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Bayesian inference on structural impulse response functions

Mikkel Plagborg-Møller
Department of Economics, Princeton University

I propose to estimate structural impulse responses from macroeconomic time se-
ries by doing Bayesian inference on the Structural Vector Moving Average repre-
sentation of the data. This approach has two advantages over Structural Vector
Autoregressions. First, it imposes prior information directly on the impulse re-
sponses in a flexible and transparent manner. Second, it can handle noninvertible
impulse response functions, which are often encountered in applications. Rapid
simulation of the posterior distribution of the impulse responses is possible us-
ing an algorithm that exploits the Whittle likelihood. The impulse responses are
partially identified, and I derive the frequentist asymptotics of the Bayesian pro-
cedure to show which features of the prior information are updated by the data.
The procedure is used to estimate the effects of technological news shocks on the
U.S. business cycle.

Keywords. Bayesian inference, Hamiltonian Monte Carlo, impulse response
function, news shock, nonfundamental, noninvertible, partial identification,
structural vector autoregression, structural vector moving average, Whittle like-
lihood.

JEL classification. C11, C32.

1. Introduction

Since Sims (1980), Structural Vector Autoregression (SVAR) analysis has been the most
popular method for estimating the impulse response functions (IRFs) of observed macro
variables to unobserved shocks without imposing a specific equilibrium model struc-
ture. Since the IRFs are only partially identified in the standard SVAR model, researchers
often exploit prior information to estimate unknown features of the IRFs. Despite its
popularity, the SVAR model has two well-known drawbacks. First, existing inference
methods only exploit certain types of prior information, such as zero or sign restrictions,
and these methods tend to implicitly impose unacknowledged restrictions. Second, the
SVAR model does not allow for noninvertible IRFs. These can arise when the econome-
trician does not observe all variables in economic agents’ information sets, as in models
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with news or noise shocks. If the structural shocks were observed, we could estimate
IRFs using Local Projections as in Jordà (2005), but here I follow the standard assump-
tion that shocks are not directly observed.

I propose a new method for estimating structural IRFs: Bayesian inference on the
Structural Vector Moving Average (SVMA) representation of the data. The parameters
of this model are the IRFs, so prior information can be imposed by placing a flexible
Bayesian prior distribution directly on the parameters of economic interest. The SVMA
approach thus overcomes the two drawbacks of SVAR analysis. First, researchers can
flexibly and transparently exploit all types of prior information about IRFs. Second, the
SVMA model does not restrict the IRFs to be invertible a priori, so the model can be ap-
plied to a wider range of empirical questions than the SVAR model. To take the SVMA
model to the data, I develop a posterior simulation algorithm that uses the Whittle like-
lihood approximation to speed up computations. As the IRFs are partially identified,
I derive the frequentist asymptotic limit of the posterior distribution to show which fea-
tures of the prior are dominated by the data.

The first key advantage of the SVMA model is that prior information about IRFs—the
parameters of economic interest—can be imposed in a direct, flexible, and transparent
manner. In standard SVAR analysis, the mapping between parameters and IRFs is indi-
rect, and the IRFs are estimated by imposing zero or sign restrictions on short- or long-
run impulse responses. In the SVMA model, the parameters are the IRFs, so all types of
prior information/restrictions on IRFs may be exploited by placing a prior distribution
on the parameters. While many prior choices are feasible, I propose a multivariate Gaus-
sian prior that facilitates graphical prior elicitation. In particular, researchers can exploit
valuable prior information about the shapes and smoothness of IRFs.

The second key advantage of the SVMA model is that, unlike SVARs, it does not re-
strict IRFs to be invertible a priori, which broadens the applicability of the method. The
IRFs are said to be invertible if the current shocks can be recovered as linear functions of
current and past—but not future—data. As shown in the literature, noninvertible IRFs
arise in many interesting applications when the econometrician does not observe all
variables in the economic agents’ information sets, such as in macro models with news
shocks or noisy signals. A long-standing problem for standard SVAR methods is that they
cannot consistently estimate noninvertible IRFs because the SVAR model implicitly as-
sumes invertibility. Proposed fixes in the SVAR literature either exploit restrictive model
assumptions or proxy variables for the shocks, which are not always available. In con-
trast, the SVMA model is generally applicable since its parametrization does not impose
invertibility on the IRFs a priori.

The SVMA approach is most attractive when the number of variables/shocks is
small, and a preliminary structural model is available to guide prior elicitation for most
of the IRFs. It is both an advantage and a challenge of the SVMA approach in this pa-
per that the method requires a joint prior distribution on all IRFs. On the one hand,
the SVMA approach is up front about its prior assumptions about IRFs, whereas the full
prior on IRFs is typically not explicated in SVAR studies (e.g., it is difficult to intuit what
the restriction to invertible IRFs means graphically). On the other hand, prior elicita-
tion for high-dimensional IRFs at all horizons of interest demands hard thought by the
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researcher. Since identification relies on distinguishing between shocks a priori, there
is a limit to how diffuse the prior can be and still yield useful posterior inference. In the
empirical application, I use a Dynamic Stochastic General Equilibrium (DSGE) model to
guide the choice of prior, an idea considered in a VAR context by Ingram and Whiteman
(1994) and Del Negro and Schorfheide (2004).1 SVMA analysis is especially challenging
with variables that do not appear in usual DSGE models, or when the researcher only
has prior information about a subset of the shocks.

To conduct posterior inference about the IRFs, I develop a posterior simulation algo-
rithm that exploits the Whittle (1953) likelihood approximation. Inference in the SVMA
model is challenging due to the flexible parametrization, which explains the literature’s
preoccupation with the computationally convenient SVAR alternative. The computa-
tional challenges of the SVMA model are solved by simulating from the posterior us-
ing Hamiltonian Monte Carlo (HMC), a Markov Chain Monte Carlo method that is well
suited to high-dimensional models. HMC evaluates the likelihood and score 100,000s of
times in realistic applications. Approximating the exact likelihood with the Whittle like-
lihood drastically reduces computation time because the Whittle score function can be
computed highly efficiently. The resulting algorithm is fast, asymptotically efficient, and
easy to apply, while allowing for both invertible and noninvertible IRFs.2

Having established a method for computing the posterior, I derive its frequentist
large-sample limit to show how the data updates the prior information. Because the IRFs
are partially identified, some aspects of the prior are not dominated by the data in large
samples.3 I establish new results on the frequentist limit of the posterior distribution
for a large class of partially identified models under weaker conditions than assumed
by Moon and Schorfheide (2012). I then specialize the results to the SVMA model with
a nondogmatic prior, allowing for noninvertibility. When the Whittle likelihood is used,
the asymptotic form of the SVMA posterior distribution does not depend on whether
the true shocks are Gaussian or not. Hence, as in finite-sample Gaussian inference, the
asymptotic posterior depends on the data only through the autocovariances, which in
turn pin down the reduced-form (Wold) impulse responses; all other information about
structural impulse responses comes from the prior.

I demonstrate the practical usefulness of the SVMA method in an empirical applica-
tion that estimates the effects of technological news shocks on the U.S. business cycle.
Technological news shocks—signals about future productivity increases—have received
much attention in the recent macro literature. My analysis is the first to fully allow for
noninvertible IRFs without dogmatically imposing a particular DSGE model. I use data
on productivity, output, and the real interest rate, with the DSGE model in Sims (2012)
serving as a guide to prior elicitation. The posterior distribution indicates that the IRFs
are severely noninvertible, implying that no SVAR can deliver accurate estimates of the

1Unlike Del Negro and Schorfheide, I do not explicitly specify a prior for the deep DSGE parameters,
which is then updated by the data; in fact, I deviate from the DSGE model when specifying part of the prior,
illustrating the flexibility of the approach.

2A drawback of the Whittle likelihood is that it cannot be easily extended to allow for stochastic volatility.
3Consistent with Phillips (1989), I use the term “partially identified” in the sense that a nontrivial function

of the parameter vector is point identified, but the full parameter vector is not.
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IRFs in this dataset.4 The news shock is found to be unimportant for explaining move-
ments in TFP and GDP, but it is an important driver of the real interest rate.

The SVMA approach facilitates imposing prior information concerning IRFs while
allowing for noninvertibility, but these advantages create some drawbacks. First, prior
information about IRFs in the SVMA model has implications for Granger casuality re-
lationships and structural elasticities. Users of the SVMA method should verify through
simulation that the implicit prior on these quantities is reasonable. Although the major-
ity of the empirical literature has considered prior information that explicitly concerns
IRFs, the SVMA model is not as natural a starting point if the available prior informa-
tion concerns other parameters. Second, identification in the SVMA model is analogous
to SVARs only if the IRFs are restricted to being invertible. If noninvertibility cannot be
ruled out a priori, identification is more complicated than the traditional rotational in-
determinacy in SVAR models (which simply assume away noninvertibility), as is well
known and further described in Section 2.4.

The SVMA estimation approach in this paper is more flexible than previous attempts
in the literature, and it appears to be the first method for conducting valid inference
about possibly noninvertible IRFs. Hansen and Sargent (1981) and Ito and Quah (1989)
estimated SVMA models without assuming invertibility by maximizing the Whittle like-
lihood, but the only prior information they considered was a class of exact restrictions
implied by rational expectations. Barnichon and Matthes (2018) proposed a Bayesian
approach to inference in SVMA models, but they considered a limited class of identifi-
cation schemes and they centered the prior at SVAR-implied IRFs. None of these three
papers developed valid procedures for doing inference on IRFs that may be partially
identified and noninvertible.5 Moreover, each of the three papers imposed parametric
functional forms on the IRFs, which I avoid.

A few SVAR papers have attempted to exploit general types of prior information
about IRFs, but these methods are less flexible than the SVMA approach. Furthermore,
by assuming an underlying SVAR model, they automatically rule out noninvertible IRFs.
Dwyer (1998) worked with an inflexible trinomial prior on IRFs. Gordon and Boccan-
fuso (2001) translated a prior on IRFs into a “best-fitting” prior on SVAR parameters, but
Kocięcki (2010) showed that their method neglects the Jacobian of the transformation.
Kocięcki’s fix required the transformation to be one-to-one, which limits the ability to ex-
ploit prior information about long-run responses, shapes, and smoothness. Baumeister
and Hamilton (2015), who improved on the method of Sims and Zha (1998), persuasively
argued for an explicit Bayesian approach to imposing prior information. Their Bayesian
SVAR method allows for a fully flexible prior on impact impulse responses, but they as-
sume invertibility, and their prior on longer-horizon impulse responses is implicit and
chosen for computational convenience.

4Section 2.7 argues that the data and prior in conjunction can be informative about the probability and
severity of noninvertibility.

5Standard errors in Hansen and Sargent (1981) are only valid when the prior restrictions point iden-
tify the IRFs. Barnichon and Matthes (2018) approximated the SVMA likelihood using an autoregressive
formula that is explosive when the IRFs are noninvertible, causing serious numerical instability. Barni-
chon and Matthes focused on invertible IRFs and extended the model to allow for asymmetric and state-
dependent effects of shocks.
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Section 2 reviews SVARs and then discusses the SVMA model, invertibility, identifica-
tion, and prior elicitation. Section 3 outlines the posterior simulation method. Section 4
empirically estimates the role of technological news shocks in the U.S. business cycle.
Section 5 contains asymptotic analysis. Section 6 concludes. Applied readers may want
to focus on Sections 2 to 4. Technical details and notational definitions are relegated
to Appendix A. Proofs can be found in Appendix B. A supplementary Online Appendix
and Matlab code for SVMA analysis are available in the Online Supplemental Material
(Plagborg-Møller (2019)).

2. Model, invertibility, and prior elicitation

In this section, I describe the SVMA model and my method for imposing priors on IRFs.
I define the SVMA model, whose parameters are IRFs. Because the SVMA model does
not restrict the IRFs to be invertible, it can be applied to more empirical settings than
the SVAR approach. The lack of identification of the IRFs necessitates the use of prior
information, which I impose by placing a prior distribution directly on the IRFs.

2.1 SVARs and their shortcomings

I begin with a brief review of Structural Vector Autoregressions (SVARs). The parametri-
zation of the SVAR model makes it difficult to exploit certain types of valuable prior in-
formation about impulse responses. Moreover, SVARs are ill-suited for empirical appli-
cations in which the econometrician has less information than economic agents.

