of our agents. In order to have a well-
specified problem, all we need is that Assumptions 1–4 hold. In what follows, however,
we list further restrictions that are necessary to analytically characterize the main prop-
erties of the optimal risk-sharing policy of the planner. These conditions impose sym-
metry and are sufficient, but in many cases not necessary, for the existence of a station-
ary distribution. In the next section, we relax many of these assumptions.

Assumption 5 (Symmetrical Preferences). Let the preference parameters δi and θi be
identical ∀i ∈ {1�2}. Let the consumption-bundle’s parameters be symmetrical across
agents, that is, λ1 = 1 − λ2 > 1/2.

Assumption 6 (Balanced Endowment Space). Let the support of the endowment of good
X be given by the vector H = [h1�h2� � � � �hN ]. Let the support of the endowment of good
Y be H as well. The endowments of the two goods take values in the finite set N , given by
all possible pairwise permutations ofH. We refer to N as a balanced endowment space.

Definition 1 (Symmetric States). Let the states zi� z−i ∈ N be such that zi = {Xi =
X(i)�Yi = Y(i)} and z−i = {X−i = Y(i)�Y−i = X(i)}. Then zi and z−i are symmetric
states.

Finally, just to simplify our proof, we focus on a setting with i.i.d. shocks and on
symmetric probability distributions.
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Assumption 7 (I.i.d. Case). Assume that π(z′|z)= π(z′) > 0, ∀z� z′ ∈ N .

Assumption 8 (Symmetric Probabilities). Let the states zi� z−i ∈ N be symmetric. Then
π(zi)= π(z−i).

3. Characterizing the distribution of Pareto weights

In this section, we show the main properties of the Pareto weights under our recursive
scheme in two settings. We start with a simplified two-period model for which we have
a closed-form approximate solution. We then provide results for our infinite-horizon
economy.

3.1 Recursive risk-sharing in a two-period model

The goal of this section is to illustrate the role of the income and substitution effects
as a function of the initial Pareto weights. To highlight the key features of the model,
we focus on the special case in which symmetry applies, consistent with the assump-
tions employed for our main propositions. In Appendix A in the Supplemental Mate-
rial (available in the supplementary file on the journal website, http://qeconomics.org/
supp/457/code_and_data.zip), we study a two-period version of the planner’s problem
detailed in the system of equations (4)–(5) and provide a general solution which allows
for asymmetries across the two agents.

Specifically, consider the following Pareto problem:

max
{X1

1 �X
2
1 �Y

1
1 �Y

2
1 }
μ0 · θ logE0

[
exp
{
u1

1
θ

}]
+ (1 −μ0) · θ logE0

[
exp
{
u2

1
θ

}]
�

subject to the following conditions:

ui1 = log
(
Ci1
)
� ∀i= {1�2}�

C1
1 = (X1

1
)λ(
Y 1

1
)(1−λ)

� C2
1 = (X2

1
)(1−λ)(

Y 2
1
)λ
�

and the following resource constraints:

X1
1 +X2

1 = eξ� Y 1
1 +Y 2

1 = e−ξ� ξ∼N(0�σ2)�
where, for simplicity, we are assuming that the endowments of the two goods are per-
fectly negatively correlated. Let s = log(μ0/(1 − μ0)) and let s be the log-ratio of the
pseudo-Pareto weights at time 1. We use this simple setup to illustrate three key features
of this class of models.

Income and substitution effects We show in Appendix A in the Supplemental Material
(available in a supplementary file on the journal website, http://qeconomics.org/supp/
457/code_and_data.zip) that the equilibrium utility functions can be written as

ui1 = ūi1 + λξ
ui1

· ξ� ∀i= {1�2}� (12)

http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
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where

λ
ξ

u1
1
= (2λ− 1)︸ ︷︷ ︸

>0

[
1 + 2β(s̄)

θ−β(s̄)(1 + es̄)︸ ︷︷ ︸
<0

]
� and

λ
ξ

u2
1
= − (2λ− 1)︸ ︷︷ ︸

>0

[
1 + 2β(s̄)es̄

θ−β(s̄)(1 + es̄)︸ ︷︷ ︸
<0

]

with β(s̄) defined as the following nonnegative, and monotonically decreasing function
of s̄:

β(s̄)=
[

λ(1 − λ)
(1 − λ)+ λes̄ + λ(1 − λ)

λ+ (1 − λ)es̄
]
�

Without loss of generality, let us focus on the response of agent 1’s utility to an en-
dowment shock ξ, which is captured by the coefficient λξ

u1
1
. A positive endowment effect ,

measured by (2λ−1), determines an increase in the utility that is proportional to the de-
gree of preference for goodX . In a single-agent economy, that is, for s̄→ +∞, this is the
only effect relevant for the dynamics of future utilities. In a multiple-agent economy, an
additional negative redistribution effect captures the reallocation of resources that takes
place by virtue of risk sharing. This effect depends on β(s), and hence it declines with
the original ratio of Pareto weights, s̄.

Redistribution of resources Using the equilibrium utilities in (12), it is easy to show that
the transition dynamics of the logarithm of the ratio of the Pareto weights in (9) becomes

s− s̄ = u1
1
θ

− u2
1
θ

−
[
E0
(
u1

1
)

θ
+ Var0

(
u1

1
)

2θ2

]
+
[
E0
(
u2

1
)

θ
+ Var0

(
u2

1
)

2θ2

]

=
[

Var0
(
u2

1
)

2θ2 − Var0
(
u1

1
)

2θ2

]
+ λξs · ξ�

(13)

where

λ
ξ
s =

λ
ξ

u1
1
− λξ

u2
1

θ
= 2(2λ− 1)

θ−β(s̄)(1 + es̄)
is the elasticity of the log-ratio of the Pareto weights with respect to the underlying shock.

When λ > 1/2 and θ < 0, then λξs < 0. This means that when the supply of good X
is relatively scarce (i.e., ξ < 0), agent 1, whose preferences are relatively more tilted to-
ward the consumption of this good, is compensated by means of a greater transfer of
resources (i.e., s increases). If λ= 1/2, then the reallocation is null (λξs = 0). This is a rel-
evant case to consider because it corresponds to the situation in which the multiple-
goods economy is equivalent to a one-good economy. As documented by Anderson
(2005), in such an economy the distribution of resources is constant over time, unless
preference heterogeneity is introduced.
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Conditional expectation of s − s We can characterize the drift in the log-ratio of the
Pareto weights in equation (13) as follows:[

Var0
(
u2

1
)

2θ2 − Var0
(
u1

1
)

2θ2

]
= σ2

2θ2

[(
λ
ξ

u2
1

)2 − (λξ
u1

1

)2]
= σ2β(s̄)(2λ− 1)

θ−β(s̄)(1 + es̄)︸ ︷︷ ︸
<0

· (θ−1λ
ξ
s

)︸ ︷︷ ︸
>0

·(es̄ − 1
)
�

The value of the drift is pinned down by precautionary motives related to continuation
utility variance. When the consumption share of agent 1 rises (i.e., s̄ > 0), agent 1 wants
to buy an increasing amount of insurance from agent 2. In equilibrium, agent 1 accepts
a reduction in her expected average share of resources (i.e., the drift in (s − s) is neg-
ative) in exchange for a reduction in future utility variance. At the same time, agent 2
provides limited insurance at a higher price to agent 1 and expects to receive a greater
future consumption share.2 In Appendix A in the Supplemental Material, we quantify
this intuition further and show that the expected growth of the agent with the smaller
consumption share increases with a larger degree of preference for one of the two goods
(λ), more fundamental risk (σ2), and stronger risk sensitivity (θ).

3.2 Infinite-horizon model

In this section, we prove that under symmetry a nondegenerate limiting distribution
of Pareto weights exists. Equivalently, in the limit no agent receives a Pareto weight of
zero with probability one. Furthermore, we characterize the adjustment of the Pareto
weights as a function of the realization of the shocks, and the conditional expectation of
the Pareto weights as a function of the current state of the economy.

