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Heterogeneous treatment effects with mismeasured
endogenous treatment

Takuya Ura
Department of Economics, University of California, Davis

This paper studies the identifying power of an instrumental variable in the non-
parametric heterogeneous treatment effect framework when a binary treatment
is mismeasured and endogenous. Using a binary instrumental variable, I char-
acterize the sharp identified set for the local average treatment effect under the
exclusion restriction of an instrument and the deterministic monotonicity of the
true treatment in the instrument. Even allowing for general measurement error
(e.g., the measurement error is endogenous), it is still possible to obtain finite
bounds on the local average treatment effect. Notably, the Wald estimand is an
upper bound on the local average treatment effect, but it is not the sharp bound
in general. I also provide a confidence interval for the local average treatment ef-
fect with uniformly asymptotically valid size control. Furthermore, I demonstrate
that the identification strategy of this paper offers a new use of repeated measure-
ments for tightening the identified set.

Keywords. Local average treatment effect, instrumental variable, nonclassical
measurement error, endogenous measurement error, partial identification.

JEL classification. C21, C26.

1. Introduction

Treatment effect analyses often entail a measurement error problem as well as an en-
dogeneity problem. For example, Black, Sanders, and Taylor (2003) documented a sub-
stantial measurement error in educational attainments in the 1990 U.S. Census. At the
same time, educational attainments are endogenous as treatment variables in return-
to-schooling analyses, because unobserved individual ability affects both schooling de-
cisions and wages (Card (2001)). The econometric literature, however, has offered only
a few solutions for addressing the two problems at the same time. An instrumental vari-
able is a standard technique for correcting endogeneity and measurement error (e.g.,
Angrist and Krueger (2001)). To the best of my knowledge, however, no existing re-
search has explicitly investigated the identifying power of an instrumental variable for
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the heterogeneous treatment effect when the treatment is both mismeasured and en-
dogenous.1

I consider a mismeasured treatment in the framework of Imbens and Angrist (1994)
and Angrist, Imbens, and Rubin (1996), and focus on the local average treatment ef-
fect as a parameter of interest. My analysis studies the identifying power of a binary in-
strumental variable under the following two assumptions: (i) the instrument affects the
outcome and the measured treatment only through the true treatment (the exclusion
restriction of an instrument), and (ii) the instrument weakly increases the true treat-
ment (the deterministic monotonicity of the true treatment in the instrument). These
assumptions are an extension of Imbens and Angrist (1994) and Angrist, Imbens, and
Rubin (1996) into the framework with mismeasured treatment. The local average treat-
ment effect is the average treatment effect for the compliers, that is, the subpopulation
whose true treatment status is strictly affected by an instrument. Focusing on the local
average treatment effect is meaningful for a few reasons. First, the local average treat-
ment effect has been a widely-used parameter to investigate the heterogeneous treat-
ment effect with endogeneity. My analysis offers a tool for a robustness check to those
who have already investigated the local average treatment effect. Second, the local aver-
age treatment effect can be used to extrapolate to the average treatment effect or other
parameters of interest. Imbens (2010) emphasizes the utility of reporting the local aver-
age treatment effect in addition to the other parameters of interest because the extrap-
olation often requires additional assumptions and can be less credible than the local
average treatment effect.

The mismeasured treatment prevents the local average treatment effect from being
point-identified. As in Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996),
the local average treatment effect is the ratio of the intent-to-treat effect over the size of
compliers.2 Since the measured treatment is not the true treatment, however, the size of
compliers is not identified and, therefore, the local average treatment effect is not iden-
tified. The underidentification for the local average treatment effect is a consequence of
the underidentification for the size of compliers; if I assumed no measurement error, I
could compute the size of compliers based on the measured treatment and, therefore,
the local average treatment effect would be the Wald estimand.3

I take a worst case scenario approach against the measurement error and allow for
a general form of measurement error. The only assumption concerning the measure-
ment error in this paper is its independence of the instrumental variable. (Section 3.4

1Many existing methods, including Mahajan (2006) and Lewbel (2007), allow for the treatment effect to
be heterogeneous due to observed variables. In this paper, I focus on the heterogeneity due to unobserved
variables by considering the local average treatment effect framework.

2The intent-to-treat effect is defined as the mean difference of the outcome between the two groups
defined by the instrument. The size of compliers is the probability of being a complier, and it is the mean
difference of the true treatment (Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)).

3The Wald estimand in this paper is defined as the ratio of the intent-to-treat effect over the mean dif-
ference of the measured treatment between the two groups defined by the instrument. Note that the Wald
estimand is identified because it uses the measured treatment, but it is not the local average treatment
effect because it does not use the true treatment.
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Figure 1. Identified set for the local average treatment effect. ITT is the intent-to-treat effect
and Wald is the Wald estimand. The thick line is the identified set for the local average treatment
effect. Note that the identified set is {0} when the intent-to-treat effect is zero.

dispenses with this assumption and shows that it is still possible to bound the local av-
erage treatment effect.) The following properties of measurement error are practically
and theoretically relevant. First, the measurement error is nonclassical; that is, it can
be dependent on the true treatment. The measurement error for a discrete variable is
always nonclassical. It is because the measurement error cannot be negative (positive)
when the true variable takes the lowest (highest) value. Second, I allow the measurement
error to be endogenous (or differential); that is, the measured treatment can be depen-
dent on the outcome conditional on the true treatment. For example, as Black, Sanders,
and Taylor (2003) argued, the measurement error for educational attainment depends
on the familiarity with the educational system in the U.S., and immigrants may have a
higher rate of measurement error. At the same time, the familiarity with the U.S. edu-
cational system can be related to the English language skills, which can affect the labor
market outcomes. Bound, Brown, and Mathiowetz (2001) also argue that measurement
error is likely to be endogenous in some empirical applications. (In Appendix C in the
Supplementary Material (Ura (2018)), I explore the identifying power of the exogene-
ity assumption on the measurement error. The additional assumption yields a tighter
sharp identified set, but I still cannot point identify the local average treatment effect
in general.) Third, there is no assumption concerning the marginal distribution of the
measurement error. It is not necessary to assume anything about the accuracy of the
measurement.

In the presence of measurement error, I derive the identified set for the local average
treatment effect (Theorem 4). Figure 1 describes the relationship among the identified
set for the local average treatment effect, the intent-to-treat effect, and the Wald esti-
mand. First, the intent-to-treat effect has the same sign as the local average treatment
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effect. Figure 1 has three subfigures according to the sign of the intent-to-treat effect: (a)
positive, (b) zero, and (c) negative. Second, the intent-to-treat effect is the sharp lower
bound on the local average treatment effect in absolute value. Third, the Wald estimand
is an upper bound on the local average treatment effect in absolute value. The Wald es-
timand is the probability limit of the instrumental variable estimator in my framework,
which ignores the measurement error but controls only for the endogeneity. This point
implies that an upper bound on the local average treatment effect is obtained by ig-
noring the measurement error. Frazis and Loewenstein (2003) obtain a similar result in
the homogeneous treatment effect model. Last, but most importantly, the sharp upper
bound in absolute value can be smaller than the Wald estimand. It is a potential cost of
ignoring the measurement error and using the Wald estimand. Even for analyzing only
an upper bound on the local average treatment effect, it is recommended to take the
measurement error into account, which can yield a smaller upper bound than the Wald
estimand. Section 3.1 investigates when the Wald estimand coincides with the sharp up-
per bound.

I extend the identification analysis to incorporate covariates other than the treat-
ment variable. In this setting, the instrumental variable satisfies the exclusion restric-
tion after conditioning covariates. Based on the insights from Abadie (2003) and Frölich
(2007), I show that the identification strategy of this paper works in the presence of co-
variates.

I construct a confidence interval for the local average treatment effect. To con-
struct the confidence interval, first, I approximate the identified set by discretizing the
support of the outcome where the discretization becomes finer as the sample size in-
creases. The approximation for the identified set resembles many moment inequali-
ties in Chernozhukov, Chetverikov, and Kato (2014), who consider a finite but diver-
gent number of moment inequalities. I apply a bootstrap method in Chernozhukov,
Chetverikov, and Kato (2014) to construct a confidence interval with uniformly asymp-
totically valid asymptotic size control. The confidence interval also rejects parameter
values which do not belong to the sharp identified set. An empirical application and a
Monte Carlo simulation demonstrate a finite sample property of the proposed inference
method. The empirical exercise is based on Abadie (2003), who studies the effects of
401(k) participation on financial savings, and I consider a misclassification of the 401(k)
participation.4

As an extension, I consider the dependence between the instrument and the mea-
surement error. In this case, there is no assumption on the measurement error, and
the measured treatment has no information on the local average treatment effect. Even
without using the measured treatment, however, I can still apply the same identification
strategy and obtain finite (but less tight) bounds on the local average treatment effect.

Moreover, I offer a new use of repeated measurements as additional sources for iden-
tification. The existing practice of repeated measurements uses one of them as an instru-
mental variable, as in Hausman, Newey, Ichimura, and Powell (1991), Hausman, Newey,

4The pension type is subject to a measurement error. See, for example, Gustman, Steinmeier, and
Tabatabai (2008) for the pension-type misclassification in the Health and Retirement Study.
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and Powell (1995), Mahajan (2006), and Hu (2008).5 However, when the true treatment is
endogenous, the repeated measurements are likely to be endogenous and are not good
candidates for an instrumental variable. My identification strategy demonstrates that
those variables are useful for bounding the local average treatment effect in the pres-
ence of measurement error, even if none of the repeated measurements are valid instru-
mental variables.

The remainder of this paper is organized as follows. Section 1.1 explains several em-
pirical examples motivating mismeasured endogenous treatments and Section 1.2 re-
views the related econometric literature. Section 2 introduces mismeasured treatments
in the framework of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996).
Section 3 constructs the identified set for the local average treatment effect. I also dis-
cuss two extensions. One extension describes how repeated measurements tighten the
identified set, and the other dispenses with independence between the instrument and
the measurement error. Section 4 proposes an inference procedure for the local average
treatment effect. Section 5 conducts an empirical illustrations. Section 6 concludes. The
Appendix collects proofs, remarks, and Monte Carlo simulations.

1.1 Examples for mismeasured endogenous treatments

I introduce several empirical examples in which binary treatments can be both endoge-
nous and mismeasured at the same time. The first example is the return to schooling, in
which the outcome is wages, and the treatment is educational attainment, for example,
whether a person has completed college or not. Unobserved individual ability affects
both the schooling decision and wage determination, which leads to the endogeneity
of educational attainment (e.g., Card (2001)). Moreover, survey datasets record educa-
tional attainments based on the interviewee’s answers, and these self-reported educa-
tional attainments are subject to measurement error. For example, Black, Sanders, and
Taylor (2003) estimated that the 1990 Decennial Census had a 17�7% false positive rate
of reporting a doctoral degree.

