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Supplement to “Inference for VARs identified with sign
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(Quantitative Economics, Vol. 9, No. 3, November 2018, 1087–1121)

Eleonora Granziera
Monetary Policy and Research Department, Bank of Finland

Hyungsik Roger Moon
Department of Economics, University of Southern California and School of Economics, Yonsei University

Frank Schorfheide
Department of Economics, University of Pennsylvania

This Online Appendix accompanies the paper “Inference for VARs Identified with
Sign Restrictions” by E. Granziera, H. R. Moon, and F. Schorfheide. In Appendix A, we
provide proofs for the theoretical results in Section 4 of the main paper. Additional
technical lemmas are stated and proved in Appendix B. Appendix C provides analyti-
cal derivations for the Monte Carlo experiment presented in Section 6 of the main text.
Appendix D contains additional information about the empirical analysis.

Appendix A: Proofs of main results

To simplify the notation in some of the proofs, we eliminate ρ from the formulas and
index the probability distribution by φ ∈ P instead of ρ ∈ R. Thus we write

inf
φ∈P

inf
θ∈Fθ(φ)

Pφ

{
θ ∈ CSθ(φ̂)

}

instead of

inf
ρ∈R

inf
θ∈Fθ(φ(ρ))

Pρ
{
θ ∈ CSθ(φ̂)

}
�

Reduced-form parameter sequences ρT and φ(ρT ) are simply abbreviated by φT .

A.1 Proof of Lemma 1

To simplify the notation, we omit tildes and write Sθ(q), and S(q) instead of S̃θ(q) and
S̃(q).

Eleonora Granziera: eleonora.granziera@bof.fi
Hyungsik Roger Moon: moonr@usc.edu
Frank Schorfheide: schorf@ssc.upenn.edu

© 2018 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE978

mailto:eleonora.granziera@bof.fi
mailto:moonr@usc.edu
mailto:schorf@ssc.upenn.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE978


2 Granziera, Moon, and Schorfheide Supplementary Material

Convexity: Suppose θi ∈ Fθ(φq�φθ), i = 1�2, and θ1 < θ2. Then there exist qi with
‖qi‖ = 1 and μi ≥ 0 such that

Sθ(qi)φ− θi = 0� S(qi)φ−μi = 0� (A.1)

We distinguish two cases: q1 �= −q2 and q1 = −q2.
Case (i): Suppose that q1 �= −q2. We now verify that for any λ ∈ [0�1] θ = λθ1 + (1 −

λ)(θ2) ∈ Fθ(·). For τ ∈ [0�1], define

q(τ)= τq1 + (1 − τ)q2∥∥τq1 + (1 − τ)q2
∥∥ � H(τ)= Sθ

(
q(τ)

)
φ− θ�

The linearity of Sθ(q) with respect to q and (A.1) implies that

H(τ) = τSθ(q1)φ∥∥τq1 + (1 − τ)q2
∥∥ + (1 − τ)Sθ(q2)φ∥∥τq1 + (1 − τ)q2

∥∥ − λθ1 − (1 − λ)θ2

= τθ1∥∥τq1 + (1 − τ)q2
∥∥ + (1 − τ)θ2∥∥τq1 + (1 − τ)q2

∥∥ − λθ1 − (1 − λ)θ2�

Using ‖qi‖ = 1, we obtain

H(0) = θ2 − λθ1 − (1 − λ)θ2 = λ(θ2 − θ1) ≥ 0�

H(1) = θ1 − λθ1 − (1 − λ)θ2 = −(1 − λ)(θ2 − θ1) ≤ 0�

Since H(τ) is continuous we deduce that there exists a τ∗ such that H(τ∗) = 0. Now
consider

S
(
q
(
τ∗))φ = τ∗S(q1)φ∥∥τ∗q1 + (

1 − τ∗)q2
∥∥ +

(
1 − τ∗)S(q2)φ∥∥τ∗q1 + (

1 − τ∗)q2
∥∥

= τ∗μ1∥∥τ∗q1 + (
1 − τ∗)q2

∥∥ +
(
1 − τ∗)μ2∥∥τ∗q1 + (

1 − τ∗)q2
∥∥

≥ 0�

The first equality follows from the linearity of S(q), the second equality is implied
by (A.1), and the inequality follows from μi ≥ 0. Thus, θ ∈ Fθ(φq�φθ).

Case (ii): Suppose that q1 = −q2. The linearity of Sθ(q) implies that θ1 = −θ2. By as-
sumption, there exists a q3 �= q1�−q1 with the property that S(q3)φ ≥ 0. Let θ3 = Sθ(q3)φ.
By construction, θ3 ∈ Fθ(·). If θ3 = θ1 (θ3 = θ2), we simply replace q1 (q2) by q3 and fol-
low the steps outlined for Case (i). If θ1 < θ3 < θ2, then the Case (i) argument implies that
any θ in the intervals [θ1� θ3] and [θ3� θ2] and thereby any θ = λθ1 + (1 −λ)θ2 is included
in the identified set. Finally, if θ3 < θ1 (θ2 < θ3), we deduce from Case (i) that the interval
[θ3� θ2] ([θ1� θ3]) is included in the identified set.

Boundedness: We shall prove a slightly more general result. Suppose that θ ∈
Fθ(φq�φθ). Since Fθ(φq�φθ) is a multivalued set, we assume without loss of general-
ity that θ > 0. So, the sign restriction θ ≥ 0 is satisfied if it exists. Define

Gθ(θ;φq�φθ) = min
q=‖1‖�μ≥0

∥∥Sθ(q)φθ − θ
∥∥2 + ∥∥S(q)φq −μ

∥∥2
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such that Gθ(θ;φq�φθ) = 0 if and only if θ ∈ Fθ(φq�φθ). We now show by contradiction
that Fθ(φq�φθ) has an upper bound.

Suppose, to the contrary, that no such upper bound exists. This guarantees the exis-
tence of a series an > 0 with an ↑ ∞ such that anθn ∈ Fθ(φq�φθ) for each n. Consider the
bound

Gθ(anθ;φq�φθ)≥ min
q=‖1‖

∥∥Sθ(q)φθ − anθ
∥∥2
�

Since ‖Sθ(q)φθ‖ is a continuous function of q for fixed φθ and the set of q is a compact
unit sphere, there exists a finite constant M such that ‖Sθ(q)φθ‖ < M . From this, we
deduce that

min
q=‖1‖

∥∥Sθ(q)φθ − anθ
∥∥2 −→ ∞�

which contradicts the requirement Gθ(θ;φq�φθ) = 0. The existence of a lower bound
can be established by considering a sequence −an. Moreover, θ < 0 can be handled by a
straightforward modification of the argument. �

A.2 Proof of Theorem 1

Recall the definition Fq(Φq) = {q ∈ Sn | Φ′
qq ≥ 0}. Thus, {q ∈ Sn | Φ′

qq � 0} ⊂ Fq(φ). The
statement of the theorem follows once we have shown that there exists a nonempty,
nonsingleton, n-dimensional subset Q of Sn, such that Φqq � 0 if q ∈Q.