An illustrative example We introduce a simple example used in the subsequent sec-
tions to better illustrate the properties of the model. Endowments can take on one of
the following four equally likely pairs of realizations:

N = {(X = 103�Y = 103)� (X = 103�Y = 100)� (X = 100�Y = 103)� (X = 100�Y = 100)
}
�

We assume that the coefficient λ1 = 1 − λ2 = 0�97 so that agent 1 enjoys a higher period
utility when the supply of good X is large and agent 2 is better off when good Y is more
abundant. The risk-sensitive parameter θ is set to (1 − γ)−1 where γ = 25 in order to
enhance the role of risk-sensitivity in this basic setup. We consider lower values of risk
aversion in Sections 4 and 5. The qualitative implications of the model are the same as
long as γ > 1. For both agents, the subjective discount factor, δ, is set to 0�96 to ensure
fast convergence of our algorithm.

2We report the budget constraints associated to the decentralized economy in Appendix A in the Supple-
mental Material (available on the journal website, http://qeconomics.org/supp/457/code_and_data.zip).

http://qeconomics.org/supp/457/code_and_data.zip
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Ranking of Pareto weights We use the following proposition to characterize the ranking
of Pareto weights as a function of the state of the economy.

Proposition 1. Let Assumptions 1–8 hold. Let the events a�b ∈N be such that

X ′(a)/Y ′(a) >X ′(b)/Y ′(b)�

Then the ratio of Pareto weights is such that

S′(a�S)≤ S′(b�S)�

IfX ′(a)/Y ′(a)=X ′(b)/Y ′(b), then S′(a�S)= S′(b�S).

Proof. See Appendix B.1 in the Supplemental Material (available in a supplementary
file on the journal website, http://qeconomics.org/supp/457/code_and_data.zip).

The interpretation of Proposition 1 is simple: whenever agent 1 receives a good shock
to the endowment of the good that she likes the most, the social planner reduces her
weight. This reallocation enables agents 1 and 2 to share part of the endowment risk of
the economy, and it is consistent with what is shown in our two-period model, where
we document that the elasticity λξ

u1
1

is negative. Furthermore, if the two goods are in

identical supply, the optimal choice of Pareto weights is independent of the supply level.
Figure 1 documents this ranking by showing the optimal policies associated with our

illustrative example. First, notice that the optimal policy is identical in the two states of
equal supply of the two goods (see the top-left and the bottom-right panel). Second,
notice that next-period’s Pareto weight attached to agent 1 is lower when the supply of
good X is relatively more abundant (top-right panel) than it is when the supply of good
X is relatively more scarce (lower-left panel).

The distribution of the Pareto weights: Ergodicity and mean reversion We document
that in the limit no agent receives a Pareto weight of zero with probability one. Further-
more, it is possible to demonstrate that in our economy the dynamics of Pareto weights
are characterized by mean reversion. This means that when the Pareto weight of any
agent is small (large), it is expected to increase (decrease) going forward. The following
two propositions formalize these statements.

Proposition 2. Let Assumptions 1–8 hold. The stochastic processes μ1 and μ2 cannot
converge to either 0 or 1 almost surely.

Proof. See Appendix B.2 in the Supplemental Material (available in a supplementary
file on the journal website, http://qeconomics.org/supp/457/code_and_data.zip).

Proposition 3. Let Assumptions 1–8 hold. The expectation of the next-period’s Pareto
weight on agent 1 conditional on the current Pareto weight is such that (i) E[μ′

1|S] = μ1,
if μ1 = 1

2 ; (ii) E[μ′
1|S]<μ1, ∀μ1 ∈ ( 1

2 �1); and (iii) E[μ′
1|S]>μ1, ∀μ1 ∈ (0� 1

2).

http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
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Figure 1. Phase diagrams of Pareto weights. Each panel refers to a different realization of the
endowment of the two goods at time t + 1, zt+1 = [Xt+1 Yt+1]. On the vertical axis, we depict the
difference between the future Pareto weight for agent 1, μ1�t+1 = fμ1(zt+1�μ1�t ), and its current
value, μ1�t . On the horizontal axis, we have μ1�t .

Proof. See Appendix B.3 in the Supplemental Material (available in a supplementary
file on the journal website, http://qeconomics.org/supp/457/code_and_data.zip).

The content of Propositions 2 and 3 is depicted in Figure 2. The left panel of Figure 2
shows that the invariant distribution of Pareto weights does not display any mass in the
limiting cases of μ1 = {0�1}. This means that in the long run both agents “survive,” that
is, they both consume a nonzero share of the aggregate resources.

The right panel of Figure 2 shows that the conditional change in the Pareto weight
of each agent is positive when the Pareto weight is small, and negative when the Pareto
weight is large. Equivalently, the dynamics of the Pareto weight feature mean reversion,
which is due to endogenous asymmetries in precautionary saving motives. Taken to-
gether, Propositions 2 and 3 ensure the existence of a well-defined invariant distribution
of Pareto weights.

As in our two-period economy, the substitution effect generated by the reallocation
channel is size dependent due to the nonlinearity of the aggregator of the two goods. An
agent with a large share of consumption benefits the least from the substitution effect
and is willing to buy very expensive insurance from the other agent in order to reduce

http://qeconomics.org/supp/457/code_and_data.zip
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Figure 2. Survivorship. The left panel reports the invariant distribution of the Pareto weight of
agent 1 (μ1). The right panel shows the conditional expectation of the Pareto weight increment
for agent 1, E[μ′

1 −μ1|μ1], as a function of the current μ1.

the conditional variance of her continuation utility. As a result, the agent with a small
consumption share is expected to receive a positive transfer of resources going forward,
and her consumption share is expected to become larger.

4. Comparison of approximations

In this section, we investigate the ability of both first- and higher-order approximations
to capture the short- and long-run characteristics of the model. In order to use com-
mon perturbation techniques, we assume that endowments are jointly log-normally dis-
tributed, with the following means and covariance matrix:(

logX
logY

)
∼N

([
4�62
4�62

]
�

[
0�0252 0�3 · 0�0252

0�3 · 0�0252 0�0252

])
�

This calibration captures the degree of correlation of output (Colacito and Croce (2013)).
In what follows, we show that the results with Gaussian shocks are similar to those

obtained with a finite discretized joint normal distribution. This constitutes a gener-
alized setup relative to our earlier sections, which will prove important in allowing us
to numerically analyze several interesting extensions of our benchmark model in Sec-
tion 5. Specifically, we discretize the distribution of the exogenous endowment shocks
on a 21 × 21 grid of equally spaced nodes on the range[

exp{4�62 − 5 × 0�025}�exp{4�62 + 5 × 0�025}]�
We set δ = 0�96, λ1 = 0�97, and γ = 15. This value of risk aversion is in line with those
typically employed in the equity premium puzzle literature (see, among others, Tallarini
(2000)) and can be lower than that used in Section 3.2 because we adopt a richer set of
exogenous states.
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Figure 3. Comparison of the actual dynamics of Pareto weights and that obtained through
a first-order Taylor expansion. For the same sequence of shocks, the black line shows the ac-
tual path of the agent 1 Pareto weight, μ1, while the red line shows the path obtained using a
first-order approximation about the unconditional mean of μ1, that is, μ1 = 1/2.

The curse of the linear approximation

A first-order Taylor approximation about the unconditional mean of the ratio of Pareto
weights fails to reproduce at least two crucial aspects of the economy. First, it provides
a highly inaccurate description of the period-by-period dynamics of the model. Second,
and most importantly, it does not capture the mean-reverting property of the model.
This results in the possibility that one of the two agents eventually dies and is assigned
a steady-state Pareto weight of zero.

In order to show these two facts, we proceed as follows. First, we solve the model
numerically by value-function iteration (see Appendix C in the Supplemental Material,
available in a supplementary file on the journal website, http://qeconomics.org/supp/
457/code_and_data.zip) and obtain what we denote as the “actual” solution. Second, we
compare the “actual” dynamics of Pareto weights with the dynamics computed using a
first-order Taylor expansion about μ1 = μ2 = 0�5. Figure 3 reports this comparison for a
simulation of 400,000 periods.