The second example is labor supply response to welfare program participation, in
which the outcome is employment status and the treatment is welfare program partic-
ipation. Self-reported welfare program participation in survey datasets can be mismea-
sured (Hernandez and Pudney (2007)). The psychological cost for welfare program par-
ticipation, welfare stigma, affects job search behavior and welfare program participation
simultaneously; that is, welfare stigma may discourage individuals from participating in
a welfare program, and, at the same time, affect an individual’s effort in the labor mar-
ket. Moreover, the welfare stigma gives welfare recipients some incentive not to reveal
their participation status to the survey, which causes endogenous measurement error in
that the unobserved individual heterogeneity affects both the measurement error and
the outcome.

The third example is the effect of a job training program on wages. As it is similar
to the return to schooling, unobserved individual ability plays a crucial role in this ex-
ample. Self-reported completion of job training program is also subject to measurement

5It is worthwhile to mention that Lewbel (2007) allows for a certain form of the endogeneity in a repeated
measurement, under which a repeated measurement still satisfies some exclusion restriction.
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error (Bollinger (1996)). Frazis and Loewenstein (2003) develop a methodology for eval-
uating a homogeneous treatment effect with mismeasured endogenous treatment, and
apply their methodology to evaluate the effect of a job training program on wages.

The last example is the effect of maternal drug use on infant birth weight. Kaestner,
Joyce, and Wehbeh (1996) estimate that a mother tends to underreport her drug use, but
at the same time, she tends to report it correctly if she is a heavy user. When the degree of
drug addiction cannot be observed, it becomes an individual unobserved heterogeneity
which affects infant birth weight and the measurement in addition to the drug use.

1.2 Literature review

Here, I summarize the related econometric literature. Mahajan (2006), Lewbel (2007),
and Hu (2008) used an instrumental variable to correct for measurement error in a bi-
nary (or discrete) treatment in the homogeneous treatment effect framework and they
achieve nonparametric point identification of the average treatment effect. They as-
sume that the true treatment is exogenous, whereas I allow it to be endogenous.

Finite mixture models are related to my analysis. I consider the unobserved binary
treatment, whereas finite mixture models deal with unobserved type. Henry, Kitamura,
and Salanié (2014) and Henry, Jochmans, and Salanié (2015) are the most closely related.
They investigate the identification problem in finite mixture models, by using the exclu-
sion restriction in which an instrumental variable only affects the mixing distribution
of a type without affecting the component distribution (i.e., the conditional distribution
given the type). If I applied their approach directly to my framework, their exclusion re-
striction would imply conditional independence between the instrumental variable and
the outcome given the true treatment. Instead of applying the approaches in Henry, Ki-
tamura, and Salanié (2014) and Henry, Jochmans, and Salanié (2015), I use a different
exclusion restriction in which the instrumental variable does not affect the outcome or
the measured treatment directly.

A few papers have applied an instrumental variable to a mismeasured binary regres-
sor in the homogenous treatment effect framework. They include Aigner (1973), Kane,
Rouse, and Staiger (1999), Bollinger (1996), Black, Berger, and Scott (2000), Frazis and
Loewenstein (2003), and DiTraglia and García-Jimeno (2015). Frazis and Loewenstein
(2003) and DiTraglia and García-Jimeno (2015) are the most closely related among them,
since they allow for endogeneity. Here, I allow for heterogeneous treatment effects, and
I contribute to the heterogeneous treatment effect literature by investigating the conse-
quences of the measurement errors in the treatment.

Kreider and Pepper (2007), Molinari (2008), Imai and Yamamoto (2010), and Kreider,
Pepper, Gundersen, and Jolliffe (2012) applied a partial identification strategy for the
average treatment effect to the mismeasured binary regressor problem by utilizing the
knowledge of the marginal distribution for the true treatment. Those papers use auxil-
iary datasets to obtain the marginal distribution for the true treatment. The framework
in Kreider et al. (2012) is the most closely related to this paper, in that they allow for both
treatment endogeneity and endogenous measurement error. My instrumental variable
approach can be an an alternative strategy to deal with mismeasured endogenous treat-
ment. It is worthwhile because, as mentioned in Schennach (2013), the availability of an
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auxiliary dataset is limited in empirical research. Furthermore, it is not always the case
that the results from auxiliary datasets is transported into the primary dataset (Carroll,
Ruppert, Stefanski, and Crainiceanu (2012, p. 10)),

Some papers investigate mismeasured endogenous continuous variables, instead of
binary variables. Amemiya (1985), Hsiao (1989), Lewbel (1998), Song, Schennach, and
White (2015) considered nonlinear models with mismeasured continuous explanatory
variables. The continuity of the treatment is crucial for their analysis, because they as-
sume classical measurement error. The treatment in my analysis is binary and, there-
fore, the measurement error is nonclassical. Hu, Shiu, and Woutersen (2015) considered
mismeasured endogenous continuous variables in single index models. However, their
approach depends on taking derivatives of the conditional expectations with respect to
the continuous variable. It is not clear if it can be extended to binary variables. Song
(2015) considered the semiparametric model when endogenous continuous variables
are subject to nonclassical measurement error. He assumes conditional independence
between the instrumental variable and the outcome given the true treatment, which
would impose some structure on the outcome equation when a treatment is binary. In-
stead I propose an identification strategy without assuming any structure on the out-
come equation.

Chalak (2017) investigated the consequences of measurement error in the instru-
mental variable instead of the treatment. He assumed that the treatment is perfectly
observed, whereas I allow for it to be measured with error. Since I assume that the instru-
mental variable is perfectly observed, my analysis is not overlapped with Chalak (2017).

Manski (2003), Blundell, Gosling, Ichimura, and Meghir (2007), and Kitagawa (2010)
have similar identification strategy in the context of sample selection models. These pa-
pers also use the exclusion restriction of the instrumental variable for their partial iden-
tification results. Particularly, Kitagawa (2010) derived the integrated envelope from the
exclusion restriction, which is similar to the total variation distance in my analysis be-
cause both of them are characterized as a supremum over the set of the partitions. First
and the most importantly, I consider mismeasurement of the treatment, whereas the
sample selection model considers truncation of the outcome. It is not straightforward
to apply their methodologies in sample selection models into mismeasured treatment
problem. Second, I offer an inference method with uniform size control, but Kitagawa
(2010) derived only point-wise size control. Last, Blundell et al. (2007) and Kitagawa
(2010) used their result for specification test, but I cannot use it to carry out a specifi-
cation test because the sharp identified set of my analysis is always non-empty.

Finally, Calvi, Lewbel, and Tommasi (2017) and Yanagi (2017) have recently dis-
cussed identification issues of the local average treatment effect in the presence of a
measurement error in the treatment variable. They are built on results in the previous
draft of this paper to derive novel and important results when there are additional vari-
ables in a dataset: multiple measurements of the true treatment variable (Calvi, Lewbel,
and Tommasi (2017)) or multiple instrumental variables (Yanagi (2017)). In contrast, the
results of this paper are valid without these additional variables and only requires the
assumptions in Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996).
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outcome Y true treatment T ∗

measured treatment T

instrument Z

Figure 2. Graphical representation of dependencies among variables.

2. Local average treatment effect framework with misclassification

My analysis considers a mismeasured treatment in the framework of Imbens and Angrist
(1994) and Angrist, Imbens, and Rubin (1996). The objective is to evaluate the causal
effect of a binary treatment T ∗ ∈ {0�1} on an outcome Y , where T ∗ = 0 represents the
control group and T ∗ = 1 represents the treatment group. To deal with endogeneity of
T ∗, I use a binary instrumental variable Z ∈ {0�1} which shifts T ∗ exogenously without
any direct effect on Y . The treatment T ∗ of interest is not directly observed, and instead
there is a binary measurement T ∈ {0�1} for T ∗. I put the ∗ symbol on T ∗ to emphasize
that the true treatment T ∗ is unobserved. I allow Y to be discrete, continuous or mixed;
Y is only required to have some known dominating finite measure μY on the real line.
For example, μY can be the Lebesgue measure or the counting measure. Let Y be the
support for the random variable Y and T = {0�1} be the support for T .

To describe the data generating process, I consider the counterfactual variables. T ∗
z

is the counterfactual true treatment when Z = z. Yt∗ is the counterfactual outcome
when T ∗ = t∗. Tt∗ is the counterfactual measured treatment when T ∗ = t∗. The individ-
ual treatment effect is Y1 −Y0. It is not directly observed; Y0 and Y1 cannot be observed
at the same time. Only YT ∗ is observable. Using the notation, the observed variables
(Y�T�Z) are generated by the three equations:

T = TT ∗� (1)

Y = YT ∗� (2)

T ∗ = T ∗
Z� (3)

Figure 2 graphically describes the relationship among the instrument Z, the (unob-
served) true treatment T ∗, the measured treatment T , and the outcome Y . (1) is the
measurement equation, which is the arrow from T ∗ to T in Figure 2. T − T ∗ is the mea-
surement error; T −T ∗ = 1 represents a false positive and T −T ∗ = −1 represents a false
negative. Equations (2) and (3) are the same as Imbens and Angrist (1994) and Angrist,
Imbens, and Rubin (1996). Equation (2) is the outcome equation, which is the arrow
from T ∗ to Y in Figure 2. Equation (3) is the treatment assignment equation, which is
the arrow from Z to T ∗ in Figure 2. A potentially nonzero correlation between (Y0�Y1)

and (T ∗
0 �T

∗
1 ) causes an endogeneity problem.
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In a return to schooling analysis, Y is wages, T ∗ is the true indicator for college com-
pletion, Z is the proximity to college, and T is the self-reported college completion. The
treatment effect Y1 −Y0 in the return to schooling is the effect of college completion T ∗
on wages Y . The college completion is not correctly measured in a survey dataset, such
that only the self report T is observed.

This section and Section 3 impose only the following assumption.

Assumption 1. (i) For each t∗ = 0�1, Z is independent of (Tt∗�Yt∗�T ∗
0 �T

∗
1 ). (ii) T ∗

1 ≥ T ∗
0

almost surely. (iii) 0 <P(Z = 1) < 1.

Assumption 1(i) is the exclusion restriction and I consider stochastic independence
instead of mean independence. Although it is stronger than the minimal conditions for
the identification for the local average treatment effect without measurement error, a
large part of the existing applied papers assume stochastic independence (Huber and
Mellace (2015, p. 405)). Z is also independent of Tt∗ conditional on (Yt∗�T ∗

0 �T
∗
1 ), which

is the only assumption on the measurement error for the identified set in Section 3. (Sec-
tion 3.4 even dispenses with this assumption.) Assumption 1(ii) is the monotonicity con-
dition for the instrument, in which the instrument Z increases the value of T ∗ for all the
individuals. de Chaisemartin (2016) relaxed the monotonicity condition, and it can be
shown in Appendix D in the Supplementary Material (Ura (2018)) that the identification
results in my analysis still holds with a slight modification under the complier-defiers-
for-marginals condition in de Chaisemartin (2016). Note that Assumption 1 does not
include a relevance condition for the instrumental variable. The standard relevance con-
dition T ∗

1 �= T ∗
0 does not affect the identification results in my analysis. I will discuss the

relevance condition in my framework after Theorem 4. Assumption 1(iii) excludes that
Z is constant.