Existence: Suppose Φ′
q is an r × n matrix. According to Gordan’s alternative

theorem—see, for instance, Border (2007)—exactly one of the two alternatives holds:
(a) there exists an x ∈Rn satisfying Φ′

qx
∗ � 0, or (b) there exists an r × 1 vector z > 0 sat-

isfying Φqz = 0. Assumption 1(i) rules out alternative (b). Thus, there exists an x∗ such
that

Φ′
qx

∗ � 0� (A.2)

Notice that x∗ in (A.2) is not zero. Then, q∗ := x∗
‖x∗‖ satisfies the requirement q∗ ∈ Q and

Φ′
qq

∗ � 0.
Nonsingleton: We show that Fq(Φq) contains multiple elements using proof by con-

tradiction. For this, we define a function fΦ : Sn → Rr as fΦ(q) := Φ′
qq for q ∈ Sn. Then,

fΦ(·) is continuous on a compact set Sn.
Suppose that q∗ defined in the existence proof is the only element of Fq(Φq),

that is, Fq(Φq) = {q∗}. This implies that fΦ(q) /∈ Rr+ for all q ∈ Sn with q �= q∗, where
Rr+ = {x ∈ Rr : x ≥ 0}. Let ε := ‖Φ′

qq
∗‖min, where the norm ‖x‖min := min{|x1|� � � � � |xr |}

for x ∈ Rr . Notice that Φ′
qq

∗ � 0 implies ε > 0. Consider an arbitrary q ∈ Sn such that
q �= q∗. Then, because fΦ(q) /∈ Rr+ but fΦ(q

∗) � 0, we have ‖fΦ(q) − fΦ(q
∗)‖ ≥ ε. Be-

cause q was arbitrary, given our choice of ε > 0 it is not possible to find a δ > 0 such that
‖fΦ(q)− fΦ(q

∗)‖ ≤ ε for ‖q − q∗‖ ≤ δ. This contradicts the fact that fΦ(q) is continuous
at q∗. Therefore, we can deduce the that Fq(Φq) is not a singleton and contains multiple
elements. �
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A.3 Proof of Theorem 2, part (i)

Recall the definition of the Hausdorff distance: d(A�B) = max {d(A | B)� d(B | A)},
where d(A | B) = supa∈A d(a�B) and d(a�B) = infb∈B ‖a − b‖. We set d(A�B) = ∞
if either A or B is empty. For any ε > 0, define an open ball around set A ⊂ Rn as
B(A�ε) = {b ∈Rn : d(b | A)< ε}.

The proof of the theorem exploits the continuity of Fq(φ) with respect to φ. The
statement of the theorem is a consequence of Lemma 2, Lemma 3, and the continuous
mapping theorem. �

Lemma 2. Suppose that F(φ) is a nonempty compact-valued continuous correspon-
dence. Then φ−→ φ∗ implies that d(F(φ)�F(φ∗)) −→ 0.

Proof of Lemma 2. Follows directly from Theorem 17.15 of Aliprantis and Border
(2006). �

Lemma 3. Suppose that Assumption 1(i) is satisfied. Then:

(i) Fq(Φq) is compact for all Φq;

(ii) Fq(Φq) is continuous at all Φq.

Proof of Lemma 3. For notational simplicity, we omit the subscript notation q and
write Φq as Φ. Let Sn = {q ∈Rn : ‖q‖ = 1} be the unit sphere in Rn. Recall from Theorem 1
that Fq(Φ) is nonempty.

Part (i): We show that Fq(Φ) is bounded and closed.
Boundedness: It is straightforward since Fq(Φ) ⊂ Sn.
Closedness: Consider any sequence qj ∈ Fq(Φ) such that qj −→ q, where ‖qj‖ = 1

and ‖q‖ = 1. Then 0 ≤ Φ′qj −→ Φ′q, so that it should be Φ′q ≥ 0. This implies that q0 ∈
Fq(Φ), as required for closedness.

Part (ii): We show Fq(Φ) is upper hemi-continuous (UHC) and lower hemi-conti-
nuous (LHC) at Φ.

UHC : Since Fq(Φ) is nonempty and compact-valued, the UHC of Fq(Φ) at Φ follows
if we show that for every sequence Φj −→ Φ and qj ∈ Fq(Φj), there exists a subsequence
qji of qj such that qji −→ q ∈ Fq(Φ). (See Border (2010), Proposition 20.) Since {qj} ⊂
Sn and Sn is compact, we can choose a convergent subsequence qji such that qji −→
q. Then, 0 ≤ Φ′

ji
qji −→ Φ′q, and it follows that Φ′q ≥ 0. This implies that q ∈ Fq(Φ), as

required.
LHC : Fq(Φ) is LHC at Φ if and only if for any sequence {Φj} with Φj −→ Φ and q ∈

Fq(Φ), there exists a sequence qj ∈ Fq(Φj) with qj −→ q. We reorder and partition the
matrix Φ0 to Φ= [Φ1�Φ2], where Φ′

1q = 0 and Φ′
2q � 0.

For a matrix A, we denote the lth column of A as (A)l. By Gordan’s alternative theo-
rem (see Border (2007)), Assumption 1(i) implies that there exists a ξ∗ ∈Rm such that

Φ′
1ξ

∗ � 0�
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Let

ξ = 1
min
l

(Φ1)
′
lξ

∗ ξ
∗

such that for all l

(Φ1)
′
lξ > 1�

Set εj�l = ‖(Φj −Φ)l‖ and εj = maxl{εj�l}, and define

qj = q+ εjξ

‖q+ εjξ‖ �

Notice that qj is well-defined when εj is small enough because q ∈ Sn and as a result,
q �= εjξ when εj is small and ξ is fixed.

