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A method for solving and estimating heterogeneous agent
macro models

Thomas Winberry
Booth School of Business, University of Chicago and NBER

I develop a computational method for solving and estimating heterogeneous
agent macro models with aggregate shocks. The main challenge is that the ag-
gregate state vector contains the distribution of agents, which is typically infinite-
dimensional. I approximate the distribution with a flexible parametric family, re-
ducing its dimensionality to a finite set of endogenous parameters, and solve for
the dynamics of these endogenous parameters by perturbation. I implement the
method in Dynare and show that it is fast, general, and easy to use. As an illus-
tration, I use the method to perform a Bayesian estimation of a heterogeneous
firm model with aggregate shocks to neutral and investment-specific productiv-
ity. I find that the behavior of investment at the firm level quantitatively shapes
inference about the aggregate shock processes, suggesting an important role for
micro data in estimating DSGE models.

Keywords. Heterogeneous agents, computational economics, estimation, lumpy
investment.

JEL classification. C63, E22, E32.

1. Introduction

Heterogeneity is pervasive in microeconomic data; households vary tremendously in
their income, wealth, and consumption, for example, while firms vary in their productiv-
ity, investment, and hiring. A rapidly growing literature has emerged which studies how
this micro heterogeneity shapes our understanding of business cycle fluctuations.1 The
heterogeneous agent models studied in this literature are computationally challenging
because the aggregate state vector contains the distribution of microeconomic agents,
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which is typically an infinite-dimensional object. Although many numerical algorithms
have been developed to overcome this challenge, none are as general, efficient, or easy-
to-use as the standard perturbation methods routinely employed to solve representative
agent models using prepackaged toolboxes like Dynare. Due to this challenge, hetero-
geneous agent models have yet to reach widespread adoption, particularly among cen-
tral banks and policy institutions.

In this paper, I develop a general, efficient, and easy-to-use computational method
for solving heterogeneous agent models with aggregate shocks. I approximate the
infinite-dimensional distribution with a finite-dimensional parametric family, so that
the parameters of that family become endogenous state variables. An accurate approx-
imation of the distribution may require a large number of parameters, so I solve for the
aggregate dynamics of the model using locally accurate perturbation techniques (which
are computationally efficient even when the aggregate state vector is large). In order to
make the method accessible, I implement the perturbation step in Dynare and provide
a detailed online code template which explains how to do so (see Winberry (2018)). Fi-
nally, to illustrate the strength of the method, I use it to estimate a heterogeneous firm
model with full-information Bayesian techniques. The degree of frictions at the micro
level has a quantitatively significant impact on the estimated aggregate shock processes,
showing that micro behavior places important restrictions on the estimation of DSGE
macro models.

Although the method is applicable to a wide range of models, for concreteness
I demonstrate its use in the Khan and Thomas (2008) model, which extends the real
business cycle framework to include firm heterogeneity and fixed capital adjustment
costs. The aggregate state vector of the model contains the distribution of firms over
idiosyncratic productivity and capital, which evolves over time in response to aggre-
gate productivity shocks. The dynamics of the distribution must satisfy a complicated
fixed-point problem: each firm’s investment decision depends on its expectation of the
dynamics of the distribution, and the dynamics of the distribution depend on firms’ in-
vestment decisions. This infinite-dimensional fixed-point problem is at the heart of the
computational challenges faced by the heterogeneous agent literature.

My computational method solves this problem accurately and efficiently. Depend-
ing on the degree of approximation of the distribution (ranging from 5 to 20 parameters),
solving the model takes between 30 and 50 seconds using Dynare.2 Although degrees of
approximation on the low end of this range are sufficient to capture the dynamics of ag-
gregate variables, degrees on the high end are necessary to capture changes in the shape
of the distribution over time.

I extend this basic analysis in three main ways in order to illustrate the generality
of the computational method. First, I compute a nonlinear approximation of the aggre-
gate dynamics; consistent with the results in Khan and Thomas (2008), I find that non-
linearities are quantitatively unimportant in this model. Second, I add an investment-
specific productivity shock to the model and show that the method continues to perform

2This running time overstates the time it takes to solve the model in each step of an estimation procedure
because it includes the time spend processing the model and taking symbolic derivatives. Once these tasks
are complete, they do not need to be performed again for different parameter values.
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well. When the investment-specific shock is volatile enough, “approximate aggregation”
breaks down, suggesting that approximating the distribution with a small number of
moments as in Krusell and Smith (1998) would be impractical. Finally, I use the method
to solve the heterogeneous household model of Krusell and Smith (1998), which fea-
tures an occasionally binding borrowing constraint and mass points in the distribution
of households.

Finally, to illustrate the power of the method, I estimate a version of the model
with aggregate shocks to both investment-specific and total factor productivity using
full-information Bayesian techniques. Specifically, I estimate the parameters of the ag-
gregate shock processes conditional on different values of the fixed capital adjustment
costs (corresponding to different patterns of micro-level investment behavior). Charac-
terizing the posterior distribution of parameters with Markov Chain Monte Carlo takes
less than 42 minutes using Dynare. The estimation procedure infers that investment-
specific shocks are small when adjustment costs are small, but infers that investment-
specific shocks are large when adjustment costs are large. Of course, the ideal estimation
exercise would incorporate both micro- and macro-level data to jointly estimate the pa-
rameters of the model; these results show that doing so is feasible using my computa-
tional method.

Related literature

My method builds heavily on two strands of the computational literature. The first
strand of literature approximates the cross-sectional distribution using a parametric
family. I adapt the family from Algan, Allais, and Haan (2008), who use it to solve the
Krusell and Smith (1998) model. Algan, Allais, and Haan (2008) solve for the dynamics of
the parameters of the distribution using a globally accurate projection technique, which
is computationally slower than the locally accurate perturbation method that I use.

The second strand of literature I build on uses a mix of globally accurate and locally
accurate approximations to solve for the dynamics of heterogeneous agent models. The
most closely related paper is Reiter (2009) who, himself building on an idea of Campbell
(1998), solves the Krusell and Smith (1998) model using locally accurate approximations
with respect to the aggregate state vector. Reiter (2009) approximates the distribution
with a fine histogram, which requires many parameters to achieve acceptable accuracy.
This choice limits Reiter (2009)’s approach to problems with a low-dimensional individ-
ual state space because the size of the histogram grows exponentially in the number of
individual states.

Precursors to Reiter (2009)’s method can also be found in Dotsey, King, and Wolman
(1999) and Veracierto (2002) in the context of (S,s) models.3  Childers (2018) formalizes
this class of methods in the function space and is able to prove certain properties of

3Veracierto (2017) extends Veracierto (2002) to a more general class of models. Unlike my method,
Veracierto (2017) does not rely on any direct approximation of the distribution. Instead, Veracierto (2017)
approximates the history of individual agents’ decision rules and simulates a panel of agents to compute
the distribution at any point in time. He then linearizes the system with respect to the history of approxi-
mated decision rules and uses that to compute the evolution of the distribution.
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them. Ahn, Kaplan, Moll, Winberry, and Wolf (2018) adapt Reiter (2009)’s approach to
continuous time and show how to use model reduction techniques to nonparametrically
reduce the size of the distribution. My method reduces the distribution in a parametric
way, which allows for a more straightforward extension to nonlinear approximations.4

More generally, the method developed in this paper is related to the large body of
work which, following Krusell and Smith (1998), approximates the distribution with a
small number of moments. This approximation works well if the moments accurately
forecast the prices which occur in equilibrium. The advantage of Krusell and Smith
(1998) is that it is globally accurate with respect to this reduced aggregate state and,
therefore, can capture global nonlinearities more easily than the locally accurate ap-
proach pursued in this paper. However, Krusell and Smith (1998) relies on the fact that
the distribution can be accurately summarized by a small number of moments. My
method instead includes the entire distribution in the aggregate state vector, but relies
on a local approximation of the aggregate dynamics.

