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Partial identification by extending subdistributions

Alexander Torgovitsky
Department of Economics, University of Chicago

I show that sharp identified sets in a large class of econometric models can be
characterized by solving linear systems of equations. These linear systems deter-
mine whether, for a given value of a parameter of interest, there exists an admis-
sible joint distribution of unobservables that can generate the distribution of the
observed variables. The joint distribution of unobservables is not required to sat-
isfy any parametric restrictions, but can (if desired) be assumed to satisfy a va-
riety of location, shape, and/or conditional independence restrictions. To prove
sharpness of the characterization, I generalize a classic result in copula theory
concerning the extendibility of subcopulas to show that related objects—termed
subdistributions—can be extended to proper distribution functions. I describe
this characterization argument as partial identification by extending subdistribu-
tions, or PIES. One particularly attractive feature of PIES is that it focuses directly
on the sharp identified set for a parameter of interest, such as an average treat-
ment effect, without needing to construct the identified set for the entire model.
I apply PIES to univariate and bivariate binary response models. A notable prod-
uct of the analysis is a method for characterizing the sharp identified set for the
average treatment effect in Manski’s (1975, 1985, 1988) semiparametric binary re-
sponse model.

Keywords. Partial identification, maximum score, bivariate probit, copulas, lin-
ear programming, discrete choice, semiparametric, endogeneity.

JEL classification. C14, C20, C51.

1. Introduction

Nonlinear models are common in empirical economics. Standard implementations of
many classes of nonlinear models, such as discrete choice models, rely on parametric
distributional assumptions to ensure point identification. Relaxing these assumptions
raises the possibility of partial identification. A fundamental problem in studying the
empirical content of a partially identified model is obtaining a tractable characteriza-
tion of an identified set for the parameter of interest. To be fully informative, such a
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characterization should be for the sharp identified set, that is, the set that exhausts all
implications of the model and data.

Early work on partially identified models approached this characterization problem
with a two-step argument. First, bounds are proposed for the parameter of interest. Sec-
ond, the bounds are shown to be sharp by establishing the existence of model parame-
ters that achieve these bounds, are consistent with the distribution of observables, and
satisfy the researcher’s assumptions. While this type of argument has provided many
useful results for nonparametric models (e.g., Manski (1989, 1994), Hansen and Jagan-
nathan (1991)), it can be analytically challenging to apply it to more complex semipara-
metric models. In particular, establishing sharpness is difficult when the relationship
between the parameters of the model and the distribution of the observed data is com-
plicated and/or when these parameters are assumed to satisfy many properties. This
state of affairs characterizes many desirable semiparametric generalizations of widely
used nonlinear econometric models.

A concrete example of such a model is a univariate or bivariate binary response
model with a linear index function(s), but without any parametric distributional as-
sumptions for the latent variables. Fully parametric versions of these models are widely
used in the empirical literature. Examples include Neal (1997) and Grogger and Neal
(2000), who used bivariate probit models to estimate the effect of Catholic school on
high school graduation; Alesina and Fuchs-Schündeln (2007), who estimated bivariate
probit models of the effect of receiving government transfers on views of the proper role
of the state; Karlan and Zinman (2008), who used a probit model to estimate the demand
for loan applications; Thornton (2008), who used a bivariate probit model to estimate
the impact of learning HIV status on sexual behavior; and Ashraf, Field, and Lee (2014),
who used a bivariate probit model to estimate the effect on fertility of providing access
to contraception.

Point identification of the models used in these papers depends critically on the
assumption that the latent terms follow a distribution in a parametric family (usually
Gaussian) that has been correctly specified by the researcher. Manski (1975) provided an
important early criticism of models with this property. This criticism is echoed in more
recent discussions by Angrist (2001) and Angrist and Pischke (2009). Those authors go
so far as to advocate using linear models even in cases with known nonlinearities, so as
to avoid (explicitly) parameterizing the distributions of latent variables. Altonji, Elder,
and Taber (2005) provided evidence that both fully parametric models and misspecified
linear models can yield highly misleading empirical results. These concerns motivate
studying identification in versions of these models that drop the parametric distribu-
tional assumptions on the latent terms.

This paper provides a new general method for constructing tractable characteriza-
tions of sharp identified sets in models without parametric distributional assumptions.
The method is based on a fundamental result in copula theory due to Sklar (1959, 1996),
which shows that any subcopula can be extended to a copula. I generalize this result
to show that any L-dimensional subdistribution—that is, any function with the shape
properties of an L-dimensional distribution function, but defined only on a subset of
L-dimensional Euclidean space, RL—can be extended to a proper distribution function
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that is defined everywhere on R
L. The main contribution of this paper is to show how

this subdistribution extension result can be usefully applied to provide tractable, sharp
characterizations of identified sets in a wide variety of econometric models. I refer to
this argument, and the computational method that it justifies, as partial identification
by extending subdistributions, or PIES.

A distinguishing feature of PIES is the ability to focus directly on characterizing iden-
tified sets for scalar functionals of high-dimensional parameters. For example, the aver-
age treatment effect (ATE) in a binary response model is a function of both the index
coefficients (β) and the distribution function for the unobservable (F). A standard way
to construct an identified set for the ATE is to first construct an identified set for (β�F),
then form the one-dimensional subset consisting of all values of the ATE that can be ob-
tained as (β�F) varies over this identified set. This projection strategy is computation-
ally intractable in a semiparametric model in which F (an infinite-dimensional object)
is not finitely parameterized. PIES circumvents this problem by considering sufficient
and necessary conditions for the existence of an F that yields a hypothesized value of
the ATE.

This paper contributes to a literature on characterizing sharp identified sets in gen-
eral classes of models. Other procedures that have been proposed include those using
random sets (Beresteanu, Molchanov, and Molinari (2011), Chesher and Rosen (2012,
2013, 2014, 2017)), optimal transportation (Ekeland, Galichon, and Henry (2010), Gali-
chon and Henry (2009, 2011, 2013), Henry, Méango, and Queyranne (2015)), and infor-
mation theory (Schennach (2014)).1 The primary attraction of PIES relative to these pro-
cedures is its approach to the projection problem discussed in the previous paragraph.
This allows researchers to bound objects such as the ATE under a variety of different
semiparametric restrictions. However, PIES does not apply to some models that feature
prominently in this literature. In particular, it does not apply to models that are incom-
plete, such as entry games without an explicitly specified equilibrium selection function.
PIES is most closely related to the discretization approach of Lafférs (2013), although it
also applies more generally to settings in which his discretization argument cannot be
implemented.2

In the next section, I illustrate the PIES argument by using it to characterize the sharp
identified set for the ATE in a stylized version of Manski’s (1975, 1985, 1988) semipara-
metric binary response model. In Section 3, I prove the subdistribution extension result,
apply it to produce characterizations for sharp identified sets in a general econometric
model, and discuss implementation of these characterizations. In Section 4, I apply the
general arguments in Section 3 to provide characterizations for sharp identified sets in
semiparametric bivariate binary response models. The results here contribute to the lit-
erature on identification in binary response instrumental variable models (e.g., Chesher

1Note that there are many other papers in the literature that employ computational approaches for spe-
cific partially identified models. Examples include Hansen, Heaton, and Luttmer (1995), Honoré and Lleras-
Muney (2006), Honoré and Tamer (2006), Manski (2007, 2014), Molinari (2008), Kitamura and Stoye (2013),
Freyberger and Horowitz (2015), Lafférs (2015), Demuynck (2015), Torgovitsky (2016), and Mogstad, Santos,
and Torgovitsky (2017).

2For more detail, see the previous working paper version of this paper.
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(2010, 2013); Shaikh and Vytlacil (2011)). Some brief concluding remarks are provided in
Section 5.

2. PIES in a semiparametric binary response model

Consider the binary response model

Y = 1[U >β0 +β1X]� (1)

where Y ∈ {0�1} is an observed binary outcome variable, X is an observed explanatory
variable, β ≡ (β0�β1) are unknown parameters, and U ∈R is a scalar unobservable vari-
able. For simplicity of exposition, I will assume that X ∈ {0�1} is binary, although this is
not essential to the following discussion.

Let F denote the set of all conditional distribution functions F : R × {0�1} → [0�1],
and let F† denote all F ∈ F for which F(0|x) = 1

2 for x = 0�1.3  Manski (1975, 1985, 1988)
studied (1) under the assumption that the conditional distribution of U given X is an
element of F†. This assumption requires U to be exogenous in the sense that its median
does not depend on X , however it still allows for heteroscedasticity in U . The choice of
0 as the median is a location normalization. To normalize the scale of β, I assume that
β ∈ B† ≡ {b ∈R

2 : ‖b‖ = 1}.
Manski (1975, 1985, 1988) provided conditions under which β is point identified.

These conditions require at least one component of X to have a continuous distribution
with sufficient variation. This can be restrictive in general, and in particular is not sat-
isfied in the case considered here of binary X . Horowitz (2009, pp. 100–108) suggested
a computational approach that can be used to compute the identified set for β when
these conditions do not hold. Komarova (2013) developed Horowitz’s approach into a
more analytic argument, while Blevins (2015) considered estimation of this identified
set.

This type of analysis is sometimes criticized on the grounds that the most natural
parameter of interest is not the vector of index coefficients, β, but rather the average ef-
fect of X on Y .4 This average effect (whether interpreted causally or not) is a function
of both β and the conditional distribution of U given X , that is, F . The following argu-
ment directly addresses this criticism by providing a tractable method for constructing
the sharp identified set for the average treatment effect (ATE).

The average treatment effect under (1) is defined as

ATE(β�F) ≡ PF [U >β0 +β1] − PF [U >β0]� (2)

3The notation R≡ R∪ {±∞} denotes the extended real line.
4For example, Angrist and Pischke (2009, p. 201) wrote “. . . some researchers become distracted by an

effort to estimate index coefficients instead of average causal effects. For example, a large literature in
econometrics is concerned with the estimation of index coefficients without the need for distributional
assumptions. Applied researchers interested in causal effects can safely ignore this work.” This point was
made early in the literature by Cosslett (1983, p. 767).
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where PF denotes probability when the conditional distribution of U given X is F . Using
the law of iterated expectations, (2) can also be written as

ATE(β�F) =
∑

x∈{0�1}

[
F(β0|x)− F(β0 +β1|x)

]
P[X = x]� (3)

To define the identified set for the ATE, first define the identified set for S = (β�F) as

S� ≡ {
S = (β�F) ∈ B† ×F† : PS[Y = 0|X = x] = P[Y = 0|X = x]�x= 0�1

}
� (4)

where P[Y = 0|X = x] denotes the actual population distribution of (Y�X), and PS[Y =
0|X = x] denotes the same probability that would be obtained if the data were generated
by the model with parameters S, that is,

PS[Y = 0|X = x] ≡ PF [U ≤ β0 +β1x|X = x] = F
(
x′β|x)

� (5)

The identified set for the ATE can then be defined as

P� ≡ ATE
(
S�

) ≡ {
p : p = ATE(β�F) for some (β�F) ∈ S�

}
� (6)

Fix a potential value p ∈ [−1�1] for the ATE. From (3)–(6) and the definition of F†, it
follows that p ∈ P� if and only if there exist a β ∈ B† and an F ∈ F such that∑

x∈{0�1}

[
F(β0|x)− F(β0 +β1|x)

]
P[X = x] = p

with F(β0|0)= P[Y = 0|X = 0]�F(β0 +β1|1)= P[Y = 0|X = 1]�

and F(0|0) = F(0|1) = 1
2
� (7)

Determining whether this is the case is an infinite-dimensional existence problem, be-
cause F , as a conditional distribution function, is an infinite-dimensional object. At the
same time, it is clear from (7) that this problem only depends on the values of F(·|0) and
F(·|1) on the three point set {0�β0�β0 + β1}. Thus, this infinite-dimensional existence
problem can be solved by solving a related finite-dimensional existence problem.