For the first part of the simulation, the Pareto weights are in the relatively small
neighborhood of 0�5. In this region, the first-order Taylor expansion does a good job
of approximating the actual dynamics of the economy. The approximation, however,
starts deteriorating significantly as the economy departs from μ1 = 0�5. On this history,
according to the first-order Taylor expansion, the Pareto weight of agent 1 should level
off at zero, even though this is in sharp contrast to the actual dynamics of the model
and the survivorship results explained in the previous sections. As a consequence, the
long-run implications of the first-order Taylor expansion are unreliable.

In this clear-cut example, what may at first look like a small error results in an ir-
reversible misrepresentation of the actual dynamics of the economy and its long-run
moments. In this economy, higher-order approximations are needed not only to pro-
vide a more accurate description of the period-by-period dynamics, but also to preserve
the existence of a well-defined ergodic distribution.

http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
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Figure 4. Comparison of first and second conditional moments across several solution meth-
ods. We denote the log of the ratio of the Pareto weights by st ≡ log(St) and its growth by
st+1 = st+1 − st , respectively. The left panel reports the conditional mean E[st+1|st ] as a func-
tion of st . The right panel reports the conditional variance of st+1 with respect to st . In each
panel, the curve label “Actual” refers to the solution obtained through value-function iterations.
The other three curves are based on Taylor approximations of higher order. In the left panel, the
probability density function (PDF) is computed using the actual policy.

The case for higher-order approximations

The linear approximation does not accurately describe the dynamics of the Pareto
weights because it impels a first-order integrated process. This is clearly depicted in the
left panel of Figure 4, in which we compare the expected growth of the ratio of Pareto
weights as a function of the current ratio across different solution methods. The flat line
for the first-order approximation suggests that the conditional expected change of the
ratio of Pareto weights is identically zero, implying the lack of any kind of mean rever-
sion.

The second-order approximation does capture some of the mean reversion, al-
though not enough to be comparable to the actual solution of the model. Furthermore,
by looking at the right panel of Figure 4 we notice that the second-order approxima-
tion does not feature any time variation in the conditional variance of the ratio of Pareto
weights. This is in stark contrast to the actual dynamics of the second moments of the ac-
tual solution. Equivalently, the second-order approximation completely misses the time
variation in the last term of equation (2), that is, the key determinant of the risk-sharing
motive of our agents.

In order to capture time-varying volatilities of both consumption and continuation
utilities, we implement a third-order approximation. In contrast to the second-order
perturbation, the third-order approximation provides an extremely accurate representa-
tion of the dynamics of both the first and second conditional moments. This is certainly
the case in a 99% confidence interval of the actual long-run distribution of the ratio of
Pareto weights. As expected, the quality of the approximation deteriorates toward the
tails of the distribution.
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To summarize, this class of models produces rich dynamics for both the first and
second conditional moments of the Pareto weights and, therefore, consumption shares
across agents. To appropriately capture these dynamics, an approximation of at least the
third order is required. In the next section, we use third-order approximations to study
more general settings.

5. More general environments

In this section, we generalize our setting in two respects. First of all, we consider prefer-
ences defined as in Epstein and Zin (1989),

Ui�t =
[
(1 − δ) · (Ci�t)1−1/ψ + δEt

[
(Ui�t+1)

1−γ] 1−1/ψ
1−γ ] 1

1−1/ψ � ∀i ∈ {1�2}� (14)

where ψ denotes the IES and γ represents RRA. Second, we consider the following en-
dowment process that allows persistence:

logXt = μ+ ρ logXt−1 − τ[logXt−1 − logYt−1] + εXt �
(15)

logYt = μ+ ρ logYt−1 + τ[logXt−1 − logYt−1] + εYt �[
εXt
εYt

]
∼ iidN

([
0
0

]
�

[
σX2 ρX�Yσ

XσY

ρX�Yσ
XσY σY2

])
� (16)

where ρ ∈ [0�1] and τ ∈ (0�1) determine the extent of cointegration when ρ = 1. Coin-
tegration is required to have a well-defined ergodic distribution of the relative supply of
the two goods, but it plays a minor quantitative role in our analysis as we set it to a very
small number.

Solving the planner’s problem with global methods and multiple exogenous state
variables goes beyond the scope of this manuscript. The reason is that properly captur-
ing the mean reversion of the pseudo-Pareto weights requires a very thin grid, and it
exposes us to the curse of dimensionality even with one extra state. Hence in this sec-
tion we explore the generality of our results through simulations based on a third-order
perturbation of our dynamic model, which we detail in Appendix D in the Supplemental
Material (available in a supplementary file on the journal website, http://qeconomics.
org/supp/457/code_and_data.zip).

Reference calibration Our reference calibration features μ = 2%, ρ = 0�90, σX =
σY = 1�87%, ρX�Y = 0�35, τ = 5�0E−04, γ = 5, ψ= 1, δ= 0�96, and λ1 = λ2 = 0�97. The pa-
rameters for the endowment processes are set in the spirit of Colacito and Croce (2013).
In what follows, we first consider different endowment processes and different levels of
the IES and RRA while preserving symmetry across agents and goods. We then explore
the implications for a small degree of heterogeneity in preference for the two goods (λi)
and in fundamental volatility across goods (σX and σY ).

5.1 Symmetric environments

The role of persistence We vary the persistence of our endowment shocks from zero to
one. When ρ= 0, we have i.i.d. level shocks, as in the previous section. When ρ= 1, level

http://qeconomics.org/supp/457/code_and_data.zip
http://qeconomics.org/supp/457/code_and_data.zip
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Figure 5. The role of persistence and preferences. Our model features Epstein and Zin (1989)
preferences as specified in equation (14) and the endowments reported in equation (15). Our
reference calibration is detailed in Section 5. We vary one parameter at a time for both countries,
leaving the other parameters unchanged.

shocks are permanent. We depict key features of the distribution of the log-ratio of the
Pareto weights, st , in Figure 5 and simulated moments in Table 1.

We make several observations. First, as we increase ρ, the endowment shocks be-
come more long-lasting and volatile. As a result, the endogenous process st becomes
more volatile, as documented by its fatter tails (rightmost plot of Figure 5, panel A) and
the higher conditional volatility of st (center plot of Figure 5).
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Table 1. The role of persistence and preferences.

Moments of SWC Percentiles of Approx. Errors (%)
Parameter
Value

Cumul.
ERR (%)Mean Std. Dev. 50 75 90 95

The role of persistence (ρ)
0 0�5 0�18 2�0E−14 4�0E−14 7�0E−14 9�0E−14 8�0E−01
0�9 0�5 0�19 8�0E−15 2�0E−14 2�0E−14 4�0E−14 7�0E−04
1 0�5 0�2 2�0E−14 4�0E−14 6�0E−14 7�0E−14 5�0E−05

The role of RRA (γ)
3 0�5 0�21 2�0E−14 3�0E−14 6�0E−14 9�0E−14 1�0E−02
5 0�5 0�2 8�0E−15 2�0E−14 2�0E−14 4�0E−14 7�0E−04
7 0�5 0�16 3�0E−14 6�0E−14 8�0E−14 9�0E−14 5�0E−04

The role of IES (ψ)
2/3 0�5 0�19 4�0E−11 4�0E−11 4�0E−14 4�0E−14 1�0E−01
1 0�5 0�2 2�0E−14 4�0E−14 5�0E−14 7�0E−14 5�0E−05
1�5 0�5 0�21 4�0E−14 9�0E−14 2�0E−13 2�0E−13 5�0E−05

Note: Our model features Epstein and Zin (1989) preferences as specified in equation (14) and the endowments reported in
equation (15). Our reference calibration is detailed in Section 5. We vary one parameter at a time, leaving the others unchanged.
Both the approximation errors and the cumulative approximation errors (Cumul. ERR) are defined in Appendix D and are
multiplied by 100. All numbers are based on repetitions of long-sample simulations (at least 2 million periods) with different
starting points for log ratio of the Pareto weights (st ).

The unconditional volatility of st , however, increases just slightly, as documented in
Table 1. This is because as shocks become more long lasting the precautionary motives
of these agents become more pronounced and more sensitive to size. As the exogenous
endowment persistence (ρ) increases, the endogenous persistence of st declines, as cap-
tured by the more negative slope of Et[st+1] with respect to st (leftmost plot of Figure 5,
panel A).