Modern dynamic macroeconomics attaches primary importance to impulse re-
sponse functions (IRFs). The economy is assumed to be driven by unpredictable shocks
(impulses) whose effect on observable macro aggregates is known as the propagation
mechanism. Hansen and Sargent (1981) and Watson (1994, Section 4) argued that—in a
linear setting—this impulse-propagation paradigm is captured by the Structural Vector
Moving Average (SVMA) model

yt = Θ(L)εt� Θ(L) =
∞∑
�=0

Θ�L
�� (1)

where L denotes the lag operator, yt = (y1�t � � � � � yn�t)
′ is a n-dimensional vector of ob-

served macro variables, and the structural shocks εt = (ε1�t � � � � � εn�t)
′ form a martingale

difference sequence with E(εtε
′
t ) = diag(σ)2, σ = (σ1� � � � �σn)

′. Most linearized discrete-
time macro models can be written in SVMA form. Θij��, the (i� j) element of Θ�, is the
impulse response of variable i to shock j at horizon � after the shock’s initial impact. The
IRF (Θij��)�≥0 is thus a key object of interest in macroeconomics (Ramey (2016)).

Most researchers follow Sims (1980) and estimate structural IRFs using a SVAR model

A(L)yt =Hεt� A(L) = In −
m∑
�=1

A�L
�� (2)

where m is a finite lag length, and the matrices A1� � � � �Am and H are each n × n. If
the SVAR is stable, the model (2) implies that the data has an SVMA representation (1).
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The IRFs implied by the SVAR model are not identified from the data if the shocks are
unobserved, as is usually the case. While the VAR polynomial A(L) can be recovered
from a regression of yt on its lags, the impact matrix H and shock standard deviations
σ are not identified.6 Thus, researchers attempt to exploit weak prior information about
the model parameters to estimate unknown features of the IRFs.

One drawback of the SVAR model is that its parametrization makes it difficult to
exploit certain types of prior information. The IRFs Θ(L) = A(L)−1H implied by the
SVAR are nonlinear functions of the parameters (A(L)�H), and impulse responses Θij��

at long horizons � are functions of the short-run autocovariances of the data. Hence, the
shapes and smoothness of the model-implied IRFs depend indirectly on the SVAR pa-
rameters, which impedes the use of prior information about such features of the IRFs.7

Instead, SVAR papers impose zero or sign restrictions on short- or long-run impulse re-
sponses to sharpen identification.8 Because of the indirect parametrization, such SVAR
identification schemes are known to impose additional unintended and unacknowl-
edged prior information about IRFs.9

A second drawback of the SVAR model is the invertibility problem. The defining
property of the SVAR model (2) is that the structural shocks εt = (ε1�t � � � � � εn�t)

′ can be
recovered linearly from the history (yt� yt−1� � � � ) of observed data, given knowledge of
H and σ . This invertibility assumption—that future data is not required to recover the
current shocks—is arbitrary and may be violated if the econometrician does not observe
all variables relevant to the decisions of forward-looking economic agents, as discussed
in Section 2.3 below.

2.2 SVMA model

I overcome the drawbacks of the SVAR model by doing Bayesian inference directly on
the SVMA model (1). Since the parameters of this model are the IRFs themselves, prior
information can be imposed directly on the objects of interest.

The SVMA model assumes the observed time series yt = (y1�t � � � � � yn�t)
′ are driven

by current and lagged values of unobserved, unpredictable shocks εt = (ε1�t � � � � � εn�t)
′

(Hansen and Sargent (1981)). For simplicity, I follow the SVAR literature in assuming
that the number n of shocks is known and equals the number of observed series.

Assumption 1 (SVMA model).

yt = Θ(L)εt� t ∈ Z� Θ(L) =
q∑

�=0

Θ�L
�� (3)

6Denote the reduced-form (Wold) forecast error by ut|t−1 = yt − proj(yt | yt−1� yt−2� � � � ) = Hεt , where
“proj” denotes population linear projection. Let E(ut|t−1u

′
t|t−1)= JJ′ be the (identified) Cholesky decompo-

sition of the forecast error covariance matrix. Then all that the second moments of the data reveal about H
and σ is that H diag(σ) = JQ for some unknown n× n orthogonal matrix Q (Uhlig (2005, Proposition A.1)).

7The shapes of the IRFs are governed by the magnitudes and imaginary parts of the roots of the VAR lag
polynomial A(L), and the roots are in turn complicated functions of the lag matrices A1� � � � �Am.

8Ramey (2016) and Stock and Watson (2016) reviewed SVAR identification schemes.
9Consider the AR(1) model yt = A1yt−1 + εt with n= m = 1 and |A1| < 1. The IRF is Θ� = A�

1, so the sign
restriction Θ1 ≥ 0 implicitly also restricts Θ� ≥ 0 for all � ≥ 2. Increasing the lag length m makes the model
more flexible but the mapping from parameters to IRFs more complicated.
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where L is the lag operator, q is the finite MA lag length, and Θ0�Θ1� � � � �Θq are each n×n

coefficient matrices. The shocks are serially and mutually unpredictable: For each t and j,
E(εj�t | {εk�t}k�=j� {εs}−∞<s<t) = 0 and E(ε2

j�t) = σ2
j , where σj > 0.

Assumption 1 imposes stationarity and linearity, as is standard in the SVAR litera-
ture. The mean-zero assumption is purely for notational convenience. For now, I assume
that the moving average (MA) lag length q is finite and known. Section 2.8 discusses es-
timation of q. To fit persistent data q must be large, which the computational strategy
in Section 3 is well suited for. The methods in this paper can be extended to the case
q = ∞ by imposing a parametric form on long-horizon IRFs, although I do not pursue
this strategy for brevity.

The SVMA and SVAR models are related but not equivalent. If the matrix lag poly-
nomial Θ(L) has a one-sided inverse D(L)= ∑∞

�=0 D�L
� =Θ(L)−1, the SVMA model (3)

is compatible with an underlying SVAR D(L)yt = εt (with lag length m = ∞). However,
the fact that I do not constrain Θ(L) to have a one-sided inverse is key to allowing for
noninvertible IRFs; cf. Section 2.3.

Unlike in SVARs, the parameters of the SVMA model have direct economic interpre-
tations as impulse responses (see also Barnichon and Matthes (2018)). Denote the (i� j)

element of matrix Θ� by Θij��. The index � will be referred to as the horizon. For each
j ∈ {1� � � � � n}, choose an ij ∈ {1� � � � � n} and normalize the impact response of variable ij
to shock j: Θijj�0 = 1. Then the parameter Θij�� is the expected response at horizon � of
variable i to shock j, for a shock magnitude that raises variable ij by one unit on im-
pact:10

Θij�� =E(yi�t+� | εj�t = 1)−E(yi�t+� | εj�t = 0)� (4)

The impulse response function (IRF) of variable i to shock j is the (q + 1)-dimensional
vector (Θij�0�Θij�1� � � � �Θij�q)

′. In addition to the impulse response parameters Θij��, the
model contains the shock standard deviation parameters σj , which govern the overall
magnitudes of the responses to one-standard-deviation impulses to εj�t .

The parameters are best understood through an example. Figure 1 plots a hypotheti-
cal set of impulse responses for a bivariate application with two observed time series, the
federal funds rate (FFR) y1�t and the output gap y2�t , and two unobserved shocks, a mon-
etary policy shock ε1�t and a demand shock ε2�t . I impose the normalizations i1 = 1 and
i2 = 2, so that Θ21�3, say, is the horizon-3 impulse response of the output gap to a mon-
etary policy shock that raises the FFR by 1 unit (100 basis points) on impact. Each im-
pulse response (the crosses in the figure) corresponds to a distinct IRF parameter Θij��.
The joint visualization of these parameters is familiar from theoretical macro modeling,
facilitating prior elicitation.

Because I wish to estimate the IRFs using parametric Bayesian methods, I strengthen
Assumption 1 by imposing the working assumption that the structural shocks are Gaus-
sian.

Assumption 2 (Gaussian shocks). εt
i.i.d.∼ N(0�diag(σ2

1 � � � � �σ
2
n)), t ∈ Z.

10Henceforth, moments of the data and shocks are implicitly conditioned on the parameters (Θ�σ).
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Figure 1. Hypothetical IRFs of two observed variables (along rows) to two unobserved shocks
(along columns). The upper right display, say, shows the IRF of the FFR to the demand shock.
The horizontal axes represent the impulse response horizon � = 0�1� � � � � q, where q = 10. IRFs in
the left column are normalized so a positive monetary policy (MP) shock yields a 100 basis point
increase in the FFR on impact; IRFs in the right column are normalized so a positive demand
shock yields a 1 percentage point increase in the output gap on impact.

The Gaussianity assumption places the focus on the unconditional second-order prop-
erties of the data yt , as is standard in the SVAR literature, but the assumption is not cen-
tral to my analysis. Section 5 shows that if the Bayesian posterior distribution for the
IRFs is computed using the Whittle likelihood in Section 3 (thus imposing Gaussianity
as a working assumption), the resulting Bayesian inference is asymptotically valid (but
possibly inefficient) under weak nonparametric regularity conditions on the shock dis-
tribution.

2.3 Invertibility

One advantage of the SVMA model is that it allows for noninvertible IRFs. These arise
frequently in economic models in which the econometrician does not observe all vari-
ables in economic agents’ information sets.

The IRF parameters are invertible if the current shock εt can be recovered as a lin-
ear function of current and past—but not future—values (yt� yt−1� � � � ) of the observed
data, given knowledge of the parameters.11 In this sense, noninvertibility is caused by

11Precisely, the IRFs are invertible if εt lies in the closed linear span of (yt � yt−1� � � � ). Invertible MA repre-
sentations are also referred to as “fundamental” in the literature. See Hansen and Sargent (1981, 1991) and
Lippi and Reichlin (1994) for extensive mathematical discussions of invertibility in SVMAs and SVARs.
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economically important variables being omitted from the econometrician’s informa-
tion set.12 An invertible collection of IRFs can be rendered noninvertible by removing
or adding observed variables.

Invertibility is not a compelling a priori restriction when estimating structural IRFs,
for two reasons. First, the definition of invertibility is statistically motivated and has little
economic content. For example, the reasonable-looking IRFs in Figure 1 happen to be
noninvertible, but minor changes to the lower left IRF in the figure render the IRFs in-
vertible. Second, interesting macro models generate noninvertible IRFs, such as models
with news shocks or noisy signals.13 Intuitively, upon receiving a signal about changes
in policy or economic fundamentals that will occur sufficiently far into the future, eco-
nomic agents change their current behavior much less than their future behavior. Thus,
future—in addition to current and past—data are needed to distinguish the signal from
other concurrent shocks.

By their very definition, SVARs implicitly restrict IRFs to be invertible, as discussed in
Section 2.1. This fact has spawned an extensive literature on modifying standard SVAR
methods. Some papers assume additional model structure,14 while others rely on the
availability of proxy variables for the shocks.15 These methods only produce reliable
results under additional assumptions or if the requisite data is available, whereas my
SVMA approach yields valid Bayesian inference about IRFs regardless of invertibility.

The SVMA model (3) is parametrized directly in terms of IRFs and does not impose
invertibility a priori (Hansen and Sargent (1981)). Specifically, the IRFs are invertible if
and only if the polynomial z �→ det(Θ(z)) has no roots inside the unit circle.16 In gen-
eral, the structural shocks can be recovered from past, current, and future values of the
data:17

εt = D(L)yt� D(L) =
∞∑

�=−∞
D�L

� = Θ(L)−1�

12See Hansen and Sargent (1991), Sims and Zha (2006), Fernández-Villaverde, Rubio-Ramírez, Sargent,
and Watson (2007), Forni, Giannone, Lippi, and Reichlin (2009), Leeper, Walker, and Yang (2013), Forni,
Gambetti, and Sala (2014), and Lütkepohl (2014).

13See Alessi, Barigozzi, and Capasso (2011, Section 4–6), Blanchard, L’Huillier, and Lorenzoni (2013, Sec-
tion II), Leeper, Walker, and Yang (2013, Section 2), and Beaudry and Portier (2014, Section 3.2).