The related finite-dimensional problem is whether there exist a β ∈ B† and functions
F(·|0) and F(·|1) with domains {0�β0�β0 + β1} that satisfy the conditions in (7), and
which could be extended to proper distribution functions. Such an extension would be
an element of F that also satisfies (7). The existence of a β ∈ B† for which some such
extension exists is both sufficient and necessary for p ∈ P�.

The subdistribution extension lemma proved in the next section provides a tractable
method for solving this existence problem. Specifically, the lemma implies that a func-
tion F(·|x) with domain {0�β0�β0 + β1} can be extended to a proper distribution func-
tion if and only if F(·|x) is a weakly increasing function. It follows that p ∈ P� if and only
if there exist a β ∈ B† and functions F(·|0), F(·|1) with domains {0�β0�β0 + β1} that are
weakly increasing and satisfy (7). Given a fixed value of β ∈ B†, the existence of weakly
increasing functions that satisfy (7) is equivalent to the existence of a solution to a linear
system of equations, which is a tractable and well-understood problem.
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Figure 1. A function with domain {0�β0�β0 + β1} (plotted in black dots) and one possible ex-
tension of that function to a distribution function (plotted in gray dashes).

This observation suggests a relatively efficient procedure for characterizing the iden-
tified set for the ATE, that is, P�. Fix a given β ∈ B†. Then solve the following linear pro-
gram:

p�(β) ≡ min
F

∑
x∈{0�1}

[
F(β0|x)− F(β0 +β1|x)

]
P[X = x]

subject to: F(β0|0)= P[Y = 0|X = 0]�
F(β0 +β1|1)= P[Y = 0|X = 1]�

F(0|0) = F(0|1)= 1
2
�

F(u|x) ∈ [0�1] for all u ∈ {0�β0�β0 +β1}, x ∈ {0�1}�
F(·|x) is increasing for each x ∈ {0�1}� (8)

Let p�(β) denote the optimal value from the analogous maximization problem and con-
struct the interval [p�(β)�p�(β)], letting this interval be the empty set if (8) is infeasible.

Continue this procedure for all β ∈ B†. Then the sharp identified set for the ATE can be
characterized as P� = ⋃

β∈B†[p�(β)�p�(β)].
The preceding argument is a simplified example of the general method of PIES that

is introduced in the next section. The main simplification comes from the dimension of
the latent variables. It is intuitive that a univariate function with values in [0�1] can be
extended to a proper distribution function if it is weakly increasing; see Figure 1. More
surprising is that an analogous statement remains true in higher dimensions. This result,
which will be proved in the next section, allows nearly the same argument to be applied
to models with multiple latent variables, such as a bivariate binary response model. It
is also shown in the next section that PIES can be modified to accommodate different
and/or more assumptions on the distribution of unobservables.

It is worth emphasizing that a key advantage of this procedure is that it does not
ignore the conditional distribution of U given X , that is, F . The ATE is determined in
part by F , so treating it as a nuisance parameter is not appropriate. Other studies of
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identification for this model, such as those referenced above, have focused exclusively
on the identification of the index coefficients, β, without considering F . Perhaps due to
this focus, it is not uncommon to see statements like “. . . we can only learn about rela-
tive sizes of the coefficients using the semiparametric approach. . . ” Wooldridge (2010,
p. 606). The preceding argument shows that this view is too pessimistic. Sharp bounds
on parameters like the ATE can also be obtained using PIES.

3. The theory of PIES

3.1 The subdistribution extension lemma

In this section, I develop the subdistribution extension lemma alluded to in the previ-
ous section. This requires some definitions and intermediate results.5 Throughout the

discussion, I use R ≡ R ∪ {±∞} to denote the extended real line, and use R
L

to denote
its L-fold Cartesian product for a positive integer L. The first key concept is that of an
L-increasing function.

Definition 1. Let U be a subset of R
L

such that U = U1 × · · · × UL for subsets Ul of
R. A function F with domain U is called L-increasing if, for any u′�u′′ ∈ U with u′ ≤ u′′
component-wise,

VolF
(
u′�u′′) ≡

∑
u∈Vrt(u′�u′′)

sgn(u′�u′′)(u)F(u) ≥ 0� (9)

where Vrt(u′�u′′) is the set of u ∈ U such that ul ∈ {u′
l� u

′′
l } for each l, and

sgn(u′�u′′)(u) ≡
{

1� if ul = u′
l for an even number of l ∈ {1� � � � �L},

−1� if ul = u′
l for an odd number of l ∈ {1� � � � �L}.

The quantity VolF(u′�u′′) is the F-volume of the L-box [u′
1�u

′′
1] × · · · × [u′

L�u
′′
L] and the

elements of the set Vrt(u′�u′′) are the vertices of the L-box.

L-increasingness reduces to the standard definition of weakly increasing for L = 1.6

For L > 1, L-increasingness requires a function F to assign nonnegative volume to ev-
ery L-box with vertices in U . This is a key property of distribution functions, for which
volumes are interpretable as probabilities of events. However, an L-increasing function
must satisfy some additional conditions to be a distribution function. These are laid out
in the next definition.

Definition 2. Let U be a subset of R
L

such that U = U1 × · · · ×UL, where Ul ⊆R is such
that {±∞} ⊂ Ul for each l. A function F with domain U is an L-dimensional subdistribu-
tion function if it satisfies the following three conditions:

2a. F is L-increasing.

5The discussion follows treatments by Schweizer and Sklar (1983) and Nelsen (2006).
6Note that the definition of sgn(u′�u′′) uses the fact that 0 is an even integer.
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2b. F(u) = 0 for any u ∈ U that has at least one component equal to −∞.

2c. F(+∞� � � � �+∞) = 1.

An L-dimensional distribution function (or, for emphasis, a proper L-dimensional dis-

tribution function) is an L-dimensional subdistribution function defined on U =R
L

.

This definition of a distribution function is standard.7 The concept of a subdistri-
bution function appears to be novel to this paper.8 It is a natural counterpart to the
concept of a subcopula, which is discussed in Appendix A. The only difference between
an L-dimensional subdistribution function and a (proper) L-dimensional distribution

function is that a subdistribution function could be defined on a strict subset of R
L

,
whereas a distribution function must be defined on the entirety of R

L
. As a result, every

distribution function is also a subdistribution function, but not conversely. In Figure 1,
the gray dashes plot a proper one-dimensional distribution function, whereas a function
defined only on the black dots (together with ±∞) is a one-dimensional subdistribution
function.

Every L-dimensional distribution function generates a collection of L one-dimen-
sional distribution functions called the marginal distribution functions. More generally,
an L-dimensional subdistribution function generates a collection of L margins.

Definition 3. Let F be an L-dimensional subdistribution function with domain U =
U1 × · · · × UL. The lth margin of F is defined for each l = 1� � � � �L as

Fl : Ul → [0�1] : Fl(ul) = F(+∞� � � � � ul� � � � �+∞)� (10)

If F is a proper L-dimensional distribution function, then all of its margins are
proper one-dimensional distribution functions. The next lemma records the more gen-
eral fact that if F is an L-dimensional subdistribution function, then all of its margins
are one-dimensional subdistribution functions. All proofs for this section are contained
in Appendix B.

Lemma 1. Let F be an L-dimensional subdistribution function with domain U = U1 ×
· · · × UL. Then the lth margin of F is a one-dimensional subdistribution function with
domain Ul.

The subdistribution extension lemma can now be stated as follows.

Lemma 2 (Subdistribution extension). Suppose that U ⊆ R
L

can be written as U = U1 ×
· · · × UL where each Ul is a closed subset of R that contains {±∞}. Let F : U → [0�1] be an

7Although, note that the normalization of left- or right-continuity for each margin (defined ahead) is
left unspecified here, in contrast to many treatments that define distribution functions as objects derived
from random variables. This is innocuous, since the left- and right-continuous versions of a monotone
real-valued function determine each other; see, for example, Section 2.2 of Schweizer and Sklar (1983).

8One occasionally encounters the phrase subdistribution as referring to a distribution-like function with
largest value strictly smaller than 1. This is a distinct concept from the one introduced here, and no confu-
sion between the two concepts will arise in this paper.
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L-dimensional subdistribution function. Then there exists a proper L-dimensional joint
distribution function F such that F(u) = F(u) for all u ∈ U .

If F is continuous on U , then there exists such an F that is continuous on R
L

.9 If U is a
finite set, then there exists such an F that has support contained in U+

1 × · · · × U+
L , where

U+
l ≡ (Ul \ {±∞})∪ {u+

l } for any point u+
l ∈R such that u+

l ≥ max(Ul \ {+∞}).10,11

The proof of Lemma 2 makes use of some fundamental results in copula theory,
especially Sklar’s theorem and a key intermediate result—referred to here as Sklar’s
lemma—that is used in the classical proof of Sklar’s theorem.12 Sklar’s lemma establishes
a result analogous to Lemma 2 for copulas and subcopulas, namely, that every subcop-
ula can be extended to a copula. Since copulas and subcopulas are like distributions
and subdistributions, but with fixed margins, Lemma 2 can be viewed as an extension
of Sklar’s lemma. The main contribution of this paper is to show how Lemma 2 (and its
corollary in the next section) can be applied to provide tractable, sharp characterizations
of identified sets in a wide variety of econometric models.13

3.2 Extendibility and reducibility

The following corollary to Lemma 2 provides some additional flexibility in choosing the
extension F for a given subdistribution F for situations in which it is known that the
margins of F satisfy certain properties. This is useful in partial identification analysis
because it allows a researcher to maintain assumptions directly on the margins of a joint
distribution. To state the corollary, I employ the following definition.

Definition 4. Suppose that F is a collection of proper one-dimensional distribution
functions and F is a collection of one-dimensional subdistribution functions with com-
mon domain U . Then F is extendible to F if, for every F ∈ F , there exists an F ∈ F such
that F |U = F .14

The case of Lemma 2 with L = 1 established that the collection of all one-dimen-
sional subdistribution functions on any common domain U is extendible to the en-
tire collection of one-dimensional distribution functions. The definition of extendibility
provides an additional layer of generality in allowing these collections to be restricted so

9Note that if u is an isolated point of U , then F is regarded as being trivially continuous at u.
10The support of a distribution function F is defined as the minimal closed set V for which P[U ∈ V] = 1

if U is a random variable distributed according to F ; see, for example, Shorack (2000, p. 110).
11I thank an anonymous referee for suggesting this additional result.
12See Appendix A for a brief review of the relevant concepts and results in copula theory.
13Chiburis (2010, p. 271) also noted briefly that Sklar’s lemma could be used to simplify characterizations

of identified sets in a specific type of nonparametric binary response model with two unobservable terms
that have marginal distributions normalized to be uniform over [0�1]. However, Chiburis (2010) did not de-
velop this insight formally, and does not appear to have recognized that the argument could be generalized
to apply to the much broader class of semiparametric models discussed in this paper. See also Mourifié
(2015), who utilized Chiburis’s (2010) insight to develop an analytic characterization of the sharp identified
set for the model of Shaikh and Vytlacil (2011).

14For any function f with domain A and B ⊆ A, the notation f |B denotes the restriction of f to B.
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as to exclude subdistribution and distribution functions that do not satisfy prespecified
properties. Examples of such restrictions are given below.

