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Estimation of dynastic life-cycle discrete choice models
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Limor Golan
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Mehmet A. Soytas
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This paper explores the estimation of a class of life-cycle discrete choice dynas-
tic models. It provides a new representation of the value function for these class
of models. It compare a multistage conditional choice probability (CCP) estimator
based on the new value function representation with a modified version of the full
solution maximum likelihood estimator (MLE) in a Monte Carlo study. The modi-
fied CCP estimator performs comparably to the MLE in a finite sample but greatly
reduces the computational cost. Using the proposed estimator, we estimate a dy-
nastic model and use the estimated model to conduct counterfactual simulations
to investigate the role Nature versus Nurture in intergenerational mobility. We find
that Nature accounts for 20 percent of the observed intergenerational immobil-
ity at the bottom of income distribution. That means that 80 percent of mobility
at the bottom of the income distribution is explained by economic decision and
economic/institutional constraints.
Keywords. Discrete choice models, dynastic models, intergenerational mobility,
nature versus nurture.

JEL classification. C13, J13, J22, J62.

1. Introduction

The importance of parents’ altruism toward their children and children’s altruism to-
ward their parents has long been recognized as an important factor underlying the
economic behavior of individuals. Economic models that incorporate these intergen-
erational links are normally referred to as dynastic models. Many important economic
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behaviors—and hence the welfare effect of many public policies—critically depend on
whether these dynastic links are explicitly modeled.

Several papers have documented that (i) the distribution of wealth is more concen-
trated than that of labor earnings and (ii) it is characterized by a smaller of fraction of
households owning a larger fraction of total wealth over time. There are different models
of dynastic transfers explaining the persistence in wealth and income across generations
(e.g., the Loury (1981), model of transmission of human capital and the Laitner (1992),
model of bequests); however, in these models fertility is exogenous. Barro and Becker
(1988, 1989) develop dynastic models with endogenous fertility; however, in their mod-
els endogenizing fertility leads to a lack of persistence in earnings and wealth because
wealthier households have more children and therefore dynastic transfers do not de-
pend on wealth and income. The data clearly show persistence in income across genera-
tions. Subsequently, dynastic models with endogenous fertility that capture the dynastic
persistence of income and wealth have been analyzed extensively, but such models have
not been estimated mainly because of computational feasibility considerations. This
paper develops an estimator for dynastic models of dynastic transfers and estimates a
model quantifying the different factors generating the persistence of income.

Alvarez (1999) combined the main features of the above-mentioned models by in-
corporating the fertility decision into the Laitner (1992) and Loury (1981) dynastic trans-
fer models. While some models, as Laitner (1992), incorporated an elaborate finite
life-cycle model for adults in each generation, in other models there is one period of
childhood and one period of adulthood. The framework we study incorporates all these
elements and develops a model in which altruistic parents make discrete choices of
birth, labor supply, and discrete and continuous investment choices in children. In par-
ticular, in order to accommodate many models in the literature, parents choose time
with children and a continuous monetary investment in their children every year over
their life cycle. The model can also be extended to include bequests. The model is a par-
tial equilibrium model, and as in most dynastic models and in the basic setup, there is
one decision-maker in a household; however, we show that it can be easily extended to
a unitary household.1

While the study of dynastic models has been widespread in the economic literature,
these studies have been largely theoretical or quantitative theory. However, the estima-
tion of these models and the use of these estimated models to conduct counterfactual
policy analysis are nonexistent. There are two main reasons for this gap; the first is data
limitation and the second is computational feasibility. Ideally, one would need data on
the choices and characteristics of multiple generations linked across time to estimate
these dynastic models. The number of generations needed for estimation can be re-
duced to two by analyzing the stationary equilibrium properties of these model. Re-
cently, data on the choices and characteristics of at least two generations have become
available in the National Longitudinal Survey of Youth (NLSY79), Panel Study of Income
Dynamics (PSID), and a number of European administrative datasets.

1In a companion paper, we extend the current framework to incorporate nonunitary households (Gayle,
Golan, and Soytas (2014)).
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There are two main estimators used in the literature to estimate dynamic discrete
choice models: full solution method using the “nested fixed point” algorithm (NFXP)
(see Wolpin (1984), Miller (1984), Pakes (1986), and Rust (1987) for early examples) and
“conditional choice probability” (CCP) (see Hotz and Miller (1993), Altug and Miller
(1998), and Aguirregabiria (1999)) estimators that do not require the solution to the
fixed points. More recently, Aguirregabiria and Mira (2002) showed that an appropri-
ately formed CCP-based estimator, “nested pseudo likelihood” (NPL), is asymptotically
equivalent to an NFXP estimator. The major limitation of the NFXP estimation proce-
dure is that it suffers from the curse of dimensionality (i.e., as the number of states in
the state space increases, the number of computations increases at a rate faster than
linear). Dynastic models add an additional loop to this estimation procedure: a nested
fixed-point squared. Therefore, this estimation procedure suffers from the curse of di-
mensionality squared. However, even with a CCP estimator or an NPL estimator, esti-
mation of the dynastic model requires dealing with further complications that are not
present in single-agent dynamic discrete choice models.

The main difficulty is deriving the representation of the value functions of the prob-
lem. This difficulty is associated with the nonstandard nature of the problem. A dynastic
model has finite number of periods in the life cycle in each generation and infinitely
many generations are linked by the altruistic preferences. This framework does not fit
into a finite horizon dynamic discrete choice model since in the last period, there is a
continuation value associated with the next generation’s problem that is linked to the
current generation by the transfers and the discount factor. Therefore, we need to find a
representation for the next generation’s continuation value if we want to treat the prob-
lem as a standard finite-period problem and solve it by backward induction.2 In this
paper, we propose a new estimation procedure based on a representation of the period
value functions in terms of period primitives. In particular, we show that an appropri-
ately defined alternative representation of the continuation value enables us to apply a
CCP estimator to dynastic models. The general principles used in the estimation tech-
nique are well known in the literature,3 and hence the main contribution of this paper is
showing how these principles can be combined to estimate dynastic models. In a Monte
Carlo study, we demonstrate that a multistage CCP estimator based on the new value
function representation have good small-sample properties that compare favorably to
a full solution NFXP estimator. For this comparison, we use a pseudo maximum like-
lihood estimator (PML) so that our results would be more comparable to those of the
NFXP maximum likelihood estimator.

We use the GMM version of the estimator developed in this paper to estimate a dy-
nastic model of intergenerational transmission of human capital with unitary house-
holds. The estimated model captures well the labor supply, time with children, and fer-
tility decisions of households. We then demonstrate the usefulness of our framework for

2Obviously, we can always solve the problem by NFXP if we assume that the problem is stationary in
the generations. In this case, the solution to the dynamic programming problem requires solving the fixed-
point problem for the period value functions. However, as one can easily anticipate, we encounter the same
computational burden of full solution. Therefore, our specific interest is CCP-type estimators.

3See Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994), Altug and Miller (1998), and Aguir-
regabiiria and Miria (2002) for the seminal contributions from which these general principles are derived.
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policy analysis. This is done by conducting counterfactual simulations to investigate the
role of the automatic transmission of education across generation (Nature) on integen-
erational mobility at bottom of the income distribution. We find that without the Nature
on the intergenerational education production function mobility at the bottom of the
income distribution would have been 20 percent higher. That means that 80 percent of
mobility at the bottom of the income distribution is explained by economic decision
and economic/institutional constraints. Lastly, not accounting for the reoptimization of
subsequent generations in the model, as is done in the approach outlined in this paper,
will overstate the effect of Nature on mobility by between 20 and 90 percent.

Dynastic models have been used to study numerous topics in economics. These top-
ics include explaining the cross-sectional correlation between parental wages and fertil-
ity (see Jones, Schoonbroodt, and Tertilt (2010), for a detailed overview of this litera-
ture), the relationship between inequality and growth (see, e.g., De la Croix and Doepke
(2003)), the relationship between human capital formation and social mobility (see
Heckman and Mosso (2014), for a survey of this literature), the relation among bequests,
saving, and the distribution of wealth and earnings (see De Nardi (2004); Cagetti and De
Nardi (2008), among others),4 and the optimality of different ways of funding social se-
curity. These models have been used to shed light on the effect of education, child care
subsidies, child labor regulations, and wealth and income redistribution policies on in-
dividual welfare. Reviewing this vast and diverse literature is beyond the scope of this
paper; however, a short review of two of the literature segments will suffice to illustrate
the need to estimate these models, and hence the wide applicability of our estimation
technique.

The first segment explains the widespread negative cross-sectional correlation be-
tween parental wage and fertility. The basic dynastic model as formulated by Barro and
Becker (1989) cannot explain this negative correlation because wealthier parents in-
crease the number of offspring, keeping transfer levels the same as less wealthy parents.
Attempts in the literature to account for this negative correlation range from appropri-
ately calibrating the model parameters so that the substitution effects are larger than
the income effects, introducing the quality of children as a choice variable with an ap-
propriate assumption about the cost of child-rearing (Becker and Lewis (1973), Becker
and Tomes (1976), Moav (2005)),5 to introducing nonhomotheticity in preferences (see,
e.g., Galor and Weil (2000), Greenwood and Seshadri (2002), or Fernandez, Guner, and
Knowles (2005)). As summarized in Alvarez (1999), depending on the functional form
assumptions of the primitives and values of the structural parameters, dynastic models
could generate the negative correlation between parental wages and fertility.6 Therefore,

4For example, the De Nardi (2004) model explicitly focused on the transmission of physical and human
capital from parents to children and intergenerational links. She shows that such a model can can induce
savings behavior that generates a distribution of wealth that (i) is much more concentrated than that of
labor earnings and (ii) also makes the rich keep large amounts of assets in old age to leave bequests to their
descendants.

5See Jones, Schconbroodt, and Tertilt (2010, Section 5.2).
6Recently, Mookherjie, Prina, and Ray (2012) demonstrated that incorporating dynamic analysis of re-

turn to human capital can help explain the negative cross-sectional correlation between parental wages
and fertility.
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whether the basic dynastic model can explain this negative cross-sectional correlation
between parental wages and fertility is an empirical question requiring careful explo-
ration of the source of identification and estimation (see Gayle, Golan, and Soytas (2014,
2015), for examples of these types of analysis).

The effects of the social security system on both capital accumulation and wealth
distribution have been of great interest to economists and policy-makers for decades
(see, for instance, Kotlikoff and Summers (1981), Caballé and Fuster (2003), among oth-
ers). However, the optimal form of funding social security may depend on whether or not
these intergenerational links are explicitly modeled. For example, Fuster, Imrohoroglu,
and Imrohoroglu (2007) argued that when households insure members in the same fam-
ily line, privatizing social security without compensation is favored by 52% of the pop-
ulation. If social security participants are fully compensated for their contributions and
the transition to privatization is financed by a combination of debt and a consumption
tax, 58% experience a welfare gain. These gains and the resulting public support for so-
cial security reform depend critically on a flexible labor market. If the elasticity of the
labor supply is low, then support for privatization disappears. Therefore, it is important
to estimate these models because policy implications often depend on the value of key
structural parameters. In Fuster, Imrohoroglu, and Imrohoroglu (2007), the key struc-
tural parameter was the elasticity of labor supply, but in other models it may be the
altruism parameters themselves.

The rest of the paper is organized as follows. Section 2 presents the basic gender-less
life-cycle dynastic model with only discrete choices. Section 3 presents the generic esti-
mator of the life-cycle model and presents the Monte Carlo study. Section 4 extends the
framework to include continuous choices and transfers, intra-household behaviors, and
gender. Section 5 presents the basic framework of our empirical application. Section 6
presents our empirical results. Section 7 concludes, all proofs are provided in an ap-
pendix, and additional tables are provided in the Supplementary Material (Gayle, Golan,
and Soytas (2018)).

2. Theoretical framework

The theoretical framework is developed to allow for estimation of a rich group of dy-
nastic models and allows us to address many relevant policy questions. This section de-
velops a model of altruistic parents who make transfers to their children. The transfers
are discrete and can allow for (i) discrete time investment in children and (ii) monetary
investment with discrete levels. Section 4 extends this basic framework to allow for con-
tinuous choices and transfers. This allows us to use the framework to analyze bequests
or any continuous monetary transfers by parents to their children. We incorporate two
important aspects of the problem. First, fertility is endogenous. Endogenous fertility has
important implications for intergenerational transfers and the quantity-quality trade-
offs made by parents when they choose transfers as the well as number of offspring.
Second, we include a life cycle for each generation. The life cycle is important to un-
derstanding fertility behavior, spacing of children, and the timing of different types of
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investments. This section analyzes a model with one gender-less decision-maker. We

later extend this framework to a unitary household.7

We build on previous dynastic models that analyze transfers and intergenerational

transmission of human capital. In some models, such as Loury (1981) and Becker and

Tomes (1986), fertility is exogenous, whereas in others, such as Becker and Barro (1988)

and Barro and Becker (1989), fertility is endogenous. The Barro–Becker framework is ex-

tended in our model by incorporating a life-cycle behavior model, based on previous

work, such as Heckman, Hotz, and Walker (1985) and Hotz and Miller (1988), into an

infinite-horizon model of dynasties. Our life-cycle model includes individuals choices

about time allocation decisions, investments in children, and fertility. We formulate a

partial equilibrium discrete choice model that incorporates life-cycle considerations of

individuals from each generation into the larger framework. Adults in each generation

derive utility from their own consumption, leisure, and the utility of their adult offspring.