Case (i): Suppose (Φl)
′q = 0. Then, when j is large so that (Φ)′lξ− 1 ≥ εj‖ξ‖, we have

(Φj)
′
lqj = (Φr�j −Φr)

′
lqj + (Φ)′lqj

= 1
‖q+ εjξ‖

{
(Φj −Φ)′lq+ εj(Φj −Φ)′lξ + (Φ)′lq+ εj(Φ)′lξ

}

≥ 1
‖q+ εjξ‖

{−∥∥(Φj −Φ)l
∥∥‖q‖ − εj

∥∥(Φj −Φ)l
∥∥‖ξ‖ + εn(Φ)′lξ

}

≥ 1
‖q+ εjξ‖

(−εj − ε2
j ‖ξ‖ + εj(Φ)′lξ

)

= 1
‖q+ εjξ‖εj

(
(Φ)′lξ− 1 − εj‖ξ‖)

≥ 0�

Case (ii): Suppose (Φ)′lq > 0. Then, since ‖(Φ)l‖ ≤ M (compact parameter set), we
have

(Φj)
′
lqj = (Φj −Φ)′lqj + (Φ)′lqj

= 1
‖q+ εjξ‖

{
(Φj −Φ)′lq+ εj(Φj −Φ)′lξ + (Φ)′lq+ εj(Φ)′lξ

}

≥ 1
‖q+ εjξ‖

{−∥∥(Φj −Φ)l
∥∥‖q‖ − εj

∥∥(Φj −Φ)l
∥∥‖ξ‖ + (Φ)′lq− εj

∥∥(Φ)l
∥∥‖ξ‖}

≥ 1
‖q+ εjξ‖

(
(Φ)′lq− εj − ε2

jM − εjM
2)

≥ 0�

when j is large. The last inequality holds since (Φ)′lq > 0.
From these, we can deduce that

Φ′
jqj ≥ 0�
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Also, since εj −→ 0, we have

qj −→ q�

Then we have all the required results for the LHC. �

A.4 Proof of Theorem 2, part (ii)

We closely follow the proofs of Theorem 1 and Lemma 2 of Andrews and Soares (2010).
The main modification is to accommodate the reduced rank possibility of Σ(q) and
D(q). The proof makes use of various lemmas that are stated and proved in Section B
below. To simplify the notation, we eliminate ρ from the formulas and index the prob-
ability distribution by φ ∈ P instead of ρ ∈ R. We also skip the subscription notation q

and write, for example, φq, φ̂q, Λqq, Dq as φ, φ̂, Λ, D, respectively. Thus, we write

inf
φ∈P

inf
q∈Fq(φ)

Pφ

{
q ∈ CSq(φ̂)

}
instead of inf

ρ∈R
inf

q∈Fq(φ(ρ))
Pρ

{
q ∈ CSq(φ̂q)

}
�

Reduced-form parameter sequences ρT and φ(ρT ) are simply abbreviated by φT .
We need to show

lim inf
T

inf
φ∈P

inf
q∈Fq(φ)

Pφ

{
q ∈ CSq

} ≥ 1 − α� (A.3)

Let

AsyCP = lim inf
T

inf
φ∈P

inf
q∈Fq(φ)

Pφ

{
q ∈ CSq

}
�

Then there exists sequences {φT �qT } such that qT ∈ Fq(φT ) and

AsyCP = lim inf
T
PφT

{
qT ∈ CSq

}
�

Furthermore, there exists a subsequence of {T }, {T ′} ⊂ {T }, such that

AsyCP = lim
T ′ PφT ′

{
qT ′ ∈ CSq

}
�

In what follows, we show that there exists a sub-subsequence, say {T ′′} ⊂ {T ′}, such that

lim
T ′′ PφT ′′

{
qT ′′ ∈ CSq

} ≥ 1 − α� (A.4)

Then the desired result (A.3) follows and the proof of the theorem is complete.
Define

μ(q�φ) = S(q)φ

and decompose

Σ(q)= S(q)ΛS(q)′ = S(q)LL′S(q)′ = D1/2(q)Ω(q)D1/2�

Moreover, let

A(q)= L′S′(q)D−1/2(q)�
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To simplify the notation, we suppress the dependence of matrices on φ. The matrix
Ω(q) = A′(q)A(q) is a correlation matrix and D1/2(q) is a diagonal matrix of standard
deviations. Also, recall that W (q) = D1/2(q)B(q)D1/2(q), where either B(q) = Ω−1(q) or
B(q)= I. The proof is completed in three steps.

Step 1: Choosing the subsequence T ′′. We choose a subsequence T ′′ from T ′ along
which the subsequent conditions are satisfied. This is done sequentially by choosing a
subsequence that satisfies criterion (i), and then, step-by-step choosing subsequences
of the subsequences to satisfy the next criterion until all five conditions are satisfied:

(i) φT ′′ −→ φ.

(ii) r(qT ′′) = r, V (qT ′′) = V for all T ′′.
(iii) For j = 1� � � � � r, the slackness (recall that μj = [S(q)φq]jI{[S(q)φq]j ≥ 0}) in in-

equality j converges to
√
T ′′μj(qT ′′�φT ′′) −→ hj�

κ−1
T ′′D

−1/2
jj (qT ′′)

√
T ′′μj(qT ′′�φT ′′) −→ πj

such that one of the following is true: (a) hj < ∞ and πj = 0; (b) hj = ∞ and πj < ∞;
(c) hj = ∞ and πj = ∞.

(iv) The sequence A(qT ′′) has a full rank limit, denoted by A.

We can satisfy condition (i) because the reduced-form parameter set R is assumed
to be compact (Assumption 1(i)) and the function φ(ρ) is continuously differentiable
(Assumption 1(ii)). As remarked in the main text, this implies that the parameter set for
φ is also compact. If condition (i) holds, then we obtain:

(v) The convergence φT ′′ −→ φ implies that Λ(φT ′′) −→ Λ(φ) since Λ(φ) is continu-

ous by Assumption 1(v). Also, Λ̂(φ̂T ′′)
p−→ Λ by Assumption 1(v).

Condition (ii) is satisfied since r(qT ′) and V (qT ′) are sequences that take only a finite
number of discrete values. Condition (iii) is satisfied because the range of the sequences
of interest is [0�∞] and by a similar argument used in the proof of Theorem 1 of An-
drews and Soares (2010). Roughly speaking, in Case (iii)(a) the slackness is small and the
selection criterion regards the inequality asymptotically as binding. In Case (iii)(c), the
slackness is large and the selection criterion regards the inequality as nonbinding and
(iii)(b) is an intermediate case. Condition (iv) is satisfied according to Lemma B2. If Con-
dition (iv) is satisfied, then the following conditions also hold ((vii) is a consequence of
Lemma B2):

(vi) Ω(qT ′′) −→ A′A > 0 and B(qT ′′) −→ B > 0, where B = (A′A)−1 if B(q) = Ω−1(q)

and B = I if B(q)= I.

(vii) Ω̂(qT ′′)
p−→ A′A> 0 and B̂(qT ′′)

p−→ B > 0, where B = (A′A)−1 if B̂(q) = Ω̂−1(q)

and B = I if B̂(q) = I.

We now reorder the rows of S(qT ′′) such that πj = 0 for rows j = 1� � � � � r1 and πj > 0
for rows j = r1 + 1� � � � � r. Along the sequence T ′′, the last r2 = r − r1 restrictions corre-
spond to nonbinding moment inequalities. In the subsequent steps, we show that the
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inequality selection procedure used in the critical-value computation in (28) asymptot-
ically underestimates r2 (and thereby overestimates r1), which makes the critical value
asymptotically conservative to achieve the uniform coverage requirement.