14Lippi and Reichlin (1994) and Klaeffing (2003) characterized the range of noninvertible IRFs consis-
tent with a given estimated SVAR, while Mertens and Ravn (2010) and Forni, Gambetti, Lippi, and Sala
(2017) selected a single such IRF using additional model restrictions. Lanne and Saikkonen (2013) devel-
oped asymptotic theory for a modified VAR model that allows for noninvertibility, but they did not consider
structural estimation.

15Sims and Zha (2006), Fève and Jidoud (2012), Sims (2012), Beaudry and Portier (2014, Section 3.2),
and Beaudry, Fève, Guay, and Portier (2015) argued that noninvertibility need not cause large biases in
SVAR estimation if forward-looking variables are available. Forni et al. (2009) and Forni, Gambetti, and Sala
(2014) used information from large panel data sets to ameliorate the omitted variables problem; based on
the same idea, Giannone and Reichlin (2006) and Forni and Gambetti (2014) proposed tests of invertibility.

16That is, if and only if Θ(L)−1 is a one-sided lag polynomial, so that the SVAR representation Θ(L)−1yt =
εt obtains (Brockwell and Davis (1991, Theorem 11.3.2, and Remark 1, p. 128)).

17See Brockwell and Davis (1991, Theorem 3.1.3) and Lippi and Reichlin (1994, p. 312). D(L) = Θ(L)−1

may not be well-defined in the knife-edge case where some roots of z �→ det(Θ(z)) lie precisely on the unit
circle.
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Under Assumption 1, the structural shocks can thus be recovered from multistep fore-
cast errors: εt = ∑∞

�=0 D�ut+�|t−1, where ut+�|t−1 = yt+� − proj(yt+� | yt−1� yt−2� � � � ) is the
econometrician’s (�+ 1)-step error. Only if the IRFs are invertible do we have D� = 0 for
� ≥ 1, in which case εt is a linear function of the one-step (Wold) error ut|t−1, as SVARs
assume.

As an illustration, consider a univariate SVMA model with n= q = 1:

yt = εt +Θ1εt−1� Θ1 ∈R� E
(
ε2
t

) = σ2� (5)

If |Θ1| ≤ 1, the IRF Θ = (1�Θ1) is invertible: The shock has the SVAR representation εt =∑∞
�=0(−Θ1)

�yt−�, so it can be recovered using current and past values of the data. In
contrast, if |Θ1| > 1, no SVAR representation for εt exists: εt = −∑∞

�=1(−Θ1)
−�yt+�, so

future values of the data are required to recover the current structural shock. The latter
case is consistent with the SVMA model (5) but inconsistent with any SVAR model (2).18

Bayesian analysis of the SVMA model can be carried out without reference to the
invertibility of the IRFs. The formula for the Gaussian SVMA likelihood function is the
same in either case, and standard state-space methods can be used to estimate the
structural shocks; cf. Sections 3 and 4 and Hansen and Sargent (1981). This contrasts
sharply with SVAR analysis, where special tools are needed to handle noninvertible spec-
ifications.

2.4 Identification

The IRFs in the SVMA model are only partially identified, as in SVAR analysis. The lack
of identification arises because the model treats all shocks symmetrically and because
noninvertible IRFs are not ruled out a priori.

Any two sets of IRFs that give rise to the same autocovariance function (ACF) are
observationally equivalent, assuming Gaussian shocks. Under Assumption 1, the matrix
ACF of the time series {yt} is given by

Γ (k) = E
(
yt+ky

′
t

) =

⎧⎪⎪⎨
⎪⎪⎩

q−k∑
�=0

Θ�+k diag(σ)2Θ′
� if 0 ≤ k≤ q�

0 if k> q�

(6)

Under Assumptions 1 and 2, the ACF completely determines the distribution of the
observed mean-zero strictly stationary Gaussian time series yt . The identified set S
for the IRF parameters Θ = (Θ0�Θ1� � � � �Θq) and shock standard deviation parameters
σ = (σ1� � � � �σn)

′ is then a function of the ACF:

S(Γ ) =
{
(Θ̃0� � � � � Θ̃q) ∈ΞΘ� σ̃ ∈Ξσ :

q−k∑
�=0

Θ̃�+k diag(σ̃)2Θ̃′
� = Γ (k)�0 ≤ k≤ q

}
�

18If |Θ1| > 1, a SVAR (with m = ∞) applied to the time series (5) estimates the incorrect invertible IRF
(1�1/Θ1) and (Wold) “shock” ut|t−1 = εt + (1 −Θ2

1)
∑∞

�=1(−Θ1)
−�εt−�.
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where ΞΘ = {(Θ̃0� � � � � Θ̃q) ∈ R
n×n(q+1) : Θ̃ijj�0 = 1, 1 ≤ j ≤ n} is the parameter space for

Θ, and Ξσ = {(σ̃1� � � � � σ̃n)
′ ∈R

n : σ̃j > 0, 1 ≤ j ≤ n} is the parameter space for σ .19

The identified set for the SVMA parameters is large in economic terms. Appendix A.2
provides a constructive characterization of S(Γ ), building on Hansen and Sargent (1981)
and Lippi and Reichlin (1994). I summarize the main insights here.20 The identified set
contains uncountably many parameter configurations if the number n of shocks ex-
ceeds 1. The lack of identification is not just a technical curiosity but is of primary im-
portance to economic conclusions. For example, as in SVARs, for any observed ACF Γ (·),
any horizon �, any shock j, and any variable i �= ij , there exist IRFs in the identified set
S(Γ ) with Θij�� = 0.

One reason for underidentification, also present in SVARs (cf. Section 2.1), is that
the assumptions so far treat the n shocks symmetrically: Without further restrictions,
the model and data do not distinguish the first shock from the second shock, say. Pre-
cisely, the two parameter configurations (Θ�σ) and (Θ̃� σ̃) lie in the same identified set
if there exists an orthogonal n × n matrix Q such that Θ̃diag(σ̃)Q = Θdiag(σ). If the
IRFs were known to be invertible, identification in the SVMA model would thus be ex-
actly analogous to SVAR identification: The identified set would equal all rotations of the
reduced-form (Wold) IRFs.

The second source of underidentification is that the SVMA model, unlike SVARs,
does not arbitrarily restrict the IRFs to be invertible. For any noninvertible set of IRFs,
there always exists an observationally equivalent invertible set of IRFs (if n > 1, there
exist several). If nq > 1, there are also several other observationally equivalent nonin-
vertible IRFs. If, say, we imposed exclusion restrictions on the elements of Θ0 to exactly
identify the orthogonal matrix Q in the previous paragraph, the identified set would be
finite but its size would be of order 2nq.21

Figure 2 illustrates the identification problem due to noninvertibility for a univariate
model with n = 1 and q = 4: yt = εt + ∑4

�=1 Θ�εt−�, Θ� ∈ R, E(ε2
t ) = σ2. The ACF in the

left panel of the figure is consistent with the four IRFs shown in the right panel. The
invertible IRF (thick line) is the one that would be estimated by a SVAR (with lag length
m = ∞). Yet there exist three other IRFs that have very different economic implications
but are equally consistent with the observed ACF.22 If n > 1, the identification problem
is even more severe, as described in Appendix A.2. Hence, to learn anything useful about
unknown features of the IRFs, researchers must exploit available prior information.

19If the shocks εt were known to have a non-Gaussian distribution, the identified set would change due
to the additional information provided by higher-order moments of the data; cf. Section 5.2.

20The identification problem is not easily cast in the framework of interval identification, as S(Γ ) is of
strictly lower dimension than the parameter space ΞΘ ×Ξσ . Still, expression (6) for diag(Γ (0)) implies that
the identified set for scaled impulse responses Ψij�� = Θij��σj is bounded.

21Because of the discrete nature of the second source of under-identification, it appears difficult to di-
rectly apply the set identification methods of Giacomini and Kitagawa (2015) and Gafarov, Meier, and Mon-
tiel Olea (2018) to the SVMA model. This is an interesting topic for future research.

22Similarly, in the case n = q = 1, the parameters (Θ1�σ) yield the same ACF as the parameters (Θ̃1� σ̃),

where Θ̃1 = 1/Θ1 and σ̃ = σΘ1. If |Θ1| ≤ 1, a SVAR would estimate the invertible IRF (1�Θ1) for which most
of the variation in yt is due to the current shock εt . But the data would be equally consistent with the non-
invertible IRF (1� Θ̃1) for which yt is mostly driven by the previous shock εt−1.
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Figure 2. Example of IRFs that generate the same ACF, based on a univariate SVMA model with
n = 1 and q = 4. The right panel shows the four IRFs that generate the particular ACF in the left
panel; associated shock standard deviations are shown in the figure legend.

2.5 Prior specification and elicitation

In addition to handling noninvertible IRFs, the other key advantage of the SVMA model
is its natural parametrization, which allows prior information to be imposed directly on
the IRFs. I here propose a transparent procedure for imposing all types of prior informa-
tion about IRFs in a unified way.

Types and sources of prior information To impose prior information, the researcher
must have some knowledge about the identity and effects of the unobserved shocks.
As in SVAR analysis, the researcher postulates that, say, the first shock ε1�t is a mone-
tary policy shock, the second shock ε2�t is a demand shock, etc. Then prior information
about the effects of the shocks—that is, about the IRFs—is imposed.

Because the SVMA model is parametrized in terms of IRFs, it is possible to exploit
many types of prior information in an integrated manner. Researchers commonly ex-
ploit zero, sign, and magnitude restrictions on IRFs, as further discussed in Section 2.6.
Researchers may also have beliefs about the shapes and smoothness of IRFs, due to the
presence of adjustment costs, implementation lags, or information frictions. The empir-
ical application in Section 4 demonstrates one way of constructing a prior using a DSGE
model as a guide, without imposing the model’s cross-equation restrictions dogmati-
cally.

Bayesian approach Bayesian inference is a unified way to exploit all types of prior in-
formation about the IRFs Θ. I place an informative, flexible prior distribution on the
SVMA model parameters, that is, the IRFs Θ and shock standard deviations σ . Since
there is no known flexible conjugate prior for MA models, I use simulation methods to
conduct posterior inference about the structural parameters, as described in Section 3.

The first role of the prior is to attach weights to parameter values that are observa-
tionally equivalent based on the data but distinguishable based on prior information.
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The information in the prior and the data is synthesized in the posterior density, which
is proportional to the product of the prior density and the likelihood function. As dis-
cussed in Section 2.4, the likelihood function does not have a unique maximum due to
partial identification. The SVMA analysis thus depends crucially on the prior informa-
tion imposed, just as SVAR analysis depends on the identification scheme. The frequen-
tist asymptotics in Section 5 show formally that only some features of the prior infor-
mation can be updated and falsified by the data. This is unavoidable due to the lack of
identification (Poirier (1998)), but it does underscore the need for a transparent prior
elicitation procedure.

The second role of the prior is to discipline the flexible IRF parametrization. SVMA
IRFs are high-dimensional objects, so prior information about their magnitudes, shapes,
or smoothness is necessary to avoid overfitting. In comparison, finite-order SVARs
achieve dimension reduction by parametrizing the IRFs, implying that long-run re-
sponses are functions of short-run autocorrelations in the data.

Gaussian prior While many priors are possible, I first discuss a multivariate Gaussian
prior distribution that is easy to visualize. However, I stress that neither the overall SVMA
approach nor the numerical methods in this paper rely on Gaussianity of the prior. I de-
scribe other possible prior choices below.

The multivariate Gaussian prior distribution on the impulse responses is given by

Θij�� ∼N
(
μij��� τ

2
ij��

)
� 0 ≤ �≤ q�

Corr(Θij��+k�Θij��) = ρkij� 0 ≤ �≤ �+ k≤ q�
(7)

for each (i� j). This correlation structure means that the prior smoothness of IRF (i� j) is
governed by ρij , as illustrated below. For simplicity, the IRFs (Θij�0�Θij�1� � � � �Θij�q) are a
priori independent across (i� j) pairs. The normalized impulse responses have μijj�0 = 1
and τijj�0 = 0 for each j. The shock standard deviations σ1� � � � �σn are a priori mutually
independent and independent of the IRFs, with prior marginal distribution

logσj ∼ N
(
μσ
j �

(
τσj

)2)
for each j. In practice, the prior variances (τσj )

2 for the log shock standard deviations can

be chosen to be a large number.23 Prior independence between IRFs may not be attrac-
tive in applications with plausible theoretical cross-variable restrictions (e.g., a Taylor
rule). In such cases, Section 2.6 shows how to impose dogmatic or nondogmatic linear
restrictions, which induce nonzero prior correlations across different IRFs.