The utility of adult offspring is determined probabilistically by the educational outcome

of childhood, which in turn is determined by parental time and monetary inputs during

early childhood, parental characteristics (such as education), and luck. Parents make de-

cisions in each period about fertility, labor supply, time spent with children, and mon-

etary transfers. For simplicity, the only intergenerational transfers are transfers of hu-

man capital, as in Loury (1981). However, the framework can include any other choice

of transfer that is discrete. We assume no borrowing or savings for simplicity. The model

assumes that the educational outcome of children is revealed at the last period of par-

ent’s life cycle regardless of the birth date of the children. This assumption is similar to

the Barro–Becker assumptions. In the parents’ life cycle, adult children’s behavior and

choices do not affect the choices of parents. As in Barro–Becker, the choices can only be

made by the children in their own life cycle which starts immediately after the parents’

life cycle ends.8

In the model, adults live for T periods. Each adult from generation g ∈ {0� � � � �∞}
makes discrete choices about labor supply (ht), time spent with children (dt), and birth

(bt), in every period t = 1� � � � �T . For labor time, individuals choose no work, part-time,

or full-time (ht ∈ (0�1�2)); for time spent with children individuals choose none, low,

or high (dt ∈ (0�1�2)). The birth decision is binary (bt ∈ (0�1)). The individual does not

make any choices during childhood, when t = 0. All the discrete choices can be com-

bined into one set of mutually exclusive discrete choice, represented as k, such that

k ∈ (0�1� � � � �17). Let Ikt be an indicator for a particular choice k at age t; Ikt takes the

value 1 if the kth choice is chosen at age t and 0 otherwise. These indicators are defined

7Treatment of households, with two decision-makers (with separate utility functions), marriage, and di-
vorce, is involved and is beyond the scope of this paper. See Gayle, Golan, and Soytas (2014) for more details
on one such model.

8In a model where adult children’s behavior and choices do affect investment in children and fertility
of the parents, solutions to the problems are significantly more complicated and it is not clear whether a
solution exists.
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as follows:

I0t = I{ht = 0}I{dt = 0}I{bt = 0}�
I1t = I{ht = 0}I{dt = 0}I{bt = 1}� � � � �

I16t = I{ht = 1}I{dt = 2}I{bt = 1}�
I17t = I{ht = 2}I{dt = 2}I{bt = 1}�

(1)

Since these indicators are mutually exclusive, then
∑17

k=0 Ikt = 1. We define a vector,
x, to include the time-invariant characteristics of the individual’s education, skill, and
race. Incorporating this vector, we further define the vector z to include all past discrete
choices as well as time-invariant characteristics, such that zt = ({Ik1}17

k=0� � � � � {Ikt−1}17
k=0�

x).
We assume the utility function is the same for adults in all generations. An individ-

ual receives utility from discrete choice and from consumption of a composite good, ct .
The utility from consumption and leisure is assumed to be additively separable because
the discrete choice, Ikt , is a proxy for leisure and is additively separable from consump-
tion. The utility from Ikt is further decomposed into two additive components: a sys-
tematic component, denoted by u1kt(zt), and an idiosyncratic component, denoted by
εkt . The systematic component associated with each discrete choice k represents an
individual’s net instantaneous utility associated with the disutility from market work,
the disutility/utility from parental time investment, and the disutility/utility from birth.
The idiosyncratic component represents a preference shock associated with each dis-
crete choice k that is transitory in nature. To capture this feature of εkt , we assume that
the vector (ε0t � � � � � ε17t ) is independent and identically distributed across the popula-
tion and time and is drawn from a population with a common distribution function,
Fε(ε0t � � � � � ε17t ). The distribution function is assumed to be absolutely continuous with
respect to the Lebesgue measure and has a continuously differentiable density.

Per-period utility from the composite consumption good is denoted u2t (ct� zt). We
assume that u2t (ct� zt) is concave in c; that is, ∂u2t (ct� zt)/∂ct > 0 and ∂2u2t (ct� zt)/∂c

2
t < 0.

Implicit in this specification is the inter-temporally separable utility from the consump-
tion good, but not necessarily for the discrete choices, since u2t is a function of zt , which
is itself a function of past discrete choices but is not a function of the lagged values of ct .

Altruistic preferences are introduced under the same assumption as the Barro–
Becker model: Parents obtain utility from their adult offspring’s expected lifetime util-
ity. Two separable discount factors capture the altruistic component of the model. The
first, β, is the standard rate of time preference parameter, and the second, λN−ν , is the
intergenerational discount factor, where N is the number of offspring an individual has
over her lifetime. Here, λ (0 < λ< 1) should be understood as the individual’s weighting
of her offsprings’ utility relative to her own utility. The individual discounts the utility of
each additional child by a factor of −ν, where 0 < ν < 1.

We let earnings (wt ) be given by the earnings function wt(zt�ht), which depends on
the individual’s time-invariant characteristics, choices that affect human capital accu-
mulated with work experience, and the current level of labor supply (ht). The choices
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and characteristics of parents are mapped onto their offspring’s characteristics (x′) via a
stochastic production function of several variables. The offspring’s characteristics are
affected by their parents’ time-invariant characteristics, their parents’ monetary and
time investments, and the presence and timing of siblings. These variables are mapped
into the child’s skill and educational outcome by the function M(x′|zT+1) where zT+1 in-
cludes all parental choices and characteristics and contains information on the choices
of time inputs and monetary inputs. Because zT+1 also contains information on all birth
decisions, it captures the number of siblings and their ages. We assume there are four
mutually exclusive educational outcomes for offspring: less than high school (LH), high
school (HS), some college (SC), and college (Coll). Therefore, M(x′|zT+1) is a mapping
of parental inputs and characteristics into a probability distribution over these four out-
comes.

We normalize the price of consumption to 1. Raising children requires parental time
(dt) and market expenditure. The per-period cost of raising children is denoted pcnt .
Therefore, the per-period budget constraint is given by

wt ≥ ct +pcnt � (2)

The sequence of optimal choice for both discrete choice and consumption is denoted as
Iokt and cot , respectively. We can thus denote the expected lifetime utility at time t = 0 of
a person with characteristics x in generation g, excluding the dynastic component, as

UgT (x) = E0

[
T∑
t=0

βt

[ 17∑
k=0

Iokt
{
u1kt(zt)+ εkt

}+ u2t
(
cot � zt

)]∣∣∣x]� (3)

The total discounted expected lifetime utility of an adult in generation g including the
dynastic component is

Ug(x) =UgT (x)+βTλE0

[
N−ν

N∑
n=1

Ug+1�n
(
x′
n

)∣∣∣x]� (4)

where Ug+1�n(x
′
n) is the expected utility of child n (n = 1� � � � �N) with characteristics x′

n.9

In this model, individuals are altruistic and derive utility from their offspring’s utility,
subject to discount factors β and λN−ν .10 This formulation is similar to the one in Barro–
Becker, but it is extended to allow for differences in gender and “types.”

To simplify presentation of the model, we assume that pcnt is proportional to an in-
dividual’s current earnings and the number of children, but we allow this proportion to
depend on the state variables. This assumption allows us to capture the differential ex-
penditures on children made by individuals with different incomes and characteristics.

9Note that this formulation can be written as an infinite discounted sum (over generations) of per-period
utilities as in the Barro–Becker formulation.

10Note that since we add life-cycle, the regularity condition that implies that the discount factor of the
children’s utilities, βTλN−ν is between zero and one is satisfied for any N , as β is also between zero and
one.
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Practically, this allows us to proxy for differences in social norms of child-rearing among
different socioeconomic classes.11 Explicitly, we assume that

pcnt = αNc(zt)(Nt + bt)wt(x�ht) (5)

and, incorporating the assumption that individuals cannot borrow or save 12 and equa-
tion (5), the budget constraint becomes

wt(x�ht)= ct + αNc(zt)(Nt + bt)wt(x�ht)� (6)

Solving for consumption from equation (6) and substituting for consumption in the util-
ity equation, we can rewrite the third component of the per-period utility function, spec-
ified as u2kt(zt), as a function of just zt as follows:

u2kt(zt) = ut
[
wt(x�ht)− αNc(zt)(Nt+bt)wt(x�ht)� zt

]
� (7)

Note that the discrete choices now map into different levels of utility from consump-
tion. Therefore, we can eliminate the consumption decision as a choice and write the
systematic contemporary utility associated with each discrete choice k as13

ukt(zt) = u1kt(zt)+ u2kt(zt)� (8)

Incorporating the budget constraint manipulation, we can rewrite equation (3) as

UgT (x) =E0

[
T∑
t=0

βt
17∑
k=0

Iokt
[
ukt(zt)+ εkt

]∣∣∣x]� (9)

Alvarez (1999) theoretically analyzed and generalized the conditions under which
dynastic models with endogenous fertility lead to intergenerational persistence in in-
come and wealth. Following his analysis, we show empirically which assumptions are
relaxed in our model and lead to persistence in income. The first is constant cost per
child. In our model, the per-period costs of raising a child and transferring human cap-
ital is the cost described in equations (5) and (6), as well as the opportunity cost of time
investment in children. Time investment in children and labor market time are modeled
as discrete choice with three levels. This introduces nonlinearity. Even if we were able to
capture the proportional increase in time with children as the number of children in-
creases, the nonlinearity in labor supply decisions implies that the opportunity cost of
time investment in children is not linear. Thus, the cost of transfer of human capital per

11In general, individuals can choose expenditures on children, but we do not observe spending in the
data used for estimation in the empirical application.

12This assumption is not important for any of the results obtained in this paper. However, it simplifies
the presentation by allowing all choices to be discrete. See Section 4 for a relaxation of this assumption.

13In our formulation, utility from consumption and leisure is assumed to be additively separable, and
hence u1kt(zt)+ εkt captures the utility of leisure corresponding to the choices of labor supply, time spent
with children (dt ), and the birth decision (bt ) associated with choice k in period t. In the empirical imple-
mentation, we ensure that the highest levels of labor supply and time with children are feasible by ensuring
that they satisfy a time allocation budget constraint.
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child is not constant. Furthermore, in contrast to standard dynastic models and those
analyzed in Alvarez (1999), we incorporate dynamic elements of the life cycle that in-
volve age and experience effect. The opportunity cost of time with children therefore in-
corporates returns to experience, which are nonlinear. Therefore, estimating a dynastic
model which accounts for individual demographics and heterogeneity can be important
in understanding the extent of the life-cycle dynamics and help us sort out the impor-
tance of different mechanisms leading to persistence in outcomes across generations.
The nonlinearity involved in labor supply is realistic; parents labor market time is often
not proportional to the number of children they have, and hours in the labor market for
a given wage rate are not always flexible and depend on occupation. Furthermore, fertil-
ity decisions are made sequentially, and due to age effects, the cost of a child varies over
the life cycle. The second condition is nonseparability in preferences, aggregation of the
utilities from children, and the feasible set. In our model, the latter is relaxed; that is, the
separability of the feasible set across generations. This is because the opportunity costs
of the children depend on their education and labor market skills. However, education
and labor market skills of children are linked with their parents’ skills and education
through the production function of education.

2.1 Optimal discrete choice

The individual then chooses the sequence of alternatives yielding the highest utility by
following the decision rule I(zt� εt), where εt is the vector (ε0t � � � � � ε17t ). The optimal
decision rules are given by

Io(z0� ε0)= arg max
I

EI

[
T∑
t=0

βt

{ 17∑
k=0

Ikt
[
ukt(zt)+ εkt

]}

+βTλN−ν
N∑
n=1

Ug+1�n
(
x′
n

)∣∣∣x]�
(10)

where the expectations are taken over the future realizations of z and ε induced by Io. In
any period t < T , the individual’s maximization problem can be decomposed into two
parts: the utility received at t plus the discounted future utility from behaving optimally
in the future. Therefore, we can write the value function of the problem, which repre-
sents the expected present discounted value of lifetime utility from following Io, given
zt and εt , as

V (zt+1� εt+1)= max
I

EI

(
T∑

t ′=t+1

βt ′−t
17∑
k=0

Ikt ′
[
ukt ′(zt ′)+ εkt ′

]

+βT−tλN−ν
N∑
n=1

Ug+1�n
(
x′
n

)∣∣∣zt+1� εt+1

)
�

(11)
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By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt� εt) = max
I

[ 17∑
k=0

Ikt
{
ukt(zt)+ εkt +βE

(
V (zt+1� εt+1)|zt� Ikt = 1

)}]

=
17∑
k=0

Iokt(zt� εt)

[
ukt(zt)+ εkt

+β
∑
z′

∫
V
(
z′� ε

)
f (ε)dεF

(
z′|zt� Iokt = 1

)]
�

(12)

where f (ε) is the continuously differentiable density of Fε(ε0t � � � � � ε17t ), and F(z′|zt�
Ikt = 1) is a transition function for state variables, which is conditional on choice k.
In this simple version, the transitions of the state variables are deterministic given the
choices of labor market experience, time spent with children, and number of children.

