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A scale-free transportation network explains
the city-size distribution

Marcus Berliant
Department of Economics, Washington University

Axel H. Watanabe
Department of Economics, Concordia University and CIREQ

Zipf’s law is one of the best known empirical regularities in urban economics.
There is extensive research on the subject, where each city is treated symmetri-
cally in terms of the cost of transactions with other cities. Recent developments
in network theory facilitate the examination of an asymmetric transport network.
In a scale-free network, the chance of observing extremes in network connections
becomes higher than the Gaussian distribution predicts and, therefore, it explains
the emergence of large clusters. The city-size distribution shares the same pattern.
This paper decodes how accessibility of a city to other cities on the transportation
network can boost its local economy and explains the city-size distribution as a
result of its underlying transportation network structure. We confirm our model
predictions with US and Belgian data. Finally, we discuss the endogenous evolu-
tion of transport networks.

Keywords. Zipf’s law, city-size distribution, scale-free network.

JEL classification. L14, R12, R40.

1. Introduction

Cities develop in relation to other cities rather than in a vacuum. What we consume in
a city differs from what we produce in a city. The gap between the range and scale of
production and consumption at the city level is bridged by the transportation network,
over which cities trade their products with others. The transportation network, in turn,
does not coordinate cities uniformly. Some cities have only limited connections while
others receive many links from cities across the country, both large and small, near and
far away. The fate of a city’s economy, and by extension its population size, is more or less
conditioned by how it is positioned (inadvertently or otherwise) in the overall interurban
network of cities and how accessible it is from others. We will show that the city-size
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distribution is the result of a particular class of network that our economy installs on
itself for interurban trading purposes, namely, a scale-free network.

The city-size distribution is the culmination of various economic decisions made
in all walks of life. Virtually any location-related choice changes the distribution, some
significantly but others only negligibly. Researchers try to isolate primary determinants
of the distribution and validate the strength of causal relationships with data. As such,
there are many different angles from which to model the city-size distribution. Eeckhout
(2004) used random growth to show that the city-size distribution asymptotically follows
the lognormal distribution. Duranton (2007) used a quality-ladder model to gauge the
growth of a city to derive the distribution. Glaeser, Scheinkman, and Shleifer (1995) of-
fered yet another angle and focused more on the socioeconomic factors behind urban
growth. Berliant and Watanabe (2015) looked into the potential for local technological
shocks, used in much of the literature, to drive migration. They found that insurance and
saving can serve as substitutes for migration, but that more severe reactions to shocks,
namely survival of only the most efficient firm in an industry, can drive migration. This
generates a Generalized Extreme Value (GEV) city-size distribution. As in the balance of
the literature, the transportation network is in the background.

The existing literature’s treatment of the transportation network has been rather
naive and simplistic. Most existing models of the city-size distribution implicitly or ex-
plicitly assume a completely isolated graph (Figure 1) or complete graph (Figure 2). Each
node represents a city and a link represents a route available for shipment in these fig-
ures. The number inside a node counts its degree, that is, the number of edges or routes
each node has. Commodities cannot be shipped at all on a completely isolated graph,
but they can be shipped anywhere in a single step from any city on a complete graph.
Either way, neglecting other factors, the resulting equilibrium will be an even split of
population among the cities, which does not match the actual city-size distribution. To
explain the city-size distribution, researchers have sought a source of variation other
than what the nexus of interurban relationships has to offer. Some use a completely iso-
lated graph (e.g., Eeckhout (2004)). Others such as Duranton (2006), Rossi-Hansberg and
Wright (2007), or the New Economic Geography (Fujita, Krugman, and Venables (1999))
engaged a complete graph as the transport structure, when in fact, transaction and/or

Figure 1. The United States according to completely isolated graph with the 50 largest cities.
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Figure 2. The United States according to complete graph with the 50 largest cities.

communication between hub cities is much easier than between cities on peripheries.
Behrens, Mion, Murata, and Südekum (2017) and Eaton and Kortum (2002) introduced
a more lifelike representation of transportation cost in that the delivered price depends
on a particular city pair. The price differential reflects monopolistic pricing (in Behrens
et al. (2017)) or exogenous trade barriers (in Eaton and Kortum (2002)) rather than the
underlying transportation network structure, which is still an (ex ante) complete graph
and thus network features such as a hub or through traffic are absent. The literature usu-
ally introduces a tiebreaker in the form of externalities, random growth, economies of
scale, or economies of scope to replicate the actual city-size distribution (cf. Section 3.4).

In practice, transportation cost differs greatly depending on where you are and
where you are headed. We will drop the assumption that our economy operates on a
complete or completely isolated graph and see how much explanatory power network
structure exerts as the engine of local economies of various sizes.

The transaction pattern between any two cities affects both the way cities are popu-
lated and the overall city-size distribution. Cities are tied together in various ways both
topologically and economically. Some cities function as an intersection of major trans-
portation routes and they trade and process commodities frequently in large volume.
Others are less active in the interurban exchange of commodities. Differences among
cities in terms of exchange patterns reverberate in the city-size distribution. Cities heav-
ily interrelated to many others are likely to grow due to increased economic activities,
whereas cities with sparse connections to a limited number of cities are liable to remain
small in size. Those small cities, however, will not be completely wiped off the map.

1.1 Cities on a network

Intercity exchange patterns like Figures 1 and 2 are best described by a network with
cities as a set of vertices and traffic by edges. In this regard, network theory is indispens-
able when constructing a model of cities in the nationwide economy.

The recent seminal work by Barabási and Albert (1999) has revitalized network the-
ory. Classical network theory pioneered by Erdős and Rényi (1959)’s model (ER network)
cannot explain the emergence of a cluster or hub in a network, which we observe in
most real social networks. In a classic random graph, each node is linked with an equal
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probability to any other and lacks distinctiveness, for the number of preexisting links
does not matter in forming a network. Barabási and Albert (BA) added a dynamic fea-
ture and preferential attachment to the classical random graph model so that the nodes
are no longer ex ante identical. Some nodes gather a lot of links while others are wired to
just a few. The model has been applied to many fields, including the emergence of web
science, and has produced an improved description of the organization and develop-
ment of networks. Most real-world networks have one thing in common: the resulting
distributions of links are scale invariant, that is, the distributions have fat tails. We can
find nodes with an extremely large number of links rather easily with these networks
compared to a classical random graph.

The city-size distribution shares the same pattern of scale invariance: the distribu-
tion of the 100 largest cities follows the same distribution as the one for the 1000 largest
cities and so on, a property known as a power law, and in particular, Zipf’s law in the
city-size literature. We expect that the degree of a city is positively related to its popula-
tion. And for that reason, we imagine that our economy is based on a BA network rather
than an ER network. This turns out to be correct, but selection of the appropriate net-
work structure depends on exactly how node degree is related to city size. We will decode
their relationship in Section 3.8.

The urban economic application of network theory is in its very early stage of devel-
opment and there is much room for advancement. Interaction between individual cities
has not caught much attention so far. Our goal in this paper is to bring to the forefront
the interaction between transportation network structure and the city-size distribution.
With this goal in mind, we introduce (asymptotic) techniques from network theory and
merge them with a tractable economic model in a new way. We do not intend this work
to be the last word on this topic, but merely a suggestion of a first step into a bigger
research program.

1.2 Some transportation networks are scale-free

Our economy operates on various modes of transportation and each mode comes with
distinct network structures; take a highway and airline network, for example. Figures 6
and 7 in the Supplementary Material (Berliant and Watanabe (2018)) are schematic rep-
resentations of the Interstate System and a typical airline route map for the 50 largest
US cities. Apparently, a network composed of the Interstates does not share its struc-
ture with that of airlines. The Interstate network will remain relatively intact when we
take away New York, Houston, and Cleveland. On the other hand, it would prove dev-
astating if we did the same to the airline network (cf. Barabási and Bonabeau (2003)).
More broadly, there is not much variance in the degree of nodes in the Interstate net-
work, whereas the airline network has a limited number of heavily wired cities. The BA
network (Figure 7) explains the latter network better, as it follows a power law.

It should be noted, however, that what is geographically visible may not represent
the real network that our economy relies on in effect. The Interstate network exhibits an
ER-type topology as in Figure 6. Nonetheless, the economy may operate a transportation
network of a scale-free class on it. Shipment from Memphis has to go through St. Louis
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even if its final destination is Chicago. In this case, Memphis is connected to Chicago in
a single step rather than in two steps via St. Louis. For a carrier making Chicago-bound
shipment from Memphis, St. Louis (a seeming layover node) is no different from the
cornfield they pass through along the way (just a part of the edge), in that neither one
of them add anything to the shipment. An economically relevant network is buried be-
neath the easily noticeable surface network and we do not want to confuse one with the
other.