Road map

I briefly describe the benchmark heterogeneous firm model in Section 2. I then explain
how to use the solution method to solve this model in Section 3. In Section 4, I extend the
method in various ways to illustrate its generality. In Section 5, I add investment-specific
shocks to the model and estimate the parameters of the shock processes using Bayesian
techniques. Section 6 concludes. Various Appendices contain additional details not in-
cluded in the main text.

2. Benchmark RBC model with firm heterogeneity

For concreteness, I illustrate the method using the heterogeneous firm model from Khan
and Thomas (2008); however, the method applies to a large class of heterogeneous agent
models.5 In Section 4 and the online code template, I also use the method to solve the
heterogeneous household model from Krusell and Smith (1998) and discuss how to gen-
eralize the method to solve other models as well.

2.1 Environment

Firms There is a fixed mass of firms j ∈ [0�1] which produce output yjt according to the
production function

yjt = ezt eεjt kθjtnνjt � θ+ ν < 1�

4A number of papers pursue a pure perturbation approach with respect to both individual and aggre-
gate state variables. Preston and Roca (2007) approximate the distribution with a particular set of moments
and show how to derive the law of motion for those moments analytically given an approximation of the
policy function. Mertens and Judd (2017) instead assume a finite but arbitrarily large number of agents and
perturb around the point without idiosyncratic or aggregate shocks. They are able to leverage their pertur-
bation approach to analytically prove properties of their method. Evans (2015) follows a related approach
but updates the point of approximation around the actual cross-sectional distributions that arise in a sim-
ulation.

5Since the benchmark is directly taken from Khan and Thomas (2008), I keep my exposition brief and
refer the interested reader to their original paper for details.



Quantitative Economics 9 (2018) Solving and estimating heterogenous agent models 1127

where zt is an aggregate productivity shock, εjt is an idiosyncratic productivity shock,
kjt is capital, njt is labor, θ is the elasticity of output with respect to capital, and ν is the
elasticity of output with respect to labor. The aggregate shock zt is common to all firms
and follows the AR(1) process:6

zt+1 = ρzzt + σzωzt+1� whereωzt+1 ∼N(0�1)	

The idiosyncratic shock εjt is independently distributed across firms, but within firms
follows the AR(1) process:

εjt+1 = ρεεjt + σεωεjt+1� whereωεjt+1 ∼N(0�1)	

In each period, the firm j inherits its capital stock from previous periods’ investments,
observes the two productivity shocks, hires labor from a competitive labor market, and
produces output.

After production, the firm invests in capital for the next period. Gross investment
ijt yields kjt+1 = (1 − δ)kjt + ijt units of capital next period, where δ is the depreciation

rate of capital. If
ijt
kjt

/∈ [−a�a], the firm must pay a fixed adjustment cost ξjt in units

of labor. The parameter a governs a region around zero investment within which firms
do not incur the fixed cost. The fixed cost ξjt is a random variable distributed U[0� ξ],
independently over firms and time.

Households There is a representative household whose preferences are represented by
the utility function

E

∞∑
t=0

βt
[
C1−σ
t − 1
1 − σ −χN

1+α
t

1 + α
]
�

whereCt is consumption,Nt is labor supplied to the market,β is the discount factor, σ is
the coefficient of relative risk aversion, χ governs the disutility of labor supply, and 1/α is
the Frisch elasticity of labor supply. The total time endowment per period is normalized
to 1. The household owns all the firms in the economy and markets are complete.

2.2 Firm optimization

Following Khan and Thomas (2008), I directly incorporate the implications of household
optimization into the firm’s optimization problem by approximating the transformed
value function

v(ε�k�ξ; s)= λ(s)max
n

{
ezeεkθnν −w(s)n}

+ max
{
va(ε�k; s)− ξλ(s)w(s)� vn(ε�k; s)

}
�

(1)

6An auxiliary assumption necessary for using perturbation methods is that the aggregate shock process
stays in some bounded interval [z� z]. Since that assumption is not central to the analysis, I leave it implicit.
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where s is the aggregate state vector (defined below), λ(s)= C(s)−σ is the marginal util-
ity of consumption,

va(ε�k; s)= max
k′∈R

−λ(s)(k′ − (1 − δ)k) +βE[̂
v(ε′�k′; s′(z′; s

)|ε�k; s
]
� (2)

vn(ε�k; s)= max
k′∈[(1−δ−a)k�(1−δ+a)k]

−λ(s)(k′ − (1 − δ)k) +βE[̂
v(ε′�k′; s′(z′; s

)|ε�k; s
]
�

(3)

v̂(ε�k; s) = Eξv(ε�k�ξ; s)� and s′(z� s) is the law of motion for the aggregate state (de-
fined below). Denote the unconstrained capital choice from (2) by ka(ε�k; s) and the
constrained choice from (3) by kn(ε�k; s). The firm will choose to pay the fixed cost if
and only if va(ε�k; s)− ξλ(s)w(s)≥ vn(ε�k; s). Hence, there is a unique threshold value
of the fixed cost ξ which makes the firm indifferent between these two options,

ξ̃(ε�k; s)= va(ε�k; s)− vn(ε�k; s)
λ(s)w(s)

	 (4)

Denote ξ̂(ε�k; s) as the threshold bounded to be within the support of ξ, that is,
ξ̂(ε�k; s)= min{max{0� ξ̃(ε�k; s)}� ξ}}.

It will be numerically convenient to approximate the ex ante value function v̂(ε�k;
s). Given that the extensive margin decision is characterized by the cutoff (4) and the
fixed cost ξ is uniformly distributed, the expectation can be computed analytically:

v̂(ε�k; s)= λ(s)max
n

{
ezeεkθnν −w(s)n}

+ ξ̂(ε�k; s)

ξ

(
va(ε�k; s)− λ(s)w(s) ξ̂(ε�k; s)

2

)

+
(

1 − ξ̂(ε�k; s)

ξ

)
vn(ε�k; s)	

(5)

2.3 Equilibrium

In the recursive competitive equilibrium, the aggregate state s contains the current
draw of the aggregate productivity shock, z, and the density of firms over (ε�k)-space,
g(ε�k).7

Definition. A recursive competitive equilibrium for this model is a set v̂(ε�k; s),
n(ε�k; s), ka(ε�k; s), kn(ε�k; s), ξ̂(ε�k; s), λ(s), w(s), and s′(z′; s) = (z′;g′(z�g)) such
that:

(i) (Firm optimization) Taking w(s), λ(s), and s′(z′; s) as given, v̂(ε�k; s), n(ε�k; s),
ka(ε�k; s), kn(ε�k; s), and ξ̂(ε�k; s) solve the firm’s optimization problem (2)–(5).

(ii) (Implications of household optimization) For all s,

7The computational method does not rely on the fact that the distribution is characterized by its density.
In Section 4, I discuss how to extend the method to allow for mass points in the distribution.
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Table 1. Baseline Parameterization.

Parameter Description Value Parameter Description Value

β Discount factor 0	961 ρz Aggregate TFP AR(1) 0	859
σ Utility curvature 1 σz Aggregate TFP AR(1) 0	014
α Inverse Frisch limα→ 0 ξ Fixed cost 0	0083
χ Labor disutility =⇒ N∗ = 1

3 a No fixed cost region 0	011
ν Labor share 0	64 ρε Idiosyncratic TFP AR(1) 0	859
θ Capital share 0	256 σε Idiosyncratic TFP AR(1) 0	022
δ Capital depreciation 0	085

Note: Parameterization follows Khan and Thomas (2008), Table 1. Parameter values have been adjusted for the fact that my

model does not contain trend growth. Disutility of labor supply χ chosen to ensure steady state labor supply N∗ = 1
3 .