As I emphasized in the Introduction, the framework here does not assume anything
on measurement error Tt∗ except for its independence from Z. Assumption 1 does not
impose any restriction on the marginal distribution of the measurement error Tt∗ or
on the relationship between the measurement error Tt∗ and (Yt∗�T ∗

0 �T
∗
1 ). Particularly,

the measurement error can be endogenous, that is, Tt∗ and (Yt∗�T ∗
0 �T

∗
1 ) can be corre-

lated.6

I focus on the local average treatment effect, which is defined by

θ =E
[
Y1 −Y0 | T ∗

0 < T ∗
1
]
�

The local average treatment effect is the average of the treatment effect Y1 −Y0 over the
subpopulation (the compliers) whose treatment status is strictly affected by the instru-
ment. Imbens and Angrist (1994, Theorem 1) showed that the local average treatment

6Although it has not been supported in validation data studies (e.g., Black, Sanders, and Taylor (2003)),
a majority of the literature on measurement error has assume that the measurement error is exogenous
(Bound, Brown, and Mathiowetz (2001)). I also explore the identifying power of the exogenous measure-
ment error assumption in Appendix C available in the Supplementary Material (Ura (2018)).
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effect equals

�E[Y | Z]
�E

[
T ∗ |Z] �

where I define �E[X | Z] = E[X | Z = 1] − E[X | Z = 0] for a random variable X . Note
that �E[Y | Z] is the intent-to-treat effect, that is, the regression of Y on Z. The treat-
ment is measured with error and, therefore, the fraction �E[Y |Z]/�E[T ∗ | Z] is not the
Wald estimand

�E[Y | Z]
�E[T | Z] �

Since �E[T ∗ | Z] is not identified, I cannot identify the local average treatment effect.
The failure of point identification comes purely from the measurement error, because
the local average treatment effect would be point-identified under T = T ∗. In fact, my
proposed methodology in this paper is essentially a bounding strategy of �E[T ∗ | Z]
and I use the bound to construct the sharp identified set for the local average treatment
effect.

3. Identified set for the local average treatment effect

This section shows how the instrumental variable partially identifies the local average
treatment effect in the framework of Section 2. Before defining the identified set, I char-
acterize the local average treatment effect as a function of the underlying distribution P∗
of (Y0�Y1�T0�T1�T

∗
0 �T

∗
1 �Z). I use the ∗ symbol on P∗ to clarify that P∗ is the distribution

of the unobserved variables. I denote the expectation operator E by EP∗ when I need to
clarify the underlying distribution. The local average treatment effect is a function of the
unobserved distribution P∗:

θ
(
P∗) =EP∗

[
Y1 −Y0 | T ∗

0 < T ∗
1
]
�

I denote by Θ the parameter space for the local average treatment effect θ, that is, the set
of

∫
yf1(y)dμY (y)− ∫

yf0(y)dμY (y) where f0 and f1 are density functions dominated by
the known probability measure μY . For example, Θ = [−1�1] when Y is binary.

The identified set is the set of parameter values for the local average treatment ef-
fect which is consistent with the distribution of the observed variables. I use P for the
distribution of the observed variables (Y�T�Z). Equations (1), (2), and (3) induce the
distribution of the observables (Y�T�Z) from the unobserved distribution P∗, and I de-
note by P∗

(Y�T�Z) the induced distribution. When the distribution of (Y�T�Z) is P , the set
of P∗ which induces P is {P∗ ∈ P∗ : P = P∗

(Y�T�Z)}, where P∗ is the set of P∗’s satisfying As-
sumptions 1. For every distribution P of (Y�T�Z), the (sharp) identified set for the local
average treatment effect is defined as ΘI(P) = {θ(P∗) ∈Θ : P∗ ∈ P∗ and P = P∗

(Y�T�Z)}.
Imbens and Angrist (1994, Theorem 1) provided a relationship between �E[Y | Z]

and the local average treatment effect:

θ
(
P∗)P∗(T ∗

0 < T ∗
1
) = �EP∗ [Y | Z]� (4)
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This equation gives the two pieces of information of θ(P∗). First, the sign of θ(P∗) is the
same as �EP∗ [Y | Z]. Second, the absolute value of θ(P∗) is at least the absolute value of
�EP∗ [Y |Z]. The following lemma summarizes these two pieces.

Lemma 2. Under Assumption 1,

θ
(
P∗)�EP∗ [Y | Z] ≥ 0�∣∣θ(

P∗)∣∣ ≥ ∣∣�EP∗ [Y |Z]∣∣�
I derive a new implication from the exclusion restriction for the instrumental vari-

able in order to obtain an upper bound on θ(P∗) in absolute value. To explain the new
implication, I introduce the total variation distance, which is the L1 distance between
the distribution f1 and f0: For any random variable X , define

TVX = 1
2

∫ ∣∣fX|Z=1(x)− fX|Z=0(x)
∣∣dμX(x)�

where μX is a dominating measure for the distribution of X .

Lemma 3. Under Assumption 1,

TV(Y�T) ≤ TVT ∗ = P∗(T ∗
0 < T ∗

1
)
�

The first term, TV(Y�T), in Lemma 3 reflects the dependency of f(Y�T)|Z=z(y� t) on z,
and it can be interpreted as the magnitude of the distributional effect of Z on (Y�T).
The second and third terms, TVT ∗ and P∗(T ∗

0 < T ∗
1 ), are the effect of the instrument Z

on the true treatment T ∗. Based on Lemma 3, the magnitude of the effect of Z on T ∗ is
no smaller than the magnitude of the effect of Z on (Y�T).

The new implication in Lemma 3 gives a lower bound on P∗(T ∗
0 < T ∗

1 ) and, therefore,
yields an upper bound on the local average treatment effect in absolute value, combined
with equation (4). In other words,

∣∣θ(
P∗)∣∣ =

∣∣�EP∗ [Y |Z]∣∣
P∗(T ∗

0 < T ∗
1
) ≤

∣∣�EP∗ [Y | Z]∣∣
TV(Y�T)

as long as TV(Y�T) > 0.
In summary, I can characterize the sharp identified set for the local average treat-

ment effect as in the following theorem.

Theorem 4. Suppose that Assumption 1 holds, and consider an arbitrary data distri-
bution P of (Y�T�Z). The identified set ΘI(P) for the local average treatment effect is
characterized as follows: ΘI(P) =Θ if TV(Y�T) = 0; otherwise,

ΘI(P) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
�EP [Y | Z]� �EP [Y |Z]

TV(Y�T)

]
if �EP [Y | Z]> 0�

{0} if �EP [Y | Z] = 0�[
�EP [Y |Z]
TV(Y�T)

��EP [Y | Z]
]

if �EP [Y | Z]< 0�
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The total variation distance TV(Y�T) plays two roles in determining the sharp iden-
tified set in this theorem. First, TV(Y�T) measures the strength of the instrumental vari-
able, that is, TV(Y�T) > 0 is the relevance condition in my identification analysis. When
TV(Y�T) > 0, the interval in the above theorem is a strict subset of the whole parame-
ter space, which implies that Z has some identifying power for the local average treat-
ment effect. By contrast, TV(Y�T) = 0 means that the instrumental variable Z does not
affect Y and T , in which case Z has no identifying power for the local average treat-
ment effect. In this case, f(Y�T)|Z=1 = f(Y�T)|Z=0 almost everywhere over (y� t) and par-
ticularly �EP [Y | Z] = 0. Note that all the three inequalities in Theorem 4 have no
restriction on θ in this case. Second, TV(Y�T) determines the length of the sharp iden-
tified set. The length is |�EP [Y | Z]|(TV −1

(Y�T) − 1), which is a decreasing function in
TV(Y�T).

In general, the lower and upper bounds of the sharp identified set are not equal to
the local average treatment effect. The lower bound is weakly smaller (in the absolute
value) than the local average treatment effect, because the size of the compliers is weakly
smaller than one. The upper bound is weakly larger (in the absolute value) than the local
average treatment effect, because TV(Y�T) is weakly smaller than the size of the compli-
ers due to the mismeasurement of the treatment variable.

The standard relevance condition �EP [T | Z] �= 0 is not required in Theorem 4.
�EP [T | Z] �= 0 is a necessary condition to define the Wald estimand, but the sharp iden-
tified set does not depend directly on the Wald estimand. In fact, TV(Y�T) > 0 in Theo-
rem 4 is weaker than �EP [T | Z] �= 0.

Note that the sharp identified set is always nonempty. There is no testable impli-
cations on the distribution of the observed variables and, therefore, it is impossible to
conduct a specification test for Assumption 1.

3.1 Wald estimand and the identified set

The Wald estimand �EP [Y | Z]/�EP [T | Z] can be outside the identified set. One neces-
sary and sufficient condition for the Wald estimand to be included in the identified set
is given as follows.

Lemma 5. The Wald estimand is in the identified set if and only if

f(Y�T)|Z=1(y�1) ≥ f(Y�T)|Z=0(y�1) and f(Y�T)|Z=1(y�0) ≤ f(Y�T)|Z=0(y�0)� (5)

This condition in (5) are the testable implications from the the local average
treatment effect framework without measurement error (Balke and Pearl (1997) and
Heckman and Vytlacil (2005)). The recent papers by Huber and Mellace (2015), Kitagawa
(2015), and Mourifié and Wan (2016) proposed the testing procedures for (5). Based on
the results in Theorem 4, their testing procedures are reinterpreted as a test for the null
hypothesis that the Wald estimand is inside the sharp upper bound on the local average
treatment effect.
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The condition (5) cannot be used for testing the existence of a measurement error.
Even if there is nonzero measurement error, (5) can still hold. One example is

Z ∼ Bernoulli(0�5)�

T ∗ = Z�

Y = U1�

T = T ∗ + (
1 − 2T ∗)1{U2 ≤ 1/3}�

where, conditional on Z, U1 and U2 are independently drawn from the uniform distri-
bution. This data generating process P∗ satisfies Assumption 1. Furthermore, (5) holds,
because

f(Y�T)|Z=1(y�1) = fU1(y)P(U2 > 1/3) = 2/3�

f(Y�T)|Z=0(y�1) = fU1(y)P(U2 ≤ 1/3) = 1/3�

f(Y�T)|Z=1(y�0) = fU1(y)P(U2 ≤ 1/3) = 1/3�

f(Y�T)|Z=0(y�0) = fU1(y)P(U2 > 1/3) = 2/3

for every y ∈ [0�1].

3.2 Conditional exogeneity of the instrumental variable

As in Abadie (2003) and Frölich (2007), this section considers the conditional exogeneity
of the instrumental variable Z in which Z is exogenous given a set of covariates V .

Assumption 6. There is some variable V taking values in a set V satisfying the fol-
lowing properties. (i) For each t∗ = 0�1, Z is conditionally independent of the variables
(Tt∗�Yt∗�T ∗

0 �T
∗
1 ) given V . (ii) T ∗

1 ≥ T ∗
0 almost surely. (iii) 0 <P(Z = 1 | V ) < 1.

I define the V -conditional total variation distance by

TVX|V = 1
2

∫ ∣∣fX|Z=1�V (x)− fX|Z=0�V (x)
∣∣dμX(x)�

Note that TVX|V is a random variable as a function of V . Under the conditional exogene-
ity of Z, Theorem 4 becomes as follows.