It is also very important to note here a difference between the literature on dynamic
social network formation and transportation networks. In the standard economics liter-
ature on social networks, for example, Mele (2011) or Christakis et al. (2010), it is the in-
dividual agents, represented by nodes, who make decisions about forming links among
themselves. In contrast, the nodes of a transport network are cities. Typically, it is not
the cities or their agents who make decisions about forming links. Rather, it is another
agent who controls an entire networks, for example, the federal government in the case
of highways or airlines in the case of an airline system.1

1.3 The city-size distribution is scale-free, too

The city-size distribution has a distinct feature. Figure 8 in the Supplementary Material
(Berliant and Watanabe (2018)) plots the frequency of the city-size distribution from US
Census 2000. It is only when we take the log of population (Figure 8(b)) that the distri-
bution exhibits resemblance to a familiar Gaussian distribution. Black and Henderson
(2003) and Soo (2005) explained how widespread scale-free distributions are in urban
economics.2 Under the scale-free distribution, the arithmetic mean (Hillsboro, TX in
Figure 8) becomes less interpretive and the geometric mean (Sutton, NE) takes over the
role of the average in the conventional sense.

The fat-tailed distribution also makes its appearance on a map. Figure 9 in the Sup-
plementary Material (Berliant and Watanabe (2018)) illustrates the population density of
each metropolitan and micropolitan statistical area (MSA and µSA, collectively referred
to as Core Based Statistical Area, CBSA) in the United States in 2000. Most of the cities
have a low density and are painted in blue; there are only a few cities that are green and
only two cities are colored in red. If the city-size distribution followed a Gaussian distri-
bution or Poisson distribution with a large mean,3 most of the cities should be green and
only a few should be in blue or red. Just as for the airline network in Figure 7, if we take
away the ten largest US cities, we will leave more than a quarter of the urban population
unaccounted for.

Our main findings are as follows. City sizes are positively related to their degree.
A city with a high degree has good accessibility to other cities. Reduced transportation

1See Section 3.10 for further details.
2Scale-free distributions are commonplace in the socioeconomic realm. It seems that something of an

additive nature presides over natural phenomena, leading to a Gaussian distribution, and something of
multiplicative nature (cf. Limpert, Stahel, and Abbt (2001)) is at work among socioeconomic phenomena,
leading to a scale-free domain. We study the latter.

3as in the degree distribution of an ER network
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cost makes the city’s product inexpensive and stimulates a large demand. As a conse-
quence, the city creates large-scale employment. However, a marginal increase in de-
gree contributes less to the city size as the degree increases. If a city is well connected,
then adding a new link to the city will not increase accessibility much because the city is
already readily accessible from other cities through the existing grid.

We test implications of our model with Belgian and US data. The BA network leads
to a result comparable to existing models, whereas the ER network fails to replicate the
empirical city-size distribution. This confirms that the BA transport network is more
consistent with reality.

The rest of the paper is organized as follows. In Section 2, we will go over the two
types of network structures mentioned above as a preamble to the next section, where
we introduce and develop a model of spatial equilibrium with a transportation network
woven into it. Particularly, in Section 3.8, we will connect the network structure to the
city-size distribution. In Section 4, we verify the prediction of our model with data before
we draw conclusions from our project in Section 5.

2. Preliminaries

We will briefly review how ER and BA networks are built and examine the qualitative
differences in terms of their degree distributions before we apply them to transportation
networks.

2.1 ER networks

The ER network is the simplest random graph of all. A pair of nodes are connected with
a fixed connection probability. A completely isolated graph illustrated in Figure 1 and
a complete graph illustrated in Figure 2 are the special cases of the ER network where
connection probability is zero and one, respectively.

The degree distribution of an ER network follows a Poisson distribution. The impor-
tant feature is that the degree distribution is concentrated around its arithmetic mean4

and we rarely observe a city with an exceedingly large degree. All pairs of nodes share the
same ex ante connection probability, which leads to a small variance, and the network
is egalitarian in that sense.

Unsophisticated as it may seem, the ER network makes a good entryway to eco-
nomic applications of network theory. Network theory puts emphasis on interactions,
and thus it becomes particularly useful for situations where an economic agent does not
interact with all the other agents either at his discretion or due to external restrictions.
We would not have to pay any attention to networking if everyone were in direct con-
tact with anyone else. In reality, system-wide interactions are not common. Most eco-
nomic decisions or interactions are made in reference to limited alternatives available,
which we represent by an edge on a network. Ultimately, we would like to know how
agents choose their trading or collaborating partners as a result of their optimization.

4Recall that arithmetic mean does not mean much for scale-free distributions like the city-size distribu-
tion or a BA degree distribution.
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However, leaving their choice purely stochastic (as in the construction of ER networks)
still proves to be a good reference point to see whether the network is self-organized as
a result of decentralized decision making. Kakade et al. (2004) used it as a benchmark
for the Arrow–Debreu model with transactions constrained by connected traders on a
network. Calvó-Armengol and Zenou (2005) assumed that each worker selects a collec-
tion of (randomly selected) direct neighbors to describe the role that a network plays
in job matching. In some cases, the ER network is the sensible choice to represent real
networks. Toulis and Parkes (2011) modeled the kidney exchange program with the ER
network to evaluate the efficiency of the program. Any pair of a donor and a patient is
compatible with a fixed probability. See Ioannides (2006) for a comprehensive review of
economic applications of ER networks.

2.2 BA networks

The degree distribution of most real network structures does not follow a Poisson distri-
bution. Rather, it follows a power law. This class of networks is called scale-free. There
are a number of proposed generative models that lead to power-law degree distributions
(see Section VII of Albert and Barabási (2002) for a review). To get a sense of how power-
law type behavior emerges, consider the BA model (Barabási and Albert (1999)), for ex-
ample. Two major characteristics of the BA model are growth and preferential attach-
ment. The model sets off with a complete graph of a fixed number of nodes as a starting
grid. New nodes with edges will be added sequentially to the existing network (growth)
with the probability of attachment proportional to the degree of existing nodes (prefer-
ential attachment). In general, older nodes are likely to gain an excessively large number
of edges. The rich get richer because they are already rich (known as the Matthew effect).
The rest of the nodes are merely mediocre in terms of degree. They remain poor because
they are already poor. This type of variance in degree hardly arises with an ER network.
That is, New York City will not happen if the links are formed uniformly at random. Com-
pare a BA network (Figure 7) to an ER network (Figure 6). A BA network is not egalitarian,
as connection probability depends on the number of acquired edges, which is path de-
pendent. We shall also employ the network structure of Jackson and Rogers (2007) that
contains both the ER and BA types of networks as special cases, the details of which will
be provided in Section 3.8.

3. Model

We propose a model where the trading costs of commodities among cities are explicitly
specified. The city-size distribution is derived as a result of gains from trade and the
underlying transport network configuration.

3.1 Location-specific commodities

There are J cities in the economy, with index i or j. A city is defined as a geographic en-
tity within which it produces the same commodity and from within which the geodesic
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paths (the shortest path on the network) to any other city in the country have the same
length. The endogenous population of city j is given by sj and in total there are

J∑
j=1

sj = S (1)

households in the economy. Each household supplies a unit of labor inelastically. City
j produces consumption commodity cj in a competitive environment. We assume that
technology exhibits constant returns to scale and that one unit of labor produces one
unit of commodity. In what follows, a superscript denotes a city of production or origin,
whereas a subscript denotes a city of consumption or destination.

The delivered price of commodity j in city i is denoted by pji . The value of marginal

product pjj · 1 coincides with the local wage wj in equilibrium:5

p
j
j =wj� (2)

Consumer preferences are represented by a Cobb–Douglas utility function of the
form u(ci)= 1

J

∑J
j=1 log(cji ). The set of consumption bundles is constrained by the bud-

get wi ≥ ∑J
j=1p

j
i c
j
i .

3.2 Network infrastructure and delivered price

The economy has a network infrastructure � = (V �E), where V = {1� � � � � J} denotes a
set of vertices representing cities and E denotes a set of edges. All the traffic flow will fol-
low �. We assume that � is connected, that is, there is at least one path between any city
pairs, to avoid multiple equilibria. Whereas consumers in city i can consume any com-
modity in the economy, they have to incur an extra iceberg transport cost to consume
commodities brought in from other cities. Transportation cost piles up as a commodity
travels from city to city along the path. To describe the exact transport cost structure,
we define a metric lji : V × V → R+ to measure a geodesic length between nodes j and i
given �. The delivered price of commodity j shipped to city i is given by

p
j
i = τlji pjj� (3)

where τ (≥ 1) marks the iceberg transportation parameter. We use the iceberg transport

technology, standard in urban economics, for tractability reasons.6 If you dispatch τl
j
i

units of commodity j to city i, one unit of it will be delivered. Consequently, the deliv-
ered price snowballs as the package travels from one city to another and the initial mill
price is inflated by τ raised to the lji th power by the time the package arrives at its final

destination lji steps over.7

5Note that pjj denotes the mill price.
6For detailed discussion, see McCann (2005).
7We adopt the exponential form of iceberg transportation cost for the remainder of the paper. The linear

form yields approximately the same results (see Appendix A.1 for the case of the linear transportation cost).
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We assume that all the links share the same value of τ. The large fraction of trans-
portation cost is a location-invariant fixed cost. Having τ dependent on each link will
not add much to our analysis but will make our equilibrium analytically insolvable.