Step 2: Constructing an upper bound for the critical value cα(q) in (28). For notational
simplicity, we use sequence notation {T } for the sub-subsequence {T ′′} in Step 1. Recall
the definitions

ξj�T (qT ) =D
−1/2
jj (qT )

√
Tμj(qT � φ̂) and ξ̂j�T (qT ) = D̂

−1/2
jj (qT )

√
Tμj(qT � φ̂)�

Let ϕT (qT ) and ϕ̂T be vectors with elements

ϕj�T (qT ) =
{

∞� if ξj�T (qT ) ≥ κT �

0� otherwise
and ϕ̂j�T (qT )=

{
∞� if ξ̂j�T (qT ) ≥ κT �

0� otherwise�

respectively. Moreover, define ϕ∗
T (qT ) and ϕ̂∗

T (qT ) with elements

ϕ∗
j�T (qT )=

{
ϕj�T (qT )� if πj = 0�

∞� otherwise
and ϕ̂∗

j�T (qT )=
{
ϕ̂j�T (qT )� if πj = 0�

∞� otherwise�

where, according to Case (iii) in Step 1,

πj = lim κ−1
T D

−1/2
jj (qT )

√
Tμj(qT �φT )�

Finally, define the vector π∗ with elements

π∗
j =

{
0� if πj = 0�

∞� otherwise�

To characterize the critical values, define the objective function

Ḡ
(
qT ;A(·)�B(·)�ϕ(·)) = min

v≥−ϕ(qT )

∥∥A(qT )
′Zm − v

∥∥2
B(qT )

�

Note that the notation in the proof is slightly different from the notation in the main
text. In (27) of the main text, we defined Ḡ(q; B̂(q)�Mξ̂(q)), which corresponds to

Ḡ(qT ; Â(·)� B̂(·)� ϕ̂(·)) in this proof. We let

cαT
(
A(·)�B(·)�ϕ(·)) = (1 − α) quantile of Ḡ

(
qT ;A(·)�B(·)�ϕ(·))� (A.5)

To cover the special case r = r2 > 0, that is, all the inequality conditions are nonbinding,
we adopt the convention that

cαT
(
A(·)�B(·)�ϕ(·)) = 0 (A.6)

if ϕ(qT ) = ϕ̂∗
T (qT ) or ϕ(qT ) = π∗. The critical value cα(q) in (28) in the main text can be

expressed as

cα(qT ) = cαT
(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)
�
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Notice by definition that

ϕ̂∗
T (qT ) ≥ ϕ̂T (qT )�

This implies that

cαT
(
Â(qT )� B̂(qT )� ϕ̂

∗
T (qT )

) ≤ cαT
(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)
� (A.7)

Step 3: Establish the asymptotic coverage probability. Along the sequence defined in
Step 1 we will show the desired result

AsyCP = lim
T

PφT

{
(qT ) ∈ CSq

} ≥ 1 − α�

We consider two different cases: (i) some inequalities are “binding,” that is, r1 > 0; (ii) all
inequalities are “nonbinding,” that is, r1 = 0.

Step 3(i). Suppose that r1 > 0. By Lemma B1 and (A.7), we have

AsyCP = lim
T

PφT

{
qT ∈ CSq

}
= lim

T
PφT

{
G

(
qT ; φ̂� Ŵ (·)) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)}
= lim

T
PφT

{
G

(
qT ; φ̂�W (·)) + op(1) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)}
≥ lim

T
PφT

{
G

(
qT ; φ̂�W (·)) + op(1) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂

∗
T (qT )

)}
�

By using an argument similar to that used in showing (A.10) of Andrews and Guggen-
berger (2009), it can be shown that

G
(
qT ; φ̂�W (·)) + op(1)

= min
v≥−D

−1/2
R (qT )

√
Tμ(qT �φT )

∥∥A(qT )
′L−1

√
T(φ̂−φT )− v

∥∥2
B(qT )

+ op(1)

=⇒ min
v≥−h

∥∥A′Zm − v
∥∥
B

≤ min
v≥−π∗

∥∥A′Zm − v
∥∥
B
�

The last inequality holds because h ≥ π∗. (This is true because πj = 0 implies that hj <

∞ and π∗
j = 0, while πj > 0 implies that hj = π∗

j = ∞�) According to Lemma B3,

cαT
(
Â(qT )� B̂(qT )� ϕ̂

∗
T (qT )

) p−→ cαT
(
A�B�π∗)�

Since r > r2, cαT (A�B�π∗) > 0. Also, the distribution function of minv≥−π∗ ‖A′Zm − v‖B is
continuous near the (1 −α)th quantile (see p. 6 of Andrews and Soares (2010)). Then we
have the required result:

AsyCP = lim
T

PφT

{
qT ∈ CSq

}
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≥ lim
T

PφT

{
G

(
qT ; φ̂�W (·)) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂

∗
T (qT )

) + op(1)
}

≥ P
{

min
v≥−π∗

∥∥A′Zm − v
∥∥
B

≤ cαT
(
A�B�π∗)}

= 1 − α�

Step 3(ii). Suppose that r1 = 0. In this case, hj = ∞ and πj > 0 for all j = 1� � � � � r.
Then we have ϕ̂∗

T (qT ) = π = ∞ for all T . Recall the definitions that cαT (Â(qT )� B̂(qT )�

ϕ̂∗
T (qT )) = cαT (A�B�π∗) = 0. Then, by Lemma B1 and (A.7), we have

AsyCP = lim
T

PφT

{
qT ∈ CSq

}
= lim

T
PφT

{
G

(
qT ; φ̂� Ŵ (·)) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)}
= lim

T
PφT

{
G

(
qT ; φ̂�W (·)) + op(1) ≤ cαT

(
Â(qT )� B̂(qT )� ϕ̂T (qT )

)}
≥ lim

T
PφT

{
G

(
qT ; φ̂�W (·)) + op(1) ≤ cαT

(
A�B�π∗) = 0

}
�

By using the same argument used in (S1.23) on page 7 of Andrews and Soares (2010), we
can deduce that

lim
T

PφT

{
G

(
qT ; φ̂�W (·)) + op(1) ≤ 0

} ≥ 1 − α� �

A.5 Proof of Theorem 3, part (i)

The proof of the theorem exploits the continuity of Fq(φq) with respect to φq. The state-
ment of the theorem is a consequence of Lemma 2, Lemma 4, and the continuous map-
ping theorem. �

Lemma 4. Suppose that Assumptions 1(i) and 2(ii) are satisfied. Then:

(i) Fθ(Φq�Φθ) is compact for all (Φq�Φθ);

(ii) Fθ(Φq�Φθ) is continuous at all (Φq�Φθ).