Since εt is unobserved, we further define the ex ante (or integrated) value function,
V (zt), as the continuation value of being in state zt before εt is observed by the individ-
ual. Therefore, V (zt) is given by integrating V (zt� εt) with respect to the density of εt .
Defining the probability of choice k at age t by pk(zt) = E[Iokt = 1|zt], the ex ante value
function can be written as

V (zt) =
17∑
k=0

pk(zt)

[
ukt(zt)+Eε[εkt |Ikt = 1� zt] +β

∑
z′

V
(
z′)F(z′|zt� Ikt = 1

)]
� (13)

This representation of the problem is a not new or is it unique to dynastic models,14 but
pedagogically it shows that V (zt) is a function of the CCPs, the expected value of the
preference shock, the per-period utility, the transition function, and the ex ante contin-
uation value. All components except the conditional probability and the ex ante value
function are primitives of the initial decision problem. By writing the CCPs as a function
of just the primitives and the ex ante value function, we can characterize the optimal
solution of the problem (i.e., the ex ante value function) as implicitly dependent on just
the primitives of the original problem.

As is standard in the dynamic discrete choice literature, we define the conditional
value function, υk(zt), as the present discounted value (net of εt ) of choosing k and
behaving optimally from period t onward:

υk(zt)= ukt(zt)+β
∑
z′

V
(
z′)F(z′|zt� Ikt = 1

)
� (14)

The conditional value function is the key component to the CCPs. Equation (10) can now
be rewritten using the individual’s optimal decision rule at t to solve

Io(zt� εt)= arg max
I

17∑
k=0

Ikt
[
υk(zt)+ εkt

]
� (15)

14See, for example, Aguirregabiria and Mira (2002).
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Therefore, the probability of observing choice k, conditional on zt , is pk(zt) and is found
by integrating overt εt in the decision rule in equation (15):

pk(zt) =
∫

Io(zt� εt)fε(εt)dεt

=
∫ [∏

k�=k′
1
{
υk(zt)− υk′(zt)≥ εtk′ − ε

kt

}]
fε(εt)dεt�

(16)

Therefore, pk(zt) is now entirely a function the primitives of the model (i.e., ukt(zt)�β�
F(zt+1|zt� Ikt = 1), and fε(εt)) and the ex ante value function. Hence substituting equa-
tion (16) into equation (13) gives an implicit equation defining the ex ante value function
as a function of only the primitives of the model.

3. A generic estimator of the life-cycle dynastic discrete choice model

We use a partial solution, multistage estimation procedure to accommodate the non-
standard features of the model. By assuming stationarity across generations and discrete
state space in the dynamic programming problem, we obtain an analytical representa-
tion of the value function. The alternative value function depends on the CCPs, the tran-
sition functions of the state variables, and the structural parameters of the model. In the
first stage, we estimate the CCPs and the transition functions. The second stage forms
either moment conditions or likelihood functions to estimate the remaining structural
parameters using a PML or a GMM, respectively. For each iteration in the estimation
procedure, the CCPs are used to generate a value function representation to form the
terminal value in the life-cycle problem, which can then be solved by backward induc-
tion to obtain the life-cycle valuation functions.

3.1 An alternative representation of the problem

The alternative representation of the continuation value of the intergenerational prob-
lem is developed below. The Hotz and Miller estimation technique for standard single-
agent problems is adapted to the dynastic problem using the following representation.
Define NT(zT ) to be the total number of children at the end of the life cycle given state
variable zT . In addition, we recursively define a transition function Fo

k(zt ′ |zt) for the one-
period-ahead t ′ − t:

Fo
k(zt ′ |zt) =

⎧⎪⎪⎨⎪⎪⎩
F(zt ′ |zt� Ikt = 1) for t ′ − t = 1�
17∑
r=0

∑
zt′−1

pr(zt ′−1)F(zt ′ |zt ′−1� Irt ′−1 = 1)Fo
k(zt ′−1|zt) for t ′ − t > 1�

This function is a recursive formulation that determines the probability of a future state
zt ′ conditional on current state zt and a current choice k.

Proposition 1. There exists an alternative representation for the ex ante conditional
value function at time t that is a function of just the primitives of the problem and the
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CCPs:

υk(zt) = ukt(zt)+
T∑

t ′=t+1

βt ′−t

×
17∑
s=0

∑
zt′

ps(zt ′)
[
ust ′(zt ′)+Eε(εst ′ |Ist ′ = 1� zt ′)

]
Fo
k(zt ′ |zt) (17)

+ λβT−t
∑
zT

NT (zT )
−ν

NT∑
n=1

∑
x

V
(
x′) KT∑

s=0

Mn
k

(
x

′|zT
)
ps(zT )F

o
k(zT |zt)�

where the intergenerational transition function for the nth child born in a parent’s life

cycle, Mn
k(x

′|zT ) =M(x′|zT ), is conditional on a choice IkT = 1.

The representation in Proposition 1 highlights the main contribution of this paper.

There are three components in equation (17). The first two are normally found in the

finite horizon discrete choice dynamic programming model, and are standard in sta-

tionary dynamic discrete choice models. The last components is the dynastic compo-

nent that is nonstandard. There are two points worth noting. The first is that without

further restrictions, the third component of equation (17), does not have the finite-

state-dependence property, which normally simplifies the estimation of life-cycle dis-

crete choice models. See Altug and Miller (1998), Gayle and Miller (2004), Arcidiacono

and Miller (2011, 2015), Gayle and Golan (2012), and Gayle (2015) for discussion and

use of the finite-state-dependence property. Second, an alternative used in literature

which estimates or calibrates dynastic models15 is to replace the dynastic component in

equation (17) with a reduced form approximation, and then treat the model as a finite

horizon model with a reduced form terminal value function. This reduced form approx-

imation, however, is not in general policy invariant. Therefore, we pursue an alternative

strategy which builds on the ideas in Aguirregabira and Mira (2002) and Pesendorfer and

Schmidt-Dengler (2008).

Let ek(p�z) represent the expected preference shocks conditional on choice k being

optimal in state z. The expected preference shocks are written in this notation to convey

that the expected value of shock is a function of the CCPs (see Hotz and Miller (1993)).

For example, in the type 1 extreme value case, ek(p�z) is given by γ − ln[pk(z)], where γ

is Euler’s constant. From the representation in Proposition 1, we can define the ex ante

conditional lifetime utility at period t, excluding the dynastic component as

Uk(zt) = ukt(zt)+
T∑

t ′=t+1

βt ′−t
17∑
s=0

∑
zt′

ps(zt ′)
[
ust ′(zt ′)+ es(p�zt ′)

]
Fo
k(zt ′ |zt)�

15See, for example, Rios-Rull and Sanchez-Marcos (2002).
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Because Uk(zt) is a function of just the primitives of the problem and the CCPs, we can
write an alternative representation for the ex ante value function at time t:

V (zt) =
17∑
k=0

pk(zt)

[
Uk(zt)+ ek(p�zt)

+ λβT−t
∑
zT

NT (zT )
−ν

NT∑
n=1

∑
x

V
(
x′) KT∑

s=0

Mn
k

(
x

′|zT
)
ps(zT )F

o
k(zT |zt)

]
�

(18)

Equation (18) is satisfied at every state vector zt . The problem is stationary over
generations, so zt = x at period t = 0 because there is no history of decisions in
the state space, and hence the initial state space has finite support on the integers
{1� � � � �X}. We define the optimal lifetime intergenerational transition function as
Mo

k(x
′|x)=∑zT

∑NT (zT )
n=1

∑KT
s=0 ps(zT )M

n
k(x

′|zT )Fo
k
(zT |x). The matrix Mo

k can be inter-
preted as the probability that an average descendant of the individual with characteris-
tic x′, given that his parents have characteristics x, chooses decision k in the first period
and behaves optimally from period 1 to T of the parent’s life cycle. Now, we can express
the components of equation (18) in vector or matrix form:

V0 =

⎡⎢⎢⎢⎢⎢⎣
V (1)

·
·
·

V (X)

⎤⎥⎥⎥⎥⎥⎦ � U(k) =

⎡⎢⎢⎢⎢⎢⎣
Uk(1)

�

�

�

Uk(X)

⎤⎥⎥⎥⎥⎥⎦ � E(k)=

⎡⎢⎢⎢⎢⎢⎣
ek(p�1)

·
·
·

ek(p�X)

⎤⎥⎥⎥⎥⎥⎦ � P(k) =

⎡⎢⎢⎢⎢⎢⎣
pk(1)

·
·
·

pk(X)

⎤⎥⎥⎥⎥⎥⎦ �

ιX =

⎡⎢⎢⎢⎢⎢⎣
1
·
·
·
1

⎤⎥⎥⎥⎥⎥⎦
Xx1

and Mo(k) =

⎡⎢⎢⎢⎢⎢⎣
Mo

k(1|1) � � � Mo
k(X|1)

·
·
·

Mo
k(1|X) � � � Mo

k(X|X)

⎤⎥⎥⎥⎥⎥⎦ �

Using these components, the vector of the ex ante value function can be expressed as

V0 =
K∑

k=0

P(k)⊗ [U(k)+E(k)+ λβTN−ν
k ⊗Mo(k)V0

]
� (19)

where ⊗ refers to element-by-element multiplication, Nk(x)=
∑

zT
NT (zT )F

o
k(zT |x),

and Nk = (NkT (1)� � � � �NkT (X))′. Rearranging the terms and solving for V0, we obtain

V0 =
[
IX − λβT

17∑
k=0

{
P(k)ι′X

}⊗ (N−ν
k ⊗Mo(k)

)]−1 17∑
k=0

P(k)
[
U(k)+E(k)

]
� (20)

where IX denotes the X ×X identity matrix. Equation (20) is based on the dominant di-
agonal property, which implies that the matrix IX −λβT

∑17
k=0{P(k)ι′X}⊗(N−ν

k ⊗Mo(k))
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is invertible. The representation is obtained by combining known results16 from discrete
choice estimation of stationary infinite-horizon problems with the finite horizon prop-
erties of the dynastic life-cycle model.

3.2 Estimation

We parameterized the period utility by a vector θ2, ukt(zt� θ2); the period transition on
the observed states is parameterized by a vector θ3, F(zt |zt−1� IkT = 1� θ3); the inter-
generational transitions on permanent characteristics is parameterized by a vector θ4,
Mn(x′|zT+1� θ4); and the earnings function is characterized by a vector θ5�wt(x�ht� θ5).
Therefore, the conditional value functions, decision rules, and choice probabilities
now also depend on θ ≡ (θ2� θ3� θ4� θ5�β�λ� ν). Standard estimates of dynamic discrete
choice models involve forming the likelihood functions from the CCPs derived in equa-
tion (16). This involves solving the value function for each iteration of the likelihood
function. The method used to solve the value function depends on the nature of the
optimization problems and normally falls into one of two cases:

(i) Finite-horizon problems: The problem has an end date (as in a standard life-cycle
problem); hence future value function is obtained by backwards induction.

(ii) Stationary infinite-horizon problem: The valuation is obtained by a contraction
mapping.

A dynastic discrete choice model in unusual because it involves both a finite-horizon
problem and an infinite-horizon problem. Solving both problems for each iteration of
the likelihood function is computationally infeasible for all but the simplest of models.
We avoid solving the stationary infinite-horizon problem in estimation by replacing the
terminal value in the life-cycle problem with equation (20). This converts the problem
into a finite-horizon problem that can be solved by backward recursion, with the flow
utility function given by

υk(zT ) = ukT (zT )+ λNT (zT )
−ν
∑
x′

V
(
x′) NT∑

n=1

Mn
k

(
x

′|zT
)
� (21)

The per-period utility in the terminal period, ukT (zT ), is parameterized by θ2. The
intergenerational transition function, Mn

k(x
′|zT ), can be treated as known since it

can be estimated from the data. Given Fε(ε0t � � � � � ε17t ) and calculating V (x′) via
equation (20),17 we can calculate the ex ante value function at T using V (zT ) =∑17

k=0
∫
I0
kI(zT �εT )[υk(zT ) + εkT ]fε(εT )dεT . The conditional value function for T − 1

is given by υk(zT−1) = ukT−1(zT−1)+β
∑

zT
V (zT )F(zT |zT−1� IkT = 1). This is continued

backward given υk(zT−1) to form value function at T − 2, and so on.

16See Aguirregabira and Mira (2002) and Pesendorfer and Schmidt-Dengler (2008) for the use and deriva-
tion of this inversion in the context of stationary infinite horizon problems.

17This manipulation is possible because the alternative value function in equation (20) is a function of
only the parameters of the model and the CCPs. The CCPs can be estimated directly from the data then
backward recursion becomes possible because the decision in the last period, T , is similar to a static prob-
lem when the value of children is replaced with equation (20).
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The backward induction procedure outlined above shows that only Mn
k(x

′|zT ) in
equations (21) and (20) depends on the next generation’s outcome. Thus, we can esti-
mate the intergenerational problem with only two generations of data, as is the case in
the standard stationary discrete choice models (see for example Rust (1987)). To esti-
mate the intergenerational problem, we let Idtg, zdtg, and εdtg, respectively, indicate the
choice, observed state, and unobserved state at age t in the generation g of dynasty d.
Forming the CCPs for each individual in the first observed generation of dynasty d at
all ages t yields the components necessary for estimation. Estimation proceeds in two
steps.