3.3 Equilibrium

Marshallian demand for commodity cji at destination i is ϕji (p
1
i � � � � �p

J
i �w

i)= wi

τ
l
j
i p

j
jJ

, and

accordingly, at origin j is ψji (·) := τlji ϕij(·)= wi

p
j
jJ

.8 The aggregate demand for commodity

j at its origin is the sum of demand from all the cities in the country,

Ψj(p�w) :=
∑
i∈V

siψ
j
i (·)=

∑
i

siw
i

p
j
jJ

=

∑
i

Xi

p
j
jJ

= 〈X〉
p
j
j

� (4)

where Xi := sip
i
i is the value of output inclusive of transportation sector in city i. In

what follows, 〈x〉 denotes the average value of x, for example, 〈X〉 := ∑
i X

i/J. The third
equality in (4) holds when labor market is in equilibrium as in (2). Recalling that each
household supplies one unit of labor inelastically and one unit of labor produces one
unit of output, the commodity market j clears when

sj =Ψj(p�w)� (5)

From (2), (4), and (5), we obtain the equilibrium price and wage as follows:

wj = pjj = 〈X〉
sj
� (6)

The indirect utility function is given by

v
(
p1
i � � � � �p

J
i �w

i
) = 1

J

J∑
j=1

logϕji (·)

= logwi − logJ − 〈
logpjj

〉 + ai logτ�

where

ai := −〈li〉 = −
∑
k

lki /J (7)

measures accessibility of city i. We will examine the role of ai shortly. Free mobility of
consumers implies

v
(
p1
i � � � � �p

J
i �w

i
) = v(p1

j � � � � �p
J
j �w

j
)

(8)

for all i� j ∈ V in equilibrium.

8This expression may seem incredulous at first, for it does not include τ. We will explore the reason in
Sections 3.9 and 3.10.
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Figure 3.

The equilibrium (s1� � � � � sJ;p1
1� � � � �p

J
J;w1� � � � �wJ) satisfies (1), (2), (5), and (8).

Equation (8), together with (5), implies log si − log sj = ai logτ − aj logτ. With the pop-
ulation condition (1), we obtain the city-size distribution

si = 〈s〉 τ
ai〈
τa

〉 � (9)

where 〈s〉 := S/J is the size of a city if the population were split evenly.
Since 〈li〉 is an average geodesic length from city i to anywhere in the nation, a high

value of ai as defined by (7) implies that on average, city i is easy to get to, and vice versa if
ai is low. A better accessibility increases a city size: The ratio of si to 〈s〉 matches the ratio
of τai to 〈τa〉. Therefore, the city size grows more than proportionately with accessibility
as can be seen in Figure 3.

3.4 Interplay between network structure and convex preferences

The relationship we derived in (9) begs one question: If an accessible city attracts work-
ers, what is stopping the city-size distribution from becoming degenerate, that is, would
not the entire population collapse into the city with the best accessibility and the rest of
the cities be completely vacated?

That actually will not happen. The economy faces a trade-off between accessibil-
ity and convex preferences, with the former pushing the city-size distribution toward a
degenerate distribution as above but with the latter dragging it back to a uniform distri-
bution. The equilibrium distribution will be somewhere in between the two as a result
of the balancing act, which we will describe below.

Although restricted accessibility of a city raises its delivered prices, demand for its
product does not cease to exist. Eliminating a commodity would be vindictive to con-
sumers. They appreciate variety and missing a single variety will push the utility level
down to negative infinity. Workers in a poorly connected city will have to pay high prices
for imported commodities due to its poor transportation infrastructure, but they are
compensated with a high nominal wage: (6) indicates that the nominal wage grows as
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the city becomes small.9 Furthermore, (6) and (9) imply wj = p
j
j = 〈X〉〈τa〉

〈s〉τaj , that is, the

nominal wage increases as accessibility to the city becomes restricted. The prices adjust
to make it worth living in small cities in equilibrium. In particular, (6) implies that GDP
in each cityXj := pjjsj levels out to

Xj = 〈X〉 (10)

across the country. The scale of local production is small, but each commodity is sold
high to make up for an increased cost of living due to remoteness and the resulting costly
transport.

Variance in city sizes is solely due to the structure of the network. The aforemen-
tioned trade-off entails two counteracting forces. The agglomerative force is heteroge-
nous accessibility, which tends to create heterogeneity in the city-size distribution. The
dispersion force is preference for variety, which tends to push the distribution back to-
ward a collection of equal-sized cities.

There are alternative ways to derive city size with a tractable economic model, par-
ticularly for the dispersion force. In this model, location-specific commodity production
drives dispersion, as a bundle of all goods is desired by consumers. An alternative model
would use another natural dispersive force, say housing or land markets. If we had just a
few produced commodities (say one for illustration), then Starrett’s spatial impossibility
theorem (Fujita and Thisse (2002, Chapter 2)) applies, and we would have an autarkic
equilibrium where no commodity is transported.10 Yet another alternative is to intro-
duce a congestion externality, but then the model begins to look more complicated and,
at the same time, arbitrary.

Obviously, this trade-off disappears and there will be no variance in city sizes if the
agglomerative force is removed. This can happen when shipment becomes costless (to
be discussed in Proposition 3.1) or network structure becomes redundant, that is, if it
turns into a complete graph. Although we introduced a location-specific technology,
commodities are symmetric. Technology is linear everywhere. Consumer preferences
are identical and they put the same weight on each commodity. If we take the network
structure out of the equation, the resulting equilibrium is such that all the cities share
the same size 〈s〉 and every household consumes an equal portion of all the commodities
available.

9Whereas this implication may not sound realistic, we emphasize that a small city earns a high wage only
in a nominal sense. The delivered prices are also high in a small, wage-rich city, and thus its utility level will
work out to the same level as a large, wage-poor city’s in the end.

It is possible to make wages increase with size but that will create another problem. One way to do so
is to allow a city to produce multiple commodities by exogenously limiting the employment in, and thus
the scale of, each industry. (We thank an anonymous referee for this suggestion). For this alternative model
to work, we make an individual industry size increase with the city size (otherwise, the equilibrium wage
would depend on the location-invariant individual industry size rather than the location-variant city size,
and thus the equilibrium would support any city-size distribution). Starting from this assumption, we can
secure a positive relationship between the wage and size as desired. However, we now have to face another
unwanted consequence: The city size declines with its degree because a large city comes with a wide range
of commodities, which compensates for its low accessibility.

10Starrett’s theorem makes no assumption about the transport network or transport cost.
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3.5 Transportation cost skews the city-size distribution

Along with accessibility ai, transportation cost τ plays a leading role in the determina-
tion of the city-size distribution. Depending on its magnitude, shipment cost can nullify
or amplify the influence of a network structure over the economy. Figure 3 compares the
relationship between accessibility and the city-size distribution under different trans-
portation costs.

In the extreme situation where shipment is free (τ = 1), all cities will be of an equal
size regardless of the network structure. The city size s(ai) becomes constant against ai
(see the line for τ = 1 in Figure 3). The network becomes a complete graph in effect,
because the delivered price will be the same no matter how long the geodesic length is.
For τ > 1, city size (9) becomes a strictly convex function of accessibility.

The agglomerative force mentioned in Section 3.4 becomes more potent as τ grows.
A large τ implies that the geodesic length exerts a more dominant influence on the size of
a city. With a small value of τ, a city with good accessibility does not distinguish itself well
from other cities because the effect of path length is limited due to low transportation
cost. On the other hand, if shipping is costly, a city with a good accessibility benefits
from a high ai value because high transportation cost amplifies the effect of accessibility.
As a result, holding the accessibility distribution constant, large τ skews the city-size
distribution and makes the emergence of disproportionately large hubs more likely. To
measure how the cost of transportation τ bends the city-size distribution, consider a
measure

D(τ)= s(aH)+ s(aL)
2

− s
(
aH + aL

2

)
�

where aH and aL are the highest and lowest accessibility of a given network. The first
term is the average of the smallest and the largest city whereas the second term is the city
size of average accessibility. For a given distribution of accessibility ai, D(τ) measures
the convexity of s(ai), that is, it gauges how spread out the distribution of city size s(ai)
is for each τ. See Figure 4. When τ = 1, s(·) lays flat and D(τ)= 0. As τ grows, s(·) bends
more andD(τ) grows accordingly as can be seen in Figure 3.

We confirm the observation above as follows.

Figure 4. D(τ)measures the convexity of s(ai). The midpoint (aH +aL)/2 is given by aM above.
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Proposition 3.1 (Transportation Cost Skews the City-Size Distribution). Suppose that
the economy operates on a connected network �. The city-size distribution s(ai) is a convex
function of accessibility ai for τ ≥ 1. Moreover, the degree of convexity measured by the size
difference D(τ) between the average of the highest and lowest size cities and the city of
average accessibility increases with τ.