The corollary to Lemma 2 can now be stated as follows.

Corollary 1. Suppose that U and F are as in Lemma 2 and that, for each l = 1� � � � �L,
Fl ∈ F l, where F l is a set of one-dimensional subdistribution functions with common
domain Ul that is extendible to a collection Fl of proper one-dimensional distribution
functions. Then there exists a proper L-dimensional distribution function F defined on

R
L

such that F(u) = F(u) for all u ∈ U and such that Fl ∈ Fl for each l = 1� � � � �L.

Before providing some concrete examples of extendibility, consider also the fol-
lowing companion definition of reducibility, which is in some sense the inverse of ex-
tendibility. This definition is also useful for the partial identification analysis in the next
section. As the examples below show, it is typically easier to establish than extendibility.

Definition 5. Suppose that F is a collection of proper one-dimensional distribution
functions and F is a collection of one-dimensional subdistribution functions with com-
mon domain U . Then F is reducible to F if F |U ∈ F for every F ∈ F .

From Definition 2, it follows immediately that the collection of all one-dimensional
distribution functions is reducible to any collection of one-dimensional subdistribution
functions defined on a common domain, U . Like the definition of extendibility, the defi-
nition of reducibility allows one to also consider an analogous relationship for restricted
collections of distribution and subdistribution functions.

The following are some concrete examples of extendibility and reducibility. The first
example is trivial, but useful in contexts where a researcher wishes to maintain a known
marginal distribution for an unobservable. This is frequently done for identification in
classical applications of parametric models, and is also often imposed as a normaliza-
tion in nonparametric models; see, for example, Matzkin (2003, 2007), Chernozhukov
and Hansen (2005), Chesher (2010), or Torgovitsky (2015, 2017).

Example 1. Suppose that F = {δ} is the set consisting of a single proper, one-dimen-
sional distribution function δ, and suppose that F = {δ|U } for any U ⊆ R. Then F is ex-
tendible to F , and F is reducible to F .

The next example says that a collection of subdistributions with a common compact
domain (leaving aside {±∞}) is extendible to the collection of distributions with mean 0,
and that the converse reducibility property also holds.

Example 2. Suppose that F is the set of all proper one-dimensional distribution func-
tions such that

∫
udF(u) = 0. Suppose that U ⊆ R is compact and that F is any collection

of subdistributions F with domains U ≡ U ∪{±∞} for which F(u) ∈ (0�1) for every u ∈ U .
Then F is extendible to F , and F is reducible to F .

To see this, observe that if F ∈ F , then its restriction to U is a subdistribution re-
gardless of whether F has mean zero. Conversely, if F ∈ F , then because U is compact
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and 1 > F(u) > 0 for every u ∈ U , one can construct an F that agrees with F on U and
places sufficient mass sufficiently far out in either its left or right tail to ensure that∫
udF(u) = 0.

Manski (1988) observed that the type of conditional mean zero conditions used in
linear models have no identifying content for the index coefficients in the semipara-
metric binary response model of Section 2. Manski’s intuition is essentially what is
contained in Example 2. In the absence of any additional identifying assumptions, the
subdistribution of interest for a binary response model always has a bounded domain
(leaving aside {±∞}). As a result, restricting the set of distributions for the unobservables
to have mean 0 will not place any restrictions on the set of underlying subdistributions
that determines the identified set.

In contrast, if F satisfies a median (or other quantile) restriction, then it is only re-
ducible to collections of subdistributions that satisfy the analogous condition.

Example 3. Suppose that F is the set of all proper one-dimensional distribution func-
tions F such that F(0) = 1

2 . Suppose that F is a collection of subdistributions F with
domain U such that 0 ∈ U and such that F(0) = 1

2 . Then F is extendible to F , and F is
reducible to F .15

The binary response model in Section 2 featured a median zero restriction as in Ex-
ample 3. The analysis there employed Corollary 1 in the special case in which L = 1.
Intuitively, the idea is simply that any one-dimensional subdistribution function with 0
in its domain that evaluates to 1

2 at 0 can be extended to a one-dimensional distribu-
tion function that does the same. Conversely, a one-dimensional distribution function
that evaluates to 1

2 at 0 will, when restricted to a subset that contains 0, generate a one-
dimensional subdistribution function that does the same.

The next example concerns symmetry restrictions.

Example 4. Suppose that F is the set of all proper one-dimensional distribution func-
tions that are symmetric around 0, that is, such that F(u) = 1 −F(−u) for all u ∈R. Sup-
pose that F is a collection of subdistributions with domain U such that 0 ∈ U , u ∈ U if
and only if −u ∈ U , and such that F(u) = 1 − F(−u) for all F ∈ F and u ∈ U . Then F is
extendible to F , and F is reducible to F .16

There are two requirements for the subdistribution class in Example 4. First, the do-
main on which its members are defined, U , must be symmetric around 0 in the sense
that u ∈ U if and only if −u ∈ U . Second, functions in the subdistribution class must
themselves be symmetric on this domain. The conclusion of the example is that any
such one-dimensional subdistribution function can be extended to the entire real line

15More generally, a similar statement could be made for the concept of “T independence” introduced by
Masten and Poirier (2016).

16A proof of this statement can be found in Appendix B.



116 Alexander Torgovitsky Quantitative Economics 10 (2019)

in such a way that preserves monotonicity and symmetry around 0. The converse re-
ducibility statement, that is, that any symmetric distribution function is still symmetric
when restricted to a symmetric domain U , is immediate.

The last two examples concern support restrictions.17 The first example is about
classes of distribution and subdistribution functions that have support contained within
some prespecified interval.

Example 5. Suppose that F is the set of all proper one-dimensional distribution func-
tions that have support contained within [u�u] for some u�u ∈ R. Suppose that F is any
collection of subdistributions with domain U ⊆ [u�u] such that u ∈ U , u ∈ U , and such
that F(u)= 0 and F(u) = 1. Then F is extendible to F , and F is reducible to F .

Example 5 simply says that if a class of distribution functions is known to concen-
trate its mass on some interval, then a class of subdistribution functions that concen-
trates its mass strictly within the same interval is extendible to this class of distribution
functions. The converse reducibility statement follows because the restriction of any
such distribution function to a set contained within this interval must concentrate its
mass on this interval as well.

The final example concerns distribution functions with support R, that is, “full sup-
port.” As in Example 2, these are reducible to any collection of subdistributions with
compact domains (leaving aside {±∞}), and any such collection of subdistributions is
extendible to the set of distribution functions with full support.

Example 6. Suppose that F is the set of all proper one-dimensional distribution func-
tions that have support equal to R. Suppose that U ⊆ R is compact and that F is any
collection of subdistributions F with domains U ≡ U ∪ {±∞} for which F(u) ∈ (0�1) for
every u ∈ U . Then F is extendible to F , and F is reducible to F . The reducibility follows
immediately, while the extendibility can be established by using the construction in the
proof of Lemma 2.

Similarly to Example 2, an implication of Example 6 in the context of the binary re-
sponse model of Section 2 is that requiring the distribution of the unobservable U to
have full support is not restrictive. The subdistribution of interest in these models al-
ready has bounded domain (apart from {±∞}), so the content of Example 6 is that re-
quiring these subdistribution functions to be extendible to a class of distribution func-
tions with full support would not entail any additional restrictions.

3.3 PIES in a general econometric model

In this section, I use the subdistribution extension lemma and its corollary to develop
sharp characterizations of identified sets for a general model of a random vector Y with
support Y , conditional on a random vector X with support X . The distinction between
Y and X is that the determination of Y is modeled, while the determination of X is

17These examples were suggested by an anonymous referee.
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not. Both Y and X should be viewed as observable random variables. The following
discussion of identification is premised on knowledge of the distribution of (Y�X).

The parameters of the model are S = (θ�F), where θ is a finite-dimensional param-

eter, and F : RL × X → [0�1] is an unknown conditional distribution function for an
L-dimensional latent vector, U .18 I assume that every S = (θ�F) generates a single dis-
tribution of Y given X = x for every supported x, denoted as

PS[Y ≤ y|X = x] ≡ ωy|x(θ�F) (11)

for some known function ωy|x of θ and F . This assumption requires the model to be
complete, so rules out, for example, models that have multiple equilibria but an unspec-
ified equilibrium selection rule, such as the entry games studied by Tamer (2003) and
Ciliberto and Tamer (2009). For the binary response model in Section 2, L = 1, θ = β,
and ωy|x corresponds to (5) when y = 0, and is identically 1 when y = 1.

The researcher only considers θ that lie in some admissible set, Θ†. For the model in
Section 2, Θ† was given by B† ≡ {b ∈ R

2 : ‖b‖ = 1}. The dimension of the latent variables,
L, is assumed to be known by the researcher, but is otherwise unrestricted in relation-
ship to the dimensions of Y and X . The space of all proper L-dimensional conditional
distribution functions is denoted by F . The researcher only considers F lying in some
admissible set F† ⊆ F , which is typically a strict subset of F . The admissible set con-
tains only those F which satisfy the a priori (or “identifying”) assumptions maintained
by the researcher.

Assumption A describes the types of identifying assumptions that the researcher can
maintain on F . This puts some abstract structure on F† and so delimits the generality of
the models to which the subsequent analysis applies.

Assumption A. The admissible set F† is the set of all F ∈ F that satisfy all of the follow-
ing properties. In the following, for any F ∈ F , the function Fl(·|x) denotes the lth margin
of F(·|x) (Definition 3).

A1. F(u|x) = F(u|x′) for all u ∈ R
L

, all x�x′ ∈ X †
0�m0

, and all m0 = 1� � � � �M0, where

X †
0�m0

are known (possibly empty) disjoint subsets of X .

A2. For each l = 1� � � � �L, Fl(ul|x) = Fl(ul|x′) for all ul ∈ R, all x�x′ ∈ X †
l�ml

, and all

ml = 1� � � � �Ml, where X †
l�ml

are known (possibly empty) disjoint subsets of X .

A3. For each l = 1� � � � �L and x ∈ X , Fl(·|x) ∈ F†
l�x, where F†

l�x is a known collection of
proper one-dimensional distribution functions.

A4. ρ(θ�F) ≥ 0 for some known vector-valued function ρ, where the inequality is inter-
preted component-wise.

Assumption A1 is an independence restriction with respect to some known (possible
empty) subsets X †

0�m0
of the support of X . The leading case is M0 = 1 with X †

0�1 = X , un-
der which Assumption A1 requires independence between U and X . Specifying multiple

18All of the results still hold if θ is an infinite-dimensional parameter. However, as will become clear,
implementing Theorem 1 would be computationally prohibitive in this case.
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such sets (M0 > 1) can be used to require independence between U and some compo-
nent of X , conditional on some other components of X . Assumption A2 is the same
as Assumption A1, but for a single component of U rather than the entire vector. Re-
strictions of type A3 require the marginal distributions of U to lie in known classes that
are extendible and reducible in a sense described ahead in Theorem 1. Assumption A4
allows for miscellaneous restrictions, represented here by a function ρ chosen by the re-
searcher. Like Assumption A3, Assumption A4 will interact with additional conditions
stated ahead in Theorem 1.