Theorem 7. Suppose that Assumption 6 holds, and consider an arbitrary data distri-
bution P of (Y�T�Z�V ). The identified set ΘI(P) for the local average treatment effect is
characterized as follows: ΘI(P) =Θ if EP [TV(Y�T)|V ] = 0; otherwise,

ΘI(P) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
EP

[
�EP [Y | Z�V ]]� EP

[
�EP [Y | Z�V ]]

EP [TV(Y�T)|V ]
]

if EP

[
�EP [Y |Z�V ]]> 0�

{0} if EP

[
�EP [Y |Z�V ]] = 0�[

EP

[
�EP [Y | Z�V ]]

EP [TV(Y�T)|V ] �EP

[
�EP [Y | Z�V ]]] if EP

[
�EP [Y |Z�V ]]< 0�
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3.3 Identifying power of repeated measurements

The identification strategy in the above analysis offers a new use of repeated measure-
ments as additional sources for identification. The use of repeated measurements (e.g.,
Hausman et al. (1991)) is a popular approach in the literature on measurement error,
but they cannot be instrumental variables in this framework. This is because the true
treatment T ∗ is endogenous and it is natural to suspect that a measurement of T ∗ is
also endogenous. The more accurate the measurement is, the more likely it is to be en-
dogenous. Nevertheless, the identification strategy of this paper incorporates repeated
measurements as an additional information to tighten the identified set for the local av-
erage treatment effect, when they are coupled with the instrumental variable Z. Unlike
the other paper on repeated measurements, I do not need to assume the independence
of measurement errors among multiple measurements. The strategy also benefits from
having more than two measurements unlike Hausman et al. (1991) who achieve point
identification with two measurements.

Consider a repeated measurement R for T ∗. Like T = TT ∗ , I model R using the coun-
terfactual outcome notations. R1 is a counterfactual second measurement when the true
treatment T ∗ is 1, and R0 is a counterfactual second measurement when the true treat-
ment T ∗ is 0. Then the data generation of R is

R= RT ∗ �

I strengthen Assumption 1 by assuming that the instrumental variable Z is independent
of Rt∗ conditional on (Yt∗�Tt∗�T ∗

0 �T
∗
1 ).

Assumption 8. (i) Z is independent of (Rt∗�Tt∗�Yt∗�T ∗
0 �T

∗
1 ) for each t∗ = 0�1. (ii) T ∗

1 ≥
T ∗

0 almost surely. (iii) 0 <P(Z = 0) < 1.

Note that I do not assume the independence between Rt∗ and Tt∗ , where the in-
dependence between the measurement errors is a key assumption when the repeated
measurement is an instrumental variable. Assumption 8 tightens the identified set for
the local average treatment effect as follows.

The requirement on R does not restrict R to have the same support as T ∗. In fact, R
can be any variable which depends on T ∗. For example, R can be an outcome variable
other than Y .

Theorem 9. Suppose that Assumption 8 holds, and consider an arbitrary data distri-
bution P of (R�Y�T�Z). The identified set ΘI(P) for the local average treatment effect is
characterized as follows: ΘI(P) =Θ if TV(R�Y�T) = 0; otherwise,

ΘI(P) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
�EP [Y | Z]� �EP [Y | Z]

TV(R�Y�T)

]
if �EP [Y | Z]> 0�

{0} if �EP [Y | Z] = 0�[
�EP [Y | Z]
TV(R�Y�T)

��EP [Y | Z]
]

if �EP [Y | Z]< 0�
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The identified set in Theorem 9 is weakly smaller than the identified set in Theo-
rem 4. The total variation distance TV(R�Y�T) in Theorem 9 is weakly larger than that in
Theorem 4, because, using the triangle inequality,

TV(R�Y�T) = 1
2

∑
t=0�1

∫∫ ∣∣(f(R�Y�T)|Z=1 − f(R�Y�T)|Z=0)(r� y� t)
∣∣dμR(r)dμY (y)

≥ 1
2

∑
t=0�1

∫ ∣∣∣∣
∫
(f(R�Y�T)|Z=1 − f(R�Y�T)|Z=0)(r� y� t)dμR(r)

∣∣∣∣dμY (y)

= 1
2

∑
t=0�1

∫ ∣∣(f(Y�T)|Z=1 − f(Y�T)|Z=0)(y� t)
∣∣dμY (y)

= TV(Y�T)

and the strict inequality holds unless the sign of (f(R�Y�T)|Z=1 − f(R�Y�T)|Z=0)(r� y� t) is
constant in r for every (y� t). Therefore, it is possible to test whether the repeated mea-
surement R has additional information, by testing whether the sign of (f(R�Y�T)|Z=1 −
f(R�Y�T)|Z=0)(r� y� t) is constant in r.

3.4 Dependence between measurement error and instrumental variable

It is still possible to apply the same identification strategy and obtain finite (but less
tight) bounds on the local average treatment effect, even without the independence be-
tween the instrumental variable and the measurement error. (Assumption 1(i) implies
that Z is independent of Tt∗ for each t∗ = 0�1.) Instead Assumption 1 is weakened to
allow for the measurement error Tt∗ to be correlated with the instrumental variable Z.

Assumption 10. (i) Z is independent of (Yt∗�T ∗
0 �T

∗
1 ) for each t∗ = 0�1. (ii) T ∗

1 ≥ T ∗
0 al-

most surely. (iii) 0 <P(Z = 0) < 1.

Theorem 11 shows that the above observations characterize the identified set for the
local average treatment effect under Assumption 10.

Theorem 11. Suppose that Assumption 10 holds, and consider an arbitrary data dis-
tribution P of (Y�T�Z). The identified set ΘI(P) for the local average treatment effect is
characterized as follows: ΘI(P) =Θ if TVY = 0; otherwise,

ΘI(P) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
�EP [Y | Z]� �EP [Y |Z]

TVY

]
if �EP [Y | Z]> 0�

{0} if �EP [Y | Z] = 0�[
�EP [Y |Z]

TVY
��EP [Y | Z]

]
if �EP [Y | Z]< 0�

The difference from Theorem 4 is that Theorem 11 does not depend on the measured
treatment T . Although it is observed in the dataset, T does not have any information
on the local average treatment effect because Assumption 10 does not restrict T . When
TVY > 0, there are nontrivial upper and lower bounds on the local average treatment
effect even without using the measured treatment T .
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4. Inference

Based on the sharp identified set in the presence of covariates (Theorem 7), this sec-
tion constructs a confidence interval for the local average treatment effect based on an
i.i.d. sample {Wi : 1 ≤ i ≤ n} of W = (Y�T�Z�V ). The confidence interval described be-
low controls the asymptotic size uniformly over a class of data generating processes, and
rejects all the fixed alternatives.

The identified set in Theorem 7 is characterized by moment inequalities as follows.

Lemma 12. Let P be an arbitrary data distribution of W = (Y�T�Z�V ). Under Assump-
tion 6, ΘI(P) is the set of θ ∈Θ in which

EP

[
− Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y
]

≤ 0� (6)

EP

[
Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y − |θ|
]

≤ 0� (7)

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)(|θ|h(Y�T�V )− sgn(θ)Y
)] ≤ 0 for all h ∈ H� (8)

where π(V ) = P(Z = 1 | V ), H is the set of measurable functions on Y × T × V taking a
value in {−0�5�0�5} and sgn(x) ≡ 1{x≥ 0} − 1{x < 0}.

The first condition in (6) states that the local average treatment effect θ has the same
sign as the intent-to-treat effect

EP

[
�EP [Y | Z�V ]] =EP

[
Y

Z −EP [Z | V ]
EP [Z | V ]EP [1 −Z | V ]

]
�

The second condition in (7) is |θ| ≥ |EP [�EP [Y | Z�V ]]|. The last condition in (8) corre-
sponds to

|θ| ≤
∣∣EP

[
�EP [Y | Z�V ]]∣∣

EP [TV(Y�T)|V ] =
∣∣EP

[
�EP [Y | Z�V ]]∣∣

sup
h∈H

EP

[
�EP

[
h(Y�T�V ) | Z�V

]] �

where I use TV(Y�T)|V = suph∈H �EP [h(Y�T�V ) | Z�V ]. The derivations are found in the
proof of Lemma 12 in Appendix B.

I construct a (1 − α)-confidence interval for the local average treatment effect θ

with treating π as a nuisance parameter for given α ∈ (0�0�5). I assume that a (1 − δ)-
confidence interval Cπ�n(δ) for π is available for researchers for given δ ∈ (0�α). Given
Cπ�n(δ), I construct the (1 − α − δ)-confidence interval Cθ�n(α + δ) for the local average
treatment effect as

Cθ�n(α+ δ) =
⋃

π∈Cπ�n(δ)

{
θ ∈Θ : T(θ�π) ≤ c(α�θ�π)

}
�
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where T(θ�π) and c(α�θ�π) are defined below using the bootstrap-based testing
(Chernozhukov, Chetverikov, and Kato (2014)).

The number of the moment inequalities in Lemma 12 can be finite or infinite, which
determines whether some of the existing methods can be applied directly to the infer-
ence on the local average treatment effect. When (Y�V ) has finite supports and, there-
fore, H is finite, the sharp identified set is characterized by a finite number of inequal-
ities and, therefore, I can apply inference methods based on unconditional moment
inequalities. To the best of my knowledge, however, inference for the local average treat-
ment effect in my framework does not fall directly into the existing moment inequality
models when either Y or V is continuous. When either Y or V is continuous, the sharp
identified set is characterized by an uncountably infinite number of inequalities. In the
current literature on the partially identified parameters, an infinite number of moment
inequalities are mainly considered in the context of conditional moment inequalities.
The identified set in this paper is not characterized by conditional moment inequali-
ties.

I consider a sequence of finite sets Hn which converges to H as a sample size in-
creases. (The convergence is formally defined in Assumption 14, and an example for Hn

appears after Assumption 14.) Note that, when H is finite, Hn can be equal to H. If H
is replaced with Hn in Lemma 12, the number of the moment inequalities becomes fi-
nite. At the same time, as Hn approaches to H, the approximation error from using Hn

converges to zero, and the number of the inequalities can be increasing, particularly di-
verging to the infinity when H includes infinite elements. The approximated identified
set is characterized by a finite number of the following moment inequalities:

EP

[
− Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y
]

≤ 0� (9)

EP

[
Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y − |θ|
]

≤ 0� (10)

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)(|θ|h(Y�T�V )− sgn(θ)Y
)] ≤ 0 for all h ∈ Hn� (11)

Denote by pn the resulting number of moment inequalities, that is, the number of ele-
ments in Hn plus 2.

For the size α ∈ (0�0�5), I construct a test statistic T(θ�π) and a critical value
c(α�θ�π) via the two-step multiplier bootstrap in Chernozhukov, Chetverikov, and Kato
(2014), where Appendix A describes the procedures. Chernozhukov, Chetverikov, and
Kato (2014) studies the testing problem for moment inequality models in which the
number of the moment inequalities is finite but growing. Since the number of the mo-
ment inequalities in (9)–(11) is finite but growing, their results are applicable to con-
struct a confidence interval based on (9)–(11).