Figures 3 and 4, illustrate a prototypical prior elicitation process, continuing the bi-
variate example from Figure 1. Figure 3 shows a choice of prior means and 90% prior
confidence bands for each of the impulse responses, directly implying corresponding
values for the μij�� and τ2

ij�� hyperparameters. The prior distributions in the figures em-
bed many different kinds of prior information. For example, the IRF of the FFR to a pos-
itive demand shock is believed to be hump-shaped with high probability, and the IRF of

23Because the elements of σ scale the ACF, which is identified, the data will typically be quite informative
about the standard deviations of the shocks, provided that the prior on the IRFs is sufficiently informative.



158 Mikkel Plagborg-Møller Quantitative Economics 10 (2019)

Figure 3. A choice of prior means (thick lines) and 90% prior confidence bands (shaded) for
the four IRFs (Θ) in the bivariate example in Figure 1.

Figure 4. Prior draws of the IRF of the FFR to a demand shock in the bivariate example in Fig-
ure 1, for different prior smoothness parameters ρ12. Bright lines are four draws from the multi-
variate Gaussian prior distribution (7), with the mean and variance parameters in the top right
panel of Figure 3 and ρ12 ∈ {0�3�0�9�0�99}.

the output gap to a contractionary monetary policy shock is believed to be negative at
horizons 2–8 with high probability. Yet the prior expresses substantial uncertainty about
several of the impulse responses.

Having elicited the prior means and variances, the smoothness hyperparameters ρij
may be chosen by trial-and-error simulations. For example, for each of the three hyper-
parameter choices ρ12 ∈ {0�3�0�9�0�99}, Figure 4 depicts four draws of the IRF of the FFR
to a demand shock (i = 1, j = 2). The ρ12 = 0�3 draws are much more jagged than the
ρ12 = 0�9 draws. The ρ12 = 0�99 draws are so smooth that different draws essentially cor-
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respond to random level shifts of the prior mean impulse responses. Because “smooth-
ness” is a difficult notion to quantify (Shiller (1973)), the choice of smoothness hyper-
parameters ρij is ultimately subjective and context-dependent, and extensive graphical
trial-and-error simulation is advisable. For IRFs of slow-moving variables such as GDP
growth, I suggest ρij = 0�9 as a starting point in quarterly data. However, a lower choice
such as ρij = 0�3 may be appropriate for IRFs that are likely to be spiky, for example, the
response of an asset price to news.

It is advisable to check that the chosen prior on IRFs and shock standard deviations
implies a reasonable prior on the ACF of the data (in particular, a reasonable degree
of persistence). The prior on the ACF can be obtained by simulation through the for-
mula (6).

Other priors The Gaussian prior distribution is flexible and easy to visualize but other
prior choices are feasible as well. My inference procedure does not rely on Gaussian-
ity of the prior, as the simulation method in Section 3 only requires that the log prior
density and its gradient are computable. Hence, it is straightforward to impose a differ-
ent prior correlation structure than (7), or to impose heavy-tailed or asymmetric prior
distributions.

2.6 Comparison with SVAR methods

I now show that standard SVAR identifying restrictions can be transparently imposed
through specific prior choices in the SVMA model, if desired.24

The most popular identifying restrictions in the literature are exclusion (i.e., zero) re-
strictions on short-run (i.e., impact) impulse responses: Θij�0 = 0 for certain pairs (i� j).
These short-run exclusion restrictions include so-called “recursive” or “Cholesky” or-
derings, in which the Θ0 matrix is assumed triangular. Exclusion restrictions on impulse
responses (at horizon 0 or higher) can be incorporated in the SVMA framework by sim-
ply setting the corresponding Θij�� parameters equal to zero and dropping them from
the parameter vector.

Another popular type of identifying restrictions are exclusion restrictions on long-
run (i.e., cumulative) impulse responses:

∑q
�=0 Θij�� = 0 for certain pairs (i� j). Long-

run exclusion restrictions can be accommodated in the SVMA model by restricting
Θij�q = −∑q−1

�=0 Θij�� when evaluating the likelihood and the score. Short- or long-run
exclusion restrictions are special cases of linear restrictions on the IRF parameters, for
example,C vec(Θ) = d, whereC and d are known. Such restrictions may arise from struc-
tural cross-equation relationships such as a Taylor rule. Linear restrictions can be im-
posed in the posterior sampling by parametrizing the relevant linear subspace.

The preceding discussion dealt with dogmatic prior restrictions that impose exclu-
sion restrictions with 100% prior certainty, but in many cases nondogmatic restrictions
are more credible (Drèze and Richard (1983)). A prior belief that the impulse response
Θij�� is close to zero with high probability is imposed by choosing prior mean μij�� = 0

24The Online Supplemental Material to Barnichon and Matthes (2018) discusses dogmatic SVMA identi-
fication restrictions.
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along with a small value for the prior variance τ2
ij�� (see the notation in Section 2.5).

To impose a prior belief that the long-run response
∑q

�=0 Θij�� is close to zero with
high probability, we may first elicit a Gaussian prior for the first q impulse responses
(Θij�0� � � � �Θij�q−1), and then specify Θij�q = −∑q−1

�=0 Θij�� + νij , where νij is mean-zero
Gaussian noise with a small variance.

Many SVAR papers exploit sign restrictions on impulse responses (Uhlig (2005)):
Θij�� ≥ 0 or Θij�� ≤ 0 for certain triplets (i� j� �). Dogmatic sign restrictions can be im-
posed in the SVMA framework by restricting the IRF parameter space ΞΘ to the sub-
space where the inequality constraints hold (e.g., using reparametrization; see also Neal,
2011, Section 5.1). The prior distribution for the impulse responses in question can be
chosen to be diffuse on the relevant subspace, if desired (e.g., truncated normal with
large variance).25

However, researchers often have more prior information about impulse responses
than just their signs, and this can be exploited in the SVMA approach. For example, ex-
tremely large values for some impulse responses can often be ruled out a priori.26 The
Gaussian prior in Section 2.5 is capable of expressing a strong but nondogmatic prior
belief that certain impulse responses have certain signs, while expressing disbelief in
extreme values. In some applications, a heavy-tailed or skewed prior distribution may
be more appropriate.

The SVMA approach can exploit the identifying power of external instruments. An
external instrument is an observed variable zt that is correlated with one of the structural
shocks but uncorrelated with the other shocks (Stock and Watson (2008, 2012); Mertens
and Ravn (2013)). Such an instrument can be incorporated in the analysis by adding
zt to the vector yt of observed variables. Suppose we add it as the first element (i = 1),
and that zt is an instrument for the first structural shock (j = 1). The properties of the
external instrument then imply that we have a strong prior belief that Θ1j�0 is (close to)
zero for j = 2�3� � � � � n. We may also have reason to believe that Θ1j�� ≈ 0 for � ≥ 1.

Finally, the SVMA IRFs can be restricted to be invertible, if desired, by rejecting pos-
terior draws outside the invertible region {Θ : det(

∑q
�=0 Θ�z

�) �= 0 ∀z ∈C s.t. |z|< 1}.27

2.7 Bayesian inference about invertibility

Given an informative prior on certain features of the IRFs, the data can be informative
about the invertibility of the IRFs. As discussed in Section 2.4, it is impossible to test for
invertibility in the SVMA model without exploiting any prior information at all. However,
in the Bayesian approach to SVMA estimation with an informative prior, the data will
generally update the prior probability of invertibility. Thus, the data is informative about
invertibility if used in combination with substantive economic prior information about

25Giacomini and Kitagawa (2015) developed a robust Bayes SVAR approach that imposes dogmatic ex-
clusion and sign restrictions without imposing any other identifying restrictions. My SVMA approach in-
stead seeks to allow for as many types of dogmatic and nondogmatic prior information as possible.

26See the SVAR analyses by Kilian and Murphy (2012) and Baumeister and Hamilton (2019).
27det(Θ0) = 0 implies noninvertibility. Otherwise, the roots of det(

∑q
�=0 Θ�z

�) equal the roots of det(In +∑q
�=1 Θ

−1
0 Θ�z

�), which equal the reciprocals of the eigenvalues of the polynomial’s companion matrix.
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the IRFs. I emphasize, though, that inference about invertibility is necessarily sensitive
to large changes in the prior, due to the identification issue described in Section 2.4.

To illustrate, consider again the univariate MA(1) model (5), and let the data be gen-
erated by parameters Θ1 = 1/4 and σ = 1. Suppose the sample size is very large so the
likelihood has two steep peaks at the points (Θ1�σ) = (1/4�1) and (4�1/4) in the iden-
tified set. Without prior information, we are unable to distinguish between these peaks,
and thus unable to draw conclusions about invertibility of the IRF. However, suppose
we additionally possess the economic prior information that the horizon-1 impulse re-
sponse must be positive but less than 2, and we thus adopt a uniform prior for Θ1 on
[0�2] (along with an independent, diffuse prior on σ). The prior probability of invertibil-
ity (i.e., |Θ1| < 1) is then 1/2, whereas the posterior probability is close to 1, since only
one of the two profile likelihood peaks for Θ1 lies in the [0�2] interval. Although con-
trived, this univariate example shows that the posterior probability of invertibility does
not generally equal the prior probability.

The data can also be informative about more economically interpretable measures
of invertibility, in conjunction with an informative IRF prior. Sims and Zha (2006), Sims
(2012), and Beaudry et al. (2015) argue that invertibility should not exclusively be viewed
as a binary property. In the empirical application in Section 4, I compute the posterior
distribution of a continuous measure of invertibility: the R2 in a regression of the shocks
εt on the history (yt� yt−1� � � � ) of observed variables (R2 = 1 under invertibility). In the
application, the posterior distribution of this invertibility measure differs greatly from
its prior.

2.8 Choice of lag length

In the absence of strong prior information about the persistence of the data, I rec-
ommend choosing the MA lag length q by Bayesian model selection or information
criteria. Given the output of the posterior sampling algorithm described in the next sec-
tion, Bayes factors for models with different values of q can be approximated numeri-
cally (Chib (2001, Section 10)). Alternatively, the Bayesian or Akaike Information Criteria
(BIC/AIC) can be used to guide the choice of q. Since selecting too small a q is detri-
mental to valid identification, the more conservative AIC or its Bayesian variants are
attractive (Vehtari and Ojanen (2012, Section 5.5)). As in all cases of model selection, fre-
quentist inference after estimating q is potentially subject to bias and size distortions
(Leeb and Pötscher (2005)).

3. Bayesian computation

In this section, I develop an algorithm to simulate from the posterior distribution of the
IRFs. Because of the flexible and high-dimensional prior distribution placed on the IRFs,
standard Markov Chain Monte Carlo (MCMC) methods are cumbersome.28 I employ a

28Chib and Greenberg (1994) estimated univariate reduced-form Autoregressive Moving Average models
by MCMC, but their algorithm is only effective in low-dimensional problems. Chan, Eisenstat, and Koop
(2016, see also references therein) performed Bayesian inference in possibly high-dimensional reduced-
form VARMA models, but they imposed statistical parameter normalizations that preclude structural esti-
mation of IRFs.
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Hamiltonian Monte Carlo algorithm that uses the Whittle (1953) likelihood approxima-
tion to speed up computations. The algorithm is fast, asymptotically efficient, and easy
to apply, and it allows for both invertible and noninvertible IRFs.