In the formal analysis ahead, all of the restrictions on F† in Assumption A are main-
tained simultaneously. However, notice that any of these restrictions can also be made
trivial (nonrestrictive) by using specific choices of X †

0�m0
, X †

l�ml
, F†

l�x, and/or ρ.19 Also, for
some assumptions, there may be more than one category A1–A4 under which it could
be classified. For example, the conditional median 0 restriction for the binary response
model in Section 2 would be most naturally written as Assumption A3 using Example
3, but it could also be written as Assumption A4 by taking ρ(θ�F) = [F(0|0) − 1

2 �
1
2 −

F(0|0)�F(0|1)− 1
2 �

1
2 − F(0|1)]′.

An example of an assumption that one might wish to consider, but which cannot
be characterized as one of A1–A4, is positive quadrant dependence (Lehmann (1966))
between the components of U in a case where L > 1, say L = 2. Positive quadrant de-
pendence (conditional on X = x) is satisfied if and only if F(u1�u2|x) ≥ F1(u1|x)F2(u2|x)
for all (u1�u2) ∈ R

2
. This condition cannot be expressed as a finitely-valued function ρ,

nor can it characterized as placing a restriction solely on the margins of F . Hence, while
Assumptions A1–A4 are general, they are still restrictive in the sense of constraining the
types of assumptions that a researcher can consider maintaining.

The identified set for S, denoted as S�, is the collection of all admissible θ and F that
generate the observed distributions of Y , conditional on X . Formally,

S� ≡ {
S = (θ�F) : θ ∈Θ†�F ∈ F†

and ωy|x(θ�F) = P[Y ≤ y|X = x] for all y ∈ Y , x ∈ X
}
� (12)

The researcher’s object of interest is a function π of S. The identified set associated with a
given parameter π is denoted by P� = {π(θ�F) : (θ�F) ∈ S�}. In Section 2, the parameter
of interest was the ATE, defined in (3), with θ = β.

Theorem 1 ahead uses the subdistribution extension lemma to characterize P� in
this general model. The proof of Theorem 1, which is given in Appendix C, is an extensive
generalization of the argument in Section 2. The statement of the theorem is premised
on the existence of a collection of subsets {Ux(θ) : x ∈ X }—which could depend on θ—
that satisfies the following conditions.

Condition U. Suppose that F† can be represented as in Assumption A. A collection of
subsets {Ux(θ) : x ∈ X } satisfies Condition U if the following five statements are true.

19In particular, Assumptions A1 or A2 become vacuous if M0 = 1 with X †
0�1 = ∅ or Ml = 1 with X †

l�ml
= ∅.

Assumption A3 is trivially satisfied by taking F†
l�x to be the set of all proper, one-dimensional distribution

functions, for every l and x. Assumption A4 can be made tautological by taking ρ(θ�F) ≡ 0.
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U1. Ux(θ) = U1�x(θ)× · · · × UL�x(θ), where Ul�x(θ) ⊆ R is closed and such that {±∞} ⊆
Ul�x(θ) for each l = 1� � � � �L and every x ∈ X .

U2. There exist functions {ωy|x : y ∈ Y�x ∈ X }, π, and ρ such that for every F ∈ F :

ωy|x(θ�F) =ωy|x
(
θ�F(·|x)|Ux(θ)

)
� (U2.ω)

π(θ�F) = π
(
θ�

{
F(·|x)|Ux(θ) : x ∈ X

})
� (U2.π)

ρ(θ�F) = ρ
(
θ�

{
F(·|x)|Ux(θ) : x ∈ X

})
� (U2.ρ)

U3. For each l = 1� � � � �L and every x ∈ X , there exists a collection of subdistributions

F†
l�x with common domain Ul�x(θ) such that F†

l�x is reducible to F†
l�x and F†

l�x is extendible

to F†
l�x.

U4. Ux(θ) = Ux′(θ) for all x�x′ ∈ (X ∩X †
0�m0

) and all m0 = 1� � � � �M0.

U5. Ul�x(θ)= Ul�x′(θ) for all x�x′ ∈ (X ∩X †
l�ml

) and each l = 1� � � � �L and ml = 1� � � � �Ml.

Although Theorem 1 will be valid for any collection of subsets that satisfies Condi-
tion U, in practice one wants to find the smallest such collection. I elaborate on this
point after the statement of the result.

Theorem 1 (PIES). Let Y ⊆ Y and X ⊆ X . Suppose that F† can be represented as in As-

sumption A. For any θ ∈ Θ†, let {Ux(θ) : x ∈ X } be any collection of subsets of R
L

that sat-
isfy Condition U. If p ∈ P�, then there exist a θ ∈ Θ† and function F(·|x) : Ux(θ) → [0�1]
for each x ∈ X such that:

ωy|x
(
θ�F(·|x)) = P[Y ≤ y|X = x] for all y ∈ Y and x ∈ X � (T1.1)

F(·|x) is an L-dimensional subdistribution for each x ∈ X � (T1.2)

F(u|x) = F
(
u|x′)

for all x�x′ ∈ (
X ∩X †

0�m0

)
, all u ∈ Ux(θ), m0 = 1� � � � �M0, (T1.3)

Fl(ul|x)= Fl

(
ul|x′)

for all x�x′ ∈ (
X ∩X †

l�ml

)
, all ul ∈ Ul�x(θ), ml = 1� � � � �Ml�

and all l = 1� � � � �L, where Fl(·|x) is the lth margin of F(·|x), (T1.4)

Fl(·|x) ∈ F†
l�x for each l = 1� � � � �L and x ∈ X � (T1.5)

ρ
(
θ�

{
F(·|x) : x ∈ X

}) ≥ 0� (T1.6)

π
(
θ�

{
F(·|x) : x ∈ X

}) = p� (T1.7)

If X = X and Y = Y , then the existence of a θ ∈ Θ† and functions {F(·|x) : Ux(θ) →
[0�1]}x∈X satisfying (T1.1)–(T1.7) also implies that p ∈ P�.
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Theorem 1 provides a system of equations (T1.1)–(T1.7) that determines whether a
given value p is in the sharp identified set P�. For a fixed θ ∈ Θ†, the system of equa-
tions is in terms of functions {F(·|x) : x ∈ X } with domains {Ux(θ) : x ∈ X }. These do-
main sets are constructed by the researcher, subject to U1–U5 in Condition U. This
condition describes the set of points on which a collection of functions {F(·|x) : x ∈
X } would need to be evaluated to determine (via Corollary 1 and a generalization of
the argument in Section 2) whether there exists an F ∈ F† such that (θ�F) ∈ S� and
π(θ�F) = p. The binary response model in Section 2, with the parameter θ = β, had
Ux(β) = {±∞�0�β0�β0 + β1}. The β0 and β0 + β1 points were needed to satisfy both
(U2.ω) and (U2.π), while 0 was included to satisfy either (U2.ρ) or U3, depending on
which way one views the median independence restriction as entering Assumption A.

Condition U1 says that each Ux(θ) must be rectangular, with each one-dimensional
slice containing {±∞}, so that they satisfy the conditions to be a domain of a subdis-
tribution described in Definition 2. Condition U2 requires {Ux(θ) : x ∈ X } to also be
rich enough to evaluate the functionals corresponding to observational equivalence
(ωy|x(θ� ·)), the parameter of interest (π(θ� ·)), and the a priori assumptions encoded
using A4 of Assumption A (ρ(θ� ·)). Similarly, Condition U3 requires each Ux(θ) to be
large enough to support classes of subdistribution functions that are extendible to (and
reducible from) the classes of distribution functions specified in A3 of Assumption A.
Conditions U4 and U5 require all or part of Ux(θ) and Ux′(θ) to be the same for values x
and x′ over which A1 and/or A2 are imposed. This is simply to ensure that it is possible
to consider equating F(·|x) and F(·|x′) as functions.

Conditions U1–U5 are trivially satisfied by taking Ux(θ) = R
L

for every x ∈ X and
any θ ∈ Θ†. This choice renders Theorem 1 useless, since determining whether there
exist functions {F(·|x) : x ∈ X } that satisfy (T1.1)–(T1.7) remains as difficult as determin-
ing whether there exists an F ∈ F† such that (θ�F) ∈ S†. The key to making Theorem 1
useful is to choose sets Ux(θ) that are finite for every x ∈ X and θ ∈ Θ†. In this case,
Theorem 1 reduces the infinite-dimensional existence problem for F to a potentially
finite-dimensional existence problem for {F(·|x) : x ∈X }. The primary limitation of The-
orem 1 comes from cases in which either the model or the assumptions require a choice
of {Ux(θ) : x ∈ X } that is infinite.

In this regard, Condition U1 is not by itself restrictive, since the rectangular form it
dictates can always be constructed by including more points. The resulting rectangular
set will still be finite if the initial non-rectangular set was finite. For the same reason, U4
and U5 are also not restrictive. The restrictiveness of Theorem 1 comes from being able
to satisfy U2 and U3 while keeping Ux(θ) finite. In particular, for Ux(θ) to satisfy U2 and
still have finite cardinality requires each of ωy|x (for any y ∈ Y , x ∈ X ), ρ, and π to depend
on (θ�F) only through the value of F on a finite subset of its domain. This requires these
functions to not depend on moments of U , which is a limitation in some models.20

20It is possible that one could circumvent this limitation through an approximation argument, for exam-
ple by using a finite grid to approximate moments.
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3.4 Implementation and dimension reduction

Implementing the general form of PIES in Theorem 1 requires two steps.21

The first step is to specify the system of equations in Theorem 1 and to find a col-
lection of domain sets {Ux(θ) : x ∈ X } that is sufficiently large to evaluate this system
of equations. This requires deriving the distribution of Y , conditional on X , that would
be generated by a given S = (θ�F), as in (5). This derivation yields the mapping ωy|x,
which in turn determines a minimal set of points that must be included in the set Ux(θ)

for (U2.ω) to be satisfied. Examples of this derivation are given in Section 4, and Sec-
tions S.1–S.2 of the Supplemental Material (Torgovitsky (2019)). Next, one chooses a pa-
rameter of interest, applies the same type of derivation to obtain the mapping π, and en-
larges Ux(θ) sufficiently to ensure that (U2.π) is satisfied. Then, one casts their desired
identifying assumptions in terms of Assumption A, and enlarges Ux(θ) further so that
(U2.ρ), U3, U4, and U5 are satisfied. At the end, the collected points are constructed into
a final set Ux(θ) that satisfies the rectangular property in Condition U1, adding {±∞} to
the margins, if necessary. This concludes the first step of implementation.

To conduct this first step, the analyst needs to choose the sets Y and X . If either of
these sets is infinite, then, in general, the system of equations (T1.1)–(T1.7) cannot be
solved exactly. An implication is that if Y and/or X are continuously distributed, then
in practice one must take Y and/or X to be strict subsets of Y and/or X . Applying The-
orem 1 when this is the case leads to an outer set for P�. With sufficient computing
power, this outer identified set can be made arbitrarily close to the (sharp) identified set
by taking Y and X to be arbitrarily large subsets of Y and X . I demonstrate this point
in Section 4 using simulated data in a case where X is a continuously distributed scalar
random variable. The approach that I use there is to take X to be a set of equally spaced
quantiles. Intuitively, this helps ensure that different x ∈ X provide non-redundant iden-
tifying information. When using actual data, these issues become less important, since
the empirical distribution is always discrete, regardless of whether Y and/or X are mod-
eled as continuous random variables.

The second step in implementing PIES is to solve the system of equations in The-
orem 1 repeatedly over a grid of possible θ and p. An important consideration here is
whether the system of equations (T1.1)–(T1.7) can be reliably solved for a given θ and p.
An attractive feature of PIES is that the crucial subdistribution condition, (T1.2), always
places a linear restriction on F given a fixed θ—recall Definition 2. The conditional inde-
pendence restrictions (T1.3) and (T1.4) are also always linear for a fixed θ. As a result, the
entire system in Theorem 1 will be linear for a fixed θ if each of ωy|x(θ�F), ρ(θ�F), and
π(θ�F) is linear in the values of F . The same must also be true of whatever lower-level
condition defines the classes of subdistributions in Condition U3.