Proof of Lemma 4, Part (i). Since Fθ(Φq�Φθ) ⊂ Rk, for the required result, we show
that Fθ(Φq�Φθ) is closed and bounded.

Boundedness: The set {θ = f (Φθ�q) : ‖q‖ = 1} is compact because f (·) is continuous
in both of its arguments by Assumption 2(i) and the domain of q, Sn, is compact. Since
Fθ(Φq�Φθ) ⊂ {θ = f (Φθ�q) : ‖q‖ = 1}, we deduce that Fθ(Φq�Φθ) is bounded.

Closedness: Consider any sequence θj ∈ Fθ(Φq�Φθ), j = 1�2� � � � , such that θj −→ θ.
We show that θ ∈ Fθ(Φq�Φθ), that is, we need to find a q ∈ Fq(Φq) such that θ = f (Φθ�q).
Then the desired result follows.

For θj ∈ Fθ(Φq�Φθ), by definition we can choose a qj ∈ Fq(Φq) such that θj =
f (Φθ�qj). Since {qj} ∈ Sn and Sn is compact, we can choose a convergent subsequence
qji such that qji −→ q. Then it follows from the continuity of f (·) that f (Φθ�qji) −→
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f (Φθ�q). Since the subsequence θji also converges to θ, we have f (Φθ�q)= θ. By defini-
tion of Fθ(Φq�Φθ), then we have θ ∈ Fθ(Φq�Φθ), as required for closedness.

Part (ii). According to Assumption 2(i), the function f (Φθ�q) is continuous. Then the
product correspondence

F̃q(Φq�Φθ) = Fq(Φq)×Φθ

is continuous by Proposition 34 of Border (2010). Notice that the correspondence
Fθ(Φq�Φθ) is a composite of f (·) and F̃q(·):

Fθ(Φq�Φθ) =
⋃

q×Φθ∈F̃q(Φq�Φθ)

f (Φθ�q)�

Since both f (·) and F̃q(·) are continuous, by Theorem 12.23 of Aliprantis and Border
Aliprantis and Border (2006), Fθ(Φq�Φθ) is continuous. �

A.6 Proof of Theorem 3, part (ii)

Let Fθ�q(φq�φθ) = {θ ∈Θ�q ∈ Sn : q ∈ Fq(φq)�θ = f (Φθ�q)}. Notice that

lim inf
T

inf
ρ∈R

inf
θ∈Fθ(φq(ρ)�φθ(ρ))

Pρ
{
θ ∈ CSθ(φ̂q� φ̂θ)

}
≥ lim inf

T
inf
ρ∈R

inf
(θ�q)∈Fθ�q(φq(ρ)�φθ(ρ))

Pρ
{
q ∈ CSq(φ̂q)� θ ∈ CSθq(φ̂θ)

}
≥ lim inf

T
inf
ρ∈R

inf
q∈Fq(φq(ρ))

Pρ
{
q ∈ CSq(φ̂q)

}
+ lim inf

T
inf
ρ∈R

inf
(θ�q)∈Fθ�q(φq(ρ)�φθ(ρ))

Pρ
{
θ ∈ CSθq(φ̂θ)

} − 1�

Recall that θ = f (Φθ�q). According to Theorem 2(ii)

lim inf
T

inf
ρ∈R

inf
q∈Fq(φq(ρ))

Pρ
{
q ∈ CSq(φ̂q)

} ≥ 1 − α1 (A.8)

and

lim inf
T

inf
ρ∈R

inf
(θ�q)∈Fθ�q(φq(ρ)�φθ(ρ))

Pρ
{
θ ∈ CSθq(φ̂θ)

} ≥ 1 − α2 (A.9)

holds according to Assumption 2. �

Appendix B: Additional technical lemmas

Throughout this section, we use the following notation. When A is a matrix, λmax(A) and
λmin(A) are the largest and the smallest eigenvalues of A, respectively. We denote Ak as
the kth column vector of A; Aj as the jth row vector of A; and Ajk as the (j�k)th element
of A. Throughout the proofs, we sometimes omit the φT argument from the asymptotic
covariance matrix Λ = LL′ and use the notation ΛT , Λ̂T , LT , and L̂T for simplicity. We
also often omit the qT argument for some of the matrices that depend on qT and simply
write, say, ST , DT , D̂T , AT , ÂT , ΩT , and Ω̂T for short.
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Lemma B1. Suppose that Assumption 1 is satisfied. Consider the sequence {(φT �qT )}
with qT ∈ Fq(φT ) that satisfies conditions (i) and (iv) in the proof of Theorem 2(ii). Then

G
(
qT ; φ̂� Ŵ (·)) −G

(
qT ; φ̂�W (·)) = op(1)�

Proof of Lemma B1. According to condition (ii) in the proof of Theorem 2(ii) V (qT ) =
V for all T . If V = 0, that is, S(qT ) = 0 for all T , it is trivial to deduce the required result
because by definition

G
(
qT ; φ̂� Ŵ (·)) =G

(
qT ; φ̂�W (·)) = 0�

Now suppose that V �= 0. Notice that STφT ≥ 0 and D
−1/2
T and D̂

−1/2
T are well-defined

since ST is a full (row) rank matrix and ΛT � Λ̂T > 0. We now consider the two cases (i)
BT = B̂T = I and (ii) BT =Ω−1

T and B̂T = Ω̂−1
T separately.

Case (i) BT = B̂T = I. Write

G
(
qT ; φ̂� Ŵ (·)) = min

μ≥0
T

∥∥D̂−1/2
T ST φ̂− D̂

−1/2
T VTμ

∥∥2

= min
v≥−√

TD̂
−1/2
T μ(qT �φT )

∥∥D̂−1/2
T ST

√
T(φ̂−φT )− v

∥∥2

and

G
(
q; φ̂�W (·)) = min

v≥−√
TD

−1/2
T μ(q�φ)

∥∥D−1/2
T ST

√
T(φ̂−φT )− v

∥∥2
�

where μ(qT �φT ) = STφT . Define

vT (Λ̂T ) = argmin
v≥−√

TD̂
−1/2
T μ(qT �φT )

∥∥D̂−1/2
T ST

√
T(φ̂−φT )− v

∥∥2
�

vT (ΛT ) = argmin
v≥−√

TD
−1/2
T μ(q�φ)

∥∥D−1/2
T ST

√
T(φ̂−φT )− v

∥∥2
�

Recall that A′ =D−1/2SL and, therefore, D−1/2S =A′L−1. Then

G
(
qT ; φ̂� Ŵ (·)) −G

(
qT ; φ̂�W (·))

≤ ∥∥D̂−1/2
T ST

√
T(φ̂−φT )− vT (ΛT )

∥∥2 − ∥∥D−1/2
T ST

√
T(φ̂−φT )− vT (ΛT )

∥∥2

≤ ∥∥D̂−1/2
T ST

√
T(φ̂−φT )−D

−1/2
T ST

√
T(φ̂−φT )

∥∥2

≤ ∥∥(ÂT −AT)
′L̂−1

T

√
T(φ̂−φT )

∥∥ + ∥∥A′
T

(
L̂−1
T −L−1

T

)√
T(φ̂−φT )

∥∥
= op(1)�

The last equality holds because ÂT − AT = op(1), AT = O(1), L̂−1
T − L−1

T = op(1),

L−1
T = O(1),

√
T(φ̂ − φT ) = Op(1), and B̂T

p−→ B > 0 according to Lemma B2 and As-
sumption 1(v)–(vi).