Second, given the lower persistence of st , our cumulative error measure declines to
very small numbers with higher values of ρ. This result is reassuring because in many
realistic applications the endowment shocks are calibrated to be very persistent.

The role of preferences When we vary the subjective discount factor, we do not find sig-
nificant changes in the dynamics of the log-ratio of the Pareto weights. For this reason,
we focus only on the role of risk aversion and IES. Increasing risk aversion amplifies the
sensitivity of continuation utility to shocks, and hence it makes the redistribution chan-
nel stronger. This intuition is confirmed in panel (b) of Figure 5, where we show that the
conditional variation of st+1 increases with higher values of γ and, at the same time,
the mean reversion of the Pareto weights speeds up.

Since the endogenous change in mean reversion dominates quantitatively, as γ in-
creases more mass is concentrated in the center of the probability distribution function
of st , implying that the unconditional volatility of this process declines. Together, the
faster speed of mean reversion and the lower unconditional volatility of st imply lower
levels of approximation errors.

We conclude this analysis by examining the case in which we vary the IES. The ef-
fect of this parameter on the conditional volatility of the ratio of Pareto weights is almost
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negligible (center plot of panel (c), Figure 5). The impact on the endogenous persis-
tence of st is a bit more pronounced, but still moderate compared to the case in which
we change risk aversion. Qualitatively, agents with a higher IES are more willing to ac-
cept fluctuations of consumption over time and hence are more willing to accept very
long-lasting reallocations, that is, slower mean reversion in st (leftmost plot in panel (c),
Figure 5). Most importantly, we note that in the long-run risk literature the IES is set to
values larger than or equal to one. For these values, the approximation errors are small,
meaning that when the curvature of the utility function with respect to intertemporal
aggregation is moderate (ψ≥ 1), the quality of our approximation is good.

5.2 Asymmetric environments

Asymmetry preferences for the two goods We lower the degree of preference for good Y
of agent 2, λ2, from 0�97 to 0�90, thus increasing the ability of agent 2 to smooth fluctua-
tions in her consumption bundle by trading the two goods. All other parameters are un-
changed. We depict key features of the distribution of the log-ratio of the Pareto weights,
st , in Figure 6 and simulated moments in Table 2.

Since agent 2 faces less consumption uncertainty than agent 1, her demand of insur-
ance is moderate compared to that of agent 1. As a result, the average share of resources
allocated to agent 2 increases and the curves depicted in the top-left panel of Figure 6
shift to the left. In the Appendix in the Supplementary Material, we show that this intu-
ition is also present in the simple two-period model (see Figure AF-1).

We note that the distribution of the log-ratio of the Pareto weights does not shift to
the left in a parallel way. As documented in the top portion of Table 2, under the opti-
mal risk-sharing scheme, agent 1 accepts a lower average level of resources in exchange
for both a reduction in future utility uncertainty and positive skewness of its share of
world consumption. That is, agent 1 benefits from a sizeable positive redistribution of
resources along histories with a severe downside of the relative supply of good X .

Rabitsch, Stepanchuk, and Tsyrennikov (2015) point out that a global approximation
is required when countries are subject to asymmetric constraints, such as a borrowing
limit, and when their wealth distribution is nonstationary. Since we have a frictionless
model with complete markets and a well-defined ergodic distribution of wealth, a per-
turbation approach provides a good approximation of the equilibrium. Consistent with
the findings in Rabitsch, Stepanchuk, and Tsyrennikov (2015), our cumulative errors in-
crease as we make the two agents more asymmetric, but our errors remain as low as
2�2%.

CRRA and heterogeneous degree of preference for the two goods It is useful to study this
asymmetric scenario under time-additive CRRA preferences. We choose the intermedi-
ate case λ1 = 0�97, λ2 = 0�95, and set ψ−1 = γ = 5.3 We fix the initial ratio of the Pareto
weights to a value that delivers an average SWC of 0�47, as in the case with recursive pref-
erences. Panel (b) of Figure 6 and Table 2 confirm that under recursive preferences, the

3Note that since γ > 1, the ratio of Pareto weights is no longer constant over time despite the adoption
of time additivity of preferences (Cole and Obstfeld (1991)). The implied variation in st , however, is very
limited as highlighted in panel (b) of Figure 6.
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Figure 6. Asymmetric calibrations. Our model features Epstein and Zin (1989) preferences as
specified in equation (14) and the endowments reported in equation (15). Our reference calibra-
tion is detailed in Section 5. We vary one parameter at a time, leaving the others unchanged.

reallocation channel is very pronounced and long-lasting, and it prescribes a significant

amount of positive skewness for agent 1, as she is facing more consumption risk because

of a higher degree of preference for goodX .

Heterogeneous volatility In many applications, the properties of the goods traded are

asymmetric. In international finance, for example, different countries may be subject to

productivity shocks with different volatilities. In the presence of the same degree of pref-

erence for the two goods, the agent which prefers the more volatile good faces more con-

sumption, and hence future utility uncertainty. As suggested by our two-period model



332 Colacito, Croce, and Liu Quantitative Economics 10 (2019)

Table 2. Asymmetric cases.

Moments of SWC
Parameter
Value

Cumul
ERR (%)Mean Std Skew

Agent 2 Bias (λ2) − EZ Case
0.97 0�5 0�19 0 7�0E−04
0�95 0�47 0�18 0�22 2�6E−03
0�90 0�46 0�17 0�33 2�2E+00

Agent 2 Bias (λ2) − CRRA Case (γ =ψ−1 = 5)
0�95 0�47 0�02 0�03 5�0E−06

Y-Good Volatility (σY )
1�00 · σX 0�5 0�19 0 7�0E−04
1�05 · σX 0�58 0�19 −0�27 9�0E−04
1�10 · σX 0�56 0�22 −0�27 1�3E−01

Note: Our model features Epstein and Zin (1989) preferences as specified in equation (14) and the endowments reported
in equation (15). Our reference calibration is detailed in Section 5. We vary one parameter at the time, leaving the others un-
changed. The cumulative approximation errors (Cumul ERR) are defined in Appendix D and are multiplied by 100. All numbers
are based on repetitions of long sample simulations (at least 2 million periods) with different starting points for log ratio of the
Pareto weights (st ).

(see Figure AF-1), this agent should be willing to accept a low average SWC in exchange
for insurance. Panel (c) of Figure 6 and Table 2 confirm this finding as we increase σY .

In this case, the average share of resources of agent 1 increases. The volatility of the
SWC increases as well, as a direct result of the higher standard deviation of good Y .
Agent 1 is willing to insure agent 2 against downside risk, and agent 1 accepts negative
skewness in her own share of resources. Across all cases, the associated cumulative ap-
proximation errors are smaller than 0�14%.

Heterogenous RRA A well-known result with multiple agents with risk-sensitive pref-
erences in a one-good economy with growth is that only the agent with the lowest risk
aversion remains wealthy in the long run, ceteris paribus (see Anderson (2005)). We con-
firm this finding in our setting by depicting in Figure 7 the expected growth rate of the
log-ratio of Pareto weights for the case λ1 = λ2 and γ2 > γ1. Since the expected growth is
positive for all values of st , all resources are allocated to agent 1 in the limit.

Our risk-sharing mechanism, however, suggests that as we make the degree of pref-
erence for the two goods more asymmetric, size matters progressively more for the in-
tensity of the reallocation channel. Hence as the high-risk-aversion agent receives a
smaller share of world resources, her willingness to buy further insurance should de-
cline, which in turn results in survivorship. Our simulations confirm this intuition and
suggest that there exist regions of the parameter space in which survivorship is also pos-
sible with asymmetric risk aversion, provided that multiple parameters are simultane-
ously adjusted, in the spirit of Anderson (2005).