Assumption 13. Given positive constants C2 and η, the class of data generating pro-
cesses, denoted by P0, and the parameter spaces Θ × Π satisfy the following proper-
ties: (i) max{EP [Y 3]2/3�EP [Y 4]1/2} < C2, (ii) Θ ⊂ R is bounded, (iii) The random vari-
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able inside EP in (9)–(11) has a nonzero variance for every j = 1� � � � �pn and every θ ∈ Θ,
(iv) lim infn→∞ infP∈P0 P(π ∈ Cπ�n(δ)) ≥ 1 − δ, and (v) η<π(V ) < 1 −η for every π ∈Π.

The first assumption (i) is a regularity condition about the moments of Y . The sec-
ond assumption (ii) requires researchers to know ex ante upper and lower bounds on the
parameter. The third assumption (iii) guarantees that the test statistic is well-defined.
The fourth assumption (iv) is that the confidence interval for π controls the size uni-
formly over P0. The last assumption (v) is that the propensity score π(v) = P(Z = 1 | V =
v) is bounded away from zero and one.

In this paper, I assume that {Hn} satisfies the following conditions.

Assumption 14. (i) Hn ⊂ Hn+1. (ii) The convergence

sup
h∈H

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)h(Y�T�V )

]
− max

h∈Hn

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)h(Y�T�V )

]
→ 0 (12)

holds uniformly over π ∈Π and P ∈ P0. (iii) The number of elements in Hn satisfies

log7/2(pnn) ≤ C1n
1/2−c1 and log1/2 pn ≤ C1n

1/2−c1 (13)

for some c1 ∈ (0�1/2) and C1 > 0.

An example of Hn is obtained by discretizing Y × T × V. Partition Y × T × V by
In�1� � � � � In�Kn , in which the intervals In�k and the grid size Kn depend on the sample
size n. Let hn�j be a generic function of Y × T × V into {−0�5�0�5} that is constant over
In�k for every 1 ≤ k ≤ Kn. Let Hn = {hn�1� � � � �hn�2Kn } be the set of all such functions.
Lemma 15 shows that this construction of Hn satisfies equation (12) under conditions
on In�k and f(Y�T)|Z=z . The conditions in Lemma 15 guarantee that the approximation
error from the discretization vanishes as the sample size n increases.

Lemma 15. Assumption 14 holds if (i) the partition In+1�1� � � � � In+1�Kn+1 is a refinement of
the partition In�1� � � � � In�Kn , (ii) pn = 2Kn + 2 satisfies (13), (iii) there is a positive constant
D1 such that In�k is a subset of some open ball with radius D1/Kn in Y ×T ×V, and (iv) the
density function f(Y�T)|Z=z�V is Hölder continuous in (y� t� v) with the Hölder constant D0
and exponent d.

Theorem 16 shows asymptotic properties of the confidence interval Cθ�n(α+ δ). The
first result (i) is the uniform asymptotic size control and the second result (ii) is the con-
sistency against all the fixed alternatives.

Theorem 16. Construct T(θ�π) and c(α�θ�π) via the two-step multiplier bootstrap as
in Appendix A. Suppose that Assumptions 13 and 14 hold. (i) The confidence interval con-
trols the asymptotic size uniformly:

lim inf
n→∞ inf

P∈P0�θ∈ΘI(P)
P

(
θ ∈ Cθ�n(α+ δ)

) ≥ 1 − α− δ�

(ii) If equation (12) holds, the confidence interval excludes all the fixed alternatives:

lim
n→∞P

(
θ ∈ Cθ�n(α+ δ)

) = 0 for every (θ�P) ∈Θ×P0 with θ /∈ΘI(P)�



Quantitative Economics 9 (2018) Heterogeneous treatment effects 1353

5. Empirical illustrations

This section studies the effects of the 401(k) participation on financial savings using the
inference method in Section 4. I introduce a measurement error problem to the analysis
of Poterba, Venti, and Wise (1995) and Abadie (2003), which investigate the local average
treatment effect using the eligibility for a 401(k) program. The robustness to misclassi-
fication is empirically relevant because the retirement pension plan type is subject to a
measurement error in survey datasets. Using the Health and Retirement Study, for ex-
ample, Gustman, Steinmeier, and Tabatabai (2008) estimated that around one-fourth of
the survey respondents misclassified their pension plan type.

The dataset in my analysis is from the Survey of Income and Program Participation
(SIPP) of 1991. I follow the data construction in Abadie (2003). The sample consists of
households in which at least one person is in employment, which has no income from
self-employment, and whose annual family income is between $10,000 and $200,000.
The resulting sample size is 9275.

The outcome variable Y is the net amount of financial assets in dollars, and the
measured treatment variable T is the self-reported participation in a 401(k) program.
The 401(k) participation can be endogenous because participants in a 401(k) program
might be more informed or plan more about retirement savings than nonparticipants.
To control for the endogeneity problem, I use the 401(k) eligibility, which is the indi-
cator of whether an employer offers a 401(k) program, as an instrumental variable Z.
I also use the participation in an individual retirement account (IRA) as the variable
R in Section 3.3. The control variables V includes constant, family income, age, age
squared, marital status, and family size. The summary statistics for (Y�T�Z�R) are in
Table 1.

To implement the proposed method, I impose Assumption 6 in this empirical exer-
cise. Assumption 6(i) requires that, given the covariates V , the 401(k) eligibility Z is ex-
ogenous for the self-report T as well as the saving Y and the true 401(k) participation T ∗.
Poterba, Venti, and Wise (1995) justified the exogeneity of the 401(k) eligibility given the
income level, based on that an employer determines the 401(k) eligibility wheres an em-
ployee determines saving and pension plan. Using the same reasoning, the self-report T
is an employee’s choice and then the 401(k) eligibility Z is considered to be exogenous
for the self-report T . Assumption 6(ii) holds because a 401(k) plan is not available un-
less an employee is eligible. Assumption 6(iii) requires that the 401(k) eligibility is not
deterministic given the covariates V . Given that the 401(k) eligibility is an employer’s

Table 1. Summary statistics for Y , T , Z, and R.

Mean Standard Deviation

Y : Family net financial assets 19,071 63,963
T : 401(k) participation 0�2762 0�4472
Z: 401(k) eligibility 0�3921 0�4883
R: IRA participation 0�2543 0�4355
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decision and the covariates V are employee’s demographic variables, this condition is

likely to hold.

To construct the confidence interval Cπ�n(δ) for π, I use the linear probability model

for the regression of the instrumental variable Z on the control variables V . I estimate

βπ in E[Z | V ] = π(V ) = V ′βπ using OLS and compute the confidence interval using a
nonparametric bootstrap.

To compare the proposed method with the exiting methods, I compute the Wald es-

timator, $16,290, with a 95% bootstrapped confidence interval [5976�27,611]. (The Wald

estimator is the sample analogue of E[ Z−π(V )
π(V )(1−π(V ))Y ]/E[ Z−π(V )

π(V )(1−π(V ))T ] with π being es-

timated in the linear probability model.) The estimated intent-to-treat effect is $10,981
with a 95% bootstrapped confidence interval [4169�18,558].

For the construction of In�1� � � � � In�Kn , I construct a partition only over Y × T to make

the number of Kn reasonable.7 Using an integer Ln, I discretize the outcome variables

Y using {yτ : τ = 0�1/Ln� � � � � (Ln − 1)/Ln�1}, where yτ is the unconditional τ-quantiles

of Y . Define Kn = 2Ln and, for every l = 1� � � � �Ln, define In�l = {(y� t) : y(l−1)/Ln < y ≤
yl/Ln� t = 0} and In�l+Ln = {(y� t) : y(l−1)/Ln < y ≤ yl/Ln� t = 1}. I use Ln = 1�2�3�4 in the

following analysis.8 Although the data-driven choice of Ln is beyond the scope of this
paper, a possible rule-of-thumb choice is the largest Ln for which each In�k has at least

a certain number of observations, for example, 30. In this empirical exercise, the corre-

sponding choice is Ln = 3.

Table 2 shows the confidence intervals for the local average treatment effect, where I

use 2000 draws for the bootstraps and set β= 0�1% for the moment selection and δ= 1%
for the estimation of βπ . The confidence intervals for the local average treatment effect

are qualitatively similar to the confidence interval for the Wald estimand. The confi-
dence intervals do not shrink as Ln increases from 1 to 4. It is possibly because the data

generation process does not violate the conditions in (5) to a large extent and, therefore,

the Wald estimand is close to the sharp upper bound for the local average treatment

effect.

Table 2. 90% and 95% confidence intervals for the local average treatment effect for differ-
ent Ln. (Based on Theorem 7).

Ln 90% CI 95% CI

1 [5743 25,287] [4465 27,415]
2 [5748 25,891] [4461 28,062]
3 [5707 26,081] [4443 28,163]
4 [5713 26,122] [4430 28,296]

7Otherwise the number of the observations in some In�k’s can be small. Note that the resulting approx-
imated identified set is still weakly tighter than the identified set based on the Wald estimand. Particularly
when Ln = 1, the condition in (11) is equivalent to using the Wald estimand as the upper bound for |θ|.

8The results are similar for larger values of Ln. Further results are available from the author upon request.
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Table 3. 90% and 95% confidence intervals with using R as in Theorem 9.

Ln 90% CI 95% CI

1 [5741 25,829] [4431 28,081]
2 [5696 26,197] [4417 28,588]
3 [5652 26,487] [4422 28,713]
4 [5665 26,612] [4418 28,846]

Table 4. 90% and 95% confidence intervals without T as in Theorem 11.

Ln 90% CI 95% CI

1 [5781 Inf] [4485 Inf]
2 [5741 81,973] [4483 89,204]
3 [5729 108,861] [4455 118,218]
4 [5725 84,999] [4433 92,032]

Table 3 summarizes the confidence intervals with the IRA participation R as an ad-
ditional measurement discussed in Theorem 9.9 It shows similar values to Table 2, and
it can be because the IRA participation has only little identifying power on the local av-
erage treatment effect.

Table 4 summarizes the confidence intervals without using the measured treatment
T , as in Theorem 11.10 The lower bound of the confidence intervals does not change
from those in Table 2, because the lower bound of the identified set does not depend on
the measured treatment T . The upper bound is 3–4 times larger than those in Table 2,
which is the cost of not using T . When Ln = 1, TVY becomes zero, and then there is no
finite upper bound on the local average treatment effect.

In summary, the empirical results based on the proposed method are qualitatively
similar to those results based on the Wald estimator. Given that this paper allows for
a misclassification of the treatment variable, the empirical exercise has demonstrated
the robustness of the existing results which ignore the measurement error (cf. Poterba,
Venti, and Wise (1995) and Abadie (2003)).

6. Conclusion

This paper studies the identifying power of an instrumental variable in the heteroge-
neous treatment effect framework when a binary treatment is mismeasured and en-
dogenous. The assumptions in this framework are the monotonicity of the instrumen-

9In Table 3, I construct In�1� � � � � In�Kn as follows. Define Kn = 4Ln and, for every l = 1� � � � �Ln, define In�l =
{(y� t� r) : y(l−1)/Ln < y ≤ yl/Ln � t = 0� r = 0}, In�l+Ln = {(y� t� r) : y(l−1)/Ln < y ≤ yl/Ln � t = 1� r = 0}, In�l+2Ln =
{(y� t� r) : y(l−1)/Ln < y ≤ yl/Ln � t = 0� r = 1}, and In�l+3Ln = {(y� t� r) : y(l−1)/Ln < y ≤ yl/Ln � t = 1� r = 1}.