Step 1: In the first step, we estimate the CCP, transition, and earnings functions nec-
essary to compute the inversion in equation (20). The expectation of observed choices
conditional on the observed state variables gives an empirical analog to the CCPs at the
true parameter values of the problem, θo1 , allowing us to estimate the CCPs; we denote

this estimate by ̂pk(zdt1). We also estimate θ3, θ4, and θ5, which parameterize the tran-
sition and earnings functions F(zt |zt−1� IkT = 1� θ3), Mn(x′|zT+1� θ4), and wt(x�ht� θ5),
respectively, in this step.

Step 2: The second step can be estimated two ways, the first is a PML (as used in
Aguirregabira and Mira (2002)) and the second is a GMM (as used in the original Hotz
and Miller (1993)). We can use a PML method and not a pure maximum likelihood esti-
mator because part of the likelihood function is concentrated out using the data. With
D dynasties, the PML estimates of θ0 = (θ2�β�λ� ν) are obtained via

θ̂0PML = arg max
θ0

(
D∑

dt1=1

T∑
t=0

17∑
k

Idt1 ln
[
pk(zdt1;θ0� θ̂3� θ̂4� θ̂5)

])
� (22)

where pk(zdt1;θ0� θ̂3� θ̂4� θ̂5) is the CCP defined in equation (16) with the conditional
value function replaced with υk(zdt1� θ0� θ̂3� θ̂4� θ̂5), which is calculated by backward re-
cursion using the estimated choice probabilities and the transition functions outlined
in Step 1.

An alternative second-step GMM estimator is formed using the inversion found in
Hotz and Miller (1993). Under the assumption that ε is distributed independently and
identically as type I extreme values, then the Hotz and Miller inversion implies that

log
(
pk(zdt1;θ0� θ̂3� θ̂4� θ̂5)/pK(zdt1;θ0� θ̂3� θ̂4� θ̂53)

)
= υk(zdt1� θ0� θ̂3� θ̂4� θ̂5)− υK(zdt1� θ0� θ̂3� θ̂4� θ̂5)

(23)

for any normalized choice K. We can use ̂pk(zdt1), estimated from Step 1, to form an
empirical counterpart to equation (23) and estimate the parameters of our model. The
moment conditions can be obtained from the difference in the conditional valuation
functions calculated for choice k and a base choice(say K = 0). The following moment
conditions are produced for an individual at age t ∈ {17� � � � �55}:

ξjdt(θ0)≡ υk(zdt1� θ0� θ̂3� θ̂4� θ̂5)− υ0(zdt1� θ0� θ̂3� θ̂4� θ̂5)− ln
[

̂pk(zdt1)/ ̂p0(zdt1)
]
� (24)
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Therefore, there are 17 orthogonality conditions and thus j = 1� � � � �17. Letting ξdt(θ0)

be the vector of moment conditions at t, these vectors are defined as ξdt(θ0) =
(ξ1dt(θ0)�ξ2dt(θ0)� � � � � ξ17dt(θ0))

′. Therefore, E[ξdt(θo0)|zdt] converges to 0 for every con-
sistent estimator of true CCPs, pk(zdt1;θ0� θ̂3� θ̂4� θ̂5), for t ∈ {17� � � � �55}, and where θo0 is
the true parameter of the model. Define ξd(θ0) ≡ (ξd1(θ0)

′� � � � � ξdT (θ0)
′)′ as the vector

of moment restrictions for a given individual over time and define a weight matrix as
�(θ0) ≡Et[ξd(θ0)ξd(θ0)

′]. Then the GMM estimate of θ0 is obtained via

θ̂02SGMM = arg min
θ0

[
1/D

D∑
d=1

ξd(θ0)

]′
�̂

[
1/D

D∑
d=1

ξd(θ0)

]
� (25)

where �̂ is a consistent estimator of �(θo).

3.3 Monte Carlo study

We present a numerical example of a model with human capital investments and in-
tergenerational transfers. We use the example to examine the performance of the pro-
posed estimation technique. Using simulated data from the numerical example, we es-
timate the parameters of the model using the NFXP and PML estimators. The estimation
is done for varying sample sizes (i.e., for 1000, 10,000, 20,000, and 40,000).

NFXP estimation of life-cycle dynastic models is possible only in the simplest dy-
nastic structure. Hence for the Monte Carlo study we choose a simple model which can
be estimated by both NFXP and PML. To the best of our knowledge, there is no empiri-
cal application of life-cycle dynastic model which is estimated by NFXP. Instead, all the
empirical application of life-cycle dynastic model specify the terminal value at the end
of an individual’s life cycle as a reduced-form function of the state variables. Dynastic
models estimated in this fashion are not suitable for conducting counterfactual policy
analysis.

For illustration purposes, we start with the model in which the per-period utility
function, uk(zt), has a linear form. In each period, t ∈ {0�1}, the individual chooses
whether to invest or not, Ik ∈ {0�1}. We assume that individuals can have at most one
child, N ≤ 1. The utilities associated with each choice are given by

uk(zt)=
{
zt if k= 0
(1 − θ)zt if k= 1

}

where Fε(εt) is the distribution of the choice-specific, unobservable part of the utility; it
is assumed to be independently distributed type 1 extreme value.

In the environment in this example, the individual begins the life cycle with a par-
ticular set of character traits denoted by zt ∈ (0�5�0�6�0�7�0�8�0�9). Note that at t = 0 the
individual has not made any choices yet, so the vector z0 depends fully on initial charac-
teristics x. The value of z1 is given by the transformation function Fk(zt |zt−1) that given
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by the transition matrix:

F0(zt |zt−1) =

⎛⎜⎜⎜⎜⎜⎝
0�85 0�13 0�02 0 0
0�04 0�85 0�09 0�02 0
0�01 0�04 0�85 0�09 0�01

0 0�01 0�05 0�85 0�09
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
and

F1(zt |zt−1)=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0�1 0�9 0 0 0
0�13 0�27 0�6 0 0
0�01 0�11 0�28 0�6 0

0 0�04 0�13 0�23 0�6

⎞⎟⎟⎟⎟⎟⎠ �

The individual’s traits in the next period are determined by the probabilities in the

corresponding row, where each row corresponds to one of the initial values z0 ∈
(0�5�0�6�0�7�0�8�0�9), and each column represents character traits in the next period,

z1 ∈ (0�5�0�6�0�7�0�8�0�9). The transition is such that an individual with character traits

z0 = 0�5 who chooses not to have a child, such that the choice vector I0 = 0, will have

characteristics z1 = 0�5 with a probability of 0�85. In this simplified model, the next gen-

eration’s initial characteristics z′
0 depend only on the sum of the financial investment

decisions in the life cycle.

The educational outcome of the offspring is determined by the intergenerational

transition function:

M
(
z′

0|zT+1
)=

⎛⎜⎝1 0 0 0 0
0 0�1 0�4 0�4 0�1
0 0 0�04 0�06 0�9

⎞⎟⎠ �

where zT+1 can take values in {0�1�2}. The next generation’s starting character traits are

determined by the probabilities given in the row, where each row corresponds to one of

the values of zT+1 ∈ (0�1�2) and the first row represents investment level zT+1 = 0. If the

individual invests nothing, then the next generation will have the lowest consumption

value with complete certainty. The transition is such that an individual who opts to in-

vest twice in the life cycle has a probability of 0�9 that the next generation will start his

life cycle with the characteristics z′
0 = 0�9.

We simulated the model for the parameter values, (θ2�β�λ)= (0�25�0�8�0�95), where

θ is the structural parameter of interest that gives the marginal cost of investment, and λ

and β are the generational and time discount factors, respectively. We solve the dynamic

problem for datasets of 1000, 10,000, 20,000, 40,000 individual dynasties and repeat the

simulation 100 times. For the CCP estimation, the initial consistent estimates are esti-
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Table 1. Simplified discrete choice Monte Carlo simulation results.

Pseudo Maximum Likelihood Nested Fixed Point (ML)

Sample Size Sample Size

1000 10,000 20,000 40,000 1000 10,000 20,000 40,000

θ = 0�25
Mean 0�24473 0�24935 0�24886 0�24881 0�22714 0�24571 0�23320 0�24477
Std. Dev. 0�04991 0�01328 0�00915 0�00668 0�04884 0�01354 0�02135 0�01019
Bias −0�00527 −0�00065 −0�00114 −0�00119 −0�02286 −0�00429 −0�01680 −0�00523
MSE 0�00249 0�00017 0�00008 0�00005 0�00288 0�00020 0�00073 0�00013

λ = 0�8
Mean 0�80425 0�79745 0�79797 0�79673 0�77538 0�78966 0�76934 0�78855
Std. Dev. 0�11241 0�03175 0�02157 0�01587 0�09211 0�03244 0�03656 0�02063
Bias 0�00425 −0�00255 −0�00203 −0�00327 −0�02462 −0�01034 −0�03066 −0�01145
MSE 0�01253 0�00100 0�00046 0�00026 0�00901 0�00115 0�00226 0�00055

β= 0�95
Mean 0�94208 0�95245 0�95037 0�95136 0�93441 0�95227 0�94603 0�95027
Std. Dev. 0�06276 0�01893 0�01301 0�00934 0�05322 0�01983 0�01820 0�01236
Bias −0�00792 0�00245 0�00037 0�00136 −0�01559 0�00227 −0�00397 0�00027
MSE 0�00396 0�00036 0�00017 0�00009 0�00305 0�00039 0�00034 0�00015

Avg. Comp. time 0�65 2�88 6�06 12�60 347�6 376�4 467�5 509�8

Note: The pseudo maximum likelihood corresponds to the estimation conducted by the new estimator using PML and
maximum likelihood (ML) estimation is by the nested fixed point (NFXP). All simulations were conducted using the program-
ming language GAUSS on a 2-CPU 1.66-GHz, 3-GB RAM laptop computer. The unit of time is seconds. The mean, empirical
standard deviation, bias, and mean squared error (MSE) of each parameter estimate are reported in the respective column
for each sample size. The bias and the MSE are calculated relative to the original data-generating value of the parameter. The
data-generating value of the parameter is also reported at the center of the summary statistics block for that parameter.

mated nonparametrically using the generated sample. Next, we estimate the model by
NFXP and PML.18

Table 1 presents the results of the estimation. We find that the finite-sample proper-
ties of the estimators improve monotonically with sample size. In the NFXP estimation,
the mean square error (MSE) of θ drops quickly as the sample size increases. The re-
sults for the discount factors are similar: MSEs fall as the sample size increases. In the
PML estimation, we observe a similar pattern for all estimators. We obtain similar re-
sults from the NFXP and PML parameters. For the sample size of 1000, the PML estimate
of the MSE of θ0 is 0�00249 compared with 0�00288 from the NFXP. The PML estimate of
the MSE of λ is 0�01253 compared with 0�00901, and the PML estimate of the MSE of β
is 0�00396 compared with 0�00305. For the sample sizes of 10,000, 20,000, and 40,000, the
MSEs obtained from PML estimation is lower than the MSEs obtained from the NFXP,
but the magnitudes are still very close. In terms of biases, the two estimation algorithms
are also quite similar. The major difference between the two estimation algorithms is
computational time, which varies greatly between the NFXP and PML even though we

18As illustrated in the estimation section, intergenerational models at the final step can be estimated
either by the PML or GMM method. For this simulation study, we used the PML because it is more compa-
rable to the full solution maximium likelihood.
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simulate a very simple model. The average computational time for the NFXP for a sam-
ple of 1000 is 347�6 seconds, but it is only 0�65 seconds for the PML estimation, meaning
the PML was 530 times faster. For the sample size of 40,000, computation times are 509�8
and 12�6 seconds for the NFXP and PML, respectively, a ratio of 40�4.

4. Extensions

The dynastic framework developed so far in this paper has three major drawbacks. First,
parts of the parental investment and transfers from parents to children are monetary in
nature. Additionally, for exposition purpose we assume that there were not borrowing
or saving. Monetary investment and/or parental transfers, such as paying for college or
purchasing a house for their children, are most naturally characterized as a continuous
choice. Also it is natural to introduce borrowing and saving as a continuous choice. Sec-
ond, the framework assumes that gender does not matter. However, there are significant
differences in the cost, choices, and opportunities over an individual’s lifetime that are
gender specific. Third, which is related to gender but not specific to it, is that individuals
normally form households and it takes a man and a woman to reproduce, and fertility is
central to the model. In this section, we consider extensions to the basic framework that
account for these three shortcomings.

4.1 Continuous choice and transfer

For the estimation technique developed above to be applicable to a dynastic framework,
two features must be present. First, all choices must be discrete, and second, all system-
atic state variables, at the initial stage and in every period during the life cycle, must
have a discrete support. We replace these assumptions with two weaker assumptions.
The first is that there must be at least one discrete choice variable. This requirement is
easily satisfied as birth decision is naturally discrete. The second is that the initial sys-
tematic state variables (i.e., endowment that an individual starts adult life with) must
belong to a finite set with discrete support. This is weaker than the original assumption
and is a less restrictive requirement; it is satisfied in a nontrivial number of economic
dynastic models—for example, in models where human capital is the major intergen-
erational transfer and even in models of bequests once the amount transferred is dis-
cretized. In practice, in most dynamic programming models, the state space is normally
discretized. This requirement, however, relaxes the assumption that state space is dis-
crete for the entire lifetime and that all choice variables are discrete. While bequests and
initial wealth still must be discrete, the framework allows for any transfers and invest-
ments the parents make during their lifetime and map into discrete initial conditions of
the child, such as education, houses, or other assets that are discrete in nature. If these
assumptions are satisfied, then we can modify the representation and then use the esti-
mation strategy for the mixed discrete and continuous choice model.19

19See Altug and Miller (1998), Gayle and Miller (2004), Gayle and Golan (2012), and Gayle (2015) for
application of CCPs estimators with mixed discrete and continuous choices.
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For illustration purposes, we extend our framework to include continuous choice of
assets and bequests, assuming that we observed data on the per-period assets, At , which
is continuous. We assume that individuals beginning their life as adults with asset level
A0. This level is a bequest from the parents. The initial level of assets, j, is discrete with:
A0 = [A1

0� � � � �A
J
0]. The budget constraint is given by

At+1 − (1 + r)At =wt(x�ht)−pcnt − ct� (26)

where r is the interest rate for borrowing and savings, and the right-hand side is the
household income net of expenditures on children and consumption. A few remarks
are in order. First, in order to map the assets at age T , AT , to a discrete bequest level
that individuals start their life with, A′

0, we define a transition function Pr(A′
0 = A

j
0|AT).