6. Concluding remarks

We have characterized the solution of a planner’s problem with multiple agents, multi-
ple goods, and recursive preferences. The introduction of multiple goods substantially



Quantitative Economics 10 (2019) Recursive allocations and wealth distribution 333

Figure 7. Asymmetric risk aversion. Our model features Epstein and Zin (1989) preferences as
specified in equation (14) and the endowments reported in equation (15). Our reference calibra-
tion is detailed in Section 5. We set γ2 = 7 and γ1 = 5 and vary simultaneously λ1 and λ2.

changes the dynamics of Pareto optimal allocations. Future research should extend our
theoretical results to continuous time and continuous shocks. Asset pricing implications
may be particularly appealing, due to the ability of this class of models to endogenously
produce time-varying second moments without requiring market frictions. Since the
main features of the risk-sharing scheme can be accurately captured through a third-
order approximation, this class of models could be easily extended to an international
business cycle setting as well.

Appendix A: Two-period model

Environment

In this section, we present a simplified two-period version of our model in order to pro-
vide intuition on the reallocation motives induced by recursive preferences. Specifically,
at time t = 1 agents receive news ξ about their time-1 endowment of goods. At time
t = 0, that is, before the arrival of the shock, agents i ∈ {1�2} exchange a complete set
of ξ-contingent securities to maximize their time-0 utility, given their initial wealth (re-
flected in their time-0 Pareto weights).

Utility and technology

In what follows, we take advantage of lognormality wherever possible. Up to a log lin-
earization of the allocation shares, this modeling strategy enables us to obtain a simple
closed-form solution. In this spirit, we start by assuming that agents have an IES equal
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to 1, that is, their preferences can be expressed as follows:

ui0 =

⎧⎪⎨⎪⎩δθi logE0

[
exp
{
ui1
θi

}]
� 0> θi >−∞�

δE0
[
ui1
]
� θi → −∞

(A.1)

where

ui1 = log
(
Ci1
)

and

C1
1 = (X1

1
)λ1
(
Y 1

1
)(1−λ1)� C2

1 = (X2
1
)(1−λ2)(Y 2

1
)λ2 � (A.2)

The resource constraints are specified as follows:

X1
1 +X2

1 = eξ� Y 1
1 +Y 2

1 = e−lξ� ξ∼N(0�σ2)� (A.3)

where the parameter l determines whether agent 2 is more (l > 1) or less (0 < l < 1)
exposed to the shock ξ than agent 1. We assume that ξ affects both goods to preserve
symmetry in our equations. In what follows, we show that the results are driven only by
the relative supply of the goods (1 + l)ξ.

Pareto problem

Under complete markets, the allocation can be recovered by solving the following Pareto
problem:

max
{X1

1 �X
2
1 �Y

1
1 �Y

2
1 }
μ0 · u1

0 + (1 −μ0) · u2
0�

subject to the constraints specified in (A.2)–(A.3). Let S0 ≡ μ0/(1 −μ0); after simplifying
common coefficients, the optimality condition for the allocation of goodX1 is

S1(ξ)
∂ logC1

1
∂X1

= ∂ logC2
1

∂X1
(A.4)

with

S1(ξ)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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1
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1
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}
E0

[
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1
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}] � 0> θi >−∞�
(A.5)

Equation (A.4) establishes that the optimal allocation can be found as in a regular
static problem, for a given value of S1. Equation (A.5) pins down S1 and yields two im-
portant results. First, in the time-additive case, the share of resources is time invariant,
that is, it is not affected by the actual realization of ξ. This is consistent with the special
log case considered by Cole and Obstfeld (1991).
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Second, with recursive preferences, agents have a preference for the variance of their
future utility, and hence their time-1 marginal utility depends on the time-1 level of their
utility. If agents prefer early resolution of uncertainty (0> θi >−∞), a higher relative fu-
ture utility implies a lower relative marginal utility, and hence a lower share of allocated
resources (u1

1(ξ) > u
2
1(ξ)→ S1(ξ) < S0). Because of the dependence of S1 on future utility

levels, u1
1(ξ)− u2

1(ξ), the shock ξ prompts a reallocation at time 1.

Approximate solution

Define λ1
1−λ2

= κ1 and λ2
1−λ1

= κ2. At time 1, ξ is known and the optimal allocations are

X1
1 = S1κ1

1 + S1κ1
eξ� X2

1 = 1
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eξ
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e−lξ�

Since the allocations are a nonlinear function of S1(ξ), we log linearize them with respect
to s ≡ logS1 around s = s0 and obtain
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We can now write
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and

s− s̄ = const(s̄)+ λξs · ξ�
The elasticity λξs can be found taking into account equation (A.5):

λ
ξ
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λ
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λ
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Specifically, by combining equations (A.8)–(A.9), we have
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The constant can be recovered again from equation (A.5) accounting for second-order
terms:

const(s̄)= 1
2
σ2
[(λξ

u2
1

θ2

)2
−
(λξ

u1
1

θ1

)2]
� (A.11)
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Decentralization

Let the budget constraints of agent 1 and agent 2 be

X1
1 +p ·Y 1

1 +
∫
ξ
Q(ξ)A1

2(ξ)= eξ +A1
1�

X2
1 +p ·Y 2

1 +
∫
ξ
Q(ξ)A2

2(ξ)= e−lξ +A2
1�

where p is the price of good Y relative to good X , Q(ξ) is the price of an Arrow–Debreu
security that pays one unit of goodX (the numeraire) contingent on the realization of ξ
at date 2, andAji are the holdings of such security of agent j at date i. By market clearing,
A1
i +A2

i = 0, ∀i ∈ {1�2}.
Define ξ as the specific value of the state in which there is no reallocation effect, that

is, s = s. Under our approximation,

ξ= −const(s)

λ
ξ
s

�

This value is an important threshold for the portfolio allocation of our two agents in
the companion decentralized economy. In particular, at time 0, agent 1 buys Arrow–
Debreu securities paying a positive payoff for ξ < ξ, and sells Arrow–Debreu securities
paying when ξ > ξ. Since these assets are available in zero net supply, the exact opposite
holds for agent 2. The probability of agent 1 receiving a positive transfer is F(ξ), where
F denotes the cumulative distribution function of ξ. When ξ > 0, agent 1 has a higher
probability of being a net receiver of resources than agent 2.

Special cases

In the special case in which both agents have the same risk-sensitivity parameter, θ1 =
θ2 = θ, and the same exposure to the underlying shock, l= 1, we obtain

λ
ξ
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θ
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and λξs < 0 if θ < −∞ and λ1 + λ2 > 1, that is, the ratio of the pseudo-Pareto weights is
“countercyclical,” meaning that a smaller share of resources is assigned to agent 1 when
there is relative abundance of good 1. In this case,

const(s̄)= σ2

2θ2

[(
λ
ξ

u2
1

)2 − (λξ
u1

1

)2]
� (A.13)
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Figure AF-1. Asymmetric calibrations in the 2-period model. All results are based on the
two-period model developed in the Appendix. All common parameters are set as in our reference
calibration detailed in Section 5. We vary one parameter at a time, leaving the others unchanged.

Let us also assume that λ1 = λ2 = λ > 1/2. In this case, we can derive the following re-
sults:

lim
s→−∞

λ
ξ
s = 4

(2λ− 1)
θ

< 0� (A.14)

lim
s→−∞

const(s) = σ2

2θ2λ
ξ
s

[
λ
ξ
s − 2(2λ− 1)

]
> 0� (A.15)

lim
s→−∞

ξ = (2λ− 1)
σ2

θ(θ− 1)
> 0� (A.16)

Let F(ξ) be the cumulative distribution function of ξ. Conditional on s→ −∞, the prob-
ability of country 1 to receive a higher share of resources in period 1 is F(ξ), and hence it
increases with (i) a stronger degree of preference for one of the two goods (λ), (ii) larger
fundamental risk (σ2), and (iii) stronger risk sensitivity (θ).

Figure AF-1, depicts const(s̄) (defined in equation (A.11)) as a function of s in two
scenarios with asymmetric calibrations.