• λ(s) = C(s)−σ , where C(s) = ∫ [ezeεkθn(ε�k; s)ν + (1 − δ)k − ( ξ̂(ε�k;s)
ξ

)ka(ε�k; s) −
(1 − ξ̂(ε�k;s)

ξ
)kn(ε�k; s)]g(ε�k)dεdk.

• w(s) satisfies
∫
(n(ε�k; s)+ ξ̂(ε�k;s)2

2ξ
)g(ε�k)dεdk= (w(s)λ(s)χ )

1
α .

(iii) (Law of motion for distribution) For all (ε′�k′),

g′(ε′�k′; s
)

=
∫∫∫ [

1
{
ρεε+ σεω′

ε = ε′} ×
[
ξ̂(ε�k; s)

ξ
1
{
ka(ε�k; s)= k′}

+
(

1 − ξ̂(ε�k;z�m)

ξ

)
1
{
kn(ε�k; s)= k′}]]

×p(
ω′
ε

)
g(ε�k)dω′

ε dεdk�

(6)

where p is the p.d.f. of idiosyncratic productivity shocks.

(iv) (Law of motion for aggregate shock) z′ = ρzz+ σzω′
z , where ω′

z ∼N(0�1).

2.4 Baseline parameterization

I parameterize the model following Khan and Thomas (2008). The parameter values are
reported in Table 1. The model period is one year and the utility function corresponds to
indivisible labor. The firm-level adjustment costs and idiosyncratic shock process were
chosen by Khan and Thomas (2008) to match features of the investment rate distribution
reported in Cooper and Haltiwanger (2006).

3. The computational method

The computational method involves three main steps. The first step is to approximate
the model’s equilibrium objects—importantly, the value function and distribution—
using finite-dimensional global approximations with respect to individual state vari-
ables. This step yields a finite-dimensional representation of the equilibrium for a given
realization of the aggregate state. The second step of the method is to compute the sta-
tionary equilibrium of the finite-dimensional aproximation of the model in which there
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are no aggregate shocks but still idiosyncratic shocks. The final step is to compute the
aggregate dynamics of the finite-dimensional model using a locally accurate Taylor ex-
pansion around the stationary equilibrium.

3.1 Step 1: Approximate equilibrium using finite-dimensional objects

The value function and cross-sectional distribution are infinite-dimensional functions
of the individual state variable (ε�k) and the aggregate state variable (z�g). I approxi-
mate these functions with respect to individual state (ε�k) using globally accurate pro-
jection methods. I will approximate these functions with respect to the aggregate state
(z�g) using locally accurate perturbation methods in Step 3.

Distribution Following Algan, Allais, and Haan (2008), I approximate the density
g(ε�k) with the functional form

g(ε�k)≈ g0 exp

{
g1

1
(
ε−m1

1
) + g2

1
(
logk−m2

1
)

+
ng∑
i=2

i∑
j=0

g
j
i

[(
ε−m1

1
)i−j(logk−m2

1
)j −mji

]}
�

(7)

where ng indexes the degree of approximation, g0, g1
1, g2

1, {gji }
(ng�i)

i�j=(2�0) are parameters, and

m1
1,m2

1, {mji }
(ng�i)

i�j=(2�0) are centralized moments of the distribution. The key difference from
Algan, Allais, and Haan (2008) is that the distribution is over a two-dimensional vector
rather than a univariate one.8 A ng = 2 degree polynomial in this family corresponds to
a multivariate normal distribution; ng > 2 polynomials allow for nonnormal features,
such as skewness or excess kurtosis.

The parameter vector g = (g0� 	 	 	 � g
ng
ng ) and moment vector m = (m1

1� 	 	 	 �m
ng
ng) must

be consistent with each other in the sense that the moments are actually implied by the
parameters:

m1
1 =

∫∫
εg(ε�k)dεdk�

m2
1 =

∫∫
logkg(ε�k)dεdk and

m
j
i =

∫∫ (
ε−m1

1
)i−j(logk−m2

1
)j
g(ε�k)dεdk for i= 2� 	 	 	 � ng� j = 0� 	 	 	 � i	

(8)

Given a vector of parameters m, Algan, Allais, and Haan (2008) develop a simple and
robust method for solving the system (8) for the associated parameters g.9 Hence, the
vector of moments m completely characterizes the approximated density. I therefore

8It may be possible to further reduce the dimensionality of the approximation using copulas to link to-
gether two univariate distributions. I do not pursue that approach here but thank an anonymous referee
for the suggestion.

9The normalization g0 is chosen so that the total mass of the p.d.f. is 1.
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use the moments m as the characterization of the distribution, and approximate the

infinite-dimensional aggregate state (z�g) with the finite-dimensional representation

(z�m).10

The fact that the distribution is completely characterized by its moments m suggests

a convenient method for approximating the law of motion (6): use the law of motion for

the moments themselves. Using (6), the law of motion for moments is given by

m1′
1 =

∫∫∫ (
ρεε+ω′

ε

)
p

(
ω′
ε

)
g(ε�k; m)dω′

ε dεdk�

m2′
1 =

∫∫∫ [
ξ̂(ε�k;z�m)

ξ
logka(ε�k;z�m)

+
(

1 − ξ̂(ε�k;z�m)

ξ

)
logkn(ε�k;z�m)

]
p

(
ω′
ε

)
g(ε�k; m)dω′

ε dεdk�

m
j′
i (z�m)=

∫∫∫ [(
ρεε+ω′

ε −m1′
1
)i−j{ ξ̂(ε�k;z�m)

ξ

(
logka(ε�k;z�m)−m2′

1
)j

+
(

1 − ξ̂(ε�k;z�m)

ξ

)(
logkn(ε�k;z�m)−m2′

1
)j}]

×p(
ω′
ε

)
g(ε�k; m)dω′

ε dεdk	

(9)

The system (9) provides a mapping from the current aggregate state into next period’s

moments m′(z�m) by integrating decision rules against the implied density.11 I solve for

the steady state values of the moments m∗ by iterating on this mapping. Since the map-

ping is nonlinear there is no guarantee that this iteration converges, but I have found

that it does in practice.12

Firm’s value functions I approximate the firms’ ex ante value function v̂(ε�k;z�m)with

respect to individual states using orthogonal polynomials:13

v̂(ε�k;z�m)≈
nε∑
i=1

nk∑
j=1

θij(z�m)Ti(ε)Tj(k)�

10This approximation requires that moments of the distribution exist up to the order of the approxima-
tion, which is restrictive for models in which the distribution features a fat tail. In those cases, a different
parametric family should be used.

11I numerically compute these integrals using two-dimensional Gauss–Legendre quadrature, which re-
places the integral with a finite sum. See the online codes and user guide for details of this procedure.

12In practice, higher degree approximations of the distribution ng require more points in the quadrature
in order to accurately compute the integrals.

13The choice of orthogonal polynomials is not essential to the method and is made primarily for numer-
ical convenience. In the online codes and user guide, I show how to use linear splines instead. Furthermore,
the choice of tensor product polynomials is not necessary, and I have used the set of complete polynomials
and Smolyak polynomials as well.
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where nε and nk define the order of approximation, Ti(ε) and Tj(k) are Chebyshev poly-
nomials, and θij(z�m) are coefficients on those polynomials.14 I solve for the depen-
dence of these coefficients on the aggregate state in the perturbation step.