Supplementary Material Inference for VARs identified with sign restrictions 13

Case (ii): BT =Ω−1
T and B̂T = Ω̂−1

T . In this case, we can write

G
(
qT ; φ̂� Ŵ (·)) = min

μ≥0
T ‖ST φ̂− VTμ‖2

Σ̂−1
T

= min
v≥−√

Tμ(qT �φT )

∥∥ST√
T(φ̂−φT )− v

∥∥2
Σ̂−1
T

and

G
(
θ�q; φ̂�W (·)) = min

v≥−√
Tμ(qT �φT )

∥∥ST√
T(φ̂−φT )− v

∥∥2
Σ−1
T
�

where μ(qT �φT ) = STφT . Define

vT (Λ̂T ) = argmin
v≥−√

Tμ(qT �φT )

∥∥ST√
T(φ̂−φT )− v

∥∥2
Σ̂−1
T
�

vT (ΛT ) = argmin
v≥−√

Tμ(qT �φT )

∥∥ST√
T(φ̂−φT )− v

∥∥2
Σ−1
T
�

Then

G
(
θT �qT ; φ̂� Ŵ (·)) −G

(
θT �qT ; φ̂�W (·))

≤ ∥∥ST√
T(φ̂−φT )− vT (ΛT )

∥∥2
Σ̂−1
T

− ∥∥ST√
T(φ̂−φT )− vT (ΛT )

∥∥2
Σ−1
T

= [
ST

√
T(φ̂−φT )− vT (ΛT )

]′
Σ

−1/2
T

[
Σ

1/2
T Σ̂−1

T Σ
1/2
T − Ir

]
×Σ

−1/2
T

[
ST

√
T(φ̂−φT )− vT (ΛT )

]
≤ ∥∥ST√

T(φ̂−φT )− vT (ΛT )
∥∥2
Σ−1
T

∥∥Σ1/2
T Σ̂−1

T Σ
1/2
T − Ir

∥∥
= I × II � say.

For term I, notice that since μ(qT �φT )≥ 0, we have

I = min
v≥−√

Tμ(qT �φT )

∥∥ST√
T(φ̂−φ)− v

∥∥2
Σ−1
T

≤ ∥∥AT
′L−1

T

√
T(φ̂−φT )

∥∥2
Ω−1

T
=Op(1)�

The last equality holds since AT
′L−1

T

√
T(φ̂ − φT ) = Op(1) and Ω−1

T = (A′
TAT )

−1 −→
(A′A)> 0 by condition (vi) in the proof of Theorem 2(ii). Since ΣT = STLTL

′
T S

′
T , term II

can be bounded as follows:

II = ∥∥Σ1/2
T

(
Σ̂−1
T −Σ−1

T

)
Σ

1/2
T

∥∥
= ∥∥Σ−1/2

T (ΣT − Σ̂T )Σ̂
−1/2
T Σ̂

−1/2
T Σ

1/2
T

∥∥
= ∥∥Σ−1/2

T ST (ΛT − Λ̂T )S
′
T Σ̂

−1/2
T Σ̂

−1/2
T Σ

1/2
T

∥∥
= ∥∥(

Σ
−1/2
T STLT

)(
L′
T L̂

′−1
T −L−1

T L̂T

)(
L̂T S

′
T Σ̂

−1/2
T

)
Σ̂

−1/2
T Σ

1/2
T

∥∥
≤ ∥∥Σ−1/2

T STLT

∥∥∥∥L′
T L̂

′−1
T −L−1

T L̂T

∥∥∥∥L̂T S
′
T Σ̂

−1/2
T

∥∥∥∥Σ̂−1/2
T Σ

1/2
T

∥∥
= O(1)op(1)Op(1)Op(1)�
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The last line holds because∥∥Σ−1/2
T STLT

∥∥2 = tr
(
L′
T S

′
T

(
STLTL

′
T S

′
T

)−1
STLT

) = l�∥∥L̂T S
′
T Σ̂

−1/2
T

∥∥ = tr
(
L̂′
T S

′
T

(
ST L̂T L̂

′
T S

′
T

)−1
ST L̂T

) = l�∥∥L′
T L̂

′−1
T −L−1

T L̂T

∥∥ = op(1) under Assumption 1(vi).

Moreover, ∥∥Σ̂−1/2
T Σ

1/2
T

∥∥2 = ∥∥Σ̂−1/2
T (STLT )

[
L′
T S

′
T

(
STLTLTS

′
T

)−1]
Σ

1/2
T

∥∥2

= ∥∥Σ̂−1/2
T (ST L̂T )

(
L̂−1
T LT

)(
L′
T S

′
TΣ

−1/2
T

)∥∥2

≤ ∥∥Σ̂−1/2
T ST L̂T

∥∥2∥∥L̂−1
T LT

∥∥2∥∥L′
T S

′
TΣ

−1/2
T

∥∥2

= Op(1)Op(1)O(1) = Op(1)�

This completes the proof for Case (ii). �

Lemma B2. Suppose that a converging sequence {φT �qT } satisfies the rank condition
r(qT ) = r > 0 and V (qT ) is a nonzero constant selection matrix for all T . Then there exists
a subsequence {T ′} ⊂ {T } such that along the subsequence, we have

(i)

D−1/2(qT ′)S(qT ′)L(φT ′) −→ A�

where A is a full rank matrix, and

(ii)

D̂−1/2(qT ′)S(qT ′)L̂(φ̂T ′) =D−1/2(qT ′)S(qT ′)L(φT ′)+ op(1)�

Proof of Lemma B2. Part (i): Recall that ST = VT S̃T . The rank reduction of S̃T is caused
only by zero rows (see Section 2.3). Moreover, according to condition (ii) in the proof
of Theorem 2(ii) the nonzero row selection matrix is VT constant over T . Thus, we can
construct an index set J of nonzero rows of S̃T . By construction, the size of J is l and

ST = [
S̃
j
T

]
j∈J �

In turn, we obtain

D
−1/2
T STLT = D

−1/2
T

[
S̃
j
TLT

]
j∈J �

Recall from the definition of L and D that (omitting the T subscripts)