Appendix B: Proofs

B.1 Proof of Proposition 1

Proof of Proposition 1. Define

ϕ(z�S) = 1
θ

log c1(z�S)− 1
θ

log c2(z�S)�

�(z�S) = 1
θ
U1(z�S)− 1

θ
U2(z�S)�
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Note that �(z�S) = ϕ(z�S)+ F(z�S). Let k = λ1/(1 − λ1) and let X(z) and Y(z) be the
endowments of the two goods in state s. Then, by the symmetry of the preferences, the
optimal allocations imply

ϕ(z�S)= 1
θ

[
(2λ1 − 1) log

(
X(z)

Y(z)

)
+ logS + (1 − 2λ1) log(1 + kS)− (1 − 2λ1) log(k+ S)

]
�

Since θ < 0, if λ1 > 1/2 it follows that ϕ(z�S) is always: 1) decreasing in X(z)/Y(z) and
2) decreasing in S. Furthermore, F(s�S) is decreasing in S, since U1(z�S) (U2(z�S)) is
increasing (decreasing) in S, by the optimality of the social planner problem. Therefore,
it has to be the case that �(z�S) is decreasing in S.

Take two states, a and b, such that X ′(a)/Y ′(a) < X ′(b)/Y ′(b), and let S′
a = fS(a�S)

and S′
b = fS(b�S) be their respective ratios of Pareto weights. It is possible to characterize

the ratio:

S′
b

S′
a

= exp
{
�
(
b�S′

b

)−�(a�S′
a

)}
�

Since �(z�S) is decreasing in z holding S fixed, it follows that exp{�(b�S′
a) − �(a�

S′
a)}< 1. Hence, ifX ′(a)/Y ′(a) <X ′(b)/Y ′(b), it is never optimal to set S′

a = S′
b.

Additionally, the fact that�(s�S) is decreasing in S implies that

1> exp
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b�S′
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)−�(a�S′
a

)}
>
{
�
(
b�S′

b

)−�(a�S′
a
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�

It follows that S′
b < S

′
a.

B.2 Proof of Proposition 2

We proceed in steps to provide a proof to Proposition 2. Specifically, we state and prove
four propositions, which, combined, yield the proof of Proposition 2. Throughout our
exposition of these propositions, we utilize the example proposed in main text, in order
to better illustrate the content of each statement.

We start by stating the following decomposition of the Pareto weights, the proof
for which follows directly from Anderson (2005). The rest of this section will consist of
propositions aimed at signing the covariance that appears on the right-hand side of this
decomposition. This will enable us to establish the relevant properties concerning the
ergodicity and mean reversion of the distribution of Pareto weights.

Proposition A4. The ratio of Pareto weights can be decomposed as

E
[
S′|S]= S − cov

[
exp
{
U ′

2/θ
}
� S′|S]

E
[
exp
{
U ′

2/θ
}|S] � (B.17)

where E[S′|S] denotes the expectation of S′ conditional on s being the current state, and

cov
[
exp
{
U ′

2/θ
}
� S′|S]

denotes the covariance between exp{U ′
2/θ} and S′ conditional on the current S.
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Proof. See Anderson (2005).

The next proposition draws a sharp contrast between a representative-agent econ-
omy and our setting with multiple agents and goods. In a representative-agent economy,
the consumer enjoys a higher utility in the states of the world in which the supply of the
most-preferred good is more abundant. In the two agent economy that we consider in
this paper, for any two symmetric states there exists a finite ratio of Pareto weights below
which the ranking of the future utility functions across states is reversed.

Proposition A5. For any two symmetric states zi and z−i, such thatX(zi) > Y(zi), there
exists a finite S̃i1 < 1 such that U1(zi� fS(zi� S̃

i
1))=U1(z−i� fS(z−i� S̃i1)), where fS(·� ·) is de-

fined in (10), and U1(zi� fS(zi� S
i
1)) < U1(z−i� fS(z−i� Si1)), ∀Si1 < S̃i1.

Proof. Let S′
i = fS(zi� S) and S′

−i = fS(z−i� S) be the ratios of Pareto weights when to-
morrow’s symmetric states are zi and z−i, respectively. Using equation (9), the ratio be-
tween S′

i and S′
−i is

S′
i

S′
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Rearranging, we have
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(
z′
i� S
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(
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(
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)+ θ[logS′

i − logS′
−i
]
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We shall characterize the limit of the left-hand side of equation (B.18) for μ1 that tends
to zero. First, notice that consumption bias (λ1 > 1/2) implies that

lim
μ1→0

U2
(
z′
i� S

′
i

)−U2
(
z′
−i� S

′
−i
)
< 0� (B.19)

Then, notice that equation (C.35) and the fact that the planner’s problem is twice con-
tinuously differentiable imply the continuity of the fS function with respect to S. Also, at
μ1 = 0, S′

i = S′
−i = 0. Hence

lim
μ1→0

S′
i = S′

i

∣∣
μ1=0 = S′
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which implies that

lim
μ1→0

log
(
S′
i − logS′

−i
)= 0� (B.20)

Combining (B.19) and (B.20) into (B.18), we obtain that

lim
μ1→0

U1
(
z′
i� S

′
i

)−U1
(
z′
−i� S

′
−i
)
< 0� (B.21)

Since λ1 > 1/2, it follows that

lim
μ1→1

U1
(
zi� S

′)−U1
(
z−i� S′)> 0� (B.22)

Combining (B.21) and (B.22) concludes the proof.



Quantitative Economics 10 (2019) Recursive allocations and wealth distribution 341

Figure AF-2. Difference of continuation utilities in symmetric states. This figure depicts the
difference of the continuation utilities in the states of high supply of good X—low supply of
good Y ,U ′

i�HL, and low supply of goodX—high supply of good Y ,U ′
i�LH , for i= 1�2. The red line

refers to agent 1, the black line to agent 2.

Corollary 1. For any two symmetric states zi and z−i, such that X(zi) > Y(zi), there
exists a finite S̃i2 > 1 such that U2(zi� fS(zi� S̃

i
2))=U2(z−i� fS(z−i� S̃i2)), where fS(·� ·) is de-

fined in (10), and U2(zi� fS(zi� S
i
2)) > U2(z−i� fS(z−i� Si2)), ∀Si2 > S̃i2.

We illustrate the content of the preceding proposition and corollary in Figure AF-2,
which depicts the differences of the continuation utilities in the two states of unequal
supply of the two goods for the example discussed in Section 3.2 of the main text.

When the Pareto weight attached to agent 1 (agent 2) is approaching 1, the contin-
uation utility for the state of abundant supply of good X (good Y ) is higher than the
continuation utility for the state of scarce supply of good X . However, as suggested by
Proposition A5, there exists a μ̃1 < 1/2 (1 − μ̃1 < 1/2) past which the ranking of the con-
tinuation utilities is reversed.

We are now ready to characterize the sign of the covariance term in (B.17). The fol-
lowing definition of conditional covariance in symmetric states is useful in establishing
an upper bound on the last term of equation (B.17).

Definition 2 (Covariance of Symmetric States). Let zi� z−i ∈ N be symmetric states.
The conditional covariance between two random variables h and g valued on {zi, z−i} is

covi�−i[h�g|S] =
∑

l={i�−i}
p(zl)h(zl)g(zl)−

( ∑
l={i�−i}

p(zl)h(zl)

)( ∑
l={i�−i}

p(zl)g(l)

)
�

where p(zl)≡ π(zl)/(π(zi)+π(z−i)).
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Proposition A6. Let cov be the sum of the conditional covariances between exp{U ′
2/θ}

and S′ across all symmetric states:

cov =
∑
i

covi�−i
[
exp
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U ′
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}
� S′|S]�

If cov< 0, then
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[
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Proof. By the definition of conditional covariance,

cov
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˜̃π(i)S′
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(B.24)

where π is a nonnegative scalar smaller than one;
∑
i covi�−i[exp{U ′

2/θ}� S′|S] is the con-
ditional covariance across all symmetric states; coveq[exp{U ′

2/θ}� S′|S] is the conditional
covariance across all states of equal supply; and {π̃(i)}ni=1 and {˜̃π(i)}ni=1 are nonnegative
sequences of scalars.

We know from Proposition 1 that the optimal choice of Pareto weights is identical
across all states in which the supply of the two goods is the same. This implies that

coveq
[
exp
{
U ′

2/θ
}
� S′|S]= 0�

We can also conclude that the last term in equation (B.24) is nonnegative, being the
product of the sums of nonnegative terms.