Theorem 1 is still valid for cases in which this linearity does not hold, but it may be
more difficult to implement due to the difficulties involved in reliably solving nonlinear
systems of equations. Given this requirement, PIES is computationally more attractive in
situations for which the system is linear in F . Whether this is so depends on the model,

21Code for implementing the simulations discussed in the next section is available from the GitHub
repository https://github.com/a-torgovitsky/pies.

https://github.com/a-torgovitsky/pies
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assumptions, and parameters of interest, and therefore must be determined on a case-
by-case basis. However, as I demonstrate in the next section and in the Supplemental
Material, the requirement of linearity in F is less restrictive than it may initially appear.

A related consideration is whether P� can be characterized more efficiently by solv-
ing optimization problems, as in (8). As stated, Theorem 1 would suggest that one needs
to determine the existence or non-existence of a solution to (T1.1) for every θ ∈ Θ† and
every p in the range of π(θ� ·). However, if π is scalar-valued and if ωy|x(θ�F), ρ(θ�F),
and π(θ�F) are all linear functions of F for a fixed θ ∈Θ†, then one can determine P� by
minimizing and maximizing π(θ�F) over F subject to (T1.1)–(T1.6) once for each θ ∈ Θ†.
The next corollary provides a formal and more general statement of this assertion.

Proposition 1. For any θ ∈ Θ†, let {Ux(θ) : x ∈ X } satisfy Condition U, and define
F(θ) ≡ {F(·|x) : Ux(θ) → [0�1]�x ∈ X }. Suppose that F(θ) is finite-dimensional and
that π(θ� ·) is a continuous function on F(θ). Let F�

(θ) denote the subset of F ∈ F(θ)

that satisfy (T1.1)–(T1.6), and suppose that F�
(θ) is connected for every θ ∈ Θ†. Then

P� ⊆ ⋃
θ∈Θ†[p�(θ)�p�(θ)], where

p�(θ) ≡ inf
F∈F(θ)

π(θ�F) subject to (T1.1)–(T1.6) (13)

andp�(θ) is the corresponding supremum.22 IfX = X andY = Y , then P� = ⋃
θ∈Θ†[p�(θ)�

p�(θ)].

The procedure in Proposition 1 still requires one to create a grid on Θ† and check
two optimization problems for each point θ ∈ Θ†. The difficulty of doing so increases
in the size of the grid, which increases exponentially with the dimension of θ. This is a
computational bottleneck, albeit one that is also faced by other general procedures for
constructing sharp identified sets. However, a potentially useful feature of the PIES ap-
proach is that its structure suggests a way to ameliorate this problem. In particular, the
next proposition records that in some cases, two choices of θ that yield the same “label-
ing” of Ux(θ) also lead to the same optimization problems in Proposition 1. It follows that
P� can be determined by partitioning Θ† into equivalence classes that yield the same la-
bels, and then solving these problems once for a representative θ in each equivalence
class.

Proposition 2. Suppose that the conditions and definitions of Theorem 1 and Propo-
sition 1 are satisfied for θ�θ′ ∈ Θ†. If {π(θ�F) : F ∈ F�

(θ)} = {π(θ′�F) : F ∈ F�
(θ′)}, then

[p�(θ)�p�(θ)] = [p�(θ′)�p�(θ′)].

Typically, for the hypothesis of Proposition 2 to hold for distinct values θ, θ′, one re-
quires π(θ�F) to not depend directly on θ. The dependence of π(θ�F) on θ then arises
solely through the set F�

(θ) that F varies over. For example, this was the case for the
average treatment effect in (3). In that model, the same property was also true for ωy|x.

22If the constraint sets are empty, then follow the usual convention of taking p�(θ) = +∞ and p�(θ) =
−∞, so that [p�(θ)�p�(θ)] = ∅.
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Thus, the only channel through which θ could affect the set {π(θ�F) : F ∈ F�
(θ)} was

through its impact on the set Ux(θ), which in that model was equal to {0�β0�β0 + β1x}.
By itself, changes in this set caused by changes in θ have no direct impact on the
functions F(θ), since they only serve to change the labeling of points in the domains
{Ux(θ) : x ∈ X }. This change in labeling could cause the elements of F�

(θ) to change, for
example if it changes the ordering of points in the domains.23 When it does not, θ and
θ′ will generate the same system of equations in Theorem 1 and the same optimization
problem in Proposition 1. In this case, (13) and the analogous maximization problem
would only need to be solved for either θ or θ′, but not both points.

4. Bivariate binary response models

In this section, I apply Theorem 1 to the bivariate binary response model

Y1 = 1
[
U1 > g1(Y2�X)

]
(14)

and Y2 = 1
[
U2 > g2(X)

]
� (15)

In (14)–(15), Y = (Y1�Y2) are observed binary random variables, g ≡ (g1� g2) is a pair of
unknown functions, X is a random vector with support X , and U ≡ (U1�U2) is a bivari-
ate latent variable. Let F denote the set of all proper bivariate conditional distribution

functions F : R2 × X → [0�1], and let F† denote the admissible subset of F . In the no-
tation of the previous section, the parameter θ is the pair of functions g = (g1� g2), with
admissible set G†. The function ωy|x defined in (11) is given by

ω(y1�y2)|x(g�F) ≡ PS[Y1 ≤ y1�Y2 ≤ y2|X = x]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F
(
g1(0�x)�g2(x)|x

)
� if (y1� y2)= (0�0),

F
(
g1(0�x)�g2(x)|x

) + F
(
g1(1�x)�+∞|x)

−F
(
g1(1�x)�g2(x)|x

)
� if (y1� y2)= (0�1),

F
(+∞� g2(x)|x

) − F
(
g1(0�x)�g2(x)|x

)
� if (y1� y2)= (1�0),

1� if (y1� y2)= (1�1).

(16)

From (16), one can see that to satisfy (U2.ω) in Theorem 1, Ux(g) must be chosen so that
it contains the set {

g1(0�x)�g1(1�x)�±∞} × {
g2(x)�±∞}

(17)

for any fixed g ∈ G†.24

In the remainder of this section, I demonstrate the application of Theorem 1 to this
model under a variety of assumptions, represented primarily through different specifi-
cations of F†. These different specifications correspond to different assumptions about

23For example, in the model in Section 2, this occurs when changes in θ = β move β0 from larger than 0
to smaller than 0, or when changes in β1 change the ordering of β0 and β0 +β1x.

24Including −∞ in these sets is not necessary for (U2.ω), but is always required for U1.
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the conditional distribution of (U1�U2) given X . Throughout the demonstration, the in-
dex function in (14) is assumed to be linear in Y2 and a scalar component X1 of X , that
is, g1 is restricted to be an element of

G†
1 ≡ {

g1 : g1(y2�x1) = β0 +β1y2 + x1� for some (β0�β1) ∈R
2}� (18)

where the coefficient of x1 is set at 1 to impose a scale normalization.25

In one set of assumptions, the model for Y2 is taken to be non-restrictive by setting
g2(x) = P[Y2 = 0|X = x], and restricting F† to only admit conditional distributions F

under which U2 is uniformly distributed on [0�1] and independent of U1 and X .26 This
effectively reduces the bivariate model (14)–(15) to a univariate model. In a second set of
assumptions, the model for Y2 is made restrictive by allowing U2 to be dependent with
U1, but maintaining the nonparametric index function and uniform normalization on
U2. In a third set of assumptions, the model for Y2 is specified as having a linear index in
X1 and another scalar component X2 by requiring g2 to be an element of

G†
2 ≡ {

g2 : g2(x1�x2) = γ0 + x1 + γ2x2� for some (γ0�γ2) ∈R
2}� (19)

where the coefficient on x1 has again been normalized to 1. Under these assumptions
and the additional requirement that (U1�U2) is jointly normal, this model becomes the
well-known bivariate probit model (Heckman (1978)). Conditions for point identifica-
tion in this and other parametric bivariate binary response models were recently devel-
oped by Han and Vytlacil (2017). Here, I use the PIES approach to study identification
without imposing any parametric assumptions on the distribution of (U1�U2).

I consider several specifications for the distribution of (X1�X2), since this can have
an important impact on the identified set. In the first set of simulations, both X1 and X2
are taken to have discrete support X = X1�d1 ×X2�d2 for d1 ∈ {3�5�7}, d2 ∈ {3�5}, with

X1�3 = {−1�0�1}� X2�3 = {−1�0�1}�

X1�5 =
{
−1�−1

2
�0�

1
2
�1

}
� X2�5 = {−2�−1�0�1�2}� (20)

X1�7 =
{
−1�−2

3
�−1

3
�0�

1
3
�

2
3
�1

}
�

In these simulations, I always compute sharp identified sets. At the end of this section,
I also demonstrate the construction of arbitrarily tight outer sets when X2 has a contin-
uous distribution. In all cases, I take (X1�X2) to be uniformly distributed over its sup-
port with X1 independent of X2. I take the distribution of Y conditional on X to be
that generated through (14)–(15) with parameters (β0�β1�γ0�γ2) = (0�5�−0�75�0�3�0�2)
when (U1�U2) follows a bivariate standard normal distribution.

Table 1 details nine specifications of assumptions that will be considered in se-
quence. All of the assumptions can be shown to yield systems of equations in Theorem 1

25The normalization could be achieved by the weaker condition that |X1| = 1 without assuming that the
sign is known a priori. This could be implemented by repeating each simulation for X1 = 1 and X1 = −1.

26Alternatively (and equivalently), (15) could be ignored, and Y2 could be treated as a component of X .
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Table 1. Assumptions Maintained in the Different Specifications

Exogenous Y2 Endogenous Y2

Assumption [1] [2] [3] [4] [5] [6] [7] [8] [9]

med(U1|Y2�X1)= 0 � � �
U1|Y2�X1 symmetric around 0 � �
U1 ⊥⊥ (Y2�X1) �
med(U1|X1�X2) = 0 � � � � � �
U1|X1�X2 symmetric around 0 � �
U1 ⊥⊥ (X1�X2) � � � � �
Y2 = 1[g21(X1�X2) > U2] �
(U1�U2) ⊥⊥ (X1�X2) � � �
Y2 = 1[π0 +X1 +π2X2 >U2] � �
med(U2|X1�X2) = 0 � �
U2|X1�X2 symmetric around 0 �

Note: Specifications [1]–[6] are single equation models of Y1 only. In specifications [1]–[3], Y2 and X1 are assumed to be
exogenous, using increasingly strong concepts of exogeneity. In specifications [4]–[6], Y2 is potentially endogenous, and re-
strictions are placed on the relationship between (X1�X2) and U1 . These specifications can be seen as a single equation semi-
parametric instrumental variables model with X2 as an excluded instrument. In specification [7], a nonparametric first stage
equation is added, meaning that g2 is specified nonparametrically but with (U1�U2) assumed to be independent of (X1�X2).
In specification [8], the nonparametric first stage is replaced by the linear-in-parameters parametric form (19). In specification
[9], conditional symmetry is added for both U1 and U2 .

that are linear in F , in the sense discussed in Section 3.4.27 Specification [1] is the semi-
parametric binary response model discussed in Section 2, except with two explanatory
variables and a different normalization on the index coefficients. Figures 2a–2c are plots
of the identified set for the index coefficients, (β0�β1), for different values of d1. Man-
ski’s (1975, 1985, 1988) conditions for point identification of these parameters require
X1 to be continuously distributed, which is not the case here. As a result, the index co-
efficients are partially identified, although the sizes of the identified sets decrease with
the number of support points of X1 (Horowitz (2009), Komarova (2013)). The first row
of Table 2 reports identified sets for the ATE of Y2 on Y1 under different values of d1 and
d2. While this model has been widely studied, it does not appear that any prior work has
shown how to construct these identified sets for the ATE.