Proof. See Appendix A.2. �

It is also worth pointing out the difference in the role of transportation cost between
the current paper and New Economic Geography (NEG, Fujita, Krugman, and Venables
(1999)). As Proposition 3.1 suggests, high transportation cost concentrates production
and population in a few cities. NEG predicts otherwise: It is low transportation cost that
leads to a core-periphery pattern. The root cause of these conflicting implications lies in
the production function adopted in each model. Whereas we assume constant returns
to scale, NEG assumes increasing returns to scale due to a fixed cost. In NEG models, it
pays to concentrate production in one city to capitalize on scale economies so long as
transportation cost is not too high. Here, in contrast, there is no reason to concentrate
production in a few places just for the sake of a scale economy (because there is none).
Low transportation subdues the effect of transportation structure, which is our source
of variation in city sizes. Unlike NEG, we leave the production technology neutral and
ascribe the difference in city sizes solely to the underlying network structure. We could
similarly adopt increasing returns to scale in our model but that would blur the very role
of network structure that we are interested in.

3.6 Geodesic-length distribution

The city-size distribution (9) depends on the distribution of accessibility (7), which, in
turn, rests on the distribution of geodesic length. There is not much research that looks
into the geodesic length between each pair of nodes.11 At the time of writing, the analyt-
ical form of geodesic length between individual nodes is yet to be discovered.12 Hołyst,
Sienkiewicz, Fronczak, Fronczak, and Suchecki (2005) took a different approach to de-
rive an intuitive solution for a wide range of network types. They measured the expected
geodesic length between any pair of nodes i and j as follows:

lij =A−B log(kikj)� (11)

11While most of the research on network topology is focused on mean intervertex distance (Newman,
Strogatz, and Watts (2001), Fronczak, Fronczak, and Hołyst (2004), Zhang, Lin, Gao, Zhou, and Guan (2009)),
what we need here is the geodesic length between individual nodes.

12The one for the average intervertex separation has already been brought out into the open. Newman
and Watts (1999), Newman, Moore, and Watts (2000), Zhang et al. (2009). Zhang et al. (2009) provided an
analytical background for the mean intervertex distance for a special case. There has also been an attempt
to track down the geodesic length by guessing the analytical form from sequentially generated, fractal-like
networks reverse-engineered from a Pareto degree distribution (Dorogovtsev, Mendes, and Oliveira (2006)),
which we cannot use because our distribution (16) is not a Pareto distribution.
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where A := 1 + log(J〈k〉)/ logκ and B := (logκ)−1. The number ki denotes the degree of

node i and κ is a mean branching factor. The branching factor of a node is the number

of children that the node branches off on a tree. See Appendix A.3 for a full description

of κ.

Although Hołyst et al. (2005) does not provide a formal proof of (11), but rather is

based on a heuristic,13 it appears to be the best we can do given the current state of

network theory. We hope that its extension to individual distances will become available

in the near future.

Meanwhile, (11) proves to be quite useful in translating a network structure into

economic context without loss of generality. A geodesic length lij is a global property

whereas a degree ki is a local property.14 We cannot compute the individual geodesic

path unless we compare all possible paths between a city pair of interest and pick the

shortest one, which calls for a systemic search all across the board. The geodesic path

thus obtained is too specific to the particular network in question and does not have

wide implications beyond the specific network under study itself. Degree is much easier

to compute because we do not have to launch a nationwide search for it, and the degree

distribution is readily available for a wide range of networks. Equation (11) succinctly

writes a global property (a geodesic path length) in terms of the analytically manageable

local property (a degree). It implies that the path length will be short if your city and/or

your destination city have many edges to choose from to begin with and/or to end with.

This abundance in selection should save you from being thrown to circuitous paths, and

vice versa when your degree is small. Absent this conversion of the global property into

the local property, we would not be able to describe a general relationship between de-

gree and city size, when in fact, there is an obvious symbiotic interaction between them

waiting to be investigated.

3.7 City-size distribution

From (11), accessibility (7) is written as

ai = −A+B logki +B〈logk〉� (12)

where 〈logk〉 := 1
J

∑J
j logkj . We observe that accessibility improves as a city acquires

more edges, but only on the logarithmic order. Taking the log of (9), we have

log si = logS + (−A+B logki +B〈logk〉) logτ− log
(∑

j

τaj
)
�

13In a manner similar to Simon (1959).
14In fact, both ai (closeness centrality) and ki (reach centrality) are specific examples of network central-

ity, and we unite them via (11) (cf. Freeman (1978)).
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The last term is approximated by logJ + 〈a〉 logτ15 so that

log si = log〈s〉 +B logτ
(
logki − 〈logk〉)� (13)

A couple of observations are in order. The equation above answers two questions
concerning the relationship between a network structure and a system of cities. The
first one is “Does construction of an edge boost the local economy?” The answer is “Ap-
parently, it does.” The second, and more interesting question is “How so?” The answer is
twofold.

In terms of a linear scale, (13) can be rewritten as si = 〈s〉(kiγ )B logτ , where γ :=∏J
i=1 k

1/J
i is the geometric mean of the degree. It indicates that city size is anchored

around the base city size 〈s〉 multiplied by the deviation (ki/γ)B logτ . If a city has a large
degree, then its size becomes larger than the standard city size by a factor of (ki/γ)B logτ

and vice versa for a city with a small degree. The city size coincides with the cornerstone
size of 〈s〉 exactly when its degree matches the national (geometric) average.16 The devi-
ation is amplified as shipment becomes costly, which, in turn, confirms our observation
made in Proposition 3.1.

We also note that adding an edge to a city increases its size, but the change in size is
inversely proportional to the current degree provided B logτ < 1. If city i is highly wired
already, then the introduction of a new edge to city j does not add much to city i. The
geodesic length to city j is already short before the establishment of the new edge. You
can go to many cities in a single step and city j is likely to be linked to at least one of
those many neighboring cities already, making the geodesic length to city j just two. The
added edge will only reduce the geodesic length by one. On the other hand, if the current
degree of city i is low, then the link to city j will not only reduce the geodesic length to
city j greatly but also reduce the geodesic lengths to the cities in city j’s neighborhood.
Consequently, city i will see significant improvement in its accessibility.

Based on the degree-size relationship (13), our main theoretical result gives the city-
size distribution as follows.

Proposition 3.2 (City-Size Distribution). Suppose that the economy operates on a con-
nected network � with the associated degree distribution G(k). The city-size distribution
of this economy follows the distribution function F(s), defined by

F(s)=G(
k(s)

)
� (14)

15Let ⇀a := (a1� a2� � � � � aJ) and 〈⇀a〉 := (〈a〉� 〈a〉� � � � � 〈a〉). The Taylor series expansion about ⇀a= 〈⇀a〉 tends to

log
(∑

j

τaj
)

= log
(∑

j

τ〈a〉
)

+ (
⇀a− 〈⇀a〉) ·D log

(∑
j

τaj
)∣∣∣∣⇀a=〈⇀a〉

+O[(
⇀a− 〈⇀a〉) · (⇀a− 〈⇀a〉)]

= logJ + 〈a〉 logτ+O[(
⇀a− 〈⇀a〉) · (⇀a− 〈⇀a〉)]�

16This examination begs one question: If my city has the average number of edges, is my city larger or
smaller than the national average in size? The answer is “larger.” Since transportation cost and the branch-
ing factor are both greater than one, logτ

logκ is positive. Plus, the geometric mean is smaller than the arithmetic
mean. To score a national average 〈s〉, you only need γ edges. It should be noted, however, that in a scale-
free world, the arithmetic mean does not carry much information. The lognormal is the new normal (or any
heavy-tailed distribution is for that matter) and the geometric average is the new average in this world as
we saw in Figure 8(b).
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Figure 5. Probability density function of degree with k0 = 0 andm= 10.

where k(s) := γ(s/〈s〉) logκ
logτ . Its probability density function (PDF) is

f (s)= k′(s)�
[
k(s)

] = logκ
logτ

k(s)s−1
�
[
k(s)

]
� (15)

where �(·) denotes the PDF of degree k.