Therefore, we can state that

cov
[
exp
{
U ′

2/θ
}
� S′|S]≤ π∑

i

covi�−i
[
exp
{
U ′

2/θ
}
� S′|S]�

which concludes the proof.

The sign of cov is key. Suppose that the current ratio of Pareto weights is in the region
between zero and mini{S̃i2} as defined in Corollary 1. For any two symmetric states, the
utility of agent 2 is going to be larger when the supply of good Y is relatively more abun-
dant. Since the parameter θ is negative, the ranking of U2/θ is reversed. Proposition 1
suggests that the ratio of Pareto weights is larger when the supply of good Y is larger.
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Figure AF-3. Upper bound on the conditional covariance between exp{U ′
2/θ} and S′ as a func-

tion of the current Pareto weight.

Therefore, we can conclude that, in this region, cov, and hence the covariance term in
(B.17), is negative. This argument is summarized in Figure AF-3.

The next proposition plays a crucial role in our proof for the existence of a well-
defined ergodic distribution of the Pareto weights. We focus on the properties of the left

tail of the stochastic process S′ = μ′
1

1−μ′
1

= fS(z
′� S) and base our proof on all the other

propositions developed so far.

Proposition A7. The stochastic process Ŝ(S) := min(S�mini{S̃i2}), where S̃i2 is defined as
in Corollary 1 is a submartingale.

Proof. Follows directly from all the propositions in this Appendix.

We conclude this section with the proof of Proposition 2.

Proof of Proposition 2. We know from Proposition A7 that the stochastic process

Ŝ(S)= min
(
S�min

i

{
S̃i2
})

is a submartingale. Since a bounded submartingale cannot converge almost surely to its
lower bound (see Sciubba (2005)), then Ŝ(S) cannot converge almost surely to 0.

We prove the rest of the proposition by contradiction. Denote by Ω =×∞
t=1 zt the

set of sample paths of endowments, with representative elementω= (z1� z2� � � � � zt� � � �).
Given the initial Pareto weight ratio S0 = 1 and the transition dynamics S′ = fS(z

′� S),
the ratio of Pareto weights at time t can be written as a function of the sample path:
St = St(ω).

Suppose Proposition 2 does not hold. Then there must exist a set of ω such that

Pr
{
ω
∣∣ lim
t→∞St(ω)= 0

}
> 0� (B.25)
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Denote byQ= {ω| limt→∞ St(ω)= 0} and consider the natural filtration onQ:Q1 ⊆Q2 ⊆
· · · ⊆Qt ⊆ · · · ⊆Q. Recall that {zt}∞t=1 is i.i.d. As in Sciubba (2005), Qt−1 does not restrict
the original probability distribution of zt , and hence we have that Pr{zt = z(i)|Qt−1} =
π(z(i)). As a consequence, all the results that we have proved so far in this section apply
with respect to the conditioning set Qt−1. This means that St is a bounded submartin-
gale with respect to the conditioning information setQt−1. Since a bounded submartin-
gale cannot converge almost surely to its lower bound, then St cannot converge almost
surely to 0 on Q. This contradicts the definition of Q. Hence, St cannot converge to 0
with probability 1. Equivalently, the probability that St converges to 0 is null.

Note that μ1(Ŝ) = Ŝ
1+Ŝ , that is, μ1(Ŝ) is a nonnegative, monotonically increasing

function of Ŝ. It follows that μ1 cannot also converge to 0 almost surely. By repeating all
the proofs in the paper for μ2 = 1 − μ1, it follows by symmetry that μ2 cannot converge
to 0 almost surely. Equivalently, μ1 cannot converge to 1 almost surely either.

B.3 Proof of Proposition 3

This section reports the proof of the proposition on the mean-reversion property of the
Pareto weight.

Proof of Proposition 3. We prove the three statements in Proposition 3 in the same
order in which they appear in the proposition’s claim.

1. We show that only μ1 = 1/2 is such that E[μ′
1|S] = μ1.

After imposing a symmetrical calibration, the recursive definition of the ratio of Pareto
weights derived in the paper becomes

μ′
1

1 −μ′
1

= μ1

1 −μ1
· exp

{
U1
(
z′� S′)/θ}∑

z′
π
(
z′)exp

{
U1
(
z′� S′)/θ}

∑
z′
π
(
z′)exp

{
U2
(
z′� S′)/θ}

exp
{
U2
(
z′� S′)/θ} �

By rearranging and taking the conditional expectation operator, we obtain

E
[
μ′

1|S
]= μ1 −μ1 · cov

[
μ′

1�exp
{
U ′

1/θ
}|S]

E
[
exp
{
U ′

1/θ
}|S]

− (1 −μ1) · cov
[
μ′

1�exp
{
U ′

2/θ
}|S]

E
[
exp
{
U ′

2/θ
}|S] �

(B.26)

For each μ1 = μ∗
1 such that E[μ′

1|S] = μ∗
1, equation (B.26) implies that

μ∗
1 = cov

[
μ′

1�exp
{
U ′

2/θ
}|S]

E
[
exp
{
U ′

2/θ
}|S]/(cov

[
μ′

1�exp
{
U ′

2/θ
}|S]

E
[
exp
{
U ′

2/θ
}|S] − cov

[
μ′

1�exp
{
U ′

1/θ
}|S]

E
[
exp
{
U ′

1/θ
}|S]

)
�

(B.27)
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By symmetry, for each μ∗
1 < 1/2, there must exist a μ∗∗

1 = 1 −μ∗
1 such that E[μ′

1|S] = μ∗∗
1 .

At μ∗∗
1 = 1 −μ∗

1, equation (B.26) implies that

μ∗
1 = cov

[
μ′

1�exp
{
U ′

1/θ
}|S]

E
[
exp
{
U ′

1/θ
}|S]/(cov

[
μ′

1�exp
{
U ′

1/θ
}|S]

E
[
exp
{
U ′

1/θ
}|S] − cov

[
μ′

1�exp
{
U ′

2/θ
}|S]

E
[
exp
{
U ′

2/θ
}|S]

)
�

(B.28)

Combining equations (B.27) and (B.28), we obtain that at μ∗
1 the following condition

must hold:

cov
[
μ′

1�exp
{
U ′

1/θ
}|S]

E
[
exp
{
U ′

1/θ
}|S] = −cov

[
μ′

1�exp
{
U ′

2/θ
}|S]

E
[
exp
{
U ′

2/θ
}|S] � (B.29)

By plugging condition (B.29) into equation (B.27) or (B.28), we conclude that the only
μ∗

1 ∈ (0�1) such that E[μ′
1|S] = μ∗

1 is μ∗
1 = 1/2.

2. We show that if μ1 > 1/2, then E[μ′
1|S]<μ1.

We know from Proposition A7 that the stochastic process Ŝ(S) = min(S�mini{S̃i2}),
where mini{S̃2} > 1 is a submartingale. Since, by definition, Ŝ(S) = μ1(Ŝ)

1−μ1(Ŝ)
, and the

stochastic process μ1 cannot converge to 1 (see Proposition 2), there must exist a

μ+
1 >

mini S̃i2
1+mini S̃i2

> 1/2 such that E[S′|S+] = S+, where S+ = μ+
1

1−μ+
1

. Since S = μ1
1−μ1

is a con-

vex function in μ1,

μ+
1

1 −μ+
1

= E
[
S′|S+]=E[ μ′

1
1 −μ′

1

∣∣∣S+
]

= cov
[
μ′

1�
1

1 −μ′
1

∣∣∣S+
]

+E[μ′
1|S+]E[ 1

1 −μ′
1

∣∣∣S+
]

≥ cov
[
μ′

1�
1

1 −μ′
1

∣∣∣S+
]

+E[μ′
1|S+] 1

1 −E[μ′
1|S+] �

Sinceμ′
1 and 1

1−μ′
1

are both monotonically increasing functions ofμ′
1, cov[μ′

1�
1

1−μ′
1
|S+]>

0. This implies that

μ+
1

1 −μ+
1

≥ cov
[
μ′

1�
1

1 −μ′
1

∣∣∣S+
]

+E[μ′
1|S+] 1

1 −E[μ′
1|S+]

> E
[
μ′

1|S+] 1
1 −E[μ′

1|S+]
from which we obtain

E
[
μ′

1|S+]<μ+
1 �

Since we know that there exists only one μ∗
1 = 1/2 such that E[μ′

1|
μ∗

1
1−μ∗

1
] = μ∗

1, by the

continuity of fS with respect to S, it must be the case that E[μ′
1|S]<μ1, ∀μ1 ∈ (1/2�1).