SLL′S′ = D1/2ΩD1/2 and D−1/2SLL′S′D−1/2 =Ω�

where Ω is a correlation matrix with ones on its diagonal. Thus, D−1/2
ii normalizes the

length of the i’th row of the matrix (SL) to one. Therefore,

D
−1/2
T ′ ST ′LT ′ =

[
S̃
j
TLT∥∥S̃jTLT

∥∥
]
j∈J

=
[

S̃
j
T∥∥S̃jTLT

∥∥
]
j∈J

LT �
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By construction, S̃jT �= 0 for all T and j ∈ J . Since LT > 0, it follows that S̃jTLT �= 0 for

all T and j ∈ J . In turn, ‖S̃jTLT ‖> 0 for all T and j ∈ J and S̃
j
TLT /‖S̃jTLT ‖ is well-defined

for all T and j ∈ J . Notice that {S̃jTLT /‖S̃jTLT ‖}T is a sequence on a unit sphere, which is

compact. We can then choose a subsequence {T ′} such that S̃jT ′LT ′/‖S̃jT ′LT ′‖ converges
for all j ∈ J . Thus, we can write

D
−1/2
T ′ ST ′LT ′ =

[
S̃
j
T ′∥∥S̃jT ′LT ′

∥∥
]
j∈J

LT ′ −→A�

To obtain the desired result, it remains to be shown that A is full rank. Since L−1
T ′ −→

L−1 > 0, it suffices to show that the limit

AL−1 = lim
T ′−→∞

[
S̃
j
T ′∥∥S̃jT ′LT ′

∥∥
]
j∈J

(A.10)

has full rank. Recall that S̃(q) = (I ⊗q′)S̄φq. By construction, the nonzero rows of S̃jT ′ are

orthogonal to each other because {S̃jT ′ }j∈J is composed of rows (+/−)(Ij ⊗ q)S̄φq that
are orthogonal to each other. This implies that each row of the limit AL−1 is nonzero
and orthogonal, which delivers the required result.

Part (ii): Consider the subsequence {T ′} in the proof of Part (i). Since L̂T ′ > 0 and
S̃
j
T ′ �= 0 for all T ′, ∥∥S̃jT ′L̂T ′

∥∥ > 0

for all T ′. We will now show that

S̃
j
T ′L̂T ′∥∥S̃jT ′L̂T ′

∥∥ = S̃
j
T ′LT ′∥∥S̃jT ′LT ′

∥∥ + op(1)

for all j ∈ J . Since it could be the case that ‖S̃jT ′LT ′‖ −→ 0, we provide a detailed argu-
ment. Write

S̃
j
T ′L̂T ′∥∥S̃jT ′L̂T ′

∥∥ − S̃
j
T ′LT ′∥∥S̃jT ′LT ′

∥∥
= S̃

j
T ′LT ′∥∥S̃jT ′LT ′

∥∥
(∥∥S̃jT ′LT ′

∥∥∥∥S̃jT ′L̂T ′
∥∥ − 1

)
+ S̃

j
T ′(L̂T ′ −LT ′)∥∥S̃jT ′L̂T ′

∥∥
= I + II � say.

We begin with the following bound:

∥∥S̃jT ′LT ′
∥∥∥∥S̃jT ′L̂T ′
∥∥ − 1 =

∥∥S̃jT ′LT ′
∥∥ − ∥∥S̃jT ′L̂T ′

∥∥∥∥S̃jT ′L̂T ′
∥∥
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=
∥∥S̃jT ′L̂T ′ − S̃

j
T ′(L̂T ′ −LT ′)

∥∥ − ∥∥S̃jT ′L̂T ′
∥∥∥∥S̃jT ′L̂T ′

∥∥
≤

∥∥S̃jT ′(L̂T ′ −LT ′)
∥∥∥∥S̃jT ′L̂T ′

∥∥
≤

∥∥S̃jT ′
∥∥‖L̂T ′ −LT ′‖∥∥S̃jT ′L̂T ′

∥∥
= ‖L̂T ′ −LT ′‖∥∥S̃jT ′L̂T ′

∥∥/∥∥S̃jT ′
∥∥ �

The last equality holds because ‖S̃jT ′ ‖> 0 for all T ′.
According to Assumption 1(vi) L̂T ′

p−→ L. Moreover, we deduce from (A.10) and
AjL−1 �= 0 that

0 <

∥∥S̃jT ′L̂T ′
∥∥∥∥S̃jT ′

∥∥ ≤
∥∥S̃jT ′LT ′

∥∥ + ∥∥S̃jT ′(L̂T ′ −LT ′)
∥∥∥∥S̃jT ′

∥∥
≤

∥∥S̃jT ′LT ′
∥∥∥∥S̃jT ′

∥∥ + ‖L̂T ′ −LT ′ ‖

p−→ 1∥∥AjL−1∥∥ > 0�

Therefore,

0 ≤ ‖L̂T ′ −LT ′‖∥∥S̃jT ′L̂T ′
∥∥/∥∥S̃jT ′

∥∥ ≤ op(1)
∥∥AjL−1∥∥ = op(1)�

Similarly, we obtain the bound

1 −
∥∥S̃jT ′LT ′

∥∥∥∥S̃jT ′L̂T ′
∥∥ =

∥∥S̃jT ′L̂T ′
∥∥ − ∥∥S̃jT ′LT ′

∥∥∥∥S̃jT ′L̂T ′
∥∥

=
∥∥S̃jT ′LT ′ + S̃

j
T ′(L̂T ′ −LT ′)

∥∥ − ∥∥S̃jT ′LT ′
∥∥∥∥S̃jT ′L̂T ′

∥∥
≤

∥∥S̃jT ′(L̂T ′ −LT ′)
∥∥∥∥S̃jT ′L̂T ′

∥∥ p−→ 0�

Since S̃
j
T ′LT ′/‖S̃jT ′LT ′‖ = O(1), we have established that term I vanishes asymptotically:

I = op(1)�
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Term II can be bounded as follows:

‖II‖ =
∥∥S̃jT ′(L̂T ′ −LT ′)

∥∥∥∥S̃jT ′L̂T ′
∥∥

≤
∥∥S̃jT ′

∥∥‖L̂T ′ −LT ′‖∥∥S̃jT ′L̂T ′
∥∥

≤ ‖L̂T ′ −LT ′‖∥∥S̃jT ′L̂T ′
∥∥/∥∥S̃jT ′

∥∥ p−→ 0�

and so

II = op(1)�

Combining the two op(1) results completes the proof of Part (ii). �

Lemma B3. Suppose Assumption 1 is satisfied. Consider Case (i) in Step 3 of the proof of
Theorem 2(ii). Along the {T } sequence defined in Step 1 of the proof of Theorem 2(ii),

cαT
(
Â(qT )� B̂(qT )� ϕ̂

∗
T (qT )

) →p cαT
(
A�B�π∗)�

where the critical value function cαT (·) is defined in (A.5) and (A.6).