I first define the posterior density of the structural parameters. Let T be the sam-
ple size and YT = (y ′

1� y
′
2� � � � � y

′
T )

′ the data vector. Denote the prior density for the SVMA
parameters by πΘ�σ(Θ�σ). The likelihood function of the SVMA model (3) depends on
the parameters (Θ�σ) only through the scaled impulse responses Ψ = (Ψ0�Ψ1� � � � �Ψq),
where Ψ� = Θ� diag(σ) for � = 0�1� � � � � q. Let pY |Ψ (YT | Ψ(Θ�σ)) denote the likelihood
function, where the notation indicates that Ψ is a function of (Θ�σ). The posterior den-
sity is then

pΘ�σ |Y (Θ�σ | YT ) ∝ pY |Ψ
(
YT | Ψ(Θ�σ)

)
πΘ�σ(Θ�σ)�

Hamiltonian Monte Carlo

To efficiently draw from the posterior distribution, I use a variant of MCMC known as
Hamiltonian Monte Carlo (HMC). See Neal (2011) for an overview of HMC. By exploit-
ing information contained in the gradient of the log posterior density to systematically
explore the posterior distribution, HMC is known to outperform other generic MCMC
methods in high-dimensional settings. In the SVMA model, the dimension of the full pa-
rameter vector is n2(q+1), which can easily be well into the 100s in realistic applications.
Nevertheless, the HMC algorithm has no trouble producing draws from the posterior
of the SVMA parameters. I use the modified HMC algorithm by Hoffman and Gelman
(2014), called the No-U-Turn Sampler (NUTS), which adaptively sets the HMC tuning
parameters while still provably delivering draws from the posterior distribution.

As with other MCMC methods, the HMC algorithm delivers parameter draws from a
Markov chain whose long-run distribution is the posterior distribution. After discarding
a burn-in sample, the output of the HMC algorithm is a collection of parameter draws
(Θ(1)�σ(1))� � � � � (Θ(N)�σ(N)), each of which is (very nearly) distributed according to the
posterior distribution. The draws are not independent, and plots of the autocorrelation
functions of the draws are useful for gauging the reduction in effective sample size rel-
ative to the ideal of i.i.d. sampling. In my experience, the proposed algorithm for the
SVMA model yields autocorrelations that drop off to zero after only a few lags. How-
ever, I caution that the HMC algorithm—like most Metropolis–Hastings variants—may
exhibit slow convergence if a highly diffuse prior causes the posterior to be multimodal.

Likelihood, score, and Whittle approximation

HMC requires that the log posterior density and its gradient can be computed quickly at
any given parameter values. The gradient of the log posterior density equals the gradient
of the log prior density plus the gradient of the log likelihood (the latter is henceforth
referred to as the score). In most cases, such as with the Gaussian prior in Section 2.5,
the log prior density and its gradient are easily computed. The log likelihood and the
score are the bottlenecks. In the empirical study in the next section, a full run of the
HMC procedure requires 100,000s of evaluations of the likelihood and the score.
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With Gaussian shocks (Assumption 2), the likelihood of the SVMA model (3) can be
evaluated using the Kalman filter, but a faster alternative is to use the Whittle (1953)
approximation to the likelihood of a stationary Gaussian process. See the Online Sup-
plemental Material for a description of the Kalman filter. Appendix A.3 shows that both
the Whittle log likelihood and the Whittle score for the SVMA model can be calculated
efficiently using the Fast Fourier Transform.29 When the MA lag length q is large, as in
most applications, the Whittle likelihood is noticeably faster to compute than the exact
likelihood, and massive computational savings arise from using the Whittle approxima-
tion to the score.

Numerical implementation

The HMC algorithm is easy to apply once the prior has been specified. I give further
details on the Bayesian computations in the Online Supplemental Material. As initial
value for the HMC iterations, I use a rough approximation to the posterior mode ob-
tained using the characterization of the identified set in Appendix A.2. Matlab code for
implementing the full inference procedure is available in the Online Supplemental Ma-
terial. The Online Supplemental Material illustrates the accuracy and rapid convergence
of the Bayesian computations when applied to the bivariate model and prior in Figures 1
and 3, as well as to specifications in which the prior is centered far from the true param-
eter values.

Reweighting

The Online Supplemental Material describes an optional reweighting step that trans-
lates the Whittle HMC draws into draws from the exact posterior pΘ�σ |Y (Θ�σ | YT ).
However, the asymptotic analysis in Section 5.2 shows that, at least for moderate lag
lengths q, the reweighting step has negligible effect in large samples.

4. Application: News shocks and business cycles

I now use the SVMA method to infer the role of technological news shocks in the U.S.
business cycle. Following the literature, I define a technological news shock to be a sig-
nal about future productivity increases. My prior on IRFs is informed by a conventional
sticky-price DSGE model, without imposing the model restrictions dogmatically. The
posterior distribution indicates that the IRFs are severely noninvertible in my specifi-
cation. News shocks turn out to be relatively unimportant drivers of productivity and
output growth, but more important for the real interest rate.

Technological news shocks have received great attention in the recent empirical and
theoretical macro literature, but researchers have not yet reached a consensus on their

29Hansen and Sargent (1981), Ito and Quah (1989), and Christiano and Vigfusson (2003) also employed
the Whittle likelihood for SVMA models. Qu and Tkachenko (2012a, 2012b) and Sala (2015) used the Whittle
likelihood to perform approximate Bayesian inference on DSGE models, but their random walk Metropolis–
Hastings simulation algorithm is less efficient than HMC.
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importance. As explained in Section 2.3, structural macro models with news shocks of-
ten exhibit noninvertible IRFs, giving the SVMA method a distinct advantage over SVARs,
as the latter assume away noninvertibility. Beaudry and Portier (2014) surveyed the
evolving news shock literature. Recent empirically minded contributions include Be-
nati, Chan, Eisenstat, and Koop (2016), Sims (2016), Arezki, Ramey, and Sheng (2017),
and Chahrour and Jurado (2018).

Specification and data

I employ a SVMA model with three observed variables and three unobserved shocks:
Total factor productivity (TFP) growth, real gross domestic product (GDP) growth, and
the real interest rate are assumed to be driven by a productivity shock, a technological
news shock, and a monetary policy shock. I use quarterly data from 1954Q3–2007Q4,
yielding sample size T = 213. I exclude data from 2008 to the present as my analysis
ignores financial shocks.

The data set is detailed in the Online Supplemental Material. TFP growth is obtained
from Fernald (2014). The real interest rate equals the effective federal funds rate minus
the contemporaneous GDP deflator inflation rate. The series are detrended using the
kernel smoother in Stock and Watson (2012). I pick a MA lag length of q = 16 quarters
based on two considerations. First, the Akaike Information Criterion (computed using
the Whittle likelihood) selects q = 13. Second, the autocorrelation of the real interest rate
equals 0�17 at lag 13 but is close to zero at lag 16.

Prior

The prior on the IRFs is of the multivariate Gaussian type introduced in Section 2.5,
with hyperparameters informed by a conventional sticky-price DSGE model. The DSGE
model is primarily used to guide the choice of prior means, and the model restrictions
are not imposed dogmatically on the SVMA IRFs. Figure 5 plots the prior means and vari-
ances for the impulse responses, along with four draws from the joint prior distribution.
The figure also shows the normalization that defines the scale of each shock.

The DSGE model used to inform the prior is the one developed by Sims (2012, Sec-
tion 3). It is built around a standard New Keynesian structure with monopolistically
competitive firms subject to a Calvo pricing friction, and the model adds capital accu-
mulation, investment adjustment costs, habit formation, and interest rate smoothing.
Within the DSGE model, the productivity and news shocks are, respectively, unantici-
pated and anticipated exogenous disturbances to the change in log TFP (cf. equations
(30)–(33) in Sims (2012)). The monetary policy shock is an unanticipated disturbance
term in the Taylor rule (cf. equation (35) in Sims (2012)). Detailed model assumptions
and equilibrium conditions are described in Sims (2012, Section 3), but I repeat that I
only use the DSGE model to guide the SVMA prior; the model restrictions are not im-
posed dogmatically.30

30My approach differs from IRF matching (Rotemberg and Woodford (1997)). That method identifies a
SVAR using exclusion restrictions, and then chooses the structural parameters of a DSGE model so that the
DSGE-implied IRFs match the estimated SVAR IRFs. In my procedure, the DSGE model nondogmatically
informs the choice of prior on IRFs, but then the data is allowed to speak through a flexible SVMA model.
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Figure 5. Prior means (thick lines), 90% prior confidence bands (shaded), and four random
draws (bright lines) from the prior for IRFs (Θ), news shock application. The impact impulse
response is normalized to 1 in each IRF along the diagonal of the figure.

As prior means for the nine SVMA IRFs, I use the corresponding IRFs implied by
the log-linearized DSGE model, with one exception mentioned below.31 I use the base-
line calibration of Sims (2012, Table 1), which assumes that news shocks are correctly
anticipated TFP increases taking effect three quarters into the future. Because I am par-
ticularly uncertain that an anticipation horizon of three quarters is correct, I modify the
prior means for the impulse responses of TFP growth to the news shock: The prior means
smoothly increase and then decrease over the interval � ∈ [0�6], with a maximum value
at �= 3 equal to half the DSGE-implied impulse response.

The prior variances for the IRFs are chosen by combining information from eco-
nomic intuition and DSGE calibration sensitivity experiments. For example, I adjust the
prior variances for the IRFs so that the DSGE-implied IRFs mostly fall within the 90%
prior bands when the anticipation horizon changes between nearby values. The 90%
prior bands for the IRFs that correspond to the news shock are chosen quite large, and
they mostly contain 0. In contrast, the prior bands corresponding to the monetary pol-
icy shock are narrower, expressing a strong belief that monetary policy shocks have a
small effect on TFP growth but a persistent positive effect on the real interest rate due to
interest rate smoothing by the central bank. The prior band for the effect of productivity

31The DSGE-implied IRFs for the real interest rate use the same definition of this variable as in the con-
struction of the data series. IRFs are computed using Dynare 4.4.3 (Adjemian, Bastani, Juillard, Karamé,
Mihoubi, Perendia, Pfeifer, Ratto, and Villemot (2011)).
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shocks on GDP growth is fairly wide, since this IRF should theoretically be sensitive to
the degree of nominal rigidity.32

The prior expresses a belief that the IRFs for GDP growth and the real interest rate
are smooth, while those for TFP growth are less smooth. Specifically, I set ρ1j = 0�5 and
ρ2j = ρ3j = 0�9 for j = 1�2�3. These choices are consistent with standard calibrations of
DSGE models. The ability to easily impose different degrees of prior smoothness across
IRFs is unique to the SVMA approach; it would be much harder to achieve in a SVAR
set-up.

The prior on the shock standard deviations is very diffuse. For each shock j, the prior
mean μσ

j of log(σj) is set to log(0�5), while the prior standard deviation τσj is set to 2.33

These values should of course depend on the units of the observed series.

Results

Given my prior, the data is informative about most of the IRFs. Figure 6 summarizes
the posterior distribution of the IRFs. Figure 7 shows the posterior distribution of the

Figure 6. Summary of posterior IRF (Θ) draws, news shock application. The plots show prior
90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile inter-
vals (vertical bars).

32As suggested by a referee, the Online Supplemental Material shows that posterior inference is quite
robust to doubling the prior standard deviation of the IRFs of the real interest rate to the technology and
monetary policy shocks.

33Unreported simulations show that the prior 5th and 95th percentiles of the FEVD (cf. (8)) are very close
to 0 and 1, respectively, for almost all (i� j� �) combinations.
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Figure 7. Summary of posterior draws of FEVDij�� (8), news shock application. The figure shows
posterior means (crosses) and posterior 5–95 percentile intervals (vertical bars). For each vari-
able i and each horizon �, the posterior means sum to 1 across the three shocks j.

forecast error variance decomposition (FEVD), defined as34

FEVDij�� =
Var

( q∑
k=0

Θij�kεj�t+�−k | εt−1� εt−2� � � �

)

Var(yi�t+� | εt−1� εt−2� � � � )
=

�∑
k=0

Θ2
ij�kσ

2
j

n∑
b=1

�∑
k=0

Θ2
ib�kσ

2
b

� (8)

FEVDij�� is the fraction of the forecast error variance that would be eliminated if we knew
all future realizations of shock j when forming �-quarter-ahead forecasts of variable i at
time t using knowledge of all shocks up to time t − 1.