With this particular approximation of the value function, it is natural to approximate
the Bellman equation (5) using collocation, which forces the equation to hold exactly at
a set of grid points {εi�kj}nε�nki�j=1�1:

v̂(εi�kj;z�m)

= λ(z�m)max
n

{
ezeεikθj n

ν −w(z�m)n
} + λ(z�m)(1 − δ)kj

+
(
ξ̂(εi�kj;z�m)

ξ

)(
−λ(z�m)

(
ka(εi�kj;z�m)

+w(z�m)
ξ̂(εi�kj;z�m)

2

)
+βEz′|z

[∫
v̂
(
ρεεi + σεω′

ε�k
a(εi�kj;z�m);z′�m′(z�m)

)
p

(
ω′
ε

)
dω′

ε

])

+
(

1 − ξ̂(εi�kj;z�m)

ξ

)(
−λ(z�m)kn(εi�kj;z�m)

+βEz′|z
[∫

v̂
(
ρεεi + σεω′

ε�k
n(εi�kj;z�m);z′�m′(z�m)

)
p

(
ω′
ε

)
dω′

ε

])
�

(10)

where the decision rules are computed from the value function via first order condi-
tions.15 Note that the conditional expectation of the future value function has been bro-
ken into its component pieces: the expectation with respect to idiosyncratic shocks is
taken explicitly by integration, and the expectation with respect to aggregate shocks is
taken implicitly through the expectation operator. I compute the expectation with re-
spect to idiosyncratic shocks using Gauss–Hermite quadrature and will compute the ex-
pectation with respect to aggregate shocks in the perturbation step.

Approximate equilibrium conditions With all of these approximations, the recursive
competitive equilibrium becomes computable, replacing the true aggregate state (z�g)
with the approximate aggregate state (z�m), the true Bellman equation (5) with the
Chebyshev collocation approximation (10), and the true law of motion for the distri-
bution (6) with the approximation (9). I show in Appendix A that these approximate
equilibrium conditions can be represented by a residual function f : R2nεnk+ng+2 ×
R

2nεnk+ng+2 ×R
ng+1 ×R

ng+1 ×R→R
2nεnk+ng+2+ng+1 that satisfies

Eω′
z

[
f
(
y′�y�x′�x;ψ)] = 0� (11)

14Technically, the Chebyshev polynomials are only defined on the interval [−1�1], so in practice I rescale
the state variables to this interval.

15The use of first-order conditions exploits the fact that the first-order condition is a smooth function of
k′, due to taking the expectation over next periods draws of the fixed cost ξ′ and idiosyncratic productivity
shock ε′.
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where y =(θ�ka�g�λ�w) are the control variables, x =(z�m) are the state variables, ψ is
the perturbation parameter, and ka denotes the target capital stock along the collocation
grid.

The residual function (11) is exactly the canonical form studied by Schmitt-Grohe
and Uribe (2004) who, following Judd and Guu (1997) and others, show how to solve
such systems using perturbation methods. The remainder of the computational method
simply follows the steps outlined in Schmitt-Grohe and Uribe (2004).

3.2 Step 2: Compute stationary equilibrium with no aggregate shocks

In terms of Schmitt-Grohe and Uribe (2004)’s canonical form (11), the stationary equi-
librium is represented by two vectors x∗=(0�m∗) and y∗ =(θ∗�ka∗�g∗�λ∗�w∗) such that

f
(
y∗�y∗�x∗�x∗;0

) = 0	

In principle, this is a generic system of nonlinear equations which can be numerically
solved using root-finding algorithms; in practice, the system is large so that numerical
solvers often fail to converge. I instead solve the system using a stable root-finding prob-
lem in the wagew∗ only, similar to the algorithm developed in Hopenhayn and Rogerson
(1993). Details are provided in Appendix A.

Figure 1 shows that a moderate degree approximation is necessary to capture the
shape of the steady state distribution of firms. The figure plots various slices of the sta-
tionary distribution for different degrees of approximation ng in the parametric family
(7) and compares them to a fine histogram.16 The marginal distribution of productiv-
ity in Panel (a) is normal, so a ng = 2 degree approximation gives an exact match to the
histogram. In contrast, the marginal distribution of capital in Panel (b) features positive
skewness and excess kurtosis, and the conditional distribution of capital varies in both
location and shape as a function of productivity. A ng = 4 degree approximation captures
these complicated shapes. Even a ng = 2 approximation also does quite well, indicating
that the true distribution is close to log-normal.

Moderate degree approximations of the distribution are also sufficient to provide a
good approximation of aggregate variables in steady state. Table 2 reports various ag-
gregate variables using different degrees of approximation and again compares them
to the values obtained using a fine histogram. An ng = 2 degree approximation yields
aggregates that are virtually indistinguishable from higher degree approximation or the
histogram.

3.3 Step 3: Compute aggregate dynamics using perturbation

A solution to the dynamic problem (11) is of the form

y = g(x;ψ)�
x′ = h(x;ψ)+ψ×ηω′

z�

16The fine histogram approximates the distribution of firms along a discrete of points, as in Young (2010).
To compute the histogram, I use the same algorithm used to compute the steady state discussed in Ap-
pendix A, but approximate the distribution as a histogram instead of using the parametric family (7).
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Figure 1. Stationary distribution of firms for different degrees of approximation. Notes: slices
of the invariant distribution of firms over productivity ε and capital k. ng is the order of the poly-
nomial used in the parametric family (7). “Histogram” is the steady state distribution computed
using a fine histogram rather than the parametric family. Marginal distributions are computed by
numerical integration of the joint p.d.f. “High productivity” and “low productivity” correspond
to approximately +/− two standard deviations of the productivity distribution.

Table 2. Aggregate Variables in Steady State.

Variable ng = 1 ng = 2 ng = 3 ng = 4 ng = 6 Histogram

Output 0	509 0	498 0	499 0	500 0	499 0	498
Consumption 0	555 0	412 0	413 0	414 0	413 0	413
Capital 1	200 1	006 1	008 1	010 1	008 1	007
Wage 0	984 0	958 0	958 0	958 0	958 0	958
Marginal utility 1	803 2	426 2	420 2	416 2	421 2	421

Note: Aggregates in stationary equilibrium computed using various orders of approximation. “Histogram” is the steady
state distribution computed using a fine histogram rather than the parametric family.
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where η = (1�0ng×1)
′ and ψ is the perturbation parameter. Perturbation methods ap-

proximate the solution g and h using Taylor expansions around the point where ψ= 0,
which corresponds to the steady state values x∗ and y∗. For example, a first-order Taylor
expansion gives:

g(x;1)≈ gx
(
x∗;0

)(
x − x∗) + gψ

(
x∗;0

)
�

h(x;1)≈ hx
(
x∗;0

)(
x − x∗) + hψ

(
x∗;0

) +ηω′
z	

(12)

The unknowns in the approximation (12) are the partial derivatives gx, gψ, hx, and
hψ. Schmitt-Grohe and Uribe (2004) show how to solve for these partial derivatives from
the partial derivatives of the equilibrium conditions, fy′ , fy, fx′ , fx, and fψ, evaluated at
the stationary equilibrium with ψ = 0. Since this procedure is by now standard, I refer
the interested reader to Schmitt-Grohe and Uribe (2004) for further details.

Dynare implements this perturbation procedure completely automatically. First, it
computes the derivatives of the equilibrium conditions (11), which gives a system of
equations involving the partial derivatives of the solution g and h. Second, Dynare
solves that system using standard linear rational expectation model solvers; see Ad-
jemian, Bastani, Julliard, Karame, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot (2011)
for more details. An analogous procedure can be used to compute higher-order nonlin-
ear approximations of g and h with no additional coding required.17

Online code template The online code template and user guides shows how to imple-
ment the method in Dynare. Broadly speaking, the user provides two sets of codes. First,
the user provides Matlab .m files that compute the steady state of the model, that is, x∗
and y∗. Second, the user provides a Dynare .mod files that define the model’s equilib-
rium conditions, that is, f (y′�y�x′�x;ψ). In addition to the perturbation step described
above, Dynare will, if requested, simulate the model, compute theoretical and/or em-
pirical moments of simulated variables, and estimate the model using likelihood-based
methods.