If U1 were assumed to be normally distributed and independent of (Y2�X1), then the
identified set for the index coefficients would be the singleton given by the “+” mark at
(0�5�−0�75), while the identified set for the ATE would be the singleton (either {0�218} or
{0�234}) indicated in the header of Table 2. The difference between these singleton sets
and the identified sets for [1] represents the combined identifying content of indepen-
dence and normality. These effects can be separated by adding assumptions to [1].

Specification [2] strengthens the median independence assumption to the assump-
tion that the distribution of U1|Y2�X1 is symmetric around 0. Manski (1988) reasoned
that this would have no effect on the identified set for the index coefficients, an asser-
tion which is supported by comparing Figures 2a–2c and 2d–2f. However, comparing

27As a result, the PIES procedure reduces to solving linear programs. I wrote these linear programs in
AMPL (Fourer, Gay, and Kernighan (2002)) and solved them using Gurobi (Gurobi Optimization LLC (2015)).
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Table 2. Sharp Identified Sets for the Specifications Listed in Table 1, for Different Values of
(d1� d2)

(d1� d2) (3�3) (5�3) (3�5) (5�5)
DGP ATE 0�218 0�234 0�218 0�234

[1] [0�052�0�481] [0�031�0�491] [0�052�0�480] [0�031�0�490]
[2] [0�065�0�429] [0�039�0�427] [0�065�0�428] [0�039�0�426]
[3] {0�218} {0�234} {0�218} {0�234}
[4] [−0�243�0�756] [−0�254�0�735] [−0�219�0�754] [−0�238�0�733]
[5] [−0�173�−0�027] [−0�189�−0�030] [−0�109�−0�053] [−0�119�−0�060]

∪ [0�027�0�685] ∪ [0�030�0�660] ∪ [0�053�0�638] ∪ [0�060�0�615]
[6] [−0�173�−0�027] [−0�189�−0�030] [−0�109�−0�053] [−0�119�−0�060]

∪ [0�027�0�666] ∪ [0�030�0�629] ∪ [0�053�0�616] ∪ [0�060�0�583]
[7] [0�027�0�658] [0�030�0�569] [0�053�0�569] [0�060�0�521]
[8] [0�027�0�658] [0�030�0�569] [0�053�0�569] [0�060�0�521]
[9] [0�027�0�629] [0�030�0�544] [0�053�0�543] [0�060�0�499]

Note: The supports corresponding to different values of (d1� d2) are given in (20). Note that the second header row of the
table lists the true value of the average treatment effect, which varies with d1 . As a result, the sets in the second and fourth
columns are not necessarily strict subsets of those in (respectively) the first and third columns.

rows [1] and [2] in Table 2 shows that the symmetry assumption does have an effect on
the size of the identified set for the ATE.

In specification [3], both symmetry and full independence are maintained, so that
the identified set for the ATE collapses to a singleton, as expected. Nevertheless, Fig-
ures 2g–2i show that the index coefficients are still partially identified. A practical conse-
quence is that using a binary response model for extrapolation to values of the explana-
tory variables not observed in the data will still lead to partial identification, even under
full independence, unless one imposes a parametric assumption on the distribution of
the unobservable term.28

In specification [4], Y2 is allowed to be an endogenous variable. In particular,
this specification imposes the assumption that the median of U1 is 0, conditional on
(X1�X2), but it does not restrict dependence between U1 and Y2. This is like an instru-
mental variables version of Manski’s (1975, 1985, 1988) semiparametric binary response
model with the instrument here being X2. Hong and Tamer (2003) established point
identification of this model under a support condition on (X1�X2) that is similar to the
one required in the exogenous regressor case. In particular, their assumption is not sat-
isfied when all components of (X1�X2) are discrete, as in this simulation. The sharp
identified set for (β0�β1) is displayed in Figures 3a–3c. It is unbounded and much larger
than the corresponding sets for [1] in Figures 2a–2c. This reflects the loss in identifying
power of assuming exogeneity of the excluded instrument, X2, rather than the variable

28 One could also consider imposing full independence without symmetry, as in Cosslett (1983), Matzkin
(1992), Klein and Spady (1993), and certain cases of Han (1987). The point identification results in these
papers require support conditions on the explanatory variables, which are not satisfied in this simulation.
Since the index parameters are partially identified under specification [3], the implication is that the sup-
port conditions are crucial for ensuring point identification. I am grateful to an anonymous referee for
suggesting this point.
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Figure 2. Sharp identified sets for (β0�β1) for specifications [1]–[3] in Table 1 for different val-
ues of (d1� d2). The shaded area indicates the identified set. The black “+” mark is placed at
(β0�β1)= (0�5�−0�75), which is the value in the data generating process.
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of interest, Y2. As in the exogenous case, the size of the identified set shrinks with the
number points in X .

In specification [5], the median independence condition in [4] is strengthened to
full independence, that is, U1 ⊥⊥ (X1�X2). Sharp identified sets for the index coefficients
under specification [5] are displayed in Figures 3d–3f. These identified sets are not only
non-convex, but disconnected. As a result, the sharp identified set for the ATE is also
disconnected.29 Specification [6] adds the condition that U1 is symmetrically distributed
around 0, conditional on (X1�X2). This has a small effect on the identified set for the
ATE. However, Figures 3g–3i show that, unlike in the exogenous case, here symmetry
can also greatly reduce the size of the identified set for the index coefficients.

Specifications [7], [8], and [9] impose the full triangular model structure. In [7], it
is only assumed that there exists some first stage equation with an unobservable term
U2 such that (U1�U2) is independent of (X1�X2). Chesher (2005), Shaikh and Vytlacil
(2011), Jun, Pinkse, and Xu (2011, 2012), and Mourifié (2015) derived analytic expres-
sions for fully nonparametric triangular bivariate binary response models.30 In contrast,
the linear index model considered here is semiparametric, which makes analytically
characterizing its sharp identified set quite difficult. Intuitively, the source of this dif-
ficulty is that to establish sharpness in the linear index model, one needs to also fully
exhaust the additional information carried in the linearity assumption. PIES provides a
tractable computational framework under which this can be achieved.

Comparing specifications [5] and [7] in Figures 3d–3f and 4a–4c reveals that the as-
sumption that (X1�X2) is exogenous with respect to both the first stage and outcome
equations has an impact on the identified set for both the index coefficients and the
ATE. As it turns out, imposing a linear index structure on the first stage, as in [8], has
no additional impact on the identified sets for either the index coefficients or the ATE.
Specification [9] also requires both U1 and U2 to be symmetrically distributed around 0.
This substantially tightens the identified sets of the index coefficients relative to both [8]
and [6], but has only a modest effect on the identified set of the ATE.

Specification [9] is about as close as one can get to a bivariate probit model with-
out imposing the joint normality assumption. The size of the identified sets in [9] can
be interpreted as the cost of removing a parametric assumption on the distribution of
unobservables. That these identified sets are relatively uninformative implies that iden-
tification in the bivariate probit model is primarily driven by the normality assumption,
at least in this data generating process.

As noted in Section 3, Theorem 1 applies regardless of the cardinality of X . How-
ever, in practice the system of equations in Theorem 1 and the optimization problem in
Proposition 1 can only be solved with a finite number of variables and constraints. An
implication is that if X is continuously distributed, then one must choose a finite subset
X on which to solve these problems. As shown in Theorem 1, the resulting identified sets
may be (non-sharp) outer identified sets. These outer identified sets become closer to

29This aligns with similar findings by Chesher (2010, 2013), Chiburis (2010), and Chesher and Smolinski
(2012).

30See also Vytlacil and Yıldız (2007) and Yıldız (2013), who established point identification by using ex-
ogenous variation in the outcome equation under some additional support conditions.
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Figure 3. Sharp identified sets for (β0�β1) for specifications [4]–[6] in Table 1.
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Figure 4. Sharp identified sets for (β0�β1) for specifications [7]–[9] in Table 1.
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Figure 5. Outer identified sets for (β0�β1) in specification [5] when X2 is continuously dis-
tributed and X = X1�d1 ×X 2�q for d1 = 3 and three values of q.

Table 3. Outer identified sets for the average treatment effect of Y2 on Y1, conditional on X =
(0�0) in specification [5] when X2 is continuously distributed and X = X1�d1 ×X 2�q for d1 = 3 and
increasing values of q

q Outer Set Length

5 [−0�227�−0�053] ∪ [0�053�0�591] 0�175 + 0�539 = 0�713
10 [−0�189�−0�070] ∪ [0�070�0�570] 0�120 + 0�500 = 0�620
15 [−0�177�−0�075] ∪ [0�075�0�563] 0�102 + 0�488 = 0�590
20 [−0�171�−0�078] ∪ [0�078�0�560] 0�093 + 0�482 = 0�574
25 [−0�167�−0�080] ∪ [0�080�0�558] 0�087 + 0�478 = 0�565

the sharp identified set as X becomes closer to X . If the population is known, as in these
simulations, then the only drawback of increasing X is increased computation.

To demonstrate this point, I return to specification [5], but now I take X2 to be uni-
formly distributed over the interval [−2�2]. I then construct outer identified sets using
X = X1�d1 ×X 2�q, where X1�d1 remains as in (20), but X 2�q is now a set of (q − 1) equally
spaced quantiles of X2. I repeat the simulation for q ∈ {5�10�15�20�25}.31 Outer iden-
tified sets for the index coefficients are shown in Figure 5 for three choices of q, while
those for the ATE of Y2 on Y1, conditional on (X1�X2) = (0�0), are shown in Table 3. As
expected, the sets become smaller as q increases at a rate that also decreases with q.

The simulations in this section were conducted by forming grids over the index coef-
ficients and then applying Proposition 1. This type of grid search approach is commonly
used in general procedures for constructing sharp identified sets. However, using a grid
search introduces a curse of dimensionality which severely limits the number of index
coefficients that can be used in practice. For the PIES argument, Proposition 2 suggested
that a grid search could be needlessly inefficient.

31So, for example, X 2�10 = {0�1�0�2� � � � �0�9} and X 2�25 = {0�04�0�08� � � � �0�96}.
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Figure 6. The partitioning property discussed in Proposition 2 for specifications [5] and [6].

Figures 6a and 6b provide supporting evidence of this inefficiency. Each colored
region in the figures represents a piece of the partition discussed in connection with
Proposition 2. Solving the programs in Proposition 1 more than once per colored re-
gion is inefficient, since Proposition 2 implies that the programs for any other (β0�β1)

in the region will be equivalent. An algorithm that could determine the partition ex ante
would reap enormous computational gains, perhaps breaking the curse of dimensional-
ity associated with a grid search. Constructing such an algorithm is not a straightforward
problem, even in the specific bivariate binary response model considered in these sim-
ulations, but may be a good avenue for future research.