The posterior means for several IRFs differ substantially from the prior means, and
the posterior 90% intervals are narrower than the prior 90% bands. The effects of pro-
ductivity and monetary policy shocks on TFP and GDP growth are especially precisely
estimated. From the perspective of the prior beliefs, it is surprising to learn that the im-
pact effect of productivity shocks on GDP growth is quite large, and the effect of mon-
etary policy shocks on the real interest rate is not very persistent. The monetary policy
shock has nonneutral (negative) effects on the level of GDP in the long run, even though

34The variances in the fraction are computed under the assumption that the shocks are serially and
mutually independent. In the literature, the FEVD is defined by conditioning on (yt−1� yt−2� � � � ) instead of
(εt−1� εt−2� � � � ). This distinction matters when the IRFs are noninvertible. Baumeister and Hamilton (2018)
conducted inference on the FEVD in a Bayesian SVAR, assuming invertibility.
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the prior distribution for the cumulative response is centered around zero; cf. the Online
Supplemental Material.

The news shock is not an important driver of TFP and GDP growth but is important
for explaining real interest rate movements. The IRF of TFP growth to the news shock
indicates that future productivity increases are anticipated only one quarter ahead, and
the increase is mostly reversed in the following quarters. According to the posterior, the
long-run response of the level of TFP to a news shock is unlikely to be substantially pos-
itive, implying that economic agents seldom correctly anticipate shifts in medium-run
productivity levels. The news shock contributes little to the forecast error variance for
TFP and GDP growth at all horizons. The monetary policy shock is only slightly more
important for explaining GDP growth, while the productivity shock is much more im-
portant by these measures. However, the monetary policy shock is important for ex-
plaining short-run movements in the real interest rate, while the news shock dominates
longer-run movements in this series.

The posterior distribution indicates that the IRFs are severely noninvertible in eco-
nomic terms. Section 2.7 argued that the data can be informative about invertibility if
used in conjunction with an informative prior on IRFs. In Figure 8, I report a continuous
measure of invertibility suggested by Watson (1994, p. 2901) and Sims and Zha (2006,
p. 243). For each posterior parameter draw, I compute the R2 in a population regres-
sion of each shock εj�t on current and 50 lags of data (yt� yt−1� � � � � yt−50), assuming i.i.d.

Figure 8. Histograms of posterior draws of the population R2 values in regressions of each
shock on current and 50 lagged values of the observed data, news shock application. Curves are
kernel density estimates of the prior distribution of R2s. Histograms and curves each integrate
to 1.
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Gaussian shocks.35 This R2 value should be essentially 1 for all shocks if the IRFs are
invertible, by definition. Instead, Figure 8 shows a high posterior probability that the
news shock R2 is below 0�3, despite the prior putting most weight on values near 1.36

The Online Supplemental Material demonstrates that the noninvertibility is economi-
cally significant: The posterior distribution of the invertible IRFs that are closest (in a
certain precise sense) to the actual IRFs is very different from the posterior distribution
in Figure 6.

Additional results

In the Online Supplmental Material, I plot the posterior distribution of the structural
shocks, check prior sensitivity and model validity, discuss related empirical papers, and
verify that my method accurately recovers true IRFs on simulated data.

5. Asymptotic theory

To gain insight into how the data updates the prior information, I derive the asymptotic
limit of the Bayesian posterior distribution from a frequentist point of view. I first derive
a general result on the frequentist asymptotics of Bayes procedures for a large class of
partially identified models. Specializing to the SVMA model, I show that when the Whit-
tle likelihood is used, the limiting form of the posterior distribution does not depend
on whether the shocks are truly Gaussian. Hence, asymptotically, the role of the data is
to pin down the true autocovariances, whereas all other information about IRFs comes
from the prior.

5.1 General result for partially identified models

In this subsection, I present a general result on the frequentist asymptotic limit of the
Bayesian posterior distribution in partially identified models. Due to identification fail-
ure, the analysis is nonstandard, as the data does not dominate all aspects of the prior
in large samples.

Consider a general model for which the data vector YT is independent of the pa-
rameter of interest θ, conditional on a second parameter Γ .37 In other words, the like-
lihood function of the data YT only depends on θ through Γ . This property holds for
models with a partially identified parameter θ, as explained in Poirier (1998). Because
I will restrict attention to models in which the parameter Γ is identified, I refer to Γ as
the reduced-form parameter, while θ is called the structural parameter. The parameter
spaces for Γ and θ are denoted ΞΓ and Ξθ, respectively, and these are assumed to be
finite-dimensional Euclidean.

35Given the parameters, I run the Kalman filter in the Online Supplemental Material forward for 51 peri-
ods on data that is identically zero (due to Gaussianity, conditional variances do not depend on realized data
values). This yields a final updated state prediction variance matrix Var(diag(σ)−1ε51 | y51� � � � � y1) whose di-
agonal elements equal 1 minus the desired population R2 values at the given parameters.

36Essentially no posterior IRF draws are exactly invertible; the prior probability is 0�06%.
37T denotes the sample size, but the model does not have to be a time series model.
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As an illustration, consider the SVMA model with data vector YT = (y ′
1� � � � � y

′
T )

′. Let
Γ = (Γ (0)� � � � � Γ (q)) be the ACF of the observed time series, and let θ denote a single IRF,
for example, the IRF of the first variable to the first shock, that is, θ = (Θ11�0� � � � �Θ11�q)

′.
I explain below why I focus on a single IRF. Since the distribution of the stationary Gaus-
sian process yt only depends on θ through the ACF Γ , we have YT ⊥⊥ θ | Γ .

In any model satisfying YT ⊥⊥ θ | Γ , the prior information about θ conditional on Γ is
not updated by the data YT , but the data is informative about Γ . Let Pθ|Y (· | YT ) denote
the posterior probability measure for θ given data YT , and let PΓ |Y (· | YT ) denote the
posterior measure for Γ . For any Γ̃ ∈ ΞΓ , let Πθ|Γ (· | Γ̃ ) denote the conditional prior
measure for θ given Γ , evaluated at Γ = Γ̃ . As in Moon and Schorfheide (2012, Section 3),
decompose

Pθ|Y (A | YT ) =
∫
ΞΓ

Πθ|Γ (A | Γ )PΓ |Y (dΓ | YT ) (9)

for any measurable set A ⊂ Ξθ. Let Γ0 denote the true value of Γ . If the reduced-
form parameter Γ0 is identified, the posterior PΓ |Y (· | YT ) for Γ will typically concen-
trate around Γ0 in large samples, so that the posterior for θ is well approximated by
Pθ|Y (· | YT ) ≈Πθ|Γ (· | Γ0), the conditional prior for θ given Γ at the true Γ0.

The following lemma formalizes the intuition about the asymptotic limit of the pos-
terior distribution for θ. Define the L1 norm ‖P‖L1 = sup|h|≤1 | ∫ h(x)P(dx)| on the space
of signed measures, where P is any signed measure and the supremum is over all scalar
real-valued Borel measurable functions h(·) bounded in absolute value by 1.38

Lemma 1. Let the posterior measure Pθ|Y (· | YT ) satisfy the decomposition (9). All stochas-
tic limits below are taken under the true probability measure of the data. Assume:

(i) The map Γ̃ �→Πθ|Γ (θ | Γ̃ ) is continuous at Γ0 with respect to the L1 norm ‖ · ‖L1 .39

(ii) For any neighborhood U of Γ0 in ΞΓ , PΓ |Y (U | YT )
p→ 1 as T → ∞.

Then as T → ∞, ∥∥Pθ|Y (· | YT )−Πθ|Γ (· | Γ0)
∥∥
L1

p→ 0�

If furthermore Γ̂ is a consistent estimator of Γ0, that is, Γ̂
p→ Γ0, then

∥∥Pθ|Y (· | YT )−Πθ|Γ (· | Γ̂ )
∥∥
L1

p→ 0�

38The L1 distance ‖P1 − P2‖L1 equals twice the total variation distance (TVD) between probability mea-
sures P1 and P2. Convergence in TVD implies convergence of Bayes point estimators under certain side
conditions. In all results and proofs in this paper, the L1 norm may be replaced by any (fixed) weaker norm
for which the supremum is taken over a subset of measurable functions satisfying |h(·)| ≤ 1, for example,
the space of bounded Lipschitz functions.

39Denote the underlying probability sample space by Ω, and let Bθ be the Borel sigma-algebra
on Ξθ. Formally, assumption (i) requires the existence of a function ς : Bθ × ΞΓ → [0�1] such that
{ς(B�Γ (o))}B∈Bθ�o∈Ω is a version of the regular conditional probability measure of θ given Γ , and such that
‖ς(·� Γk)− ς(·� Γ0)‖L1 → 0 as k→ ∞ for any sequence {Γk}k≥1 satisfying Γk → Γ0 and Γk ∈ΞΓ .



Quantitative Economics 10 (2019) Bayesian inference on IRFs 171

In addition to stating the explicit asymptotic form of the posterior distribution,
Lemma 1 yields three main insights. First, the posterior for θ given the data does not
collapse to a point asymptotically, a consequence of the lack of identification. Second,
the sampling uncertainty about the true reduced-form parameter Γ0, which is identified
in the sense of assumption (ii), is asymptotically negligible relative to the uncertainty
about θ given knowledge of Γ0. Third, in large samples, the way the data disciplines the
prior information on θ is through the consistent estimator Γ̂ of Γ0.

Lemma 1 gives weaker and simpler conditions for result (ii) in Theorem 1 of Moon
and Schorfheide (2012). Lipschitz continuity in Γ of the conditional prior measure
Πθ|Γ (· | Γ ) (their Assumption 2) is weakened to continuity, and the high-level assump-
tion of asymptotic normality of the posterior for Γ (their Assumption 1) is weakened to
posterior consistency.

Assumption (i) invokes continuity with respect to Γ of the conditional prior of θ

given Γ . This assumption is satisfied in many models with partially identified param-
eters, if θ is chosen appropriately. The assumption is unlikely to be satisfied in other
contexts. For example, if θ were identified because there existed a function mapping Γ to
θ, and Γ were identified, then assumption (i) could not be satisfied. More generally, as-
sumption (i) will typically not be satisfied if the identified set for θ is a lower-dimensional
subspace of Ξθ.40

Assumption (ii) invokes posterior consistency for Γ0, that is, the posterior for the
reduced-form parameter Γ must concentrate on small neighborhoods of the true value
Γ0 in large samples. While assumption (i) is a condition on the prior, assumption (ii)
may be viewed as a condition on the likelihood of the model, although assumption (ii)
does require that the true reduced-form parameter Γ0 is in the support of the marginal
prior distribution for Γ . As long as the reduced-form parameter Γ0 is identified, posterior
consistency holds under weak regularity conditions, as discussed in the next subsection
and in the Online Supplemental Material.

As the proof of Lemma 1 shows, the likelihood function used to calculate the poste-
rior measure does not have to be correctly specified. That is, if Γ̃ �→ pY |Γ (YT | Γ̃ ) de-
notes the likelihood function for Γ used to compute the posterior PΓ |Y (· | YT ), then
pY |Γ (YT | Γ0) need not be the true density of the data. As long as PΓ |Y (· | YT ) is a prob-
ability measure that satisfies the consistency assumption (ii), where the convergence in
probability occurs under the true probability measure of the data, then the conclusion
of the lemma follows.

5.2 Limiting posterior distribution in the SVMA model

I now specialize the general result from the previous subsection to the SVMA model with
a nondogmatic prior, assuming that the Whittle likelihood is used for Bayesian infer-
ence. I show that the limiting form of the posterior does not depend on whether the
shocks are Gaussian or whether the IRFs are invertible. Asymptotically, the role of the
data is to pin down the true autocovariances of the data, which in turn pins down the

40See Remarks 2 and 3, pp. 768–770, in Moon and Schorfheide (2012).
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reduced-form (Wold) IRFs, while all other information about the structural IRFs comes
from the prior.