3.8 City-size distribution under different network systems

Now that we have the city-size distribution based on the city’s degree, we can make
our predictions based on different transport network structures. There are two network
models of particular interest: ER and BA networks. Jackson and Rogers (2007) construct
a degree distribution of a directed17 dynamic network as follows:

G(k)= 1 −
(
k0 + rm
k+ rm

)1+r
for k≥ k0� (16)

where k0 denotes the in-degree with which an entering node is endowed. This value is
shared across all the nodes. The parameter r plays a crucial role in our analysis. It locates
where the existing network stands on the spectrum of networks ranging from an ER to
a BA network. In particular, it is the ratio of the number of links formed by an ER-like
random connection to a BA-like network-based connection. The average out-degree of
a node is given by m. Five PDFs of (16) are depicted in Figure 5 as a visual cue. In the
figure, parameter r ranges from 0�01 (over 99% network-based and less than 1% random

17Commodities can flow either way on an edge. We take an arrowhead on a directed edge just as a dec-
orative memorabilia indicating from which end the edge was constructed, but nothing more. We represent
degree distribution by an in-degree distribution. It is impossible to tell different networks apart with an
out-degree distribution due to the way a network is constructed in Jackson and Rogers (2007). Any network
comes with a degenerate out-degree distribution.
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links) to 100 (the other way around). A predominantly random PDF (with large r) tapers
off quickly whereas a mostly network-based PDF (with small r) only gradually dissipates
with degree. We expect that our economy operates with a small r. BA network’s degree
distribution is (16) with r = 0, in which case, (16) turns into a Pareto distribution. ER
network calls for r → ∞, in which case (16) is no longer well defined and the degree
distribution turns into an exponential distribution.18

What is left to do is write the mean branching factor κ in terms of other parameters
in (16) before we can fully identify the city-size distribution.19 The actual mean branch-
ing factor cannot be computed until after the network is formed. Hołyst et al. (2005)
provided a good approximate to κ:

κ=
J∑
k=1

k
k�(k)
J∑
x=1

x�(x)

− 1 =

∑
k

(2k− 1)G(k)

∑
x

G(x)
− 1 = μ2

k + σ2
k

μk
− 1� (17)

where μk and σ2
k denote the mean and variance of k. See Appendix A.4 for details.

3.9 The gravity equation

Before we compare our theoretical prediction to actual data, let us briefly turn aside
to discuss our model in the context of the gravity model (cf. Bergstrand (1985)). In fact
our model is a special case of it. Our consumer preferences are represented by a Cobb–
Douglas utility function, a limiting case of CES utility function with the elasticity of sub-
stitution approaching one. Due to the absence of cross-price effect, our gravity equation
is less involved than its generic CES counterpart.

Consider a trade flow from producing city j to consuming city i. The delivered vol-

ume of good is siψ
j
i (p

1
i � � � � �p

J
i �w

i)= Xi

p
j
i J

so that sales value Xj
i in city j is pji

Xi

p
j
i J

. There-

fore, the gravity equation takes a simple form X
j
i = Xi

J . In this case, the gravity is one-
sided (Xj does not have any gravitational pull) and transportation cost does not appear
in the equation. Under the current preference specification, the expenditure share on
good j is always one Jth of the budgetXi regardless ofXj . Transportation cost does not
affect the trade flow because two opposing factors that underlie the gravity equation
offset each other: A high transportation cost reduces demand but it also requires more
to be shipped out of the origin. This contrasts with the generic CES case, where the for-
mer exceeds the latter, and thus the iceberg transportation parameter makes an explicit

18The original ER network (Erdős and Rényi (1959)) comes with a Poisson degree distribution rather
than an exponential degree distribution. The differences in the distribution arise from the way the network
is constructed: Jackson and Rogers (2007)’s network is dynamic, whereas Erdős and Rényi (1959)’s network
is static.

19The branching factor is not a free parameter and it cannot be directly estimated from the data, because
the estimation algorithm will either explode or create indeterminacy. It is dependent on the shape of the
network, which, in turn, is characterized by the other parameters via (17).
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appearance in the gravity equation. Furthermore, (10) implies

X
j
i := siψji

(
p1
i � � � � �p

J
i �w

i
) = pji

Xi

p
j
iJ

= Xi

J
= 〈X〉

J
(18)

after all. We did not use the CES function for its lack of a closed-form equilibrium so-
lution to address our question at hand. We shall leave the case of more complicated
situations for future work.

3.10 Endogenous transportation networks

To this point, we have assumed that the transportation network is exogenous and the
city-size distribution is contingent on the underlying network. Considering the fact that
it is easier to relocate people than to build intercity transportation infrastructure, this is
not an unreasonable assumption in the short run. New York City would have been much
smaller had it not been the entrepôt to Europe. However, the degree-city relationship is
not a one-way street and in fact, it may be the other way around: The relocation of people
forces the transportation network to follow a specific pattern particularly in a long-term
setting. It can also be the case that the network structure and its associated city-size
distribution are in fact a product of some common underlying causes. We discuss these
issues next.

Consider a commodity shipping firm that arranges a transport network to accom-
modate commodity flow (18). They will maximize their profit by choosing degree {ki}i∈V
given the city-size distribution and iceberg transportation parameter.20 We shall assume
that the expected degreem of a new node is predetermined so as to concentrate on net-
work choice of r rather than on the selection of a total number of edges |E|. The firm will
maximize their profit calculated as

π(r)= 〈X〉J(1 − τ−A〈
kB logτ〉2) − 〈

h(k� r)
〉

(19)

with respect to r. We will derive the firm’s revenue first (the first term) and then examine
the cost (the second term) afterwards.

3.10.1 Revenue The choice of network structure acts on firm revenue in two ways.
First, it modifies the equilibrium price and changes the trade flow accordingly, which
constitutes the revenue base for the firm (the first effect). Then out of the trade flow thus

calculated, the fraction that melts en route, namely τl
j
i −1 will be the shipper’s cut, which

also hinges on the selection of network by way of geodesic length lji (the second effect).
In our case, the first effect is actually absent. Our commodity flow (18) is indepen-

dent of transportation cost and by extension, network configuration as we demonstrated
in Section 3.9. If the shipping firm raises the degree in city j, then demand for good j in-
creases thanks to improved accessibility to city j and resulting lower delivered prices of

20Alternatively, we could model these parameters as endogenous variables, but it is hard to imagine one
shipping firm single-handedly affecting the entire distribution of cities. By leaving them predetermined,
the firm behaves competitively.
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good j, which in turn increases their revenue generated in city j. On the other hand,
also due to improved accessibility, good j travels a shorter distance than before, which
reduces their revenue from city j. Shipping volume in total will increase but each unit
shipped will bring in less and the firm’s revenue will remain the same as a result. Thus,
the firm can ignore the first effect and only needs to take the second effect into account
for network optimization.

To be more specific, take shipment from city j to i. From (18), city i pays tl
j
i p
j
j ×

�
j
i (p

i�wi) = X
j
i = 〈X〉/J to city j in total (inclusive of shipping charges). As we exam-

ined in Section 3.9, city i pays one Jth of its income Xi (= 〈X〉) for each commodity

regardless of transportation cost τl
j
i . Therefore, the first effect is cancelled out and irrel-

evant to optimization. Out of city i’s payment, producers in city j take pjj�
j
i (p

i�wi) =
〈X〉/(Jτlji ), leaving the transportation sector with the remainder (tl

j
i − 1)pjj�

j
i (p

i�wi)=
(1 − τ−lji )〈X〉/J. On a national scale, the shipping firm’s revenue works out to

∑
j

∑
i

(
1 − τ−lji )〈X〉/J (20)

= 〈X〉J
(

1 − τ−A
[∫
k>0

kB logτ dG(k; r)
]2)

� (21)

The equality follows from (11). 〈X〉J is the urban GDP. The last term τ−AJ〈kB logτ〉2

is the fraction of the GDP that goes to the nonshipping sector and the remainder
1 − τ−AJ〈kB logτ〉2 is the shipper’s revenue. This constitutes the first term in (19).

The crux of the profit maximization problem lies in the value of B logτ. It is positive
but it may or may not be greater than one. If it is one, then the revenue becomes con-
stant because 〈kB logτ〉 = 〈k〉 = 2|E|/J is independent of the network choice of r by as-
sumption. In general, the revenue increases as r drops if B logτ < 1 and vice versa if the
inequality is in reverse. The degree distribution G(k; r′) strictly second-order stochasti-
cally dominates G(k; r) if r′ > r (see Theorem 6 on p. 903 in Jackson and Rogers (2007)).
If B logτ < 1, that is, kB logτ is concave, then low r improves revenue.21 Low r concen-

trates the degree to a limited few, which tips the scale of the second effect (τl
j
i to 1 − τlji

for all i and j) in the shipper’s favor.
An in-depth analysis is required to see why. Looking at one particular city pair, the

shipping firm’s cut 1 − τlji will increase when they take away degrees from the two cities
on purpose to raise lji , thanks to the second effect (in the absence of the first effect).
The firm wants to keep their degree as low as possible to raise their revenue—that is, if
they earn revenue only from this particular city pair. On the national level, if they take
away some edge from city i or j, that edge needs to be reallocated somewhere else and
their cut will decline from the city to which the edge is reassigned. They need to closely
monitor this trade-off and distribute their degree in the way that maximizes their overall
(not just one particular city pair’s) second effect.