10In Table 4, I construct In�1� � � � � In�Kn as follows. Define Kn = Ln and, for every l = 1� � � � �Ln, define
In�l = {(y� t� r) : y(l−1)/Ln < y ≤ yl/Ln }.



1356 Takuya Ura Quantitative Economics 9 (2018)

tal variable Z on the true treatment T ∗ and the exogeneity of Z. I use the total vari-
ation distance to characterize the identified set for the local average treatment ef-
fect E[Y1 − Y0 | T ∗

0 < T ∗
1 ]. I also provide an inference procedure for the local average

treatment effect. Unlike the existing literature on measurement error, the identifica-
tion strategy does not reply on a specific structure of the measurement error; the only
assumption on the measurement error is its independence of the instrumental vari-
able.

There are several directions for future research. First, the choice of the partition In
in Section 4, particularly the choice of Kn, is an interesting direction. To the best of
my knowledge, the literature on many moment inequalities has not investigated how
econometricians choose the numbers of the many moment inequalities. Second, it may
be worthwhile to investigate the other parameter for the treatment effect. This paper
has focused on the local average treatment effect, but the literature on heterogeneous
treatment effect has emphasized the importance of choosing an adequate treatment
effect parameter in order to answer relevant policy questions. Third, it is also inter-
esting to investigate various assumptions on the measurement errors. In some empir-
ical settings, for example, it may be reasonable to assume that the measurement er-
ror is one-directional (e.g., misclassification happens only when T ∗ = 1). Fourth, it is
not trivial how the analysis of this paper can be extended to an instrumental variable
taking more than two values. For a general instrumental variable, it is always possible
to focus on two values of the instrumental variable and apply the analysis of this pa-
per to the subpopulation with the instrumental variable taking these two values. How-
ever, different pairs of the values can have different compliers, so that the parameter
of interest is not common across different pairs, as discussed in Heckman and Vytlacil
(2005).

Appendix A: Multiplier bootstrap

This section describes the construction of T(θ�π) and c(α�θ�π) via the two-step mul-
tiplier bootstrap in Chernozhukov, Chetverikov, and Kato (2014). The two-step proce-
dures involves inequality selection in the first step and testing in the second step. The
first step uses β = βn as the size for selecting the moments. Chernozhukov, Chetverikov,
and Kato (2014) imposed β < α/3 and 1/βn ≤ C1 log(n) where C1 is the constant in As-
sumption 12.

Define the moment functions based on (9)–(11). Define Hn = {h1� � � � �hpn−2} and

g1(W �θ�π) = − Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y�

g2(W �θ�π) = Z −π(V )

π(V )
(
1 −π(V )

) sgn(θ)Y − |θ|�

g2+j(W �θ�π) = Z −π(V )

π(V )
(
1 −π(V )

)(|θ|hj(Y�T�V )− sgn(θ)Y
)

for 3 ≤ j ≤ pn�

Then the approximated identified set is characterized by{
(θ�π) ∈Θ× [0�1] :EP

[
gj(W �θ�π)

]
for every j = 1� � � � �pn

}
�
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The test statistic for the true parameter values being (θ�π) is defined by

T(θ�π)= max
1≤j≤pn

√
nm̂j(θ�π)

σ̂j(θ�π)
�

where m̂j(θ�π) estimates mj(θ�π) = EP [gj(W �θ�π)], and σ̂2
j (θ�π) estimates the vari-

ance σ2
j (θ�π) of

√
nm̂j(θ�π):

m̂j(θ�π) = n−1
n∑

i=1

gj(Wi�θ�π)�

σ̂2
j (θ�π) = n−1

n∑
i=1

(
gj(Wi�θ�π)− m̂j(θ�π)

)2
�

To conduct a multiplier bootstrap, generate n independent standard normal random
variables ε1� � � � � εn. The centered bootstrap moments are

m̂B
j (θ�π)= n−1

n∑
i=1

εi
(
gj(Wi�θ�π)− m̂j(θ�π)

)
�

The bootstrapped test statistic for inequality selection is defined by

TB�1(θ�π)= max
1≤j≤pn

√
n
m̂B

j (θ�π)

σ̂j(θ�π)
�

The critical value c1(β�θ�π) for inequality selection is defined as the conditional (1−β)-
quantile of TB�1(θ�π) given {Wi}. Define

ĴB =
{
j = 1� � � � �pn : √n

m̂B
j (θ�π)

σ̂j(θ�π)
> −2c1(β�θ�π)

}
�

The bootstrapped test statistic is defined by

TB(θ�π)= max
j∈ĴB

√
n
m̂B

j (θ�π)

σ̂j(θ�π)
�

where TB(θ�π) is defined as 0 if ĴB = ∅. The critical value c(α�θ�π) is defined as the
conditional (1 − α+ 2β)-quantile of TB(θ�π) given {Wi}.

Appendix B: Proofs

Proof of Lemma 2

By equation (4), θ(P∗)�EP∗ [Y | Z] = θ(P∗)2P∗(T ∗
0 < T ∗

1 ) ≥ 0, and |�EP∗ [Y | Z]| =
|θ(P∗)P∗(T ∗

0 < T ∗
1 )| ≤ |θ(P∗)|.
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Proof of Lemma 3

I obtain f(Y�T)|Z=1 − f(Y�T)|Z=0 = P∗(T ∗
0 < T ∗

1 )(f(Y1�T1)|T ∗
0 <T ∗

1
− f(Y0�T0)|T ∗

0 <T ∗
1
) by the same

logic as Theorem 1 in Imbens and Angrist (1994):

f(Y�T)|Z=0 = P∗(T ∗
0 = T ∗

1 = 1 | Z = 0
)
f(Y�T)|Z=0�T ∗

0 =T ∗
1 =1

+ P∗(T ∗
0 < T ∗

1 | Z = 0
)
f(Y�T)|Z=0�T ∗

0 <T ∗
1

+ P∗(T ∗
0 = T ∗

1 = 0 | Z = 0
)
f(Y�T)|Z=0�T ∗

0 =T ∗
1 =0

= P∗(T ∗
0 = T ∗

1 = 1
)
f(Y1�T1)|T ∗

0 =T ∗
1 =1

+ P∗(T ∗
0 < T ∗

1
)
f(Y0�T0)|T ∗

0 <T ∗
1

+ P∗(T ∗
0 = T ∗

1 = 0
)
f(Y0�T0)|T ∗

0 =T ∗
1 =0�

f(Y�T)|Z=1 = P∗(T ∗
0 = T ∗

1 = 1
)
f(Y1�T1)|T ∗

0 =T ∗
1 =1

+ P∗(T ∗
0 < T ∗

1
)
f(Y1�T1)|T ∗

0 <T ∗
1

+ P∗(T ∗
0 = T ∗

1 = 0
)
f(Y0�T0)|T ∗

0 =T ∗
1 =0�

By the triangle inequality,

TV(Y�T) = 1
2

∑
t=0�1

∫ ∣∣f(Y�T)|Z=1(y� t)− f(Y�T)|Z=0(y� t)
∣∣dμY (y)

= 1
2

∑
t=0�1

∫ ∣∣P∗(T ∗
0 < T ∗

1
)(
f(Y1�T1)|T ∗

0 <T ∗
1
(y� t)− f(Y0�T0)|T ∗

0 <T ∗
1
(y� t)

)∣∣dμY (y)

= P∗(T ∗
0 < T ∗

1
)1

2

∑
t=0�1

∫ ∣∣f(Y1�T1)|T ∗
0 <T ∗

1
(y� t)− f(Y0�T0)|T ∗

0 <T ∗
1
(y� t)

∣∣dμY (y)

≤ P∗(T ∗
0 < T ∗

1
)1

2

∑
t=0�1

∫ (
f(Y1�T1)|T ∗

0 <T ∗
1
(y� t)+ f(Y0�T0)|T ∗

0 <T ∗
1
(y� t)

)
dμY (y)

= P∗(T ∗
0 < T ∗

1
)
�

Moreover, since T ∗
0 ≤ T ∗

1 almost surely,

P∗(T ∗
0 < T ∗

1
) = 1

2

∣∣P∗(T ∗
0 = 1

) − P∗(T ∗
1 = 1

)∣∣ + 1
2

∣∣P∗(T ∗
0 = 0

) − P∗(T ∗
1 = 0

)∣∣
= 1

2

∑
t∗=0�1

∣∣fT ∗|Z=1
(
t∗

) − fT ∗|Z=0
(
t∗

)∣∣
= TVT ∗ �
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Proof of Lemma 5

Based on the triangle inequality,

TV(Y�T) = 1
2

∑
t=0�1

∫ ∣∣f(Y�T)|Z=1(y� t)− f(Y�T)|Z=0(y� t)
∣∣dμY (y)

≥ 1
2

∑
t=0�1

∣∣∣∣
∫ (

f(Y�T)|Z=1(y� t)− f(Y�T)|Z=0(y� t)
)
dμY (y)

∣∣∣∣
= 1

2

∑
t=0�1

∣∣fT |Z=1(t)− fT |Z=0(t)
∣∣

= ∣∣fT |Z=1(1)− fT |Z=0(1)
∣∣

= ∣∣�EP [T |Z]∣∣�
The equality holds if and only if the sign of f(Y�T)|Z=1(y� t)−f(Y�T)|Z=0(y� t) is constant in
y for every t. Since |�EP [T | Z]| = �EP [T | Z] if and only if fT |Z=1(1)− fT |Z=0(1) is posi-
tive, the condition in (5) is a necessary and sufficient condition for TV(Y�T) = �EP [T | Z],
which is equivalent for the Wald estimand to belong to the identified set.

Proof of Theorems 4, 7, and 9

Theorems 4, 7, and 9 are special cases of the following theorem.

Theorem 17. There is some variable V taking values in a set V satisfying the following
properties:

(i) For each t∗ = 0�1, Z is conditionally independent of (Rt∗�Tt∗�Yt∗�T ∗
0 �T

∗
1 ) given V .

(ii) T ∗
1 ≥ T ∗

0 almost surely.

(iii) 0 <P(Z = 1 | V ) < 1.

Consider an arbitrary data distribution P of (R�Y�T�Z�V ). The identified set ΘI(P) for
the local average treatment effect is the set of θ ∈ Θ satisfying the following three inequal-
ities:

|θ|EP [TV(R�Y�T)|V ] ≤ ∣∣EP

[
�EP [Y | Z�V ]]∣∣�

θEP

[
�EP [Y |Z�V ]] ≥ 0�

|θ| ≥ ∣∣EP

[
�EP [Y | Z�V ]]∣∣�

To show Theorem 17, I consider the two cases separately: EP [TV(R�Y�T)|V ] = 0 or
EP [TV(R�Y�T)|V ]> 0.