An important caveat to the results in this subsection is that the MA lag length q is
considered fixed as the sample size T tends to infinity. In applications where q is large
relative to T , that is, when the data is very persistent, these asymptotics may not be
a good guide to the finite-sample behavior of the posterior. Nevertheless, the fixed-q
asymptotics do shed light on the interplay between the SVMA model, the prior, and the
data.41

Set-up and main result To map the SVMA model into the general framework, let θ de-
note the IRFs and shock standard deviation corresponding to the first shock, and let Γ
denote the ACF of the data: θ = ({Θi1��}1≤i≤n�0≤�≤q�σ1) and Γ = (Γ (0)� � � � � Γ (q)). I now
apply Lemma 1 to the SVMA model, which gives a simple description of the limiting
form of the Whittle posterior PW

θ|Y (· | YT ) for all the structural parameters pertaining to
the first shock. This analysis of course applies to each of the other shocks.

I choose θ to be the IRFs and shock standard deviation corresponding to a single
shock in order to satisfy the prior continuity assumption in Lemma 1. In the SVMA
model,

Γ (k) = σ2
1

q−k∑
�=0

Θ:1��+kΘ
′
:1�� +

n∑
j=2

σ2
j

q−k∑
�=0

Θ:j��+kΘ
′
:j��� k = 0�1� � � � � q� (10)

where Θ:j�� = (Θ1j��� � � � �Θnj��)
′. If θ = ({Θi1��}1≤i≤n�0≤�≤q�σ1) and there are two or more

shocks (n ≥ 2), then the above equations for k = 0�1� � � � � q are of the form Γ =G(θ)+U ,
where G(·) is a matrix-valued function and U is a function only of structural parame-
ters pertaining to shocks j ≥ 2. θ and U are a priori independent provided that the n2

IRFs and n shock standard deviations are a priori mutually independent (e.g., the mul-
tivariate Gaussian prior in Section 2.5 imposes such independence). In this case, the
reduced-form parameter Γ equals a function of the structural parameter θ plus a priori
independent “noise” U . If the prior on the IRFs is nondogmatic so that U has full sup-
port, we can expect the conditional prior distribution of θ given Γ to be continuous in
Γ .42

On the other hand, the conditional prior distribution for θ given Γ would not be
continuous in Γ if I had picked θ to be all IRFs and shock standard deviations. If θ =
(Θ�σ), then Γ would equal a deterministic function of θ (cf. (10)), and so continuity of
the conditional prior Πθ|Γ (· | Γ ) would not obtain. Hence, Lemma 1 is not useful for
deriving the limit of the joint posterior of all structural parameters of the SVMA model.

In the main result below, the only restrictions imposed on the underlying data gen-
erating process are the following nonparametric stationarity and weak dependence as-
sumptions.

41I conjecture that my results can be extended to the asymptotic embedding q = q(T) = O(Tν), for ap-
propriate ν > 0 and under additional nonparametric conditions.

42This paragraph is inspired by Remark 3, pp. 769–770, in Moon and Schorfheide (2012).
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Assumption 3. {yt} is an n-dimensional time series satisfying the following assump-
tions. All limits and expectations below are taken under the true probability measure of
the data:

(i) {yt} is a covariance stationary time series with mean zero.

(ii)
∑∞

k=−∞ ‖Γ0(k)‖< ∞, where the true ACF is defined by Γ0(k) =E(yt+ky
′
t ), k ∈ Z.

(iii) infω∈[0�π) |det(
∑∞

k=−∞ e−ıkωΓ0(k))| > 0.

(iv) For any fixed integer k≥ 0, T−1 ∑T
t=k+1 yty

′
t−k

p→ Γ0(k) as T → ∞.

The assumption imposes four weak conditions on {yt}. First, the time series must
be covariance stationary to ensure that the true ACF Γ0(·) is well-defined (as usual,
the mean-zero assumption can be easily relaxed). Second, the process is assumed to
be weakly dependent, in the sense that the matrix ACF is summable, implying that the
spectral density is well-defined. Third, the true spectral density must be uniformly non-
singular, meaning that the process has full rank, is strictly nondeterministic, and has
a positive definite ACF. Fourth, I assume the weak law of large numbers applies to the
sample autocovariances.

The main result states the limiting form of the Whittle posterior under general
choices for the prior on IRFs and shock standard deviations. That is, I do not assume the
multivariate Gaussian prior from Section 2.5. I also do not restrict the prior to the region
of invertible IRFs, unlike the implicit priors used in SVAR analysis. Let ΠΘ�σ(·) denote
any prior measure for (Θ�σ) on the space ΞΘ × Ξσ . Through equation (6), this prior
induces a joint prior measure ΠΘ�σ�Γ (·) on (Θ�σ�Γ ), which in turn implies marginal
prior measures Πθ(·) and ΠΓ (·) for θ and Γ as well as the conditional prior measure
Πθ|Γ (· | Γ ) for θ given Γ . Let PW

θ|Y (· | YT ) denote the Whittle posterior measure for θ

computed using the Whittle SVMA likelihood (cf. Section 3) and the prior ΠΘ�σ(·).

Proposition 1. Let the data YT = (y ′
1� � � � � y

′
T )

′ be generated from a time series {yt} sat-
isfying Assumption 3 (but not necessarily Assumptions 1 and 2). Assume that the prior
ΠΘ�σ(·) for (Θ�σ) has full support on ΞΘ ×Ξσ . If the induced conditional prior Πθ|Γ (· |
Γ ) satisfies the continuity assumption (i) of Lemma 1, then the Whittle posterior satisfies

∥∥PW
θ|Y (· | YT )−Πθ|Γ (· | Γ0)

∥∥
L1

p→ 0�

as T → ∞ under the true probability measure of the data. The above convergence also
holds with Γ0 replaced by Γ̂ = {Γ̂ (k)}0≤k≤q, the sample ACF.

Continuity of the conditional prior Πθ|Γ (· | Γ ) is stated as a high-level assumption
in Proposition 1. I conjecture that prior continuity holds for the multivariate Gaussian
prior introduced in Section 2.5, for the reasons discussed below equation (10).

How the data updates the prior According to Proposition 1, the posterior for the struc-
tural parameters θ does not collapse to a point asymptotically, but the data does pin
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down the true ACF Γ0. Equivalently, the data reveals the true reduced-form IRFs and in-
novation variance matrix, or more precisely, reveals the Wold representation of the ob-
served time series yt (Hannan (1970, Theorem 2′′, p. 158)). This result is true also in finite
samples for Gaussian time series; the point of Proposition 1 is to show that Bayesian in-
ference using the Whittle likelihood asymptotically mimics finite-sample Gaussian in-
ference in this sense. Hence, inference based on the Whittle likelihood can be viewed
asymptotically as a limited information Bayesian procedure which only exploits second
moments of the data. Due to the underidentification of the SVMA model, many differ-
ent structural IRFs are observationally equivalent with the Wold IRFs; cf. Appendix A.2.
In large samples, the prior is the only source of information able to discriminate between
different structural IRFs that are consistent with the true ACF.

Proposition 1 shows to what extent the data can falsify the prior. The data indicates
whether the induced prior ΠΓ (·) on the ACF is at odds with the true ACF Γ0. For ex-
ample, if the prior distribution on IRFs imposes a strong (but nondogmatic) belief that
{yt} is very persistent, but the actual data generating process is not persistent, the poste-
rior will in large samples put most mass on IRFs that imply low persistence. On the other
hand, if the prior on IRFs is tightly concentrated around parameters (Θ�σ) that lie in the
identified set S(Γ0) (cf. Section 2.4), then the posterior also concentrates around (Θ�σ),
regardless of how close (Θ�σ) are to the true parameters. The Online Supplemental Ma-
terial provides simulations that further illustrate the consequences of misspecifying the
prior.

Robustness to misspecified likelihood Proposition 1 states that the posterior measure,
computed using the Whittle likelihood, and thus under the working assumption of a
Gaussian SVMA model, converges to Πθ|Γ (· | Γ0) regardless of whether the Gaussian
SVMA model is correctly specified.43 The only restrictions on the true data generat-
ing process are the stationarity and weak dependence conditions in Assumption 3. Of
course, the IRF parameters only have a structural economic interpretation if the ba-
sic SVMA model holds. In this case, the ACF has the form (6), so the conditional prior
Πθ|Γ (· | Γ0) imposes valid restrictions on the structural parameters. Thus, under As-
sumptions 1 and 3, the large-sample shape of the Whittle SVMA posterior provides valid
information about θ even when the shocks are non-Gaussian or heteroskedastic (i.e.,
E(ε2

j�t | {εs}s<t) is nonconstant).44

The asymptotic robustness to non-Gaussianity is a consequence of the negligible
importance of the uncertainty surrounding estimation of the true ACF Γ0. As in the gen-
eral Lemma 1, the latter uncertainty gets dominated in large samples by the conditional
prior uncertainty about the structural parameters θ given knowledge of Γ0. Because the
sampling distribution of any efficient estimator of Γ0 in general depends on fourth mo-
ments of the data, it is sensitive to departures from Gaussianity, but this sensitivity does
not matter for the first-order asymptotic limit of the posterior for the partially identified
parameter θ.

43Baumeister and Hamilton (2015) derived an analogous result for a Bayesian SVAR model with a partic-
ular family of prior distributions and assuming invertibility.

44Assumption 1 implies Assumption 3 if the true polynomial Θ(z) does not have roots exactly on the unit
circle and the shocks εt have enough moments.
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My results do not and cannot imply that Bayesian inference based on the Gaussian
SVMA model is asymptotically equivalent to optimal Bayesian inference under non-
Gaussian shocks. If the SVMA likelihood were computed under the assumption that
the structural shocks εt are i.i.d. Student-t distributed, say, then the asymptotic limit
of the posterior would differ from Πθ|Γ (· | Γ0). Indeed, if the shocks are known to be
non-Gaussian, then higher-order cumulants of the data have identifying power, and in-
vertibility may be testable (Lanne and Saikkonen (2013), Gospodinov and Ng (2015)).

However, Bayesian inference based on non-Gaussian shocks is less robust than
Gaussian inference. Intuitively, while the expectation of the Gaussian or Whittle (quasi)
log likelihood function depends only on second moments of the data, the expectation
of a non-Gaussian log likelihood function generally depends also on higher moments.
Hence, Bayesian inference computed under non-Gaussian shocks is misleading asymp-
totically if a failure of the distributional assumptions causes misspecification of higher-
order moments.

Proposition 1 also implies that the error incurred in using the Whittle approximation
to the SVMA likelihood is negligible in large samples: The data pins down the true ACF
asymptotically even when the Whittle approximation is used. This is true whether or not
the data is generated by a Gaussian SVMA model, as long as Assumption 3 holds.

6. Conclusion

I have proposed a Bayesian Structural Vector Moving Average approach to estimating
impulse response functions. The approach has two advantages over SVAR analysis. First,
prior elicitation on IRFs is flexible and transparent. Second, structural shocks are al-
lowed to be possibly noninvertible, thus broadening the scope of semi-structural infer-
ence in applied macroeconomics. The method is most attractive in applications with a
small number of variables/shocks, and where structural models can be used to guide
prior elicitation.

There a several interesting potential avenues for future research. First, in applica-
tions where only a single shock is of interest, it would be helpful to devise “automatic
priors” for the IRFs corresponding to the remaining shocks. Second, although the Whit-
tle likelihood algorithm in this paper yields valid inference asymptotically even with
non-Gaussian shocks, it may be useful to explicitly incorporate stochastic volatility in
the likelihood to increase statistical efficiency. Third, future research should address any
potential numerical issues with the Hamiltonian Monte Carlo sampling procedure that
may arise in settings with many variables or with a multimodal posterior distribution
(caused by a diffuse prior).

Appendix A

A.1 Notation

In is the n× n identity matrix. ı is the imaginary unit. For a vector a, diag(a) denotes the
diagonal matrix with the elements of a along the diagonal in order. For a square matrix
A, tr(A) and det(A) are the trace and determinant, and diag(A) is the vector consisting
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of the diagonal elements in order. For any matrix B, B′ denotes the matrix transpose,
B̄ denotes the elementwise complex conjugate, B∗ = B̄′ is the complex conjugate trans-
pose, Re(B) is the real part of B, ‖B‖ = √

tr(B∗B) is the Frobenius norm, and vec(B) is
the columnwise vectorization. An n × n matrix Q is unitary if QQ∗ = In, and a real uni-
tary matrix is orthogonal. Independence of random variables X and Y conditional on Z

is denoted by X ⊥⊥ Y | Z. Kc denotes the complement of a set K.