First order approximation Using Dynare, computing a first-order approximation of
the model’s dynamics takes between 35 seconds for a ng = 2 degree approximation of
the distribution and 47 seconds for a ng = 4 degree approximation. The majority of time
is spent computing the stationary equilibrium of the model. The remaining time is spent
evaluating the derivatives of the model’s equilibrium conditions f at steady state and
solving the resulting dynamic system.18

The dynamics of aggregate variables are well in line with what Khan and Thomas
(2008) and Terry (2017b) have reported using different algorithms to solve the model.
Figure 2 plots the impulse responses of these variables to a positive aggregate TFP shock.

17Moving to higher-order approximations requires solving additional equations, but as described in
Schmitt-Grohe and Uribe (2004), these systems are linear and thus in principle simple to solve. In practice,
the system is large and dense, which places computational limitations. In the Khan and Thomas (2008)
model, I have found that a second-order approximation is feasible using Dynare (see Section 4).

18Runtimes are computed using using Dynare 4.5.3 in Matlab R2016a on a 3.10 GHz Windows
desktop PC with 32 GB of RAM.
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Figure 2. Impulse responses of aggregates, first-order perturbation. Notes: Impulse responses
of aggregate variables for different degrees of approximation of the distribution. ng refers to the
degree of approximation used in the parametric family (7).

Table 3. Aggregate Business Cycle Statistics, First-Order Perturbation.

SD (rel. to output) ng = 2 ng = 4 Corr. with Output ng = 2 ng = 4

Output (2.14%) (2.16%) × × ×
Consumption 0.48 0.47 Consumption 0.90 0.90
Investment 3.86 3.93 Investment 0.97 0.97
Hours 0.61 0.61 Hours 0.95 0.94
Real wage 0.48 0.47 Real wage 0.90 0.90
Real interest rate 0.08 0.08 Real interest rate 0.80 0.79

Note: Business cycle fluctuations of key aggregate variables under a first-order perturbation. All variables have been HP-
filtered with smoothing parameter λ= 100 and, with the exception of the real interest rate, have been logged. Standard devia-
tions for variables other than output are expressed relative to that of output itself.

Higher TFP directly increases aggregate output, but also increases investment and labor
demand, which further increase output and factor prices. Households respond to higher
permanent income by increasing consumption and to higher wages by increasing labor
supply.

The resulting business cycle statistics of aggregate variables are reported in Table 3.
As usual in a real business cycle model, consumption is roughly half as volatile as output,
investment is nearly four times as volatile as output, and labor is slightly less volatile
than output. All variables are highly correlated with each other because aggregate TFP is
the only shock driving fluctuations in the model.



Quantitative Economics 9 (2018) Solving and estimating heterogenous agent models 1137

Figure 3. Impulse responses of distributional variables, first-order approximation. Notes: Im-
pulse responses of distributional variables for different degrees of approximation of the distribu-
tion. ng refers to the degree of approximation used in the parametric family (7).

The aggregate dynamics are largely unaffected by the degree ng of the parametric
family (7) approximating the distribution. Visually, increasing the degree of approxima-
tion from ng = 2 to ng = 4 barely changes the impulse response functions in Figure 2.
Quantitatively, the business cycle statistics in Table 3 barely change as well. Terry (2017a)
finds that the aggregate dynamics implied by my method are quantitatively close to the
results of other methods used in the literature, such as Krusell and Smith (1998).

The dynamics of cross-sectional features of the distribution are more sensitive to the
degree of approximation ng than are the dynamics of aggregate variables. Figure 3 plots
the impulse responses of the cross-sectional E[logk], Cov(ε� logk), and Var(logk) with
respect to a TFP shock. Although the response of mean log capital is virtually identical
across the degrees of approximation ng, the responses of the other two statistics change
with ng. However, these differences are small and do not generate differences in the dy-
namics of aggregate variables described above. When computing their decisions, firms
must forecast the level of marginal utility λ; Figure 3 shows that the impulse response of
marginal utility is virtually identical for the different degrees of approximation.19

Table 4 confirms these graphical results by computing time-series properties of the
dynamics of the cross-sectional statistics plotted in Figure 3; although the cyclicality

19Given the linear disutility of labor, the real wage is an explicit function of the marginal utility of con-
sumption.
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Table 4. Distributional Business Cycle Statistics, First-Order Perturbation.

E[logk] ng= 2 ng= 3 ng= 4 Cov(ε� logk) ng= 2 ng= 3 ng= 4

Mean −0	0899 −0	0822 −0	0824 Mean 0	0123 0	0121 0	0122
SD 0	0125 0	0126 0	0127 SD 6	7e−5 7	2e−5 6	9e−5
Corr w/ Y 0	6017 0	6095 0	6117 Corr w/ Y 0	7157 0	8276 0	8432
Autocorr 0	8280 0	8268 0	8264 Autocorr 0	7472 0	7339 0	7240

Var(logk) ng= 2 ng= 3 ng= 4 Marginal Utility ng= 2 ng= 3 ng= 4

Mean 0	1529 0	1476 0	1485 Mean 0	8995 0	8934 0	8931
SD 0	0014 0	0013 0	0012 SD 0	0103 0	0102 0	0101
Corr w/ Y 0	5752 0	6608 0	6539 Corr w/ Y −0	8999 −0	9001 −0	8999
Autocorr 0	7980 0	7823 0	7782 Autocorr 0	6704 0	6712 0	6715

Note: Business cycle fluctuations of key features of the distribution under a first-order perturbation. All variables have been
HP-filtered with smoothing parameter λ= 100. Marginal utility has been logged.

of Cov(ε� logk) and Var(logk) differ with the degree of approximation ng, their overall
variation is limited.

4. Generalizations of the method

In order to be concrete, Section 3 developed the computational method in the context of
the Khan and Thomas (2008) model. However, this model contains a number of special
features which are not central to the application of the method. In this section, I discuss
how to generalize the method to cases where these special features do not hold.

4.1 Aggregate nonlinearities

Second-order approximation I incorporate aggregate nonlinearities by computing a
second-order approximation of the model, which amounts to changing aDynareoption
from order = 1 to order = 2. Quantitatively, the dynamics of the second-order ap-
proximation closely resemble those of the first-order approximation. Furthermore, Fig-
ure 4 show that the impulse responses in a second-order approximation feature quanti-
tatively small sign-dependence and state-dependence. These results are consistent with
Khan and Thomas (2008), who find little evidence of such nonlinearities using the non-
linear Krusell and Smith (1998) algorithm.

Limitations of a local approximation Although the method can capture aggregate non-
linearities with a local approximation, it is not well suited for capturing nonlinearities
that are global in nature. For example, portfolio choice problems in which assets differ
only in their aggregate risk characteristics cannot be directly solved using the Dynare

code template because the stationary distribution of portfolios is not unique.20 In addi-
tion, the method is ill-suited to solve models which feature the economy transitioning
between multiple steady states, such as Brunnermeier and Sannikov (2014).

20In order to solve such models, one could potentially adapt the technique in Devereux and Sutherland
(2011).
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Figure 4. Sign and size dependence in impulse responses, second-order approximation. Notes:
Nonlinear features of the impulse responses of aggregate output (left column) and investment
(right column). “Sign dependence” refers to the impulse response to a one standard deviation
positive versus negative shock. Negative shocks have been multiplied by −1. “State dependence”
refers to the impulse response after positive one standard deviation shocks versus negative one
standard deviation shocks in the previous two years. All impulse responses computed nonlin-
early as in Koop, Pesaran, and Potter (1996).