Case 1: EP [TV(R�Y�T)|V ] = 0. In this case, f(R�Y�T)|Z=z�V = f(R�Y�T)|V a.s. for every z =
0�1. Let f1 and f0 be any pair of density functions for Y dominated by μY . Define the
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data generating process P∗
f1�f0

:

(Z�V ) ∼ f(Z�V )�(
T ∗

0 �T
∗
1
) | Z�V = (1�1)�

(R1�Y1�T1) | (T ∗
0 �T

∗
1 �Z�V

) ∼
{
f(R�Y�T)(r� y� t) if T ∗

0 = T ∗
1 �

f1(y)f(R�T)(r� t) if T ∗
0 �= T ∗

1 �

(R0�Y0�T0) | (T ∗
0 �T

∗
1 �Z

) ∼ f0(y)f(R�T)(r� t)�

Theorem 17 follows from the following three observations:

(i) P∗
f1�f0

satisfies all the assumptions in Theorem 17,

(ii) P∗
f1�f0

generates the data distribution P ,

(iii) under P∗
f1�f0

, the local average treatment effect is
∫
y(f1(y)− f0(y))dμY (y).

(i) P∗
f1�f0

satisfies the independence between Z and (Rt∗�Tt∗�Yt∗�T ∗
0 �T

∗
1 ) given V for

each t∗ = 0�1. Furthermore, P∗
f1�f0

satisfies T ∗
1 ≥ T ∗

0 almost surely.
(ii) Denote by f ∗ the density function of P∗

f1�f0
. Then

f ∗
(R�Y�T)|Z=0�V = f ∗

(R1�Y1�T1)|Z=0�V

= f(R�Y�T)|V

= f(R�Y�T)|Z=0�V �

f ∗
(R�Y�T)|Z=1�V = f ∗

(R1�Y1�T1)|Z=0�V

= f(R�Y�T)|V

= f(R�Y�T)|Z=1�V �

where the last equality uses f(R�Y�T)|Z=0�V = f(R�Y�T)|Z=1�V .
(iii) The local average treatment effect under P∗

f1�f0
is

EP∗
f1�f0

[
Y1 −Y0 | T ∗

0 < T ∗
1
] = EP∗

f1�f0

[
Y1 | T ∗

0 < T ∗
1
] −EP∗

f1�f0

[
Y0 | T ∗

0 < T ∗
1
]

=
∫

yf1(y)dμY (y)−
∫

yf0(y)dμY (y)�

Case 2: EP [TV(R�Y�T)|V ]> 0. Lemma 3 is modified into the framework of Theorem 17.

Lemma 18. Under Assumption 8, EP [TV(R�Y�T)|V ] ≤ P∗(T ∗
0 < T ∗

1 ).

Proof. The proof is the same as Lemma 3 and this lemma follows from f(R�Y�T)|Z=1�V −
f(R�Y�T)|Z=0�V = P∗(T ∗

0 < T ∗
1 | V )(f(R1�Y1�T1)|T ∗

0 <T ∗
1 �V

− f(R0�Y0�T0)|T ∗
0 <T ∗

1 �V
). �

From Lemmas 2 and 18 and equation (4), all the three inequalities in Theorem 9 are
satisfied for the true value of the local average treatment effect. To complete Theorem 17,
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it suffices to show that, for any data generating process P , any point θ satisfying the
three inequalities in Theorem 17 is the local average treatment effect under some data
generating process whose data distribution is equal to P .

Define the two data generating processes: P∗
L and P∗

U . First, P∗
L is defined by

(Z�V ) ∼ f(Z�V )�(
T ∗

0 �T
∗
1
) |Z�V = (0�1)�

(R0�Y0�T0) | (T ∗
0 �T

∗
1 �Z�V

) ∼ f(R�Y�T)|Z=0�V �

(R1�Y1�T1) | (T ∗
0 �T

∗
1 �Z�V

) ∼ f(R�Y�T)|Z=1�V �

Second, P∗
U is defined as follows. Using sgn(x) = 1{x ≥ 0} − 1{x < 0}, define H = 0�5 ×

sgn(�f(R�Y�T)|Z�V (R�Y�T)), and define P∗
U as

(Z�V ) ∼ f(Z�V )�

(
T ∗

0 �T
∗
1
) | Z�V =

⎧⎪⎪⎨
⎪⎪⎩
(0�1) with probability �EP [H | Z�V ]�
(0�0) with probability P(H = −0�5 | Z = 1� V )�

(1�1) with probability P(H = 0�5 | Z = 0� V )�

(R1�Y1�T1) | (T ∗
0 �T

∗
1 �Z�V

) ∼
⎧⎨
⎩
�f(R�Y�T�H)|Z�V (r� y� t�0�5)

�EP [H | Z�V ] if T ∗
0 < T ∗

1 �

f(R�Y�T)|H=0�5�Z=0�V (r� y� t) if T ∗
0 = T ∗

1 �

(R0�Y0�T0) | (T ∗
0 �T

∗
1 �Z�V

) ∼
⎧⎨
⎩−�f(R�Y�T�H)|Z�V (r� y� t�−0�5)

�EP [H | Z�V ] if T ∗
0 < T ∗

1 �

f(R�Y�T)|H=−0�5�Z=1�V (y� t) if T ∗
0 = T ∗

1 �

Lemma 19. If EP [TV(R�Y�T)|V ] > 0, then (i) P∗
L generates the data distribution P and

the local average treatment effect under P∗
L is EP [�EP [Y | Z�V ]], and (ii) P∗

U generates
the data distribution P and the local average treatment effect under P∗

U is EP [�EP [Y |
Z]]/EP [TV(R�Y�T)|V ].

Proof. (i) Denote by f ∗ the density function of P∗
L. The data generating process P∗

L

generates the data distribution P :

f ∗
(R�Y�T)|Z=0�V (r� y� t) = f ∗

(R�Y�T)|T ∗=0�Z=0�V (r� y� t)

= f ∗
(R0�Y0�T0)|T ∗=0�Z=0�V (r� y� t)

= f(R�Y�T)|Z=0�V (r� y� t)�

f ∗
(R�Y�T)|Z=1�V (r� y� t) = f ∗

(R�Y�T)|T ∗=1�Z=1�V (r� y� t)

= f ∗
(R1�Y1�T1)|T ∗=1�Z=1�V (r� y� t)

= f(R�Y�T)|Z=1�V (r� y� t)�
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where the first equality uses T ∗ = Z. Under P∗
L, the local average treatment effect is

EP [�EP [Y | Z�V ]]:

EP∗
L

[
Y1 −Y0 | T ∗

0 < T ∗
1
] = EP∗

L
[Y1] −EP∗

L
[Y0]

= EP

[
EP [Y | Z = 1� V ]] −EP

[
EP [Y | Z = 0� V ]]

= EP

[
�EP [Y | Z�V ]]�

(ii) Note that

�EP [H | Z�V ] =
∑
t=0�1

∫∫ ∣∣�f(R�Y�T)|Z�V (r� y� t)
∣∣

2
dμY (y)dμR(r)

= TV(R�Y�T)|V �

Denote by f ∗ the density function of P∗
U . Notice that f ∗

(Rt∗ �Yt∗ �Tt∗ )|(T ∗
0 �T

∗
1 �Z�V ) is well-

defined because

�EP [H | Z�V ] = TV(R�Y�T)|V > 0�

�f(R�Y�T�H)|Z�V (r� y� t�0�5) = �f(R�Y�T)|Z�V (r� y� t)1
{
�f(R�Y�T)|Z�V (r� y� t)≥ 0

} ≥ 0�

�f(R�Y�T�H)|Z�V (r� y� t�−0�5) = �f(R�Y�T)|Z�V (r� y� t)1
{
�f(R�Y�T)|Z�V (r� y� t) < 0

}
< 0�

P∗
U generates the data distribution P :

f ∗
(R�Y�T)|Z=0�V (r� y� t) = P∗

U

(
T ∗

0 < T ∗
1 | Z = 0� V

)
f ∗
(R�Y�T)|T ∗

0 <T ∗
1 �Z=0�V (r� y� t)

+ P∗
U

(
T ∗

1 = T ∗
0 = 0 | Z = 0� V

)
f ∗
(R�Y�T)|T ∗

1 =T ∗
0 =0�Z=0�V (r� y� t)

+ P∗
U

(
T ∗

1 = T ∗
0 = 1 | Z = 0� V

)
f ∗
(R�Y�T)|T ∗

1 =T ∗
0 =1�Z=0�V (r� y� t)

= P∗
U

(
T ∗

0 < T ∗
1 | V )

f ∗
(R0�Y0�T0)|T ∗

0 <T ∗
1 �V

(r� y� t)

+ P∗
U

(
T ∗

1 = T ∗
0 = 0 | V )

f ∗
(R0�Y0�T0)|T ∗

1 =T ∗
0 =0�V (r� y� t)

+ P∗
U

(
T ∗

1 = T ∗
0 = 1 | V )

f ∗
(R1�Y1�T1)|T ∗

1 =T ∗
0 =1�V (r� y� t)

= −�EP [H | Z�V ]�f(R�Y�T�H)|Z�V (r� y� t�−0�5)
�EP [H |Z�V ]

+ P(H = −0�5 | Z = 1� V )f(R�Y�T)|H=−0�5�Z=1�V (r� y� t)

+ P(H = 0�5 | Z = 0� V )f(R�Y�T)|H=0�5�Z=0�V (r� y� t)

= −(
f(R�Y�T�H)|Z=1�V (r� y� t�−0�5)− f(R�Y�T�H)|Z=0�V (r� y� t�−0�5)

)
+ f(R�Y�T�H)|Z=1�V (r� y� t�−0�5)+ f(R�Y�T�H)|Z=0�V (r� y� t�0�5)

= f(R�Y�T)|Z=0�V (r� y� t)�
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and similarly f ∗
(R�Y�T)|Z=1�V (r� y� t) = f(R�Y�T)|Z=1�V (r� y� t). Under P∗

U , the local average
treatment effect is

θ
(
P∗
U

) = EP∗
U

[
Y1 −Y0 | T ∗

0 < T ∗
1
]

= EP∗
U

[
EP∗

U

[
Y1 | T ∗

0 < T ∗
1 � V

] | T ∗
0 < T ∗

1
]

−EP∗
U

[
EP∗

U

[
Y0 | T ∗

0 < T ∗
1 � V

] | T ∗
0 < T ∗

1
]

= EP∗
U

[ ∑
t=0�1

∫∫
y
�f(R�Y�T�H)|Z�V (r� y� t�0�5)

�EP [H | Z�V ] dμY (y)dμR(r)
∣∣∣ T ∗

0 < T ∗
1

]

+EP∗
U

[ ∑
t=0�1

∫∫
y
�f(R�Y�T�H)|Z�V (r� y� t�−0�5)

�EP [H |Z�V ] dμY (y)dμR(r)
∣∣∣ T ∗

0 < T ∗
1

]

= EP∗
U

[ ∑
t=0�1

∫∫
y
�f(R�Y�T)|Z�V (r� y� t)

�EP [H |Z�V ] dμY (y)dμR(r)
∣∣∣ T ∗

0 < T ∗
1

]

= EP∗
U

[ ∑
t=0�1

∫∫
y
�f(R�Y�T)|Z�V (r� y� t)

�EP [H |Z�V ] dμY (y)dμR(r)
P∗
U

(
T ∗

0 < T ∗
1 | V )

EP∗
U

[
P∗
U

(
T ∗

0 < T ∗
1 | V )]]

= EP∗
U

[ ∑
t=0�1

∫∫
y

�f(R�Y�T)|Z�V (r� y� t)

EP∗
U

[
P∗
U

(
T ∗

0 < T ∗
1 | V )] dμY (y)dμR(r)

]

=
EP∗

U

[ ∑
t=0�1

∫∫
y�f(R�Y�T)|Z�V (r� y� t)dμY (y)dμR(r)

]

EP∗
U

[
P∗
U

(
T ∗

0 < T ∗
1 | V )]

= EP

[
�EP [Y | Z�V ]]

EP

[
�EP [H |Z�V ]]

= EP

[
�EP [Y | Z�V ]]

EP [TV(R�Y�T)|V ] �

where the fifth equality comes from Bayes’ theorem. �

Theorem 17 follows from the next lemma.