A.2 Constructive characterization of the identified set

The result below applies the analysis of Lippi and Reichlin (1994) to the SVMA model;
see also Hansen and Sargent (1981) and Komunjer and Ng (2011). I identify a set of IRFs
Θ = (Θ0� � � � �Θq) with the matrix polynomial Θ(z) = ∑q

�=0 Θ�z
�, and I use the notation

Θ and Θ(z) interchangeably where appropriate. The proposition states that if we start
with a set of IRFs Θ(z) in the identified set, then we can obtain all other sets of IRFs in the
identified set by orthogonally rotating Θ(z) and/or by “flipping the roots” of Θ(z). Only
a finite sequence of such operations is necessary to jump between any two elements of
the identified set.

Proposition 2. Let {Γ (k)}0≤k≤q be an arbitrary ACF. Pick an arbitrary (Θ�σ) ∈ S(Γ )

satisfying det(Θ(0)) �= 0.45 Define Ψ(z) =Θ(z)diag(σ).
Construct a matrix polynomial Ψ̌ (z) in either of the following two ways:

(i) Set Ψ̌ (z) =Ψ(z)Q, where Q is an arbitrary orthogonal n× n matrix.

(ii) Let γ1� � � � � γr (r ≤ nq) denote the roots of the polynomial det(Ψ(z)). Pick an arbi-
trary positive integer k ≤ r. Let η ∈ C

n be a vector such that Ψ(γk)η = 0 (such a vector
exists because det(Ψ(γk)) = 0). Let Q be a unitary matrix whose first column is propor-
tional to η (if γk is real, choose Q to be a real orthogonal matrix). All elements of the first
column of the matrix polynomial Ψ(z)Q then contain the factor (z−γk). In each element
of the first column, replace the factor (z − γk) with (1 − γkz). Call the resulting matrix
polynomial Ψ̌ (z). If γk is real, skip the next paragraph.

If γk is not real, let η̃ ∈ C
n be a vector such that Ψ̌ (γk)η̃ = 0, and let Q̃ be a unitary

matrix whose first column is proportional to η̃. All elements of the first column of Ψ̌ (z)Q̃

then contain the factor (z−γk). In each element of the first column, replace the factor (z−
γk) with (1 − γkz). Call the resulting matrix polynomial Ψ̃ (z). The matrix Ψ̃ (0)Ψ̃ (0)∗ is
real, symmetric, and positive definite, so let J be its n×n Cholesky factor: JJ′ = Ψ̃ (0)Ψ̃ (0)∗.
In an abuse of notation, set Ψ̌ (z)= Ψ̃ (z)Ψ̃ (0)−1J, which is guaranteed to be a real matrix
polynomial.

Now obtain a set of IRFs Θ̌ and shock standard deviations σ̌ from Ψ̌ (z):

(a) For each j = 1� � � � � n, if the (ij� j) element of Ψ̌ (0) is negative, flip the signs of all

elements in the jth column of Ψ̌ (z), and call the resulting matrix polynomial ˇ̌
Ψ(z). For

45If det(Θ0) = 0, some linear combination of y1�t � � � � � yn�t is perfectly predictable based on knowledge of
shocks εt−1� εt−2� � � � before time t. In most applications, this event ought to receive zero prior probability.
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each j = 1� � � � � n, let σ̌j denote the (ij� j) element of ˇ̌
Ψ(0). Define σ̌ = (σ̌1� � � � � σ̌n) and

Θ̌(z) = ˇ̌
Ψ(z)diag(σ̌)−1 (if the inverse exists).

Then (Θ̌� σ̌) ∈ S(Γ ), provided that all elements of σ̌ are strictly positive.
On the other hand, if (Θ̌� σ̌) ∈ S(Γ ) is an arbitrary point in the identified set satisfying

det(Θ̌(0)) �= 0, then (Θ̌� σ̌) can be obtained from (Θ�σ) as follows:

1. Start with the initial point (Θ�σ) and the associated polynomial Ψ(z) defined above.

2. Apply an appropriate finite sequence of the above-mentioned transformations (i) or
(ii), in an appropriate order, to Ψ(z), resulting ultimately in a polynomial Ψ̌ (z).

3. Apply the above mentioned operation (a) to Ψ̌ (z). The result is (Θ̌� σ̌).

Remarks. 1. An initial point in the identified set can be obtained by following the pro-
cedure in Hannan (1970, pp. 64–66) and then applying transformation (a). This essen-
tially corresponds to computing the Wold decomposition of {yt} and applying appropri-
ate normalizations (Hannan (1970, Theorem 2′′, p. 158)).

2. Transformation (ii) corresponds to “flipping the root” γk of det(Ψ(z)). If γk is not
real, transformation (ii) requires that we also flip the complex conjugate root γk, since
this ensures that the resulting matrix polynomial will be real after a rotation.

3. If the IRF parameter space ΞΘ were restricted to those IRFs that are invertible (cf.
Section 2.3), then transformation (ii) would be unnecessary. In this case, the identified
set for Ψ(z) = Θ(z)diag(σ) can be obtained by taking any element in the set (e.g., the
Wold IRFs) and applying all possible orthogonal rotations, that is, transformation (i).
This is akin to identification in SVARs; cf. Section 2.1 and Uhlig (2005, Proposition A.1).

4. The purpose of transformation (a) is to enforce the normalizations Θijj�0 = 1.

A.3 Whittle likelihood and score

Let V (Ψ) be an nT × nT symmetric block Toeplitz matrix consisting of T × T blocks of
n×n matrices, where the (s� t) block is given by

∑q−(t−s)
�=0 Ψ�+(t−s)Ψ

′
� for t ≥ s and the sum

is taken to equal 0 when t > s + q. Then the exact log likelihood function can be written

logpY |Ψ (YT | Ψ)= −1
2
nT log(2π)− 1

2
log det

(
V (Ψ)

) − 1
2
Y ′
T V (Ψ)−1YT � (11)

This is what the Kalman filter described in the Online Supplemental Material computes.
For all k = 0�1�2� � � � �T − 1, define the Fourier frequencies ωk = 2πk/T , the discrete
Fourier transform (DFT) of the data ỹk = (2πT)−1/2 ∑T

t=1 e
−ıωk(t−1)yt , the DFT of the

MA parameters Ψ̃k(Ψ) = ∑q+1
�=1 e

−ıωk(�−1)Ψ�−1, and the SVMA spectral density matrix

fk(Ψ) = (2π)−1Ψ̃k(Ψ)Ψ̃k(Ψ)∗ at frequency ωk. The Whittle (1953) approximation to the
log likelihood (11) is given by

logpW
Y |Ψ (YT | Ψ)= −nT log(2π)− 1

2

T−1∑
k=0

{
log det

(
fk(Ψ)

) + ỹ∗
k

[
fk(Ψ)

]−1
ỹk

}
�
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The approximation is obtained by substituting V (Ψ) ≈ 2π�F(Ψ)�∗ in (11) (Brock-
well and Davis (1991, Proposition 4.5.2)). Here, � is an nT × nT unitary matrix with
(s� t) block equal to T−1/2eıωs−1(t−1)In. F(Ψ) is a block diagonal nT × nT matrix with
(s� s) block equal to fs(Ψ). The Whittle log likelihood is computationally cheap be-
cause {ỹk� Ψ̃k(Ψ)}0≤k≤T−1 can be computed efficiently using the Fast Fourier Transform
(Hansen and Sargent (1981, Section 2b); Brockwell and Davis (1991, Chapter 10.3)).46

Now I derive the gradient of the Whittle log likelihood. For all k = 0�1� � � � �T − 1,
define Ck(Ψ) = [fk(Ψ)]−1 − [fk(Ψ)]−1ỹkỹ

∗
k[fk(Ψ)]−1 and its Discrete Fourier Transform

C̃k(Ψ) = ∑T
�=1 e

−ıωk(�−1)C�−1(Ψ).47 Finally, let C̃k(Ψ) = C̃T+k(Ψ) for k = −1�−2� � � � �1−
T .

Lemma 2.

logpW
Y |Ψ (YT |Ψ)

∂Ψ�
= −

q∑
�̃=0

Re
[
C̃�̃−�(Ψ)

]
Ψ�̃� � = 0�1� � � � � q� (12)

The lemma gives the score with respect to Ψ . Since Ψ� = Θ� diag(σ), the chain rule
gives the score with respect to Θ and logσ .

Appendix B Proofs

B.1 Proof of Lemma 1

By the triangle inequality,∥∥Pθ|Y (· | YT )−Πθ|Γ (· | Γ̂ )
∥∥
L1

≤ ∥∥Πθ|Γ (· | Γ̂ )−Πθ|Γ (· | Γ0)
∥∥
L1

+ ∥∥Pθ|Y (· | YT )−Πθ|Γ (· | Γ0)
∥∥
L1
�

If Γ̂
p→ Γ0, the first term above tends to 0 in probability by assumption (i) and the con-

tinuous mapping theorem. Hence, the statement of the lemma follows if I can show that
the second term above tends to 0 in probability.

Let ε > 0 be arbitrary. By assumption (i), there exists a neighborhood U of Γ0 in ΞΓ

such that ‖Πθ|Γ (· | Γ ) − Πθ|Γ (· | Γ0)‖L1 < ε/2 for all Γ ∈ U . By assumption (ii), PΓ |Y (Uc |
YT ) < ε/4 w.p.a. 1. The decomposition (9) then implies

∥∥Pθ|Y (· | YT )−Πθ|Γ (· | Γ0)
∥∥
L1

=
∥∥∥∥
∫ [

Πθ|Γ (· | Γ )−Πθ|Γ (· | Γ0)
]
PΓ |Y (dΓ | YT )

∥∥∥∥
L1

≤
∫
U

∥∥Πθ|Γ (· | Γ )−Πθ|Γ (· | Γ0)
∥∥
L1
PΓ |Y (dΓ | YT )

+
∫
Uc

∥∥Πθ|Γ (· | Γ )−Πθ|Γ (· | Γ0)
∥∥
L1
PΓ |Y (dΓ | YT )

46As noted by Hansen and Sargent (1981, p. 32), the computation time can be halved by exploiting ỹT−k =
ỹk and fT−k(Ψ) = fk(Ψ) for k = 1�2� � � � �T .

47Again, computation time can be saved by exploiting CT−k(Ψ) = Ck(Ψ) for k = 1�2� � � � �T .
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≤
∫
U

ε

2
PΓ |Y (dΓ | YT )+ 2PΓ |Y

(
Uc | YT

)
≤ ε

2
+ 2

ε

4

w.p.a. 1. Here, I use that the L1 distance between probability measures is bounded by 2.

B.2 Proof of Proposition 1

By Lemma 1, I just need to verify posterior consistency. The calculation in equation (11)
of Moon and Schorfheide (2012) shows that the Whittle posterior PW

θ|Y (· | YT ) satisfies

the decomposition (9), where the posterior measure PW
Γ |Y (· | YT ) for the autocovariance

function Γ is defined in the Online Supplemental Material. By Lemma C.1 in the On-
line Supplemental Material, the latter posterior is consistent provided that Γ0 is in the
support of the induced prior ΠΓ (·).

Γ0 is indeed in the support of ΠΓ (·), for the following reason. Let Γ (Θ�σ) denote
the map (6) from structural parameters (Θ�σ) ∈ΞΘ ×Ξσ to ACFs Γ ∈ Tn�q. There exists

a (non-unique) set of IRFs and shock standard deviations (Θ̌� σ̌) ∈ ΞΘ × Xσ such that
Γ0 = Γ (Θ̌� Σ̌) (Hannan (1970, pp. 64–66)). Let U be an arbitrary neighborhood of Γ0 in
Tn�q. The map Γ (·� ·) is continuous, so Γ −1(U) is a neighborhood of (Θ̌� σ̌) in ΞΘ ×Ξσ .
Because ΠΘ�σ(·) has full support on ΞΘ × Ξσ , we have ΠΓ (U) = ΠΘ�σ(Γ

−1(U)) > 0.
Since the neighborhood U was arbitrary, Γ0 lies in the support of the induced prior ΠΓ (·).

B.3 Proofs of Lemma 2 and Proposition 2

Please see the Online Supplemental Material.
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