Second, there are different ways to model markets completeness or incompleteness that
will translate into different restrictions on savings and assets levels. For illustration pur-
poses, we will assume the interior solution for all asset choices and will ignore such re-
strictions in this presentation. We do not restrict the initial and terminal asset levels to
be nonnegative. However, the framework can be adjusted to include all these different
types of constraints.

Let us further assume that the parents’ asset levels can potentially affect educational
outcomes of children: higher savings of parents increase the probability of a higher level
of educational attainment of the child.20 We redefine the vector of state variables zt
to capture these new assumptions, zt = ({Ik1}17

k=0� � � � � {Ikt−1}17
k=0�A1� � � � �At−1�x) with

x ∈ {A0�x1� � � � � x|X|}, a discrete set with finite support. Thus x includes all the char-
acteristics that a person is endowed with at the beginning of life. In this application,
it included the initial (discrete) levels of assets inherited from the parents. As before,
M(x′|zT+1) is the intergenerational transition probability of x conditional on a par-
ent’s endowment, x, and the parent’s choices over his/her lifetime. It includes the
education, inherited assets, and potentially skills, for example (as well as traits such
as gender and race). As before, it is derived from an education production function,
M(x′|zT ), and is augmented to incorporate Pr(A′

0 = A
j
0|AT), the assets transition func-

tions.
Let Iokt and Ao

t be the sequence of optimal choice over the parent’s lifetime. Also,
plugging the budget constraint in the utility from consumption, we redefine the system-
atic part of current utility in equation (8) as

ukt(zt�At)=u1kt(zt)+ ut
[
wt(x�ht)−pcnt −At+1 + (1 + r)At� zt

]
� (27)

Then the lifetime expected utility excluding the dynastic component at the start of an
adult’s life becomes

UgT (x) = E0

[
T∑
t=0

βt

[ 17∑
k=0

Iokt
{
u1kt

(
z
t
�Ao

t

)+ εkt
}]∣∣∣x]� (28)

20Assets can be a proxy of the ability to pay for college, for example. However, we allow for assets to
impact educational outcomes in order to illustrate the general nature of the extension. One can think of the
continuous variable as expenditure on children if observed in the data.
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The preference shock εkt is associated with the discrete choices in period t and not the
continuous choice variables; therefore, it is still indexed with k. As before, we can write
the value function of the problem, which represents the expected present discounted
value of lifetime utility from following Io and Ao

t , given zt and εt , as

V (zt+1� εt+1)= max
It+1�At+1

EI�A

({
T∑

t ′=t+1

βt ′−t
17∑
k=0

Ikt ′
[
ukt ′(zt ′�At ′)+ εkt ′

]

+βT−t ′λN(zT )
−ν

N∑
n=1

ET

[
Ug+1�n

(
x′
n

)|zT ]
}∣∣∣zt+1� εt+1

)
�

(29)

By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt� εt) =
17∑
k=0

(
Iokt(zt� εt)

[
ukt
(
z
t
�Ao

t (zt)
)+ εkt

]
+β

∫ [∫
V
(
z′� ε

)
fε(ε)dε

]
dFk

(
z′|zt�At

)])�
where fε(ε) is the continuously differentiable density of Fε(ε0t � � � � � ε17t ), and
Fk(z

′|zt�At) is a transition function for state variables that is conditional on choices
Iokt = 1 and At = A0

t . Note that Iokt(zt� εt) is a function of zt and εt , while Ao
t (zt) is a

function of only zt . This is a consequence of the additive separability of the preferences
shock, which will not affect the continuous choice as demonstrated below. The ex ante
value function is then

V (zt) =
17∑
k=0

pk(zt)

[
ukt
(
zt�A

o
t (zt)

)+Eε[εkt |Ikt = 1� zt]

+β

∫
V
(
z′)dFk

(
z′|zt�At

)]
�

(30)

In this form, V (zt) is now a function of the CCPs, the continuous choice decision rule,
the expected value of the preference shock, the per-period utility, the transition func-
tion, and the ex ante continuation value. All components except the conditional proba-
bility, the continuous choice decision rule and the ex ante value function are primitives
of the initial decision problem. By writing the CCPs and the continuous choice decision
rule as a function of just the primitives and the ex ante value function, we can charac-
terize the optimal solution of the problem (i.e., the ex ante value function) as implicitly
dependent on the primitives of the original problem. Let us define the conditional value
function, υk(zt�At), as

υk(zt)= max
At

[
ukt(zt�At)+β

∫
V
(
z′)dFk

(
z′|zt�At

)]
� (31)
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Therefore, the probability of observing choice k, conditional on zt , pk(zt), is still given
by

pk(zt) =
∫ [∏

k�=k′
1
{
υk(zt)− υk′(zt)≥ ε

kt
−εtk′

}]
fε(εt)dεt � (32)

However, the optimal continuous choice is found in two steps. First, find the optimal
choice conditional on Ikt = 1, which is defined as Atk(zt). This is characterized by the
following Euler equation:

∂ukt(zt�At)

∂At
= −β

∂

∫
V
(
z′)dFk

(
z′|zt�At

)
∂At

� (33)

Then substitute it into the conditional valuation function:

υk(zt)=
[
ukt
(
zt�Atk(zt)

)+β

∫
V
(
z′)dFk

(
z′|zt�At

)]
� (34)

and find the optimal discrete choice:

Io(zt� εt)= arg max
I

17∑
k=0

Ikt
[
υk(zt)+ εkt

]
�

Finally, we obtain the optimal continuous choice by setting Ao
t (zt) = Atk(zt) if Iokt(zt�

εt) = 1.
We now can find an alternative value function that is a function of only pk(zt),

Atk(zt), and the primitives of the model. We can now state a more general version of
Proposition 1.

Proposition 2. There exists an alternative representation for the ex ante conditional
value function at time t that is a function of only the primitives of the problem and the
CCPs as follows:

υk(zt) = ukt
(
zt�Atk(zt)

)
+

T∑
t ′=t+1

βt ′−t
17∑
s=0

∫
[ps(zt ′)

[
ust ′
(
zt ′�At ′k(zt)

)
+Eε(εst ′ |Ist ′ = 1� zt ′)

]
dFo

k(zt ′ |zt) (35)

+ λβT−t
∫

NT(zT )
−ν

NT∑
n=1

∑
x′

V
(
x′)

×
KT∑
s=0

[
Mn

k

(
x

′|zT
)
ps(zT )

]
dFo

k(zT |zt)�
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where Fo
k(zt ′ |zt) is the t ′ − t period-ahead optimal transition function, recursively defined

as

Fo
k(zt ′ |zt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F
(
zt ′ |zt� Ikt = 1�Atk(zt)

)
for t ′ − t = 1�

17∑
r=0

∑
zt′−1

pr(zt ′−1)F
(
zt ′ |zt ′−1� Irt ′−1 = 1�At ′−1k(zt ′−1)

)
Fo
k(zt ′−1|zt)

for t ′ − t > 1�

where NT(zT ) is the number the children induced from zT , KT is the number of possible
choice combinations available to the individual in the terminal period (in which birth
is no longer feasible), and Mn

k(x
′|zT ) = M(x′|zT ) conditional on IkT = 1 for the nth child

born in a parent’s life cycle.

This representation is similar to the one in Proposition 1 except for the inclusion
of Atk(zt) and the replacement of an integral for a summation deal with the continu-
ous state variables over the life cycle. The inversion—and hence the estimation—follows
through as before except we now need a first-stage consistent estimate of Atk(zt) as well.
This is obtained as Atk(zt)= E[At |zt� Ikt = 1].21

4.2 Household and gender

We extend the basic framework to include household decisions and gender. To the best
of our knowledge, no other paper estimates dynastic models with household decisions.
There are many models of household decisions; here, we show how to extend the model
to incorporate a unitary decision-maker. The framework can be extended to deal with
collective household decisions: see Gayle, Golan, and Soytas (2014) for an application
of this estimation technique to a noncorporative collective model of household behav-
ior. Let an individual’s gender, subscripted as σ , take the value of m for a male and f

for a female: σ = {f�m}. Gender is included in the vector of invariant characteristics xσ .
Let K describe the number of possible combinations of actions available to each house-
hold. Individuals get married at time zero, and for simplicity we assume there is no di-
vorce (see Gayle, Golan, and Soytas (2014) for an application with marriage and divorce).
Households are assumed to live for T periods and die together. Time zero is normalized
to account for the normal age gap between married couples, which would imply that
men have a longer childhood than women. All individual variables and earnings are in-
dexed by the gender subscript σ . We omit the gender subscript when a variable refers to
the household (both spouses). The state variables are extended to include the gender of
the offspring. Let the vector ζt indicate the gender of a child born at age t, where ζt = 1
if the child is a female and ζt = 0 otherwise. The vector of state variables is expanded to
include the gender of the offspring is as follows:

zt = ({Ik1}Kk=0� � � � � {Ikt−1}Kk=0� ζ0� � � � � ζt−1�xf �xm
)
�

21We are assuming that there is no additional stochastic element in the determination of Atk(z).
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We assume households invest time and money in the children in the household.
The function wσt(zt�hσt) denotes the earnings function; the only difference from the
single-agent problem is that gender is included in zt and can thus affect earnings. The
total earnings is the sum of individual earnings as wt(zt�ht) =w1t (zt�hf t)+w2t (zt�hmt),
where ht = (hf t�hmt). The educational outcome of the parents’ offspring is mapped
from the same parental inputs as the single-agent model: income and time investment,
number of older and younger siblings, and parental characteristics such as education,
race, and labor market skills. In this extension, gender is also included as a parental char-
acteristic. Thus, the production function is still denoted by M(x′|zT+1), where zT+1 rep-
resents the state variables at the end of the parents’ life cycle, T .

In the household, the total per-period expenditures cannot exceed the combined
income of the spouses. The budget constraint for the household is given by

wt ≥ ct + αNc(zt)(Nt+bt)wt(zt�ht)� (36)

The right-hand side of equation (36) represents expenditures on personal consumption
of the parents, ct , and on children. Parents pay for the children living in their household,
regardless of the biological relationship, and do not transfer money to any biological
children living outside the household.

As in the single-agent model, we can eliminate the continuous choice in the lifetime
utility problem so that households face a purely discrete choice problem. Recall that the
budget constraint for the household, assuming no borrowing or saving, is

wt(zt�ht)− αN(zt)(Nt+bt)wt(zt�ht) = ct� (37)

and, as in the single-agent problem, we may substitute for consumption in u2 and obtain
the following household utility function:

ukt(zt)= θk(zt)+ ut
[
wt(zt�ht)

(
1 − αN(zt)(Nt+bt)

)
� zt
]
� (38)

θk(zt) is the explicit functional form we assumed for the u1kt(zt) in equation (8). In
this formulation, each discrete choice k corresponds to a utility level characterized by
the parameter θk(zt).

For notational simplicity, let xf ∈ {f }Ff=1, xm ∈ {m}Mm=1, and Pfm be the probability
that a type-f female marries a type-m male at age zero. We can then define the expected
lifetime utility for a type-(f�m) household at age zero, excluding the dynastic compo-
nent, as

UT (f�m)= E0

[
T∑
t=0

βt
K∑

k=0

I0
kt

{
ukt(zt)+ εkt

}]
� (39)

and the expected lifetime utility for a type-(f�m) household at age zero as

U(f�m) =UT (f�m)+βTλE0

[
N−ν

N∑
n=1

F∑
f ′=1

M∑
m′=1

Pf ′m′Un
(
f ′�m′)|f�m]� (40)
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As in the single individual version of the model, we can define the expected present
discounted value of the lifetime utility of the household at any period t as

V (zt� εt)= max
I

EI

(
T∑

s=t+1

βs−t
K∑

k=0

Iks
[
uks(zs)+ εks

]

+βT−sλN−ν
N∑
n=1

F∑
f ′=1

M∑
m′=1

Pf ′m′Un
(
f ′�m′)|zt� εt)�

(41)

This can be written recursively as

V (zt� εt) =
K∑

k=0

Iokt(zt� εt)
[
ukt(zt)+ εkt

]+β
∑
z′

∫
V
(
z′� ε

)
fε(ε)dεF

(
z′|zt� Iokt = 1

)]�
where fε(ε) is the continuously differentiable density of Fε(ε0t � � � � � ε17t ), F(z′|zt� Ikt = 1)
is a transition function for state variables conditional on choice k, and Iokt(zt� εt) is the
optimal household decision rule. Similar to equation (13), we can define the conditional
choice household probability as pk(zt) =E[Iokt = 1|zt] and the ex ante value function as

V (zt) =
K∑

k=0

pk(zt)

[
ukt(zt)+Eε[εkt |Ikt = 1� zt] +β

∑
z′

V
(
z′)F(z′|zt� Ikt = 1

)]
� (42)

The rest of the estimation carries through as in the single individual case.
The addition of the two household members to the model captures important is-

sues of the degree of specialization in housework and labor market work in households
with different composition of education levels between it members. The importance
of which spouse spends time with the children (and the amount of time) depends on
the production function of the education of children and whether the time of spouses
are complements or substitutes. Furthermore, we capture patterns of assortative mat-
ing that may amplify the persistence of income across generations relative to a more
random matching pattern. Since in our model there is a potential correlation of the cost
of transfers to children (time input) with both parents’ characteristics, assortative mat-
ing patterns imply that if children of more educated parents are more likely to be more
educated, they are also more likely to have a more educated spouse, which increases the
family resources and their children’s educational outcomes.