It is important to note that these limitations apply to aggregate dynamics only; the
method does compute a fully global approximation of individual behavior. Hence, the
method can be used to solve models in which aggregate shocks affect the distribution
of idiosyncratic shocks, such as the uncertainty shocks in Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018).

4.2 Method does not require approximate aggregation

Khan and Thomas (2008) show that “approximate aggregation” holds in this model in
the sense that the aggregate capital stock almost completely characterizes how the dis-
tribution of firms influences aggregate dynamics. Following Krusell and Smith (1998),
they solve the model by approximating the distribution with the aggregate capital stock
and find that their solution is extremely accurate. Hence, for this particular model, my
method and the Krusell and Smith (1998) method are both viable. However, my method
is significantly more efficient than Krusell and Smith (1998); in a comparison project,
Terry (2017a) shows that his implementation of my method solves and simulates the
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model in 0.098% of the time of the Krusell and Smith (1998) method. This gain in speed
makes the full-information Bayesian estimation in Section 5 feasible.

Furthermore, because my method directly approximates the distribution, it can be
easily applied to other models in which approximate aggregation fails. I make this case
concrete in Appendix B by adding aggregate investment-specific shocks to the model
and showing that, for sufficiently volatile shocks, the aggregate capital stock does not
accurately approximate how the distribution affects aggregate dynamics. Extending
Krusell and Smith (1998)’s algorithm would therefore require adding more moments to
the forecasting rule, which quickly becomes infeasible since each additional moment
adds another state variable. Hence, my method is not only significantly faster for mod-
els in which approximate aggregation holds, but also applies to models in which it fails.

4.3 Occasionally binding constraints and mass points

Another special feature of the Khan and Thomas (2008) model is that the distribution
is characterized by its density g(ε�k), which makes a smooth polynomial approxima-
tion of the distribution straightforward. In other models, the distribution may not be
characterized by its density; for example, in the Krusell and Smith (1998) model, the oc-
casionally binding borrowing constraint introduces mass points into the distribution of
households. The online code template and user guide shows how to extend the method
to solve the Krusell and Smith (1998) model. I simply add an additional parameter to the
distribution approximation—the mass of households at the borrowing constraint—and
approximate the distribution away from the constraint with the polynomial family.21 In
principle, one could extend this procedure to incorporate multiple mass points as well.

5. Estimating aggregate shock processes with heterogeneous firms

The goals of this section are to show that full-information Bayesian estimation of het-
erogeneous agent models is feasible using my method and to illustrate how micro-level
behavior can impact inference. To do so, I extend the benchmark Khan and Thomas
(2008) model to include aggregate investment-specific productivity shocks in addition
to the neutral shocks already in the model, and estimate the parameters of the two aggre-
gate shock processes. I include investment-specific shocks because inference about this
process is most directly shaped by micro-level investment behavior. The investment-
specific shock only affects the capital accumulation equation, which becomes kjt+1 =
(1−δ)kjt +eqt ijt , where qt is the investment-specific productivity shock. The two aggre-
gate shocks follow the joint process:

zt = ρzzt−1 + σzωzt �
qt = ρqqt−1 + σqωqt + σqzωzt �

(13)

whereωzt andωqt are i.i.d. standard normal random variables. I include a loading on neu-
tral productivity innovations in the investment-specific process, σqz , in order to capture

21Strictly speaking, the distribution in the Krusell and Smith (1998) model is a collection of mass points,
and I approximate the collection of points away from the borrowing constraints with a smooth polynomial.
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Table 5. Parameterizations Considered in Estimation Exercises.

Fixed Parameters Value Fixed Parameters Value

β (discount factor) 0	99 a (no fixed cost) 0	011
σ (utility curvature) 1 ρε (idioynscratic TFP) 0	859
α (inverse Frisch) limα→ 0 ν (capital share) 0	256
χ (labor disutility) =⇒ N∗ = 1

3 σε (idiosyncratic TFP) 0	015
θ (labor share) 0	64 Changing Parameter Value 1 Value 2 Value 3

δ (depreciation) 0	025 ξ 0	01 0	1 1

Note: Calibrated parameters in the estimation exercises. “Fixed parameters” refer to those which are the same across the
different estimations. “Changing parameters” are those which vary across estimations.

comovement between the two shocks. Without this loading factor, investment-specific
shocks would induce a counterfactually negative comovement between consumption
and investment and, therefore, be immediately rejected by the data. Denote the vector
of parameter valuesΘ= (ρz�σz�ρq�σq�σqz).

I estimate the parameters of the shock processes Θ conditional on three different
values for the remaining parameters. The only parameter to vary across these parame-
terizations is ξ, the upper bound on fixed cost draws. I vary the fixed costs from ξ= 0	01
to ξ= 1. These parameter values vary the extent of micro-level adjustment frictions and,
therefore, micro-level investment behavior from frictionless to extreme frictions. The re-
maining parameters are fixed at standard values, adjusting the model frequency to one
quarter in order to match the frequency of the data. Table 5 collects all these parameter
values.

The Bayesian approach combines a prior distribution of parameters, p(Θ), with
the likelihood function, L(Y1:T |Θ) where Y1:T is the observed time series of data, to
form the posterior distribution of parameters, p(Θ|Y1:T ). The posterior is proportional
to p(Θ)L(Y1:T |Θ), which is the object I characterize numerically. The data I use is
Y1:T = (log Ŷ1:T � log Î1:T ), where log Ŷ1:T is the time series of log-linearly detrended real
output and log Î1:T is log-linearly detrended real investment; see Appendix C for de-
tails. I choose relatively standard prior distributions to form p(Θ), also contained in
Appendix C. I sample from p(Θ)L(Y1:T |Θ) using the Metropolis–Hastings algorithm;
since this procedure is now standard (see, e.g., Fernandez-Villaverde, Rubio-Ramirez,
and Schorfheide (2016)), I omit further details. Dynare computes 10,000 draws from
the posterior in 44 minutes, 32 seconds.22

Table 6 reports the estimated aggregate shock processes for the three different
micro-level parameterizations considered in Table 5. As the upper bound of the fixed
costs increases from ξ = 0	01 to ξ = 1, the estimated variance of investment-specific
shocks significantly increases from σq = 0	0056 to σq = 0	0077; hence, matching the ag-
gregate investment data with larger adjustment frictions requires more volatile shocks.
Additionally, the loading on neutral shocks in the investment-specific shock process

22A key reason the estimation is so efficient is that the parameters of the shock processes do not affect
the stationary equilibrium of the model. Hence, the stationary equilibrium does not need to be recomputed
at each point in the estimation process.
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Table 6. Posterior Distribution of Parameters.

Micro-Level TFP ρz TFP σz ISP ρq ISP σq ISP Loading σzq

ξ= 0	01 0	9793 0	0080 0	9694 0	0056 −0	0045
[90% HPD] [0	9695�0	9925] [0	0074�0	0086] [0	9528�0	9871] [0	0047�0	0067] [−0	0058�−0	0031]
ξ= 0	1 0	9797 0	0080 0	9695 0	0060 −0	0043

[0	9668�0	9933] [0	0074�0	0086] [0	9500�0	9852] [0	0049�0	0072] [−0	0057�−0	0030]
ξ= 1 0	9789 0	0080 0	9711 0	0077 −0	0037

[0	9650�0	9919] [0	0074�0	0086] [0	9524�0	9894] [0	0059�0	0093] [−0	0052�−0	0021]

Note: Posterior means and highest posterior density sets of parameters, conditional on micro-level parameterizations.

Table 7. Estimated Variance Decomposition.