5. Conclusion

This paper contains the development of a general procedure for constructing sharp
identified sets called partial identification by extending subdistributions, or PIES. The
PIES method is based on copula theory, and in particular uses a generalization of Sklar’s
(1959) multilinear interpolation lemma to determine when an admissible, observation-
ally equivalent distribution function can be reconstructed as an extension of a lower-
dimensional subdistribution function. This procedure is natural and intuitive, since
it works directly with distribution functions, the properties of which are widely un-
derstood by economists. Its primary advantage is that it enables the construction of
sharp identified sets for low-dimensional functionals of infinite-dimensional param-
eters without requiring one to first construct a sharp identified set for the infinite-
dimensional parameters. I used PIES to study identification in a bivariate binary re-
sponse model with a linear index function but without any parametric assumptions
for the distribution of unobservables. Simulation results from that analysis suggest that
point identification in the bivariate probit model can be largely driven by the assump-
tion that the latent variables are normally distributed.
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Appendix A: Copula theory

In this appendix, I record some definitions and results from copula theory that are used
in the proof of Lemma 2. See Schweizer and Sklar (1983) and Nelsen (2006) for further
discussion.

An L-dimensional copula is similar to a distribution function, but with domain
[0�1]L and margins equal to the identity function. A subcopula is like a copula, but not
necessarily defined on the entirety of [0�1]L.

Definition C. Let U be a subset of [0�1]L such that U = U1 ×· · ·×UL, where Ul ⊆ [0�1] is
such that {0�1} ⊆ Ul for each l. An L-dimensional subcopula is a function C with domain
U such that

C1. C is L-increasing.

C2. C(u) = 0 for any u ∈ U that has at least one component equal to 0.

C3. C(u) = ul for any u = (u1� � � � � uL) ∈ U that has all components except the lth
equal to 1.

An L-dimensional copula (or, for emphasis, a proper L-dimensional copula) is an L-
dimensional subcopula for which U = [0�1]L.

The fundamental result in copula theory is a two-part theorem due to Sklar (1959);
see, for example, Nelsen (2006) for a modern treatment. The first part of Sklar’s theorem
shows that any distribution function can be decomposed into its marginal distributions
and a possibly non-unique copula. The second part shows that, conversely, a copula
combined with a collection of L one-dimensional distribution functions generates an
L-dimensional distribution function.

Sklar’s Theorem. 1. Let F be a proper L-dimensional distribution function with mar-
gins Fl : R → [0�1] defined as in Definition 3. Then there exists a proper L-dimensional

copula C such that F(u) = C(F1(u1)� � � � �FL(uL)) for all u ≡ (u1� � � � � uL) ∈ R
L

. If Fl is
continuous on R for every l = 1� � � � �L, then C is unique; otherwise, C is uniquely deter-
mined on {F1(u1) : u1 ∈R} × · · · × {FL(uL) : uL ∈ R}.

2. If C is a proper L-dimensional copula and Fl are proper one-dimensional dis-

tribution functions for each l = 1� � � � �L, then the function F : RL → [0�1] : F(u) ≡
C(F1(u1)� � � � �FL(uL)) is a proper L-dimensional distribution function with margins Fl

for each l = 1� � � � �L.

The analysis in this paper uses the second part of Sklar’s theorem, which is easy to
prove. It does not use the first part of Sklar’s theorem as stated, but it does make im-
portant use of the main lemma employed in Sklar’s original proof of the first part. The
proof of this lemma for L= 2 can be found in Nelsen’s (2006) monograph on copula the-
ory (see Lemma 2.3.5). Sklar (1996) provided a proof for higher dimensions; see also the
discussion of Theorem 6.2.6 in Schweizer and Sklar (1983).
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Sklar’s Lemma. Let C be an L-dimensional subcopula with domain U . Then there ex-

ists a (typically non-unique) proper L-dimensional copula C such that C(u) = C(u) for

all u ∈ U .

Appendix B: Proofs for Section 3.1

Proof of Lemma 1. Conditions 2b and 2c follow immediately from the fact that F is

an L-dimensional subdistribution. Condition 2a, which in the one-dimensional case re-

duces to the usual notion of weakly increasing, is implied by Lemma 6.1.5 of Schweizer

and Sklar (1983).

The proof of Lemma 2 is characteristically different in the L = 1 and L > 1 cases.

Since the L> 1 case makes use of the L= 1 case, I begin with the latter.

Proof of Lemma 2 (case L= 1). Suppose that F is a one-dimensional subdistribution

with domain U that is closed and contains {±∞}. A proper one-dimensional distribution

function that extends F can be constructed as follows, although many other construc-

tions are possible.

First, let U denote the set U \ {±∞}, and let u≡ infU and u≡ supU , noting that u�u ∈
U , since U is closed. Partition the complement of U , that is, U c ≡R \ U , into three sets

U c = U c
− ∪ Uc

0 ∪ U c
+� (21)

Figure 7. An example of the construction used in Lemma 2. The set U is shown in bold on the
horizontal axis and the subdistribution F is plotted in bold on its domain U . On U , F must be
chosen to match F . In between the smallest and largest elements of U , F is chosen to linearly
interpolate between values of F . Outside of this range, F is chosen to have the shape of an expo-
nential distribution. Many other constructions are possible.
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where Uc
− ≡ {u ∈ Uc : u < u}, Uc

+ ≡ {u ∈ Uc : u > u}, and Uc
0 = {u ∈ Uc : u ≤ u ≤ u}. Then

define F :R→ [0�1] as

F(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0� if u= −∞�

F(u)eu−u� if u ∈ U c
−�


(
u; [au�bu]

)
� if u ∈ U c

0�

F(u)� if u ∈ U�
F(u)+ (

1 − F(u)
)(

1 − eu−u
)
� if u ∈ U c

+�
1� if u= +∞,

(22)

where au ≡ sup{u′ ∈ U : u′ ≤ u}, bu ≡ inf{u′ ∈ U : u′ ≥ u}, and (·; [au�bu]) is the linear
function that interpolates F between au and bu, that is,


(
u; [au�bu]

) ≡ F(au)+
(
F(bu)− F(au)

bu − au

)
(u− au)� (23)

noting that au < bu for all u ∈ U c
0. In words, F is equal to F on U , it has the shape of an

exponential distribution for u ∈ Uc
− and u ∈ U c

+, and it linearly interpolates F on U c
0. See

Figure 7. It is straightforward to verify that F is a proper one-dimensional distribution
function and that, by construction, F(u) = F(u) for every u ∈ U . It is also straightforward
to verify that if F is continuous on U , then F is continuous on its entire domain.

Alternatively, suppose that U is a finite set and let u+ be any number such that u+ ≥
maxU . Enumerate the elements of U ∪ {u+} as {uj}Jj=0, so that u0 = −∞, uJ−1 = u+, and
uJ = +∞. Instead of (22), define

F :R → [0�1] : F(u) =
J−2∑
j=0

F(uj)1
[
u ∈ [uj�uj+1)

] + 1[u≥ uJ−1]�

Then, by construction, F is a proper one-dimensional distribution function with sup-
port U ∪ {u+}, and such that F(u) = F(u) for all u ∈ U .

Proof of Lemma 2 (case L> 1). Suppose that L> 1 and let U and F be as in the state-
ment of the lemma. For l = 1� � � � �L, let Fl be the lth margin of F , that is,

Fl : Ul → [0�1] : Fl(ul)≡ F(+∞� � � � �+∞�ul�+∞� � � � �+∞)�

Lemma 1 shows that each Fl is itself a one-dimensional subdistribution function.
Next, define the set

T ≡ T1 × · · · × TL ≡ {
F1(u1) : u1 ∈ U1

} × · · · × {
FL(uL) : uL ∈ UL

}
�

and define the function C : T → [0�1] by

C
(
F1(u1)� � � � �FL(uL)

) ≡ F(u1� � � � � uL)�
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Note that C is well-defined, because if u, u′ are such that Fl(ul) = Fl(u
′
l) for all l, then

F(u) = F(u′); see Lemma 2.10.4 of Nelsen (2006) or Lemma 6.1.9 of Schweizer and Sklar
(1983).

I claim that C is a subcopula on T . To see this, first note that T ⊆ [0�1]L and that
{0�1} ⊆ Tl for each l, since by assumption {±∞} ⊂ Ul with Fl(−∞) = 0 and Fl(+∞) = 1.
Next, notice that

C
(
0�F2(u2)� � � � �FL(uL)

) = C
(
F1(−∞)�F2(u2)� � � � �FL(uL)

)
≡ F(−∞�u2� � � � � uL) = 0�

and similarly if any other collection of the arguments of C are 0. This shows that Condi-
tion C2 is satisfied. Condition C3 is satisfied because, by construction,

C
(
F1(u1)�1� � � � �1

) =C
(
F1(u1)�F2(+∞)� � � � �FL(+∞)

)
≡ F(u1�+∞� � � � �+∞)≡ F1(u1)�

and similarly for any other index l = 2� � � � �L.
To see that C satisfies Condition C1, consider any t ′� t ′′ ∈ T such that t ′ ≤ t ′′.

Then there exist u′�u′′ ∈ U such that u′ ≤ u′′ with t ′ = (F1(u
′
1)� � � � �FL(u

′
L)) and t ′′ =

(F1(u
′′
1)� � � � �FL(u

′′
L)).32 Consider the sets of vertices Vrt(t ′� t ′′) and Vrt(u′�u′′), and the

function ξ : Vrt(t ′� t ′′) → Vrt(u′�u′′) defined by ξ(t) = (ξ1(t1)� � � � � ξL(tL)), where for
each l,

ξl :
{
t ′l� t

′′
l

} → {
u′
l� u

′′
l

} : ξl(tl)≡
{
u′
l� if tl = t ′l�

u′′
l � if tl = t ′′l �

Then, by construction, ξ is bijective and sgn(t ′�t ′′)(t) = sgn(u′�u′′)(ξ(t)) for every t ∈
Vrt(t ′� t ′′). Moreover, C(t) = F(ξ(t)) for any t ∈ Vrt(t ′� t ′′). Thus,

VolC
(
t ′� t ′′

) ≡
∑

t∈Vrt(t′�t ′′)
sgn(t ′�t ′′)(t)C(t)

=
∑

t∈Vrt(t′�t ′′)
sgn(u′�u′′)

(
ξ(t)

)
F

(
ξ(t)

)
=

∑
u∈Vrt(u′�u′′)

sgn(u′�u′′)(u)F(u) ≡ VolF
(
u′�u′′)� (24)

where the first equality is by definition, the second equality imposes the above observa-
tions, the third equation changes the indexing variable from t to u= ξ(t) by using the bi-
jectivity of ξ and Vrt(t ′� t ′′) = ξ−1(Vrt(u′�u′′)), while the final equality is by definition. By
assumption, VolF(u

′�u′′) ≥ 0 since u′�u′′ ∈ U with u′ ≤ u′′. Thus, by (24), VolC(t
′� t ′′) ≥ 0

as well. Since t ′, t ′′ were arbitrary elements of T with t ′ ≤ t ′′, this shows that C satisfies C1.