5. Empirical application

To illustrate the estimation method, we estimate the unitary household model devel-
oped in the previous section and use it to analyze the effect of Nature versus Nur-
ture on intergenerational mobility. We estimate the model using a dataset compiled
from the Panel Study of Income Dynamics (PSID). The PSID provides a large panel of
matched data on individuals’ labor market hours, earnings, housework hours, marriage,
and childbirth histories for overlapping cohorts and generations.
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Table 2. Summary statistics for full sample.

Full sample Parents Children

(1) (2) (3)

Variable N Mean N Mean N Mean

Female 115,280 0�545 86,302 0�552 28,978 0�522
Black 115,280 0�223 86,302 0�202 28,978 0�286
Married 115,280 0�381 86,302 0�465 28,978 0�131
Age (yr) 115,280 26�155 86,302 27�968 28,978 20�756

(7�699) (7�872) (3�511)
Education (years completed) 115,280 13�438 86,302 13�516 28,978 13�209

(2�103) (2�138) (1�981)
No. of children 115,280 0�616 86,302 0�766 28,978 0�167

(0�961) (1�028) (0�507)
Annual labor income ($US 2005) 114,871 16,115 86,137 19,552 28,734 5811

(24,622) (26,273) (14,591)
Annual labor market hours 114,899 915 86,185 1078 28,714 424

(1041) (1051) (841)
Annual housework hours 66,573 714 58,564 724 8009 641

(578) (585) (524)
Annual time spent on children (hr) 115,249 191 86,275 234 28,974 63�584

(432) (468) (259)
Number of individuals 12,318 6813 5505

Note: Standard deviations are listed in parentheses. Data are from the Family-Individual File of the Michigan Panel Study
of Income Dynamics (PSID) and include individuals surveyed between 1968 and 1997. Column (1) contains the summary
statistics for the full sample; column (2) contains the summary statistics for the parents generation; column (3) contains the
summary statistics of the offspring of the parents in column (2). There are fewer observations for annual housework hours than
time spent on children because single individuals with no children are coded as missing for housework hours but by definition
are set to 0 for time spent on children.

Table 2 presents the summary statistics for our sample. Column (1) summarizes the
overall sample, Column (2) shows data only for parents, and Column (3) summarizes
data of their children. The first generation is on average seven years older than the sec-
ond generation. As a consequence, a higher proportion are married in the first genera-
tion. The male-to-female ratio is similar across generations (about 55 percent female),
and this ratio is higher in our sample than in the general population because females
are more likely to maintain responsibility for children in cases of divorce. Our sample
contains a higher proportion of blacks than the general population, which is consistent
with PSID survey procedures, and the second generation has an even higher proportion
of blacks than the first generation (about 29 percent in the second and 20 percent in the
first generation) because of higher fertility rates among blacks in our sample. There are
no significant differences across generations in completed years of education. The sec-
ond generation in our sample has a lower average age than the first generation, so the
second generation also has a lower marriage rate and a lower average number of chil-
dren, annual labor income, labor market hours, housework hours, and mean time spent
with children. Our second-generation sample spans the same age range, 17 to 55, as the
first sample. For the estimation, we retain only married households and include the mar-
ried individuals as of age 25 with all the individual years of observations whenever the
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family is intact up to age 40. Further, to account for the time and monetary investments
during the early years of the child’s life after birth, we exclude individuals who already
have a child by age 25.

5.1 Empirical implementation

This section describes the choice set specifications and functional forms of the model
that we estimate. We assume that all individuals enter the first period of the life cycle
married. That is, they transition into a married household immediately after becoming
adults. When individuals transition into a married household, their spouses’ character-
istics are drawn from the known matching function G(x−σ | xσ). The matching function
depends on the individual’s state variables—for example, it separately captures past ac-
tions that affect labor market experience on the spouse’s characteristics.

We set the number of an adult’s periods in each generation to T = 30 and measure
the individual’s age where t = 0 is age 25 because at this age most individuals would have
completed their education and started their family. As discussed earlier, we assume that
parents receive utility from adult children, whose educational outcome is revealed at
the last period of their life regardless of the birth date of the children. This assumption
is similar to the Barro–Becker assumptions. We avoid situations where the outcome of
an older child is revealed while parents make fertility and time investment decisions to
ensure that (i) these decisions are not affected by adult children outcomes and (ii) adult
children’s behavior and choices do not affect investment in children and fertility of the
parents, in which case solutions to the problems are significantly more complicated and
it is not clear whether a solution exists.

The three levels of labor supply correspond to working 40 hours a week; individuals
working fewer than 3 hours per week are classified as not working, individuals working
between 3 and 20 hours per week are classified as working part-time, while individu-
als working more than 20 hours per week are classified as working full-time. There are
three levels of parental time spent with children corresponding to no time, low time,
and high time. To control for the fact that females spend significantly more time with
children than males, we use a gender-specific categorization. We use the 50th percentile
of the distribution of parental time spent with children as the threshold for low versus
high parental time with children, and the third category is zero time with children. This
classification is done separately for males and females. Finally, birth is a binary variable;
it equals one if the mother gives birth in that year and zero otherwise. Therefore, the
household choices are a combination of labor supply and time with children for males
and females in the household plus the birth decision.

Labor market earnings. An individual’s earnings depend on the subset of his or her
characteristics, zσt . These include age, age squared, and dummy variables indicating
whether the individual has completed high school, some college, or college (or more) ed-
ucation interacted with age, respectively; the omitted category is less than high school.
Let ησ be the individual-specific ability, which is assumed to be correlated with the
individual-specific time-invariant observed characteristics. Earnings are assumed to be
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the marginal productivity of workers and are assumed to be exogenous, linearly addi-
tive, and separable across individuals in the economy. The earnings equations are given
by

wσt = exp

(
δ0σzσt +

ρ∑
s=0

δ
pt
σ�s

∑
kt−s∈HPσ

Ikt−sσ +
ρ∑

s=1

δ
f t
σ�s

∑
kt−s∈HFσ

Ikt−sσ +ησ

)
� (43)

where HPσ and HFσ are the set of choices for part-time and full-time work, respectively.
Therefore, the earnings equation depends on experience accumulated while working

part-time or full-time and the current level of labor supply. Thus, δptσ�s and δ
f t
σ�s capture

the depreciation of the value of human capital accumulated while working part-time or
full time, respectively. In the estimation, we assume ρ= 4 given that the effect of experi-
ence with higher lags is insignificant (Gayle and Golan (2012), Gayle and Miller (2004)).

Production function of children. We assume that race is transmitted automatically to
children and rule out interracial marriages and fertility. This is done because of insuf-
ficient interracial births in our sample to study this problem. Therefore, parental home
hours when the child is young affect the future educational outcome of the child, which
is denoted by Ed′

σ ,22 and innate ability, η′
σ , both of which affect the child’s earnings

(see equation (43)).The state vector for the child in the first period of the life cycle is de-
termined by the intergenerational state transition function M(x′|zT+1); specifically, we
assume that

M
(
x′|zT+1

)= [Pr
(
η′
σ |Ed′

σ

)
�1
]

Pr
(
Ed′

σ |zT+1
)
� (44)

Thus, we assume that the parental inputs and characteristics (parental education and
fixed effects) determine educational outcomes according to the probability distribution
Pr(Ed′

σ |zT+1). In our empirical specification, the state vector of inputs, zT+1, contains
the parental characteristics, the cumulative investment variables (low time and high
time with children) of each parent up to period T , the permanent income of each par-
ent, and the number of a child’s siblings. In the data, we observe only total time de-
voted to children each period; thus, we assign each child age 5 or younger in the house-
hold the average time investment, assuming all young children in the household receive
the same time input. Parental characteristics include the education of the father and
mother, their individual-specific effects, and race. Once the education level is deter-
mined, it is assumed that the ability η′

σ is determined according to the probability distri-
bution Pr(η′

σ |Ed′
σ). The above form of the transition allows us to estimate the equations

separately for the production function of children given as the first two probabilities and
the marriage market matching given as the last term.

Contemporaneous utility. We assume that the per-period utility from consumption
is linear; therefore, equation (38), the utility from consumption and children (after sub-
stituting the budget constraint), becomes

ukt(zt)= θk(zt)+ αwt(zt�ht)− ααN(zt)(Nt+bt)� (45)

22Level of education, Edσ , is a discrete random variable in the model where it can take 4 different values:
less than high school (LHS), high school (HS), some college (SC), and college (COL).
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where θk(zt) are the coefficients associated with each combination of time allocation
choice, thus capturing the differences in the value of nonpecuniary benefits/costs asso-
ciated with the different activities. The vector of decisions includes birth; thus, we allow
the utility associated with different time allocations to depend on whether or not there
is a birth. As discussed earlier, this utility captures not only the level of leisure but also
the nonpecuniary costs/benefits associated with the different activities. For example, we
do not rule out that time spent with children may be valued and that the nonpecuniary
costs/benefits depend on birth events and levels of labor supply.

We assume no borrowing and saving, one consumption good with price normal-
ized to 1, and risk neutrality. The first term represents the utility from a parent’s own
consumption. The second term, however, represents the net utility/costs from having
young children in the household. In general, given our assumptions, we can use a bud-
get constraint to derive the coefficients on income and number of children and a sepa-
rate, nonpecuniary utility from children and monetary costs. However, since we do not
have data on consumption or expenditures on children, the coefficients on the num-
ber of children also capture nonpecuniary utility from children and cannot be identified
separately from the monetary costs of raising children. The interaction of income with
the number of children and education captures differences in the costs of raising chil-
dren by the socioeconomic status of the parents. By assuming a linear utility function,
we abstract from risk aversion and insurance considerations that may affect investment
in children, fertility, as well as the labor supply. For families, we ignore the insurance
aspects of marriage and divorce. While these issues are potentially important, we ab-
stract from them and focus on transmission of human capital. The no borrowing and
savings assumption is extreme and allows us to test (i) whether income is important in
the production function of education of children and (ii) whether the timing of income
is important.

6. Empirical results

This section presents results of estimation and analysis of the structural model. First,
we present estimates from Step 1 of our estimation procedure. Second, we present es-
timates from Step 2 of the estimation, which is estimated using the Hotz et al. (1994)
extension of the Hotz and Miller (1993) estimator.23 Third, we present results that as-
sess how well our model fits the data. Finally, we present counterfactual simulations
that investigate the role of the automatic transmission of education across generations
(Nature) on integenerational mobility at bottom of the income distribution.

6.1 First-stage estimation

The first-stage estimation include estimates of the earnings equation, the unobserved
skills function, the intergenerational education production function, and the marriage

23We use the Hotz et al. (1994) estimator instead of the original Hotz and Miller (1993) estimator be-
cause the forward simulation used in the former significantly reduces the computational burden involved
in computing the life-cycle component of the dynastic model.
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assignment functions. All these functions are fundamental parameters of our model and

are estimated outside the estimation of the preferences, discount factors, and the net

costs of raising children. The first-stage estimates also include equilibrium objects such

as the CCPs. Below we present estimates on the main earnings equation, the unobserved

skills function, and the intergenerational education production function. The estimates

of the marriage assignment functions and the CCPs are included in the Supplementary

Material (Gayle, Golan, and Soytas (2018)).

Table 3. Estimates of earnings equation: Dependent variable: Log of yearly earnings.