Micro-Level Share fromωzt (Neutral) Share fromω
q
t (Investment-Specific)

ξ= 0	01
Output 84.73% 15.33%
Consumption 91.21% 8.79%
Investment 35.08% 64.92%

ξ= 1
Output 84.08% 15.92%
Consumption 90.56% 9.44%
Investment 34.27% 65.73%

Note: Variance decomposition of aggregate output, consumption, and investment under two of the estimations reported
in Table 6.

shrinks because larger frictions reduce the negative comovement between consump-

tion and investment. The remaining parameters are broadly constant over the different

specifications, indicating that micro-level adjustment frictions mainly matter for the in-

ference of the investment-specific shock process.

Table 7 reports the variance decomposition of aggregate output, consumption, and

investment under the estimated parameters corresponding to two different parameter-

izations of micro-level behavior. With relatively flexible capital adjustment (ξ = 0	01),
most of the variation in output and consumption is driven by TFP, due to the fact that

the estimated investment-specific shock process is relatively unimportant under this

parameterization. Although the investment-specific shock accounts for a slightly larger

share of fluctuations with large adjustment frictions (ξ = 1), the differences are quanti-

tatively small. Of course, the ideal estimation exercise would jointly estimate the capital

adjustment frictions and aggregate shock processes using both micro- and macro-level

data. The illustrative results in this section show that, using my method, such exercises

are now feasible.
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6. Conclusion

This paper has developed a general-purpose computational method for solving and es-
timating heterogeneous agent models. In contrast to much of the existing literature, the
method does not rely on the dynamics of the distribution being well-approximated by
a small number of moments, expanding the class of models which can be feasibly com-
puted. I have provided codes and a user guide to implement the method using Dynare
with the hope that it will bring heterogeneous agent models into the fold of standard
quantitative macroeconomic analysis.

A particularly promising avenue for future research is incorporating micro data into
the estimation of DSGE models. As I showed in Section 5, micro-level behavior places
important restrictions on estimated model parameters. In the current representative
agent DSGE literature, these restrictions are either completely absent or imposed only
indirectly through prior beliefs. The computational method I developed in this paper
instead allows the micro data to formally place these restrictions itself.

Appendix A: Details of the method

This Appendix provides additional details of the method referenced in Section 3 in the
main text.

A.1 Approximate equilibrium conditions

I first show that the approximate equilibrium conditions can be written as a system of
2nεnk+ng+ 2 +ng + 1 equations of the form (11). To that end, let {τgi � (εi�ki)}

mg
i=1 denote

the weights and nodes of the two-dimensional Gauss–Legendre quadrature used to ap-
proximate the integrals with respect to the distribution, and let {τεi �ωεi }mεi=1 denote the
weights and nodes of the one-dimensional Gauss–Hermite quadrature used to approxi-
mate the integrals with respect to the idiosyncratic shock innovations.

In my numerical implementation, I approximate the value functions with degree
nε = 3 and nk = 5 polynomials. I approximate integrals with respect to the distribution
using a tensor-product Gauss–Legendre quadrature of order 8 with respect to ε and 10
with respect to k, so that the total number of points ismg = 80. Finally, I approximate in-
tegrals with respect to idiosyncratic shock using amε = 3 degree Gauss–Hermite quadra-
ture.

With this notation, and the notation defined in the main text, the approximate Bell-
man equation (10) can be written as

0 = E

[
nε∑
k=1

nk∑
l=1

θklTk(εi)Tl(kj)− λ(ezeεikθj n(εi�kj)ν −wn(εi�kj)
) − λ(1 − δ)kj

−
(
ξ̂(εi�kj)

ξ

)(
−λ

(
ka(εi�kj)−wξ̂(εi�kj)

2

)

+β
mε∑
o=1

τεo

nε∑
k′=1

nk∑
l′=1

θ′
k′l′Tk′

(
ρεεi + σεωεo

)
Tl′

(
ka(εi�kj)

))
(14)
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−
(

1 − ξ̂(εi�kj)

ξ

)

×
(

−λkn(εi�kj)+β
mε∑
o=1

τεo

nε∑
k′=1

nk∑
l′=1

θ′
k′l′Tk′

(
ρεεi + σεωεo

)
Tl′

(
kn(εi�kj)

))]

for the collocation nodes i = 1� 	 	 	 � nε and j = 1� 	 	 	 � nk and where θ′
k′l′ denotes next

period’s values of the value function coefficients. The optimal labor choice is defined
through the first-order condition

n(εi�kj)=
(
νezeεikθj

w

) 1
1−ν
	

The policy functions ka(εi�kj), kn(εi�kj), and ξ̂(εi�kj) are derived from the approx-
imate value function as follows. First, the capital decision rule conditional on adjusting
ka(εi�kj) satisfies the first-order condition

0 = E

[
λ−β

mε∑
o=1

τεo

nε∑
k′=1

nk∑
l′=1

θ′
k′l′Tk′

(
ρεεi + σεωεo

)
T ′
l′
(
ka(εi�kj)

)]
� (15)

where T ′
l′ denotes the first derivative of the Chebyshev polynomial. Conditional on this

unconstrained choice, the constrained capital decision is

kn(εi�kj)=

⎧⎪⎪⎨⎪⎪⎩
(1 − δ+ a)kj if ka(εi�kj) > (1 − δ+ a)kj
ka(εi�kj) if ka(εi�kj) ∈ [

(1 − δ− a)kj� (1 − δ+ a)kj
]

(1 − δ− a)kj if ka(εi�kj) < (1 − δ− a)kj	

Finally, the capital adjustment threshold ξ̃(εi�kj) is defined as

ξ̃(εi�kj)

= 1
wλ

[
−λ(ka(εi�kj)− kn(εi�kj)

)

+β
mε∑
o=1

τεo

nε∑
k′=1

nk∑
l′=1

θ′
k′l′Tk′

(
ρεεi + σεωεo

)(
Tl′

(
ka(εi�kj)

) − Tl′
(
kn(εi�kj)

))]
�

and the bounded threshold is given by ξ̂(εi�kj) = min{max{0, ξ̃(εi�kj)� ξ}}. To evaluate
the decision rules off the grid, I interpolate the capital decision rule ka using Chebyshev
polynomials, and derive kn and ξ̂ from the formulae above.

Given the firm decision rules, the implications of household optimization can be
written as

0 = λ−
( mg∑
i=1

τ
g
i

(
ezeεikθi n(εi�ki)+ (1 − δ)ki

(16)
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− ξ̂(εi�ki)

ξ
ka(εi�ki)−

(
1 − ξ̂(εi�ki)

ξ

)
kn(εi�ki)

)
g(εi�ki|m)

)−σ
�

0 =
(
wλ

χ

) 1
α −

mg∑
i=1

τ
g
i

(
n(εi�ki)+ ξ̂(εi�ki)

2

2ξ

)
g(εi�ki|m)� (17)

where

g(εi�kj|m)= g0 exp

{
g1

1
(
εi −m1

1
) + g2

1
(
logkj −m2

1
)

+
ng∑
k=2

k∏
l=0

glk
[(
εi −m1

1
)k−l(logkj −m2

1
)l −mlk]

}
	

The approximate law of motion for the distribution (9) can be written

0 =m1′
1 −

mg∑
l=1

τ
g
l

mε∑
k=1

τεk
(
ρεεl + σεωεk

)
g(εl�kl|m)�

0 =m2′
1 −

mg∑
l=1

τ
g
l

mε∑
k=1

τεk

[
ξ̂εl�kl

ξ

(
logka(εl�kl)

)
+

(
1 − ξ̂εl�kl

ξ

)(
logka(εl�kl)