32Specifically, note that by the definition of Tl , there exists at least one u′
l such that t ′l = Fl(u

′
l). If t ′′l = t ′l ,

then take u′′
l = u′

l . Otherwise, if t ′′l > t ′l , then let u′′
l be any such that t ′′l = Fl(u

′′
l ). This choice ensures that

u′
l ≤ u′′

l for each l, since each Fl is weakly increasing.
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Since C satisfies C1–C3, it is an L-dimensional subcopula with domain T . By Sklar’s
lemma, C can be extended (perhaps non-uniquely) to a proper L-dimensional copula C

with domain [0�1]L such that C(t) = C(t) for every t ∈ T . Moreover, the L= 1 case of the
current lemma shows that, for each l, there exists a proper one-dimensional distribution
function Fl :R→ [0�1] such that Fl(u) = Fl(u) for all ul ∈ Ul. Define the function

F :RL → [0�1] : F(u) = C
(
F1(u1)� � � � �FL(uL)

)
� (25)

Since each Fl is a proper one-dimensional distribution function and C is a proper cop-
ula, Sklar’s theorem shows that F is a proper L-dimensional joint distribution function.
Moreover, F is an extension of F , since for any u ∈ U ,

F(u) ≡ C
(
F1(u1)� � � � �FL(uL)

)
= C

(
F1(u1)� � � � �FL(uL)

)
= C

(
F1(u1)� � � � �FL(uL)

) = F(u)�

Finally, note that copulas are continuous (Theorem 2.2.4 of Nelsen (2006)). As a con-
sequence, if Fl is continuous on Ul for each l, so that each Fl can be taken to be con-
tinuous, then the continuity of C implies that F is also continuous. Alternatively, if U is
a finite set, so that each Ul is also a finite set, then each Fl can be taken to have sup-
port (Ul \ {±∞}) ∪ {u+

l } for any u+
l ∈ R with u+

l ≥ max(Ul \ {+∞}), so that F has support
contained in the Cartesian product of these sets.

Proof of Corollary 1. The case where L= 1 follows tautologically from the assump-
tion and definition of extendibility, so assume that L > 1. Follow the proof of Lemma 2
up to (25). By assumption, for each l = 1� � � � �L, there exists an Fl ∈ Fl such that Fl(ul) =
Fl(ul) for each ul ∈ Ul. Then defining F as in (25) with these margins Fl for l = 1� � � � �L
and appealing to Sklar’s theorem shows that F is a proper L-dimensional distribution
function with margins Fl ∈ Fl for each l = 1� � � � �L.

Proof for Example 4. Reducibility follows immediately by the properties of F , F ,
and U . To see that F is extendible to F , let F be an arbitrary element of F and define
a function F

−
on U by

F
− : U → [0�1] : F

−
(u) =

{
2F(u)� if u≤ 0�

1� if u > 0.

Observe that F
−

is also a one-dimensional subdistribution, and let F− : R→ [0�1] be an
extension of F

−
, which exists by Lemma 2. Then define F : R→ [0�1] by

F(u) =

⎧⎪⎨⎪⎩
1
2
F−(u)� if u≤ 0�

1 − 1
2
F−(−u)� if u > 0,
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so that F(u) = 1 − F(−u) for all u by construction, that is, F ∈ F . In addition, F extends
F because if u ∈ U and u≤ 0, then

F(u) = 1
2
F−(u) = 1

2
F

−
(u) = F(u)�

while if u ∈ U and u≥ 0, then

F(u) = 1 − 1
2
F−(−u) = 1 − 1

2
F

−
(−u) = 1 − F(−u) = F(u)�

Thus, F is extendible to F .

Appendix C: Proofs for Section 3

Proof of Theorem 1. Suppose that p ∈ P�. By definition, there exists an S = (θ�F) ∈
S� such that π(θ�F) = p. For every x ∈ X and u ∈ Ux(θ), let F(u|x) = F(u|x). Then

1. Condition U1 implies that (T1.2) is satisfied, since the restriction of any distribution
function to a subset satisfying the properties of Ux(θ) is a subdistribution on that subset.

2. Condition U2, (θ�F) ∈ S�, and A4 imply that (T1.1), (T1.6), and (T1.7) are satisfied.

3. Condition U3 and A3 imply that (T1.5) is satisfied.

4. Condition U4 and A1 imply that (T1.3) is satisfied.

5. Condition U5 and A2 imply that (T1.4) is satisfied.

Thus, there is a θ ∈ Θ† and functions F(·|x) : Ux(θ) → [0�1] for x ∈ X that satisfy (T1.1)–
(T1.7).

Conversely, suppose that X = X , Y = Y and that there is a θ ∈ Θ† and functions
F(·|x) : Ux(θ) → [0�1] for x ∈ X such that (T1.1)–(T1.7) are satisfied. The proof that
p ∈ P� will use an extension argument based on Lemma 2 and Corollary 1. The exten-
sion argument will be conducted for each x ∈ X , while respecting the requirements of
Assumptions A. To do this, I begin by partitioning X into different subsets defined by the
sets X †

0�m0
, X †

l�ml
in A1 and A2.

To this end, first define X †
l�0 ≡ X \⋃Ml

ml=1 X
†
l�ml

for each l = 0�1� � � � �L. Then {X †
l�ml

}Ml
ml=0

forms a partition of X for each l, given the stipulation that {X †
l�ml

}Ml
ml=1 are disjoint sets.

Next, let M ≡ ⊗L
l=0{0�1� � � � �Ml}. For each m≡ (m0�m1� � � � �mL) ∈ M, define

Xm ≡ {
x ∈ X : x ∈ X †

l�ml
for each l = 0�1� � � � �L

}
�

Then {Xm : m ∈ M} forms a partition of X .
There are three types of sets in this partition, and the extension argument will differ

slightly for each:

(i) full independence regions, that is, those with any m such that m0 > 0;

(ii) marginal independence regions, that is, those with m0 = 0 and ml > 0 for at least
one l ≥ 1;

(iii) the region with no independence conditions, that is, ml = 0 for all l.
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I consider the three regions in turn. On each region, I will construct proper conditional
distribution functions that satisfy the requirements of Assumption A. Then, I will use the
fact that {Xm : m ∈ M} forms a partition to link these conditional distribution functions
together into a single element of F†.

(i) Fix an m ∈ M with m0 > 0, and fix an arbitrary x ∈ Xm. By (T1.2), F(·|x) is a subdis-

tribution with domain Ux(θ). By (T1.5), Fl(·|x) ∈ F†
l�x for each l = 1� � � � �L. Thus, given

U3, Corollary 1 implies that there exists a proper L-dimensional distribution function
F̃m such that F̃m(u) = F(u|x) for all u ∈ Ux(θ), and such that the lth margin of F̃m is in

F†
l�x for every l = 1� � � � �L. Define Fm : RL × Xm → [0�1] : Fm(u|x) = F̃m(u) to be a con-

ditional distribution function that is constant as a function of x over Xm, and equal to
the unconditional distribution function F̃m that was just defined. Observe that A1 and
A3 together require that F†

l�x = F†
l�x′ for all x�x′ ∈ Xm and all l = 1� � � � �L. Thus, the lth

margin of Fm(·|x) is an element of F†
l�x = F†

l�x for all x ∈ Xm and every l. In addition, U4

and (T1.3) imply that Fm(u|x) = F̃m(u) = F(u|x)= F(u|x) for all x ∈Xm and u ∈ Ux(θ).
(ii) Fix an m ∈ M with m0 = 0 and ml > 0 for some l ≥ 1, and fix an arbitrary x ∈ Xm.

Let Lm ≡ {l : ml > 0}. For each l ∈ Lm, let Fl(·|x) be the lth margin of F(·|x). By (T1.2)
and Lemma 1, each Fl(·|x) is a one-dimensional subdistribution function. By (T1.5),

Fl(·|x) ∈ F†
l�x for each l ∈ Lm. Thus, given U3, Corollary 1 implies that, for each l ∈ Lm,

there exists a proper distribution function F̃m
l : R → [0�1] such that F̃m

l (u) = Fl(u|x) for

every u ∈ Ul�x(θ) and such that F̃m
l ∈ F†

l�x. Observe that A2 and A3 together require that

F†
l�x = F†

l�x′ for all x�x′ ∈ Xm and every l ∈ Lm. Thus, F̃m
l is an element of F†

l�x = F†
l�x for

all l ∈ Lm and x ∈ Xm. In addition, (T1.4) implies that F̃m
l (u) = Fl(u|x) = Fl(u|x) for all

x ∈ Xm, all u ∈ Ul�x(θ), and each l ∈ Lm.
These arguments show that for each x ∈ Xm and every l ∈ Lm, the singleton set

{Fl(·|x)} is extendible to the singleton set {F̃m
l }. On the other hand, for each x ∈ Xm

and every l /∈ Lm, (T1.5) and U3 imply that the singleton set {Fl(·|x)} is extendible to
F†
l�x. Given (T1.2), Corollary 1 then implies that for each x ∈ Xm, there exists a proper

L-dimensional distribution function Fm(·|x) such that Fm(u|x) = F(u|x) for all u ∈ R
L

.
Moreover, the corollary establishes that the lth margins of Fm(·|x)—call them Fm

l (·|x)—

are equal to F̃m
l for every l ∈ Lm, and are elements of F†

l�x for every l /∈ Lm. It follows that

Fm
l (·|x) ∈ F†

l�x for every l = 1� � � � �L and all x ∈ Xm, and that Fm
l (u|x) = F̃l(u) = Fm

l (u|x′)
for every l ∈ Lm and all x�x′ ∈ Xm.

(iii) Finally, consider the set Xm with m = (0�0� � � � �0). For each x ∈ Xm, (T1.2) and
(T1.5) with U3, together with an application of Corollary 1, establish the existence of a
proper L-dimensional distribution function Fm(·|x) such that Fm(u|x) = F(u|x) for all

u ∈R
L

. Moreover, the lth margins of this distribution are elements of F†
l�x.

Combine the constructions in (i), (ii), and (iii) into

F : RL ×X → [0�1] : F(u|x) =
∑
m∈M

1
[
x ∈ Xm

]
Fm(u|x)� (26)

Observe that F is well-defined, since {Xm : m ∈ M} forms a partition of X . Given the
previous discussion, it is known that for every x ∈ X , F(·|x) is a proper L-dimensional
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distribution function such that F(u|x) = F(u|x) for all u ∈ Ux(θ). Moreover, the previ-
ous discussion established that F satisfies A1–A3. Given (T1.6), U2, and the established
fact that each F(·|x) extends each F(·|x), it is also known that ρ(θ�F) ≥ 0, so that A4 is
satisfied. Thus, F ∈ F†. Moreover, U2, (T1.1), and the assumption that Y = Y , X = X im-
ply that ωy|x(θ�F) = P[Y ≤ y|X = x] for all y ∈ Y and x ∈ X , so that (θ�F) ∈ S�. Finally,
U2 and (T1.7) imply that π(θ�F) = p which, since (θ�F) ∈ S� and θ ∈ Θ†, implies that
p ∈ P�.

Proof of Proposition 1. Since π(θ� ·) is assumed to be continuous on F�
(θ), and

since F�
(θ) is assumed to be connected, it follows that the image of F�

(θ) under π(θ� ·)
is [p�(θ)�p�(θ)] for any θ ∈Θ†; see, for example, Theorem 4.22 of Rudin (1976).

Now, suppose that p ∈ P�. By Theorem 1, there exist a θ′ ∈ Θ† and an F ∈ F�
(θ′) for

which p = π(θ′�F). Thus, p ∈ [p�(θ′)�p�(θ′)], so p ∈ ⋃
θ∈Θ†[p�(θ)�p�(θ)], as well. Con-

versely, let p ∈ ⋃
θ∈Θ†[p�(θ)�p�(θ)]. Then there is a θ′ ∈ Θ† for which [p�(θ′)�p�(θ′)] is

nonempty with p ∈ [p�(θ′)�p�(θ′)]. Thus, there exists an F ∈ F�
(θ′) such that π(θ′�F) =

p. By Theorem 1, this implies that p ∈ P�, given X = X and Y = Y .

Proof of Proposition 2. The result follows immediately from the hypothesis and
definitions in Proposition 1.
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