Variable Estimate Variable Estimate Variable Estimate

Demographic Variables Fixed Effect

Age squared −4�0e–4 Female × Full-time work −0�125 Black −0�154
(1�0e–5) (0�010) (0�009)

Age × LHS 0�037 Female × Full-time work (t − 1) 0�110 Female −0�484
(0�002) (0�010) (0�007)

Age × HS 0�041 Female × Full-time work (t − 2) 0�025 HS 0�136
(0�001) (0�010) (0�005)

Age × SC 0�050 Female × Full-time work (t − 3) 0�010 SC 0�122
(0�001) (0�010) (0�006)

Age × COL 0�096 Female × Full-time work (t − 4) 0�013 COL 0�044
(0�001) (0�010) (0�006)

Current and Lags of Participation Female × Part-time work (t − 1) 0�150 Black × HS −0�029

Full-time work 0�938 (0�010) (0�010)
(0�010) Female × Part-time work (t − 2) 0�060 Black × SC 0�033

Full-time work (t − 1) 0�160 (0�010) (0�008)
(0�009) Female × Part-time work (t − 3) 0�040 Black × COL 0�001

Full-time work (t − 2) 0�044 (0�010) (0�011)
(0�010) Female × Part-time work (t − 4) −0�002 Female × HS −0�054

Full-time work (t − 3) 0�025 (0�010) (0�008)
(0�010) Individual specific effects Yes Female × SC 0�049

Full-time work (t − 4) 0�040 (0�006)
(0�010) Female × COL 0�038

Part-time work (t − 1) −0�087 (0�007)
(0�010) Constant 0�167

Part-time work (t − 2) −0�077 (0�005)
(0�010)

Part-time work (t − 3) −0�070
(0�010)

Part-time work (t − 4) −0�010 Hausman Statistics 2296
(0�010) Hausman p-value 0�000

No. of Observations 134,007
No. of Individuals 14,018
R2 0�44 0�278

Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school; HS indicates
completed education of high school but not college; SC indicates completed education of some college but not a graduate;
COL indicates completed education of at least a college degree.
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Earnings equation and unobserved skills. Table 3 presents the estimates of the earn-
ings equation and the function of unobserved (to the econometrician) individual skill
(see also Gayle, Golan, and Soytas (2014)). The top panel of the first column shows that
the age-earnings profile is significantly steeper for higher levels of completed educa-
tion; the slope of the age-log-earnings profile for a college graduate is about three times
that of an individual with less than a high school education. However, the largest gap is
for college graduates; the age-log-earnings profile for a college graduate is about twice
that of an individual with only some college. These results confirm that there are sig-
nificant returns to parental time investment in children in terms of the labor market
because parental investment significantly increases the likelihood of higher education
outcomes, which significantly increases lifetime labor market earnings.

The bottom panel of the first column and the second column of Table 3 show that
male full-time workers earn 2�6 times more than part-time male workers and female
full-time workers earn 2�3 times more than females part-time workers (see also Gayle,
Golan, and Soytas (2014)). It also shows that there are significant returns to past full-
time employment for both genders; however, females have higher returns to full-time
labor market experience than males. The same is not true for part-time labor market ex-
perience; males’ earnings are lower if they worked part-time in the past, while there are
positive returns to the most recent female part-time experience. However, part-time ex-
periences 2 and 3 years in the past are associated with lower earnings for females; these
rates of earnings reduction are, however, lower than those for males. These results are
similar to those in Gayle and Golan (2012) and perhaps reflect statistical discrimination
in the labor market in which past labor market history affects employers’ beliefs about
workers’ labor market attachment in the presence of hiring costs.24 These results imply
there are significant costs in the labor market in terms of the loss of human capital from
spending time with children, if spending more time with children comes at the expense
of working more in the labor market. These costs may be smaller for females than males
because part-time work reduces compensation less for females than for males. If a fe-
male works part-time for 3 years, for example, she loses significantly less human capital
than a male working part-time for 3 years instead of full-time. This difference may give
rise to females specializing in child care; this specialization comes from the labor market
and production function of a child’s outcome, as is the current wisdom.

The unobserved skill (to the econometrician) is assumed to be a parametric function
of the strictly exogenous time-invariant components of the individual variables. This
assumption is used in other papers (e.g., MaCurdy (1981), Chamberlain (1986), Nijman
and Verbeek (1992), Zabel (1992), Newey (1994), Altug and Miller (1998), and Gayle and
Viauroux (2007)). It allows us to introduce unobserved heterogeneity to the model while
still maintaining the assumption on the discreteness of the state space of the dynamic
programming problem needed to estimate the structural parameters from the dynastic
model. Also because the unobserved skill is estimated in the first step, and hence is data
in the subsequence steps this does not introduce the standard initial condition prob-
lem. The Hausman test statistic shows that we cannot reject this correlated fixed effect

24These results are also consistent with part-time jobs differing from full-time jobs for males more than
for females.



Quantitative Economics 9 (2018) Dynastic life-cycle discrete choice models 1227

Table 4. Three-stage least squares estimation of the education production function.

Variable High School Some College College

High school father 0�063 0�003 −0�002
(0�032) (0�052) (0�0435)

Some college father 0�055 0�132 0�055
(0�023) (0�038) (0�031)

College father −0�044 0�008 0�120
(0�032) (0�051) (0�042)

High school mother 0�089 0�081 −0�019
(0�040) (0�065) (0�052)

Some college mother 0�007 −0�041 0�017
(0�030) (0�049) (0�039)

College mother 0�083 0�120 0�040
(0�036) (0�057) (0�047)

Mother’s time −0�014 0�080 0�069
(0�021) (0�034) (0�027)

Father’s time 0�031 0�100 0�026
(0�019) (0�029) (0�025)

Mother’s labor income −0�025 −0�013 0�005
(0�009) (0�014) (0�011)

Father’s Labor Income 0�001 0�001 0�002
(0�003) (0�004) (0�003)

Female −0�002 0�135 0�085
(0�017) (0�028) (0�022)

Black 0�020 0�082 0�043
(0�039) (0�063) (0�051)

No. of siblings under age 3 −0�014 −0�107 −0�043
(0�017) (0�027) (0�022)

No. of siblings between ages 3 and 6 −0�029 −0�047 −0�012
(0�019) (0�030) (0�025)

Constant 0�855 −0�231 −0�359
(0�108) (0�172) (0�140)

Observations 1335 1335 1335

Note: Standard errors are listed in parentheses; the excluded class is less than high school. Data are from the Family-
Individual File of the Michigan Panel Study of Income Dynamics (PSID), and include individuals surveyed between 1968 and
1997. Instruments: Mother’s and father’s labor market hours over the child’s first 8 years of life, linear and quadratic terms of
mother’s and father’s age when the child was 5 years old.

specification. Column (3) of Table 4 presents the estimate of skills as a function of un-
observed characteristics; it shows that blacks and females have lower unobserved skills
than whites and males. This could capture labor market discrimination. Education in-
creases the level of skills but it increases at a decreasing rate with the level of completed
education. The rates of increase for blacks and females with some college and a college
degree are higher than those of their white and male counterparts. This pattern is re-
versed for blacks and females with a high school diploma. Notice that skills are another
transmission mechanism through which parental time investment affects labor market
earnings in addition to education.

Intergenerational education production function. A well-known problem with the es-
timation of production functions is the simultaneity of the inputs (time spent with chil-
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dren and income). As is clear from the structural model, the intergenerational education
production function suffers from a similar problem. However, because the output of the
intergenerational education production (i.e., completed education level) is determined
across generations while the inputs, such as parental time investment, are determined
over the life cycle of each generation, we can treat these inputs as predetermined and
use instruments from within the system to estimate the production function.

Table 4 presents results of a three-stage least squares estimation of the system of in-
dividual educational outcomes; the estimates of the two other stages are available in the
Supplementary Material (Gayle, Golan, and Soytas (2018)). The system includes the lin-
ear probabilities of the education outcomes, Pr(Ed′

σ |zT+1), as well as the labor supply,
income, and time spent with children equations. The estimation uses the mother’s and
father’s labor market hours over the first 5 years of the child’s life as well as linear and
quadratic terms of the mother’s and father’s age on the child’s fifth birthday as instru-
ments. The estimation results show that controlling for all inputs, a child whose mother
has a college education has a higher probability of obtaining at least some college edu-
cation and a significantly lower probability of not graduating from high school relative
to a child with a less educated mother; while the probability of graduating from college
is also larger, it is not statistically significant. If a child’s father, however, has some col-
lege or a college education, the child has a higher probability of graduating from college.
This is consistent with the findings of Rios-Rull and Sanchez-Marcus (2002).

We measure parental time investment as the sum of the parental time investment
over the first 5 years of the child’s life. The total time investment (i.e., the sum of the
per-period investment of the first 5 years of a child’s life) is a variable that ranges be-
tween 0 and 10 because low yearly parental investment is coded as one and high yearly
parental investment is code as two. The results in Table 5 show that while a mother’s time
investment significantly increases the probability of a child graduating from college or
having some college, a father’s time investment significantly increases the probability of
the child graduating from high school or having some college. These estimates suggest
that while a mother’s time investment increases the probability of a high educational
outcome, a father’s time investment truncates low educational outcome. However, the
time investment of both parents is productive in terms of their children’s education out-
comes. It is important to note that mothers’ and fathers’ hours spent with children are at
different margins, with mothers spending significantly more hours than fathers. Thus,
the magnitudes of the discrete levels of time investment of mothers and fathers are not
directly comparable since low and high investment of time differs across genders.

6.2 Second-stage estimation

This section presents estimates of the intergenerational and intertemporal discount fac-
tors, the preference parameters, and child care cost parameters. Table 6 presents the
discount factors. It shows that the intergenerational discount factor, λ, is 0�795. This im-
plies that in the second-to-last period of the parent’s life, a parental valuation of their
child’s utility is 79�5% of their own utility. The estimated value is in the same range
of values obtained in the literature calibrating dynastic model (Rios-Rull and Sanchez-
Marcos (2002), Greenwood, Guner, and Knowles (2003)). However, these models do not
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Table 5. Structural estimates of discount factors and utility parameter.

Variable Estimates Variable Estimates

Discount factors Disutility/Utility of Choices

β 0�816 Wife Husband

(0�002) Labor supply

λ 0�795 No work Part-time −0�512
(0�200) (0�005)

υ 0�248 No work Full-time 0�207
(0�168) (0�009)

Marginal Utility of Income Part-time No work −2�023

Family labor income 0�480 (0�003)
(0�004) Part-time Part-time −1�168

Children × Family labor income −0�466 (0�009)
(0�066) Part-time Full-time −0�605

Children × HS × Family labor income 1�216 (0�008)
(0�065) Full-time No work −0�408

Children × SC × Family labor income 1�279 (0�007)
(0�066) Full-time Part-time −1�24532

Children × COL × Family labor income 1�300 (0�011)
(0�065) Full-time Full-time 0�001

Children × HS spouse × Family labor income −1�017 (0�010)
(0�066) Time with children

Children × SC spouse × Family labor income −0�995 Low Medium 0�502
(0�066) (0�014)

Children × COL spouse × Family labor income −0�992 Low High 0�564
(0�066) (0�013)

Children × Black × Family Labor Income −0�108 Medium Low −0�169
(0�004) (0�008)

Medium Medium 0�129
(0�010)

Medium High 0�593
(0�013)

High Low −0�364
(0�007)

High Medium 0�353
(0�011)

High High −0�140
(0�012)

Birth 0�701
(0�025)

Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school; HS indicates
completed education of high school but not college; SC indicates completed education of some college but not a graduate;
COL indicates completed education of at least a college degree. The excluded choice is no work, no time with children, and no
birth for both spouses.

include the life cycle. The estimated discount factor, β, is 0�81. The discount factor is

smaller than typical calibrated values; however, the few papers that have estimated it
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find similar values (e.g., Arcidiacono, Sieg, and Sloan (2007), find it to be 0.8).25 Lastly,
the discount factor associated with the number children, υ, is 0�25 which implies that
the marginal increase in value from the second child is 0�68 and from the third child
is 0�60. Identification of the discounts factors are nontrivial in dynamic discrete models.
Here, we have three discount factors to identify instead of one as in the standard discrete
choice models. However, note that past home hours, when the children are young, affect
only the transition functions and not the current utility, so we have the common exclu-
sion restrictions used to identify dynamic discrete choice models (Magnac and Thes-
mar (2002), Fang and Wang (2015)). Then the identification of the intergenerational dis-
counts factors follows by a direct application of the proof of Proposition 2 in Fang and
Wang (2015) to our setting.

Table 5 also presents the marginal utility of income, which is positive and increasing
with the number of children except for a household with a college graduate wife and a
husband with at least a high school education. Also, a husband’s education decreases
the marginal utility of income for families with children. The marginal utility of income
for families with children is also lower for black families.

The right panel of Table 5 presents our estimates of the disutility/utility from vari-
ous combination of household choices. As is usual in discrete choice models, these are
estimated relative to an outside choice, which is both spouses not (i) working, (ii) giving
birth, or (iii) spending any time with young children. We also use an additive specifica-
tion in which the costs of birth, work, and time with children are additively separable.
First, every labor supply choice of the household carries with it a disutility relative to the
reference choice except for households in which both spouses work full-time (which sta-
tistically is no different from disutility/utility reference) and when the wife does not work
and the husband works full-time. In the data, if both spouses spend low time with chil-
dren and there is no birth, then both spouses are equally likely to be observed working
full-time than not working; hence the equal utility for both sets of choices. Second, there
are no distinct patterns to utility from time with children; these estimates are highly
nonlinear, perhaps reflecting that it is a mixture of leisure and disutility. However, giving
birth provides a positive utility. This implies that, although parents get utility from the
quality of their children, they also get some instantaneous utility from a birth.

6.3 Model fit

In this section, we first assess the ability of our model to reproduce the basic stylized
facts by race, gender, and marital status. We assess how well our model predicts the
choices of labor supply, home hours with young children, and birth. Our model is over
identified and passes the standard over identifying restrictions J-test. In the estimation,
the CCPs are targeted; in the model fit analysis, we simulate a sample of individuals and
determine whether the individuals in our simulated sample behave like the individuals
in our data. In some regards, this exercise is equivalent to a graphical summary of our
model’s over identification test.