Lemma 20. If EP [TV(R�Y�T)|V ] > 0, then, for every λ ∈ [0�1], (i) the mixture distribution
λP∗

L+(1−λ)P∗
U satisfies Assumption 1, (ii) λP∗

L+(1−λ)P∗
U generates the data distribution

P , (iii) under λP∗
L + (1 − λ)P∗

U , the local average treatment effect is

λEP

[
�EP [Y | Z�V ]] + (1 − λ)

EP

[
�EP [Y | Z�V ]]

EP [TV(R�Y�T)|V ] �

Proof. (i) Under both P∗
L and P∗

U , Z is independent of (Rt∗�Tt∗�Yt∗�T ∗
0 �T

∗
1 ) given V for

each t∗ = 0�1. Furthermore, P∗
L and P∗

U have the same marginal distribution for (Z�V ):
fZ�V . Therefore, the mixture of P∗

L and P∗
U also satisfies the independence. Since both P∗

L
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and P∗
U satisfy T ∗

1 ≥ T ∗
0 almost surely, so does the mixture. (ii) By Lemma 19, both P∗

L and
P∗
U generate the data distribution P and so does the mixture. (iii) It follows from the last

statement in Lemma 19. �

Proof of Theorem 11

The proof of Theorems 11 is similar to Theorem 17. Only the difference is to change the
definition of P∗

U as follows. Define H = 0�5 × sgn(�fY |Z(Y)) and define P∗
U as

Z ∼ P(Z = z)�

(
T ∗

0 �T
∗
1
) | Z =

⎧⎪⎪⎨
⎪⎪⎩
(0�1) with probability �EP [H | Z]�
(0�0) with probability P(H = −0�5 | Z = 1)�

(1�1) with probability P(H = 0�5 | Z = 0)�

(Y1�T1) | (T ∗
0 �T

∗
1 �Z = z

) ∼
⎧⎨
⎩fT |Y=y�Z=z(t)

�f(Y�H)|Z(y�0�5)
�EP [H | Z] if T ∗

0 < T ∗
1 �

fT |Y=y�Z=z(t)fY |H=0�5�Z=0(y) if T ∗
0 = T ∗

1 �

(Y0�T0) | (T ∗
0 �T

∗
1 �Z = z

) ∼
⎧⎨
⎩−fT |Y=y�Z=z(t)

�f(Y�H)|Z(y�−0�5)
�EP [H | Z] if T ∗

0 < T ∗
1 �

fT |Y=y�Z=z(t)fY |H=−0�5�Z=1(y) if T ∗
0 = T ∗

1 �

Proof of Lemma 12

First, note that

TV(Y�T)|V = sup
h∈H

�EP

[
h(Y�T�V ) | Z�V

]
� (14)

This is verified as follows. For every h ∈ H, I have

�EP

[
h(Y�T�V ) | Z�V

]
=EP

[
h(Y�T�V ) | Z = 1� V

] −EP

[
h(Y�T�V ) |Z = 0� V

]
=

∑
t=0�1

∫
h(y� t�V )�f(Y�T)|Z�V (y� t)dμY (y)

≤ 1
2

∑
t=0�1

∫ ∣∣�f(Y�T)|Z�V (y� t)
∣∣dμY (y)

= TV(Y�T)|V �

Moreover, the above inequality becomes an equality when h(y� t� v) = 0�5 if and only if
�f(Y�T)|Z�V =v(y� t) is positive.
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Abadie (2003) and Frölich (2007) showed that

EP

[
�EP [X | Z�V ]] =EP

[
Z −π(V )

π(V )
(
1 −π(V )

)X]
(15)

for any random variable X .11

By Theorem 17 and equation (14), ΘI(P) is characterized by

|θ|EP

[
�EP

[
h(Y�T�V ) | Z�V

]] ≤ ∣∣EP

[
�EP [Y |Z�V ]]∣∣ for every h ∈ H�

θEP

[
�EP [Y | Z�V ]] ≥ 0�

|θ| ≥ ∣∣EP

[
�EP [Y |Z�V ]]∣∣�

Since the second condition implies sgn(θ) = sgn(EP [�EP [Y | Z�V ]]), the above three
conditions become

|θ|EP

[
�EP

[
h(Y�T�V ) | Z�V

]] ≤ sgn(θ)EP

[
�EP [Y | Z�V ]] for every h ∈ H�

sgn(θ)EP

[
�EP [Y | Z�V ]] ≥ 0�

|θ| ≥ sgn(θ)EP

[
�EP [Y | Z�V ]]�

By equation (15), ΘI(P) is characterized as in Lemma 12.

Proof of Lemma 15

Condition (i) implies Assumption 14(i). Condition (ii) implies Assumption 14(iii).
The rest of the proof is going to show Assumption 14(ii). Define h∗

P(y� t� v) = 0�5 ×
sgn(�f(Y�T)|Z�V =v(y� t)) and h∗

P�n = argmaxh∈Hn
EP [�EP [h(Y�T) | Z�V ]]. Then h∗

P =
11The proof is as follows:

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)X]
= EP

[ (
1 −π(V )

)
Z + (Z − 1)π(V )

π(V )
(
1 −π(V )

) X

]

= EP

[
Z

π(V )
X

]
−EP

[
1 −Z(

1 −π(V )
)X]

= EP

[
EP [ZX | V ]

π(V )

]
−EP

[
EP

[
(1 −Z)X | V ]
(
1 −π(V )

) ]

= EP

[
π(V )EP [X |Z = 1� V ]

π(V )

]

−EP

[ (
1 −π(V )

)
EP [X |Z = 0� V ](

1 −π(V )
) ]

= EP

[
EP [X |Z = 1� V ] −EP [X | Z = 0� V ]]

= EP

[
�EP [X | Z�V ]]�
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argmaxh∈H EP [ Z−π(V )
π(V )(1−π(V ))h(Y�T�V )]. By the Hölder continuity of f(Y�T)|Z�V ,

max
(y�t�v)∈In�k

�f(Y�T)|Z�V =v(y� t)− min
(y�t�v)∈In�k

�f(Y�T)|Z�V =v(y� t)≤ 2D0

(
2
D1

Kn

)d

�

Define Dn = 2D0(2
D1
Kn

)d . For In�k with sup(y�t�v)∈In�k |�f(Y�T)|Z�V =v(y� t)| > Dn, the above
inequality implies that sgn(�f(Y�T)|Z�V =v(y� t)) is constant on In�k. For those In�k, h∗ = h∗

n

on In�k. Then, on every In�k, either h∗ = h∗
n or |�f(Y�T)|Z�V =v(y� t)| ≤ Dn. Therefore,

h∗
P�n(y� t� v)�f(Y�T)|Z�V =v(y� t)≥ h∗

P(y� t� v)�f(Y�T)|Z�V =v(y� t)+ 0�5 ×Dn�

Since

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)h(Y�T�V )

]

=EP

[
�EP

[
h(Y�T�V ) | Z�V

]]
=

∫∫∫
h(y� t� v)�f(Y�T)|Z�V =v(y� t)fV (v)μY (dy)μT (dt)μV (dv)

=
Kn∑
k=1

∫∫∫
In�k

h(y� t� v)�f(Y�T)|Z�V =v(y� t)fV (v)μY (dy)μT (dt)μV (dv)�

it follows that

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)h∗
P�n(Y�T�V )

]
≥EP

[
Z −π(V )

π(V )
(
1 −π(V )

)h∗
P(Y�T�V )

]
+Dn�

Since Dn converges to zero uniformly over P , Assumption 14(ii) holds.

Proof of Theorem 16

The following theorem is taken from Corollary 5.1 and Theorem 6.1 in Chernozhukov,
Chetverikov, and Kato (2014).

Theorem 21. Given εn > 0 with εn → 0 and εn
√

logpn → ∞, denote by H1�n the set of
(θ�π�P) ∈ Θ×Π ×P0 for which π = P(Z | V = ·) and

max
j=1�����pn

mj(θ)/σj(θ)≥ (1 + εn)
√

2 log(pn/α)/n� (16)

Under the assumptions in Theorem 16,

(i) lim inf
n→∞ inf

(θ�π�P)∈Θ×Π×P0 s.t. θ∈ΘI(P) and π=P(Z|V )
P

(
T(θ�π)≤ c(α�θ�π)

) ≥ 1 − α;

(ii) lim
n→∞ sup

(θ�P)∈H1�n

P
(
T(θ�π) ≤ c(α�θ�π)

) = 0�
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Theorem 16(i) follows from

P
(
θ /∈ Cθ�n(α+ δ)

) ≤ P
(
θ /∈ Cθ�n(α+ δ)&π ∈ Cπ�n(δ)

) + P
(
π /∈ Cπ�n(δ)

)
≤ P

(
T(θ�π) > c(α�θ�π)&π ∈ Cπ�n(δ)

) + P
(
π /∈ Cπ�n(δ)

)
= P

(
T(θ�π) > c(α�θ�π)

) + P
(
π /∈ Cπ�n(δ)

) ≤ α+ δ�

where the last inequality comes from Theorem 21(i) and Assumption 13(iv).
Theorem 16(ii) is shown as follows. Denote by D2 a constant for which σj(·) < D2.

Let (θ�P) be any element of Θ×P0 with θ /∈ΘI(P). It suffices to show that (16) holds for
sufficiently large n. If either (6) or (7) is violated, then (16) holds for sufficiently large n.
In the rest of the proof, I focus on the case where (8) is violated. That is,

sup
h∈H

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)(|θ|h(Y�T�V )
) − sgn(θ)Y

]
> 0�

Since Hn converges to H in the sense of (12) and Z−π(V )
π(V )(1−π(V )) |θ| is bounded, it follows

that, for sufficiently large n, there is h ∈ Hn such that

EP

[
Z −π(V )

π(V )
(
1 −π(V )

)(|θ|h(Y�T�V )− sgn(θ)Y
)]

> 0�

Denoted by κ the value of the left-hand side in the above inequality. For sufficiently large
n, there is j = 3� � � � �pn such that mj(θ) > κ. For such j, mj(θ)/σj(θ) > κ/D2. Therefore,
(16) holds for sufficiently large n.
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