346 Colacito, Croce, and Liu Quantitative Economics 10 (2019)

3. We show that if μ1 < 1/2, then E[μ′
1|S]>μ1.

This proof mirrors the one that we just provided for μ1 > 1/2, and thus for parsimony
we omit it here.

Appendix C: Recursive method and global solution

Given the conditions in Ma (1993) and Ma (1996), the social planner’s value function, de-
noted asQp(z�μ1) : N ×[0�1] →R, satisfies the following functional equation proposed
by Lucas and Stokey (1984), and Kan (1995):

Qp(z�μ1)= max{xi�yi�qi�z′ }i∈{1�2}�z′∈N

2∑
i=1

μi logW ∗
i

(
z� ci� {qi�z′ }z′

)
(C.30)

subject to

μ2 = 1 −μ1�

0 ≤ x1 ≤X(z)� 0 ≤ x2 ≤X(z)− x1�

0 ≤ y1 ≤ Y(z)� 0 ≤ y2 ≤ Y(z)− y1� (C.31)

ci = (xi)
λi(yi)

1−λi � ∀i= {1�2}�
0 ≤ min

μ1(z′)∈[0�1]
Qp
(
z′�μ1

(
z′))−μ1

(
z′)q1�z′ − (1 −μ1

(
z′))q2�z′� ∀z′ ∈ N �

Remark Appendix C.1. Let Assumptions 1–4 hold. When μi = 0, interpret μi logW ∗
i (z�

ci� {qi�z′ }z′) = 0. Since 0 < X(z) < ∞ and 0 < Y(z) < ∞, ∀z ∈ N , it can be proved that
there exists a unique bounded and continuous solution to (C.30)–(C.31). A feasible al-
location is Pareto optimal if and only if it is generated recursively from the solution to
(C.30)–(C.31).

Assumptions 1–4 are sufficient to apply the contraction mapping theorem to the
planner’s problem described by the system of equations (4)–(5). This result is parallel
to those proposed by Lucas and Stokey (1984), Kan (1995), and Anderson (2005).

IES = 1: A two-step approach

It is convenient to use the definition of risk sensitive preferences in equation (1) to notice
that the recursive planner’s problem can be decomposed in two parts:

Qp(s�μ1)=QAp (s�μ1)+QBp(s�μ1)

whereQAp (s�μ1) is the static social planning problem

QAp (s�μ1)≡ max
{xi≥0�yi≥0}i∈{1�2}

μ1(1 − δ1) log c1 + (1 −μ1)(1 − δ2) log c2 (C.32)
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subject to:

X(z) ≥ x1 + x2� Y(z)≥ y1 + y2�

ci = (xi)
λi(yi)

1−λi � i= 1�2;

andQBp(s�μ1) is related to the allocation of future utilities

QBp(z�μ1)≡ max
Dz′

μ1δ1 log
[∑
z′

exp
{
(1 − γ1)(q2�z′ +Dz′)

}
πs

]

+ (1 −μ1)δ2 log
[∑
z′

exp
{
(1 − γ2)q2�z′

}
πs

] (C.33)

subject to

q2�z′ =Qp
(
z′�
dQp

dμ1

−1(
z′�Dz′

))−Dz′
dQp

dμ1

−1(
z′�Dz′

)
� ∀z′ ∈ N � (C.34)

where Dz′ is defined as the difference of the future utilities in state z′: Dz′ ≡ q1�z′ − q2�z′ .
Equation (C.34) defines the Pareto frontier and is obtained using equations (5)–(7). By
equation (7), the first derivative of Qp is strictly increasing, hence, invertible. Equation
(6) implies that:

μ1(z)= dQp

dμ1

−1

(z�q1�z − q2�z)� (C.35)

Appendix D: Allocation as a function of Pareto weights

Let W i
t = W (Cit �U

i
t+1) be the right-hand side of equation (14). If we denote the partial

derivatives of the aggregatorW i as

W i
1�t :=

∂W i
t

∂Cit
� W i

2�t :=
∂W i

t

∂Uit+1

�

then the stochastic discount factor is equal to

Mi
t+1 = W i

2�tW
i

1�t+1

W i
1�t

� ∀i= {1�2}� (D.36)

The optimality condition for the allocation of good Xt for t = 1�2� � � � in each possible
state is

μh0 ·
(
t−1∏
j=0

W 1
2�j

)
·W 1

1�tC
1
t

λ1

x1
t

= (1 − λ2)

x2
t

C2
t W

2
1�t ·

(
t−1∏
j=0

W 2
2�j

)
·μ2

0� (D.37)
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Define the date t Pareto weights as

μit = μi0 ·
(
t−1∏
j=0

W i
2�j

)
·W i

1�tC
i
t

= μit−1 ·W i
2�t−1 · W i

1�t

W i
1�t−1

· Cit

Cit−1

= μit−1 ·Mi
t · exp

{
cit
}
� ∀i ∈ {h�f }�

It follows that equation (D.37) can be rewritten as

μ1
t · λ1

x1
t

= (1 − λ2)

x2
t

·μ2
t � (D.38)

Let St := μ1
t /μ

2
t . Then the optimality condition in equation (D.38) can be represented by

the following system of recursive equations:

St
λ1

x1
t

= (1 − λ2)

x2
t

�

St = St−1
M1
t e
c1
t

M2
t e
c2
t

�

(D.39)

where

Mi�t+1 = δ
(
Ci�t+1

Ci�t

)− 1
ψ
( U

1−γ
i�t+1

Et
[
U

1−γ
i�t+1

]) 1/ψ−γ
1−γ

� (D.40)

A similar first-order condition applies with respect to good Y .

Approximation methods and errors

We use perturbation methods to solve our system of equations and compute our policy
functions using the dynare++4.2.1 package. All variables are expressed in log-units.

In Tables 1 and 2, we report statistics regarding the maximum cumulative approxi-
mation error (Cumul. ERR) for our relative pseudo-Pareto weights, that is, the key drivers
of both consumption shares. The maximum is taken across agents, and we account for
the fact that the relative Pareto weights are persistent and errors can accumulate over
longer simulations.

More specifically, we construct recursively the following processes:

S̃j�t = S̃j�t−1 · M̂j�t

M̂1�t
·
(
Ĉj�t/Ĉj�t−1

Ĉ1�t/Ĉ1�t−1

)
� ∀t ≥ 1� (D.41)

where we adopt the “·̂” notation to indicate approximated variables. We initialize the
recursion at different starting points, S̃j�0 and we then define the error for agent j as
follows:

errjt = 1
t

t∑
τ=1

∣∣∣∣ S̃j�τ
Ŝj�τ

− 1
∣∣∣∣ · 100�
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Ŝj is the approximated relative pseudo-Pareto weight that we obtain directly from
our perturbation method. S̃j is constructed by dynamically updating our equilibrium
recursion (i.e., an exact dynamic equation) for Sj�t using our approximated forcing ele-
ments, M̂j�t , M̂1�t , Ĉj�t/Ĉj�t−1, and Ĉ1�t/Ĉ1�t−1. Examination of the discrepancy between

S̃j and Ŝj constitutes a valid metric for assessing the quality of the approximation, as this
discrepancy accounts for the persistent impact that the errors on our forcing terms can
have on the relative pseudo-Pareto weights.

We also show percentiles of the one-period-ahead errors, which tend to be many
orders of magnitude smaller. Across all cases, the approximation errors are small and
comparable to those obtained under regular time-additive preferences, and thus are
negligible for all practical purposes.
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