25We are not aware of dynastic models in which the time discount factor is estimated.
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Table 6 presents the model’s fit. The model matches the labor supply patterns be-
tween gender and across race well. While it also matches the variation across race and
gender for parental time with children, the levels are not similar in all cases. In examin-
ing the birth decisions, the model produces the differences in birth rates across house-
holds of different race, but it underpredicts the fecundity of whites by about a half. This
lower birth rate is partly rationalized by the lower time with children predicted by the
model. Nevertheless, our empirical model specification is very parsimonious: We do not
include race, education, or marital status in the preference parameters for the disutil-
ity/utility of the different choices. In addition, the only unobserved heterogeneity is es-
timated from the earnings equations. Still, the model performs well in replicating the
data based primarily on the economic interactions embodied in it.

6.4 The effect of nature versus nurture on intergenerational mobility

One of the major benefits of our approach is the ability to do full blown counterfactual
analysis. An alternative approach which has been used in empirical structural models
to incorporate intergenerational/altruistic concerns is to modify the standard dynamics
structural estimation methods by introducing an approximation for the value parents
place on their children’s adults outcome as a function of some state variables, normally
the educational outcome or test scores (see, e.g., Bernal (2008), Brown and Flinn (2011),
and Del Boca, Flinn, and Wiswall (2013) among others). The main advantage of this al-
ternate approach is that the estimation is easier and standard techniques in the litera-
ture can be used. The major disadvantage is that welfare/counterfactual analysis is sub-
ject to Lucas’ critique. That is, in a counterfactual environment the value parents place
on their children quality changes in two ways, the value of the state variables and the
functional form of the mapping between the state variables and the utility derived from
those state variables. The is made obvious by an examination of equations (18) and (20).
This alternative approach does not allow the functional form of the mapping to change.

From equations (18) and (20), one can see that our framework can nested this al-
ternative approach, since the approximation used in the alternative approach is equiv-
alent to conducting a welfare/counterfactual analysis holding fixed the CCPs and tran-
sition used in the calculation of the value of a child. To illustrate the bias induced by
ignoring the fact that the children themselves will reoptimize when we change the eco-
nomic environment, we asked the counterfactual question of how much of the mobility
across generations is due to the automatic transmission education across generations
as opposed to differences in parent investment between parents of different educational
background. To do this, we eliminate the automatic transition of education in produc-
tion function.26 We report the results from two models. Model (1) is the model estimated
in above. Model (2) is a model in which the discount factors (β and λ) are set to values
commonly used in the literature (β = 0�90 and λ = 0�95) and all other parameters esti-
mated.

26Operationally, we set the effect on education in the intergenerational production function equal to that
of a high school graduate irrespective of the mother’s and father’s education level.
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Figure 1. Counterfactuals and mobility. Note: Model 1 is the baseline model with all param-
eters estimated. Model 2 is the model with discount factors calibrated (β = 0�90�λ = 0�95).
NN (i)� i = 1�2 removes Nature from the intergenerational educational production with full
re-optimization. NN (i′)� i = 1�2 removes Nature from the intergenerational educational produc-
tion but Do Not allow for re-optimization of subsequent generations.

Table 6 presents the summary of labor supply, time investment, and birth rate by
gender and race for the data, baseline models and counterfactual simulations. It shows
that if we eliminate the portion of parental education that is transmitted automatically
across generation then parents will reoptimize and change labor supply, time invest-
ment, and fertility behaviors. Therefore, a pure statistical decomposition would be in-
appropriate for answering the question of how much mobility would change if there
were no automatic (Nature) transmission of education from parents to children. The
columns NN 1 presents the counterfactual estimates of our model and NN 1′ the esti-
mation results of the approximated model; similarly, NN 2 presents the results of the
counterfactual from our model with (β = 0�90 and λ = 0�95) and NN 2′ the results of the
counterfactual of the approximated model. The columns NN 1′ and NN 2′ show that not
taking into account that the all subsequent generations will also reoptimize induces sig-
nificant bias with the bias being greater the larger the discount factors.

To obtain a number that summarize the impact on mobility, Figure 1 presents the
probability that a children born in a family in the bottom 20 percent of the family in-
come distribution will end up in a family with family income above the median of the
next generation family income distribution. It shows that in the baseline model, that is,
model 1, that only 30 percent of children born in the bottom 20 percent will end up with
families earning above the median. However, if the automatic transition of education
was eliminated that probability would increase by about 20 percent to about 40 percent.
However, ignoring the re-optimization of subsequent generations, we overestimate the
impact of eliminating the automatic transition of education across generations on mo-
bility by about 25 percent. Model (2) shows the similar qualitative patterns but shows
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that the overestimate of the impact of “Nature” on mobility could be as high as 90 per-
cent, which illustrate the gain from using the approach outline in this paper.

7. Conclusion

This paper provides a new representation of the value function for discrete choice dy-
nastic models that partially overcomes the curse of dimensionality of dynastic models by
exploiting properties of the stationary decision rules. The representation can be used in
multistage CCP estimators to estimate a rich class of dynastic models including invest-
ment in children’s human capital, monetary transfers, unitary households, endogenous
fertility, and a life cycle within each generation. Under certain conditions, we show that
the framework can also accommodate continuous choice variables. The paper extends
methods used in the literature for the estimation of single-agent nondynastic models
to the dynastic setting. The paper compares the performance of a multistage CCP esti-
mator based on the new value function representation with a modified version of the
full solution MLE using simulations and finds that the estimates are close to the nested
fixed-point estimates as the sample increases but the computation time is reduced sub-
stantially.

The paper then provides an application of a unitary household model in which
households choose labor supply, time with children, and fertility; human capital is trans-
mitted across generations by monetary and time investments of the parents. We then
used the estimate model to conduct counterfactual simulations, investigating the role
of the automatic transmission of education across generations (Nature effect) in ac-
counting for the intergenerational immobility at the bottom of the income distribution.
We find that without the Nature effect in the intergenerational education production
function mobility at the bottom of the income distribution would have been 20 per-
cent higher. Finally, not accounting for the reoptimization of sequent generations in the
model, as is done in the approach outlined in this paper, will overstate the effect of the
Nature on mobility by between 20 and 90 percent.

Appendix

Proof of Proposition 1. Recall the conditional value function in equation (14):

υk(zt) = ukt(zt)+β
∑
zt+1

V (zt+1)F(zt+1|zt� Ikt = 1)� (46)

We begin by noting that

V (zt+1) =
17∑
s=0

ps(zt+1)

[
ust+1(zt+1)

+Eε(εst+1|Ist+1 = 1� zt+1) (47)

+β
∑
zt+2

V (zt+2)F(zt+2|zt+1� Ist+1 = 1)
]
�
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Combining equations (46) and (47) give

υk(zt) = ukt(zt)+β
∑
zt+1

17∑
s=0

ps(zt+1)
[
ust+1(zt+1)

+Eε(εst+1|Ist+1 = 1� zt+1)
]
F(zt+1|zt� Ikt = 1) (48)

+β2
∑
zt+1

17∑
s=0

ps(zt+1)

[∑
zt+2

V (zt+2)F(zt+2|zt+1� Ist+1 = 1)
]
F(zt+1|zt� Ikt = 1)�

Similarly,

V (zt+2) =
17∑
r=0

pr(zt+2)

[
urt+2(zt+2)

+Eε(εrt+2|Irt+2 = 1� zt+2) (49)

+β
∑
z+3

V (zt+3)F(zt+3|zt+2� Irt+2 = 1)
]
�

Substituting equation (49) into equation (48) gives

υk(zt) = ukt(zt)+β
∑
zt+1

17∑
s=0

ps(zt+1)
[
ust+1(zt+1)

+Eε(εst+1|Ist+1 = 1� zt+1)
]
F(zt+1|zt� Ikt = 1)

+β2
∑
zt+1

17∑
s=0

ps(zt+1)
∑
zt+2

17∑
r=0

pr(zt+2)
[
urt+2(zt+2)

+Eε(εrt+2|Irt+2 = 1� zt+2)
]

× F(zt+2|zt+1� Ist+1 = 1)F(zt+1|zt� Ikt = 1)

+β3
∑
zt+1

17∑
s=0

ps(zt+1)
∑
zt+2

17∑
r=0

pr(zt+2)

×
∑
z+3

V (zt+3)F(zt+3|zt+2� Irt+2 = 1)

× F(zt+2|zt+1� Ist+1 = 1)F(zt+1|zt� Ikt = 1)�

(50)

Without loss of generality (WLOG), we assume t + 3 = T ; then

V (zT �εT )= max
I

E

( 17∑
k=0

IkT

[
ukT (zT )+ εkT + λNk(zT )

−ν
Nk∑
n=1

∑
xn

Ug+1�n(xn)

]∣∣∣zT �εT
)
�



1236 Gayle, Golan, and Soytas Quantitative Economics 9 (2018)

Now

V (zT ) =
∫

V (zT �εT )fε(εT )dεT

=
∫

max
I

E

( 17∑
j=0

IjT

[
ujT (zT )+ εjT

+ λNj(zT )
−ν

Nj∑
n=1

∑
xn

Ug+1�n(xn)

]∣∣∣zT �εT
)
fε(εT )dεT (51)

=
17∑
j=0

pj(zT )

[
ukT (zT )+Eε(εjT |zT � IjT = 1)

+ λNj(zT )
−ν

Nj∑
n=1

∑
xn

Ug+1�n(xn)M
(
x

′
n
|zT � IjT = 1

)]
�

We know from the value function representation that Ug+1�n(xn) = V (xn); therefore,

V (zT ) =
17∑
j=0

pj(zT )
[
ujT (zT )+Eε(εjT |zT � IjT = 1

]

+ λNj(zT )
−ν

Nj∑
n=1

∑
xn

V (xn)M(xn|zT � IjT = 1)]�
(52)

Substituting the above into equation (50) and rearranging gives

υk(zt) = ukt(zt)+β
∑
zt+1

17∑
s=0

ps(zt+1)
[
ust+1(zt+1)

+Eε(εst+1|Ist+1 = 1� zt+1)
]
F(zt+1|zt� Ikt = 1)

+β2
∑
zt+2

17∑
r=0

pr(zt+2)
[
urt+2(zt+2)+Eε(εrt+2|Irt+2 = 1� zt+2)

]

×
∑
zt+1

17∑
s=0

ps(zt+1)F(zt+2|zt+1� Ist+1 = 1)F(zt+1|zt� Ikt = 1)

+β3
∑
zT

17∑
j=0

pj(zT )[ujT (zT )+Eε[εjT |zT � IjT = 1]

×
17∑
r=0

∑
zt+2

pr(zt+2)F(zt+3|zt+2� Irt+2 = 1) (53)
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×
17∑
s=0

∑
zt+1

ps(zt+1)F(zt+2|zt+1� Ist+1 = 1)F(zt+1|zt� Ikt = 1)

+ λβ3
∑
zT

17∑
j=0

pj(zT )Nj(zT )
−ν

×
Nj∑
n=1

∑
xn

V
(
x′
n

)
M
(
x

′
n
|zT � IjT = 1

)

×
∑
zt+2

17∑
r=0

pr(zt+2)F(zT |zt+2� Irt+2 = 1)

×
∑
zt+1

17∑
s=0

ps(zt+1)F(zt+2|zt+1� Ist+1 = 1)F(zt+1|zt� Ikt = 1)�

Using the definition of the optimal transition function, the above simplifies to

υk(zt) = ukt(zt)+β

17∑
s=0

∑
zt+1

ps(zt+1)
[
ust+1(zt+1)

+Eε[εst+1|Ist+1 = 1� zt+1]
]
Fo(zt+1|zt� Ikt = 1)

+β2
17∑
s=0

∑
zt+2

ps(zt+2)
[
urs+2(zt+2)

+Eε[εst+2|Ist+2 = 1� zt+2]
]
Fo(zt+2|zt� Ikt = 1)

+β3
17∑
s=0

∑
zT

ps(zT )
[
usT (zT )+Eε[εsT |zT � IsT = 1]]Fo(zT |zt� Ikt = 1)

+ λβ3
17∑
s=0

∑
zT

ps(zT )N
−ν
s (zT )

×
Ns∑
n=1

∑
xn

V (xn)M(xn|zT � IsT = 1)Fo(zT |zt� Ikt = 1)�

(54)

The assumption that parents are infertile in the final period of their life cycle simplifies

to

υk(zt) = ukt(zt)+β

17∑
s=0

∑
zt+1

ps(zt+1)
[
ust+1(zt+1)

+Eε[εst+1|Ist+1 = 1� zt+1]
]
Fo(zt+1|zt� Ikt = 1)
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+β2
17∑
s=0

∑
zt+2

ps(zt+2)
[
urs+2(zt+2)

+Eε[εst+2|Ist+2 = 1� zt+2]
]
Fo(zt+2|zt� Ikt = 1) (55)

+β3
17∑
s=0

∑
zT

ps(zT )
[
usT (zT )+Eε[εsT |zT � IsT = 1]]Fo(zT |zt� Ikt = 1)

+ λβ3
∑
zT

NT (zT )
−ν

×
N∑
n=1

∑
xn

V (xn)

KT∑
s=0

M(xn|zT � IsT = 1)ps(zT )F
o(zT |zt� Ikt = 1)�

�

Proof of Proposition 2. This result follows immediately by combining the results in
Proposition 1, with the replacement of the summation over zt+1 with the integral over
zt+1. �
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