21The value of B decreases as r drops (cf. (17)) but kB logτ will still be concave.
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In particular, their overall revenue is the weighted sum of their cut from every city
pair as in (20). The weight would normally include the location-variant trade flowX

j
i so

that a city pair along a busy transportation corridor would weigh in more on the revenue
calculation than a barely trodden city pair. In our case, however, due to the lack of the
first effect, the revenue does not depend on the trade flow and will be just a weighted
sum of a much simpler term kB logτ as in (21), calculated with the second effect alone.
Furthermore, if B logτ = 1, then (21) becomes just a simple, unweighted sum of degree
and the shipping firm can allocate their edges any way they see fit only to minimize
their cost: If they remove an edge from some city, their share of revenue from that city
will go up, but they will lose the exact same amount of share from the city to which
they redistributed the edge. Therefore, the revenue will be the same no matter which r
the firm chooses. If, on the other hand, B logτ < 1, then they want to concentrate the
degrees to a limited few cities to increase their weighted sum of the split. If ki = kj (≥ 2)
for some i and j, then (21) will increase by switching to ki+ 1 and kj − 1. Their cut drops
in city i but an increased revenue from city j will more than make up for the loss because
kB logτ is concave. This can be achieved by setting r = 0, and vice versa if B logτ > 1.

3.10.2 Cost Turning to the cost end of optimization (19), assume that cost is additively
separable over cities as well. First, consider when cost is concave in degree. As above,
Theorem 6 in Jackson and Rogers (2007) applies and the shipping firm will bring r down
to zero to minimize the cost. Intuitively, they want to spread the degree distribution to
take advantage of substantial cost reduction in large hub cities in exchange for lost cost-
effectiveness in small cities as the former surpasses the latter when their cost is concave.
Thus, a BA network will minimize the cost; and vice versa, if cost is convex in degree,
then they will form an ER network. In this case, cost savings from building a large hub
do not cover the loss from lowering degrees of other cities. They would rather even out
the degree distribution so as to avoid efficiency loss from making degrees too small.

3.10.3 Profit Putting the two sides together, the shipping firm will

max
r
π(r)= 〈X〉J

(
1 − τ−A

[∫
k>0

kB logτ dG(k; r)
]2)

−
∫
k>0

h(k� r)dG(k; r)�

or equivalently (19), where h(k� r) is cost incurred in a city of degree k. If both kB logτ

and h(k� r) are concave, then the shipping firm will lower r as far as possible to max-
imize their profit, and the resulting optimal network configuration will be BA. This is
supported by the empirics. On the other hand, if they are both convex, then the optimal
network will be ER. If one is concave and the other is convex, then the firm will settle
with some medium value of r at which the marginal change in revenue offsets that of
cost, leading to a network that is part BA and part ER.

Empirical validation of the framework above may be hard to come by. On the rev-
enue front, we have estimates for the critical parameter B logτ in Section 4. For a BA
network, estimates barely top the threshold value of one, ranging from 0�3943 (Belgium)
to at most 1�009 (US Places). The shipping firm can increase their revenue by lowering r
for the most part, which is consistent with the existing network configuration. Note that
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this only proves that if they go for a BA network, then kB logτ will be concave, and thus
they should stick to a BA network. We know from Section 4 that τ will be exorbitantly
high if the underlying network is ER, which does make kB logτ convex. Thus, an ER net-
work may well be a solution if the exogenous transportation cost parameter τ happens
to be prohibitively high. Furthermore, if the estimate asymptotically converges to one
with data size, which can potentially be the case here as can be seen in Section 4 (cf.
Footnote 26), then r makes no difference to the revenue side of decision making and
profit maximization reduces to cost minimization.

On the cost front, let us take the airline industry for illustration. Considering recent
mega-mergers between network carriers, such as United and Continental, Air France
and KLM or Delta and Northwest, and subsequent hub consolidations (e.g., dehubbing
of Cleveland of Continental or Memphis of Northwest), it seems that degree exhibits
scale economies among airlines. Airliners are taking advantage of them by trimming
down r to cut the loss from underperforming small hubs and redirect degrees to a select
few large hubs, leading to a BA network as a result of optimization. A problem with this
methodology is that transportation networks are not unique, in that there are generally
multiple modes of transport and multiple companies providing services in each mode.

Further investigation should attempt to gauge the magnitude of reverse causality
from the city-size distribution to networks. In the meantime, we shall return to the for-
ward causality that we are interested in and pitch our model against the actual city-size
distribution to identify what class of transportation network governs the city-size distri-
bution.

4. Empirical implementation

By and large, the empirical results are in full support of our initial inkling that a scale-
free network explains the city-size distribution but ER or other network structures com-
monly adopted do not.

All told, we have four sets of data on our plate: Belgium, Metropolitan Area (MA),
CBSA, and Places.22 Descriptive statistics for each data set are in Table 1. The Belgian
data are included to see if our model’s predictive value is subject to both the area and
population size of a country under study. (It was not.) MA and CBSA are the popular
choices in the literature. In addition, the use of Places is becoming increasingly com-
monplace following the publication of Eeckhout (2004).

There is no agreement on appropriate city-size data to validate the model’s relevance
to the reality. Whereas none of the available data sets are flawless, we believe that they
complement each other. Each data set has its own pros and cons, and we do not intend
to favor one over another. Rather, we include all the data sets commonly in use so that we

22The Belgian data is provided courtesy of Soo (2005) and the remainder are from US Census 2000.
MA is an umbrella term encompassing metropolitan statistical areas (MSA’s), consolidated MSA’s and pri-
mary MSA’s. For more on definitions of MA and CBSA, see https://www.census.gov/programs-surveys/
metro-micro/about.html and for Places, see http://www.census.gov/geo/reference/gtc/gtc_place.html,
https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf and Section 8.5
of Ioannides (2013, pp. 371–372). We thank Jan Eeckhout for sharing his data used in Eeckhout (2004).

https://www.census.gov/programs-surveys/metro-micro/about.html
http://www.census.gov/geo/reference/gtc/gtc_place.html
https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf
https://www.census.gov/programs-surveys/metro-micro/about.html
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can compare the predictive power of network structures with that of other explanatory
variables identified by researchers, which are tested with various data sets of researchers’
choice.

The smallest unit of measurement in MA and CBSA is a county. Counties preserve
the contiguity of a city well especially when it involves a wide expanse of land. To be
listed under MA or CBSA, the population needs to exceed the lower bound set by the
Census Bureau. Any settlements that do not reach the threshold are not included in the
data.

On the contrary, Places offer a finer data set than MA or CBSA. They are a city, town,
or Census-designated equivalent if the area is not incorporated. A county typically has
multiple municipalities in it and as such, Places may dissect the contiguously popu-
lated area in multiple nodes when it may better be considered as one node, particularly
in a large MA or CBSA. Nevertheless, we tested our model with Places for two vantage
points that we cannot have with other data. The first point is that Places are a truncation-
free measurement. Places impose no threshold on the size, whereas MA and CBSA do.
The threshold creates a survivorship bias and contaminates empirical validation (cf.
Eeckhout (2004)).

The second point is the resolution that Places have to offer. Some counties cover a
very large area and are too coarse for our analysis. As we defined in Section 3.1, a city
is an expanse of land within which the firms produce the same commodity and from
within which the transportation cost is the same to the rest of the country. In some coun-
ties, it takes several hours to get from the principal city of MA to cities on the periphery.
In this case, the transportation cost will not be the same and they should be treated as
separate nodes.

To conclude, MA and CBSA could be too coarse in some areas and suffer from sur-
vivorship bias. Places are truncation free but too fine in some areas. The data set that
offers the perfect resolution in the entire range of the distribution without survivorship
bias does not exist as of now. Meanwhile, we believe that inclusion of various data helps
us verify that our findings are not sensitive to the city units selected.

We examined how well our model predictions (14) and (15) fit these data by feeding
an ER/BA, ER, and complete graph into the model, whose degree distributions are (16),
exponential and degenerate, respectively. Along with these networks’ performance, we
also checked how two of the predicted city-size distributions from the existing literature
do as a point of comparison. We estimate each in three ways: maximum spacing es-
timation (MSE), minimum Kolomogorov–Smirnov estimation (minKS), and maximum
likelihood estimation (MLE).

In what follows, a hat on parameter x indicates its estimate x̂.

4.1 Estimation methods employed

The first choice is to go for MLE, which does not work with (16). The likelihood function
is monotone increasing in k0. Thus, MLE will imply k̂0 → ∞, which makes no sense. As
a workaround to MLE, we calculated the estimates by MSE. Whereas its use is limited
in the city-size literature so far especially when compared to MLE, it is more robust and
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easier to handle than MLE. The problem we have with MLE is exactly the one exem-
plified in Ranneby (1984) and we used his solution. The MSE estimator maximizes the
geometric mean of the gap or step between two adjacent CDF values

F(si;θ)− F(si−1;θ)� (22)

where θ is a vector of parameters to be estimated and data sequence s is rearranged
in the ascending order s1 ≤ s2 ≤ · · · ≤ sJ .23 The idea here is to split the interval [0�1],
the range of a CDF, in J steps in the way that none of the assigned F(si;θ) will create a
disruptively large gap with its neighbors and the gaps should be evenly spaced as much
as possible on the logarithmic scale. Maximizing the arithmetic mean does not work
here because it will always be 1/J no matter what estimates we toss in. This actually
works as a cap on our geometric mean in turn, by Jensen’s inequality. Thus, we can safely
rule out the possibility that the maximand tends to infinity, which is exactly why we had
to discard MLE. For more on MSE, see Appendix A.5.