)]
g(εl�kl|m)�

0 =mj′i −
mg∑
l=1

τ
g
l

mε∑
k=1

τεk

[
ξ̂(εl�kl)

ξ

((
ρεεl +ωεk −m1′

1
)i−j(logka(εl�kl)−m2′

1
)j)

+
(

1 − ξ̂(εl�kl)

ξ

)((
ρεεl +ωεk −m1′

1
)i−j(logkn(εl�kl)−m2′

1
)j)]

× g(εl�kl|m)	

(18)

Consistency between the moments m and parameters g requires

m1
1 =

mg∑
l=1

τ
g
l εlg(εl�kl|m)�

m2
1 =

mg∑
l=1

τ
g
l logklg(εl�kl|m) and

m
j
i =

mg∑
l=1

τ
g
l

[(
εl −m1

1
)i−j(logkl −m2

1
)j −mji

]
g(εl�kl|m) for i= 2� 	 	 	 � ng� j = 0� 	 	 	 � i	

(19)

Finally, the law of motion for the aggregate productivity shock is

0 = E
[
z′ − ρzz

]
	 (20)
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With all these expressions, we can define f (y′�y�x′�x;ψ) which outputs (14), (15),
(16), (17), (18), (19), and (20).

A.2 Solving for stationary equilibrium

Following Hopenhayn and Rogerson (1993), I compute the steady state by solving for the
wage w∗ which sets labor supply equal to labor demand. Given a value of the wage w∗,
I compute labor demand in the following three steps:

(i) Compute the firm’s value function θ∗ by iterating on the Bellman equation (10).
Note that λ∗ does not enter the stationary Bellman equation because it is a multiplicative
constant.

(ii) Using the firm’s decision rules, compute the invariant distribution m∗ by iterating
on the law of motion (9).

(iii) Aggregate individual firms’ labor demand according toNd = ∫
(n(ε�k)+ ξ̂(ε�k)2

2ξ
)×

g(ε�k)dεdk.

I then compute labor supply using the household’s first order condition Ns = (w∗λ∗
χ )1/α.

I solve for the market-clearing wage w∗ using a root-finding algorithm. The marginal
utility of consumption λ∗ is computed from firm’s behavior using C∗ = Y ∗ − I∗.

For the comparisons to the histogram approximation in the main text, I follow the
same steps, but approximate the distribution using a fine histogram as in Young (2010).

Appendix B: Method does not require approximate aggregation

In this Appendix, I show that my method continues to perform well even when approx-
imate aggregation fails to hold. In order to do this, I modify the benchmark model, be-
cause as Khan and Thomas (2008) show approximate aggregation holds in this model. To
see this result, note that the distribution impacts firms’ decisions through two channels:
first, by determining the marginal utility of consumption λ(z�g), and second, by deter-
mining the law of motion of the distribution g′(z�g).23 Table 8 shows that the aggregate
capital stock Kt captures both of these channels very well by estimating the forecasting
equations

logλt = α0 + α1zt + α2 logKt�

logKt+1 = γ0 + γ1zt + γ2 logKt
(21)

on data simulated using my solution. The R2s of these forecasting equations are high,
indicating that a Krusell and Smith (1998) algorithm using the aggregate capital stock
performs well in this environment.

Den Haan (2010) notes that theR2 is a poor error metric for two reasons: first, it only
measures one period ahead forecasts, whereas agents must forecast into the infinite fu-
ture; and second, it only measures average deviations, which can hide occasionally large

23Given the linear disutility of labor supply, the wage is purely a function of the marginal utility of con-
sumption.
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Table 8. Forecasting With Aggregate Capital, Benchmark Model.

Forecasting Equation R2 DH Statistic

Marginal utility 0	9993505 0	0085866%
Future capital 0	999968 0	0029358%

Note: Results from running forecasting regressions (21) on data simulated from first
order model solution. “DH statistic” refers to Den Haan (2010)’s suggestion of iterating on
the forecasting equations with updating Kt from simulated data. Expressed as a percent
of mean marginal utility or log capital.

Figure 5. Forecasting power of aggregate capital, as a function of investment-specific shock
variance. Notes: Results from running forecasting regressions (22) on data simulated from the
first-order model solution. “DH statistic” refers to Den Haan (2010)’s suggestion of iterating on
forecasting equations without updatingKt from simulated data.

errors. To address these concerns, Den Haan (2010) proposes iterating on the forecasting
equations (22) without updating the capital stock, and computing the maximum devi-
ations of these forecasts from the actual values in a simulation. Table 8 shows that this
more stringent error metric is also small in the benchmark model.

To break this approximate aggregation result, I add an aggregate investment-specific
productivity shock qt to the benchmark model. In this case, the capital accumula-
tion equation becomes kjt+1 = (1 − δ)kjt + eqt ijt , but the remaining equations are
unchanged. I assume the investment-specific shock follows the AR(1) process qt =
ρqqt−1 + σqωqt , where ωqt ∼N(0�1), independently of the aggregate TFP shock.

Figure 5 shows that approximate aggregation becomes weaker as the investment-
specific productivity shock becomes more important. The left panel plots the R2s from
the forecasting equations

logλt = α0 + α1zt + α2qt + α3 logKt�

logKt+1 = γ0 + γ1zt + γ2qt + γ3 logKt
(22)

as a function of the shock volatility σq, keeping ρq = 0	859 throughout. The R2 of these
marginal utility forecast falls as the volatility of investment-specific shocks σq increase.
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Figure 6. Aggregate impulse responses to investment-specific productivity shock. Notes: Im-
pulse responses of aggregate variables, for different orders of approximation of the distribution.
ng refers to highest order moment used in parametric family (7).

The center and right panels of Figure 5 show that the more stringent Den Haan (2010)
metrics grow even more sharply as a function of the volatility σq.

Because my method directly approximates the distribution, rather than relying on
these low-dimensional forecasting rules, it continues to perform well as investment-
specific shocks become more important. Figure 6 plots the impulse responses of key
aggregate variables to an investment-specific shock for σq = 0	014, a value for which
approximate aggregation fails. As with neutral productivity shocks in Figure 2, even rel-
atively low degree approximations of the distribution are sufficient to capture the dy-
namics of these variables.

Appendix C: Estimation details

In this Appendix, I provide additional details of the estimation exercise described in Sec-
tion 5 of the main text. The particular data sets I use are (1) Real Gross Private Domestic
Investment, 3 Decimal (series ID: GPDIC96), quarterly 1954-01-01 to 2015-07-01, and (2)
Real Personal Consumption Expenditures: Nondurable Goods (chain-type quantity in-
dex) (series ID: DNDGRA3Q086SBEA), seasonally adjusted, quarterly 1954-01-01 to 2015-
07-01. I log-linearly detrend both series and match them to log-deviations from steady
state in the model. The prior distributions of parameters are independent of each other
and presented in Table 9. To sample from the posterior distribution, I use Markov Chain
Monte Carlo with 10,000 draws, and drop the first 5000 draws as burn-in. Figure 7 plots
the prior and estimated posterior distributions of parameters in the estimation with
ξ= 1.
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Table 9. Prior Distributions of Parameters.

Parameter Role Prior Distribution

ρz TFP autocorrelation Beta (0	9�0	07)
σz TFP innovation sd Inverse Gamma (0	01�1)
ρq ISP autocorrelation Beta (0	9�0	07)
σq ISP innovation sd Inverse Gamma (0	01�1)
σqz ISP loading on TFP innovation Uniform (−0	05�0	05)

Note: Prior distributions for estimated parameters.

Figure 7. Estimated distribution of aggregate shock processes. Notes: Estimation results for
ξ = 1. Grey lines are the prior distribution of parameters. Dashed lines are the posterior mode.
Black lines are the posterior distribution.
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