4.2 A scale-free transportation network explains the city-size distribution

Estimation with four different data sets unanimously chooses BA over ER as the under-
lying transport network in our economy. We report our results in Table 2 and Figures 10
to 13 in the Supplementary Material (Berliant and Watanabe (2018)).

Since the transport cost and average branching factor only come into the equation
in the form of a quotient of their logarithmic values logκ

logτ , we will denote this by δ for

estimation purposes, in which case, (15) becomes f (s)= γδ〈s〉−δsδ−1�[k(s)]. As we have
already seen, a small δ stretches out the distribution and a large δ does the opposite.

We evaluated each network’s performance with a number of different statistics. In
Table 2, 〈log LH〉 is the maximand of the log likelihood value, normalized by system size J.
KS stands for the Kolomogorov–Smirnov statistic, which measures the maximum gap
between the predicted and empirical CDFs. On the other hand, 〈log step〉 is the log of the
maximand of MSE, normalized by system size J (see Appendix A.5 for the relationship
between KS and 〈log step〉), and geo/arith is the ratio of the maximand of MSE (the geo-
metric mean of steps in (22)) to the arithmetic mean of the steps, which is the highest
value that the geometric mean can take.

In Table 2, ER/BA corresponds to (16). As low values of r̂ indicate, edges are formed
predominantly through networking rather than completely at random. We cross-
checked estimates with minKS and MLE24 and we obtained a similar result. To be doubly
sure of our findings, we ran estimation with r → ∞ (ER in Table 2). The statistics of ER

seem to be comparable with other distributions except that the estimated transporta-
tion cost is astronomically high.25 Thus, we dismissed the ER network. All in all, we

23The first and last gap are defined by F(s1;θ)− F(−∞;θ) and F(∞;θ)− F(sJ;θ), respectively.
24We constrained k0 to zero for MLE. We know from the results of MSE and minKS that k̂0 tends to zero.
25A one-dollar pen will cost more than the US GDP five towns over on the ER network. There is not

enough variance in the ER degree distribution, certainly not power-law type behavior. To generate the em-
pirical city-size distribution, the ER economy has to amplify and capitalize on what little variance its degree
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conclude that a scale-free transportation network explains the city-size distribution but
a scale-variant network does not.

Estimated δ̂ ranges from 0�9911 to 2�536.26 As we discussed in reference to (13), we
confirm that in most cases, the impact of adding an edge on city size wears off as degree
itself becomes saturated (it cannot exceed J − 1), or put differently, New York has more
edges, size for size, than any other cities as it takes more edges to raise the city size as
the city grows further.

Along with ER/BA and ER above, we ran MSE with three other distributions repre-
sentative of the existing city-size models to compare with our model. Eeckhout (2004)’s
model lead to a lognormal distribution and Berliant and Watanabe (2015) predicted a
GEV distribution as the city-size distribution. A complete graph will result in a degener-
ate probability distribution.

As we discussed earlier in Section 1, due to a multitude of variables involved in lo-
cation choice, no one factor can single-handedly explain the city-size distribution. Our
model’s fit to the data lags slightly behind Berliant and Watanabe (2015), but it is still
comparable to the the existing testable models, based on all the statistics we computed
in Table 2. ER/BA behind GEV on all fronts except Places. A different trans-
portation network results in a different city-size distribution and one type of network is
particularly coherent with the empirical distribution. We believe that the network struc-
ture weighs in on the matter as much as, if not more than, the existing explanatory vari-
ables identified by other researchers such as random growth or other socioeconomic
factors. Eventually, we should be able to merge our current model, that focuses on the
transportation network, with the existing models like Berliant and Watanabe (2015), that
focus on technological shocks. This will involve dynamic rewiring of edges in response
to technological shocks and the coevolution of the resulting distribution of city sizes and
edges.27 For now, we are examining the explanatory power of the network structure in
isolation to see if it adds anything to our current understanding of the city-size distribu-
tion. And it does, as it turns out.

Figures 10 to 13 represent PDF and PP plots of the five distributions tested with four
data sets. PP plots, which we used as a substitute for usual CDF plots,28 sketch the esti-
mated CDF against the empirical CDF. If the fit is perfect, then the PP plot will become
a 45◦ line. ER/BA and two existing distributions (lognormal and GEV) are almost indis-
tinguishable in Figure 13, indicating that the network structure is just as effective as the
existing models. Once again, the three distributions become almost identical to a 45◦
line as J grows.

distribution has to offer (cf. Proposition 3.1). As a result τ has to be ludicrously large to make things work.
On the other hand, if the transportation infrastructure is in its early stage of development without any hubs,
then the country’s transportation cost will probably be higher than more BA-like countries because Zipf’s
law is a universally observed phenomenon. We will comment on this in Section 5.

26The estimate tends to decrease as data size J increases.
27We made a brief mention of reverse causality in Section 3.10 as a preview of a future line of network-

oriented research.
28PP plots are more revelatory than regular CDF plots, as they place data points at equal intervals,

whereas CDF plots usually dump lots of data points in the middle and make it hard to see the fit in the
cramped midsection, especially when the distribution in question is very skewed like city-size distribu-
tions.
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The value of 〈log LH〉 can be made arbitrarily large by increasing the number of pa-
rameters |θ|. Bayesian and Akaike Information Criteria (BIC and AIC) are based on the
likelihood value but penalize increased use of parameters to detect overfitting. Since
GEV and ER/BA use as many as five parameters, these two distributions’ performance
should be discounted on the BIC and AIC front. However, due to the large size of data
sets, BIC and AIC barely overturn the primary evaluations made with 〈log LH〉. With the
exception of Belgian data (whose system size is the smallest among the four data sets),
there is no disagreement among those three statistics.

In addition, we put two other fat-tailed degree distributions to the test. The network
structure is exogenous in our model. We used Jackson and Rogers (2007) to represent a
scale-free network. While Jackson and Rogers (2007)’s model is microfounded and suf-
ficient to generate a fat-tailed degree distribution, it is not the only degree distribution
which a scale-free network gives rise to. There is a chance that our economy’s trans-
portation network may have come around from a different mechanism than Jackson
and Rogers (2007). In this light, we picked the lognormal and GEV distributions for use
as examples of a fat-tailed degree distribution, from which to derive the city-size distri-
bution29 (in comparison, Eeckhout (2004), Berliant and Watanabe (2015) cited lognor-
mal and GEV as a city-size distribution). The results (the last two rows in Table 2) seem
to indicate that the network formation does not necessarily have to be of Jackson and
Rogers (2007) type. Regardless of how it came about, a network with a fat-tailed degree
distribution results in a city-size distribution that closely resembles the actual distribu-
tion.

5. Conclusion and extensions

We examined how the network of cities affects the city-size distribution. We built a sim-
ple economic model with an explicit transport network. The bridge between network
structure and city size is represented in (13), where we learned that there is a log-linear
relationship between city size and city degree.

We put two commonly studied networks to the test. The classical ER random graph
is too egalitarian to generate gravitationally large cities like New York City. The BA model
explains the city-size distribution better than the ER model and bears very close com-
parison with other proposed city-size models. The BA network has a scale-free degree
distribution and the resulting city-size distribution behaves similarly via (13). In fact, it
would be odd if the city-size distribution were not scale-free under a BA network. Large
nodes with a high degree like Chicago attract a large mass of people because A) goods
produced in Chicago are in high demand for its inexpensive delivered price owing to
its high degree and B) goods available for consumption in Chicago are also inexpensive
thanks to its high degree. The exact opposite applies to small cities. But there are still
some people knowingly living in small cities because we cannot afford to wipe them off
the map due to preference for variety. This gives rise to a few cities of an overwhelming
size and a myriad of small cities. The actual city-size distributions (we tried Belgium and
the United States in particular) unanimously opt for a BA network.

29To our knowledge, these degree distributions are not yet microfounded.
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From this point on, it would be reasonable to combine GEV to determine firm pro-

ductivity as in Berliant and Watanabe (2015) and BA for transportation network struc-

ture by way of simulations, but we will not have an analytical solution due to the added

complexity.

Tracing the historical codevelopment of the network structure with the city-size dis-

tribution may reveal a clue to identifying the direction of causality, but the result may

still be inconclusive due to multiple factors involved. We briefly explored the possibility

of the network structure conforming to a given city-size distribution in Section 3.10. The

United States has seen a number of drastic changes in its modes of transportation. De-

spite falling transportation cost, however, the city-size distribution in the United States

has been stable at least since 1900 (Black and Henderson (2003)). It is then tempting to

conclude from this observation that the transportation network used to be close to the

ER network back in 1900: As we discussed in Proposition 3.1, falling τ makes the city-

size distribution less skewed. If the city-size distribution remained the same throughout

in the United States, then the transportation network must have been closer to the ER

network than the BA network in 1900—that is, if we hold everything else constant. The

reality is that total population S and the total number of cities and commodities J have

increased over the same period as τ drops. Our city-size distribution (14) depends on the

base city size 〈s〉 = S/J as much as it does on τ. And 〈s〉 is a scale parameter in (14), that is,

an increase in 〈s〉 spreads out the distribution. Thus, even when the transportation net-

work has not changed, the city-size distribution will still be robust against falling τ if the

total population increases to compensate for reduced variance. We cannot tell whether

the network structure has changed since 1900 for certain without the data on the degree

distribution in 1900, which are unavailable.

It has been suggested that other networks be implemented in our framework, for

example, the optimal transport network for a given population distribution (assuming

a cost function) rather than the choice of r, which is a less precise control variable. This

would require the geodesic length or degree distribution for the optimal network. We are

not aware of any results addressing this issue.

Appendix

A.1 Linear transportation cost

We consider two possible transportation cost structures: The first case is exponential

transportation cost with parameter τ (≥ 1). The second one is a less steep, linear trans-

portation cost with parameter τL (≥ 0). In comparison to the first case, the linear trans-

portation cost structure deducts τL units (rather than fraction τ−1) of shipment on each

leg of the travel. Thus, 1 + l
j
i τL units of shipment are required at origin j to deliver one

unit to destination i.
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For a sufficiently small τL, delivered price will be approximately identical under two
different transportation cost structures if logτ = τL.30 All the analyses in the main text
apply to a linear case as well with τ replaced with eτL for small τL.31

A.2 Proof of Proposition 3.1

Proof. Suppose J > 2 and the network is neither complete or completely isolated. Then

ds(ai)

dai
= (logτ)s(ai)

[
1 − s(ai)

S

]
≥ 0

with equality iff τ= 1. Furthermore,

d2s(ai)

da2
i

= (logτ)s′(ai)
[

1 − 2
s(ai)

S

]
≥ 0

for i < argmaxj∈V s(aj) with equality iff τ = 1. Hence s(ai) is increasing and strictly con-
vex in ai.

To show that s(ai) bulges as τ grows, first we define a weighted accessibility h(ai) :=∑
j τ
aj (ai−aj)∑
k τ

ak
. Note h(aH)−h(aM)= aH −aM > 0 and h(aM)−h(aL)= aM −aL > 0. Then

dD(τ)

dτ
= 1

2τ
{[
s(aH)h(aH)− s(aM)h(aM)

] + [
s(aM)h(aM)− s(aL)h(aL)

]}

>
1

2τ
{[
s(aH)h(aM)− s(aM)h(aM)

] + [
s(aM)h(aL)− s(aL)h(aL)

]}
> 0�

which establishes the claim. �

A.3 Idea behind geodesic length (11)

We briefly repeat Hołyst et al. (2005)’s arguments to obtain (11) in our context. Con-
sider a geodesic between nodes i and j. We ignore loops. The probability that a child
node traces back to its ancestors via some circumvention is proportional to 1/J. It be-
comes negligible as the system size J grows (our system size ranges from 69 to 25,358
in Section 4). As shown in Hołyst et al. (2005), the resulting error is minimal. A tree is a
sequence of nodes where each node except for the root node has exactly one parent (or

30Delivered price on exponential and linear iceberg will be identical if

l
j
i logτ = log

(
1 + lji τL

)

= l
j
i τL +O(

τ2
L

)
�

31Our model is multiplicative in nature just as much as the city-size distribution and scale-free networks
are. A linear (or additive) form of iceberg transportation cost is not readily compatible for our purposes
unless we convert it into a multiplicative form by, for example, approximation in Footnote 30.
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ancestor) node. Each node may or may not be followed by (a) child node(s). There are no
cycles on a tree. If we pick a random tree starting from node i, we will wind up at node
j somewhere along the tree kj/

∑
x∈V kx of the time and we will not reach node j the

remaining 1 − kj/∑
x kx of the time. On average, we will reach node j within

∑
x kx/kj

trials. Suppose that the depth (the number of parent nodes that you have to go through
before reaching your root node) of node j is l. There are kiκl−1 nodes whose depth is l.
Therefore, on average, we arrive at node j in l steps if

∑
x

kx

kj
= kiκl−1� (23)

from which we obtain (11). In other words, if, on average, it takes more than kiκl−1 trials

to reach city j, that is,
∑
x kx
kj

> kiκ
l−1, then it is likely that city j is more than l steps away

from your city i. You would try kiκl−1 times to find city j, when in fact you would need

additional
∑
x kx
kj

− kiκ
l−1 trials to reach city j, meaning that city j is not in the group

of cities l steps away from you but actually located somewhere farther down. On the
contrary, if it takes less than kiκl−1 trials to reach city j, then city j should be less than l
steps away from you. You would not need that many trials to find a city j, the implication
being that, once again, you are looking at a wrong group of cities. Thus, city i and j are l
steps apart from each other exactly when (23) is satisfied with equality.

A.4 Branching factor

Take a random edge and walk toward one arbitrarily selected end. Call where you arrived
at a neighboring node. The average degree of neighboring nodes thus reached approx-
imates the mean branching factor κ. In effect, we will take one degree off the average
degree found above because the edge we just walked on cannot be used to reach the
destination city. We are climbing up a tree, not down (recall how goods find their desti-
nation city in Section 3.6). Also note that the mean branching factor is not just a mean
degree 〈k〉. We are not hopping from one city to another but climbing a tree from one
neighbor to the next to reach the destination city. Thus, a city charged with lots of links
is more likely to be a neighbor of some city than a poorly connected city, and cities are
duly weighted when fed into the mean branching factor. In other words, Houston is rare
while there are quite a few mid-sized cities but that does not mean Houston is hard to
reach at random for its rarity. Houston has far more edges than mid-sized cities and we
are likely to travel through Houston at some point or another (cf. Figure 7). In particular,
a node of degree k has a chance proportional to k�(k) of being at one end of an arbi-
trary direction on a randomly chosen edge, where �(k) is a probability density function
of (16). Or put differently, if we parachute into a random edge and then flip a coin to de-
cide which direction to go in, we will arrive at a kth degree city k�(k) out of

∑J
x=1 x�(x)

times. Thus, the mean branching factor is given by (17).
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A.5 Maximum spacing estimation

It might be easier to make sense of the use of geometric mean in MSE if we recast it
as an analogue of a more familiar, linear regression. The geometric mean of steps here
corresponds to ordinary least squares and the arithmetic mean corresponds to a plain
sum of residuals. Say we are trying to regress � = (−1�0�1) on x = (−1�0�1). If we aim
to minimize the sum of residuals, any real estimate that makes the regression line run
through the origin (0�0)will work, just as much as any estimate will make the arithmetic
mean of gaps 1/J. We will end up with infinitely many estimates because residual at x=
1 always offsets the one at x= −1. To ward off this cancellation problem, we usually try
to minimize the sum of squared residuals, which leads to a unique estimate, a 45◦ line.
Similarly, the use of geometric mean will solve the indeterminacy problem that comes
with arithmetic mean and will promise us sensible estimates.

The geometric mean also comes in handy here. The gap tends to get tighter near the
top and/or the bottom of most distributions as the CDF creeps up to one and/or bears
down on zero. However, this does not mean New York or New Amsterdam, IN counts
less than other cities as a sample. The geometric mean offsets this general tendency and
duly stretches small gaps so that these extremities will receive no less attention than the
ones in the middle. There is no particular reason to let the mid-sized cities punch above
their weight.

On a related matter, we report Kolomogorov–Smirnov (KS) statistic. MSE is similar to
KS in that both KS and the maximand of MSE are a power mean. KS statistic is a power
mean of the form {

1
J

∑
i

∣∣Empirical F(si)− F(si)
∣∣ρ}

1
ρ

(24)

with ρ→ ∞ (i.e., the maximum of the residuals, the L∞ norm), whereas the maximand
of MSE is a power mean of the form

{
1
J

∑
i

(
F(si)− F(si−1)

)ρ} 1
ρ

(25)

with ρ → 0 (i.e., the geometric mean of the gaps). The way they aggregate the data is
where their difference comes in. KS statistic only picks up a single city where the pre-
dicted value deviates from the actual value the most. It does not tell us anything about
the selected model’s performance over the remainder of cities other than the fact that
their gap is tighter than the KS value (but not by how far). On the other hand, the max-
imand of MSE is determined by the step gap log-averaged over the entire range of the
cities, and probably a better measuring tool to gauge the model’s performance in that
respect.

To get a sense of what MSE hunts for, consider what happens if we pull out the es-
timate that minimizes the geometric mean instead. Minimum spacing estimator would
dump the entire interval [0�1] on one particular city i (any city will do) so thatF(sj;θ)= 0
for all j < i and F(sj;θ)= 1 for all j ≥ i, in which case, the geometric mean would be zero,
the smallest value possible (practically the same result when you try to maximize the
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arithmetic mean as we mentioned above, in the sense that any estimate will be as good
as any other). This would make such a pointless estimator. MSE does the exact opposite.
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