Proof of Lemma B3. The proof is very similar to that of Lemma 2(a) in Andrews and
Soares (2010) and we provide a sketch. The proof proceeds in three steps. First, show

(
ξ̂T � Â(qT )� B̂(qT )

) p−→ (π�A�B) and ϕ̂∗
T (qT )

p−→ π∗�

Second, show

P

{
min

v≥−ϕ̂∗
T (qT )

∥∥(Â(qT )
′Zm − v

∥∥2
B̂(qT )

≤ x
}

p−→ P

{
min

v≥−π∗
{∥∥A′Zm − v

∥∥2
B

} ≤ x
}
�

Third, deduce cαT (Â(qT )� B̂(qT )� ϕ̂
∗
T (qT ))

p−→ cαT (Â(qT )� B̂(qT )�π
∗), as required for the

lemma.

Proof of Step 1. By the choice of the sequence {T } and the limit result in Step 1 of the
proof of Theorem 2(ii) (

ξ̂T � Â(qT )� B̂(qT )
) p−→ (π�A�B)�

Notice that if πj = 0, then ξT (qT ) < κT as T −→ ∞ and by an argument similar to the
one used in the proof of Lemma B2(ii), we have ξ̂T (qT ) < κT in probability as T −→ ∞.
Therefore, plim ϕ̂∗

j�T (qT ) = plim ϕ̂j�T (qT ) = 0 = π∗
j with probability one. On the other

hand, if πj > 0, then ϕ̂∗
j�T (qT )= ∞ = π∗

j . Therefore, ϕ̂∗
T (qT )

p−→ π∗. �

Proof of Step 2. The desired result can be obtained by the same argument used in the
proof of (S1.17) of Andrews and Soares (2010). �
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Proof of Step 3. It is immediate from Step 2 and the fact that the distribution of

min
v≥−π∗

∥∥A′Zm − v
∥∥2
B

is continuous if k≥ 1, and continuous near the (1−α)′s quantile, where α< 1/2, if k= 0.
�

Appendix C: Description of Monte Carlo experiments

C.1 Experiment 1: Bivariate VAR(0)

This section presents the computations for the Monte Carlo experiment with the
VAR(0) model, for example, Design 1 in Table 1 of the main article: yt = ut , ut ∼ N(0�Σ).

The population identified set is given by Fθ(φ) = [0�max{I{φ2 ≥ 0}�
√

φ2
3

φ2
2+φ2

3
}] where

φ = [φ1�φ2�φ3]′ = [Σtr
11�Σ

tr
21�Σ

tr
22]′ and Σtr

ij are the elements of Σtr, the lower triangular
matrix from the Cholesky decomposition of Σ.

It is convenient to reparameterize q in spherical coordinates: q = q(ϕ) =
[cos(ϕ) sin(ϕ)]′. However, for brevity we typically write q, omitting the ϕ argument. We
generate a grid Q for q by dividing the domain of ϕ, [−π

2 �
π
2 ], into equally sized partitions

of length δϕ. As discussed in the main text, since φ1 = Σtr
11 > 0 the inequality restriction

θ = q1φ1 ≥ 0 implies that q1 ≥ 0. Thus, it suffices to conduct the grid search with respect
to ϕ over the interval [−π

2 �
π
2 ].

The following steps are repeated nsim times. The results reported in the main text
are averages across these repetitions. We report the average length of the confidence
intervals and compute the coverage probability as the fraction of times for which the
upper bound of Fθ(φ) is contained in the confidence interval. The upper bound of the
identified set determines the lower bound of the coverage probability.

Generating Data: Generate a sample of length T of data from the VAR(0) using the
parameters reported in Table 1.

Estimating the reduced-form parameters

• Compute the sample covariance Σ̂ = 1
T

∑T
t=1(yt − ȳ)′(yt − ȳ) where ȳ = 1

T

∑T
t=1 yt .

Denote by Σ̂tr the lower triangular matrix from the Cholesky decomposition of Σ̂. Then
φ̂ = [φ̂1� φ̂2� φ̂3]′ = [Σ̂tr

11� Σ̂
tr
21� Σ̂

tr
22]′, where Σ̂tr

ij are the elements of Σ̂tr.

• Estimate Λ, the asymptotic variance covariance matrix of φ̂, using a parametric
bootstrap:

– Generate bootstrap samples b = 1� � � � �B of length T from y
(b)
t = u

(b)
t where u

(b)
t ∼

N(0� Σ̂).

– For each bootstrap sample, estimate Σ̂(b) and compute φ̂(b) = [φ̂(b)
1 � φ̂(b)

2 � φ̂(b)
3 ]′.

– Let Λ̂ = 1
B

∑B
b=1[

√
T(φ̂(b) − φ̂)][√T(φ̂(b) − φ̂)]′ with factorization Λ̂= L̂L̂′.

Computing the confidence intervals
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• Step 1: Construct a (1 − α1) confidence set for q. The following computations are ex-
ecuted for each q ∈ Q. As before, it is convenient to express q in terms of the angle ϕ and
generate Q by equally spaced grid points on the interval [−π�π]. Recall the definition of
ξ1�T (q) and ξ2�T (q) in (24).

– If ϕ ∈ {−π
2 �

π
2 }, the objective function is given by

Gq(q; φ̂� Ŵ ) = min
μ≥0

T

Σ̂22(q)
(q1φ̂2 + q2φ̂3 −μ)2�

* If ξ2�T (q) < κT , the inequality condition is considered binding and the critical value
cα1(q) is the (1 − α1) quantile of a squared truncated normal Z2I{Z ≥ 0}.

* If ξ2�T (q) ≥ κT , the inequality condition is considered nonbinding and cα1(q)= 0.

– If ϕ /∈ {−π
2 �

π
2 }, the objective function is given by

Gq(q; φ̂� Ŵ )= min
μ1≥0�μ2≥0

T

∥∥∥∥∥D̂−1/2(q)

[
q1φ̂1 −μ1

q1φ̂2 + q2φ̂3 −μ2

]∥∥∥∥∥
2

B̂(q)

�

* If ξ1�T (q) < κT and ξ2�T (q) < κT , both inequality conditions are considered binding.

For j = 1� � � � � nZ draw Z
(j)
3 from N(0� I3). The critical value is the (1 − α1) quantile of

Ḡ(j)
(
q; B̂(q)) = min

ν≥0

∥∥D̂−1/2(q)S(q)L̂Z
(j)
3 − ν

∥∥2
B̂(q)

�

The minimization can be executed with a numerical routine that solves quadratic pro-
gramming problems.

* If ξ1�T (q) < κT and ξ2�T (q) ≥ κT or if ξ1�T (q) ≥ κT and ξ2�T (q) < κT , i.e., only one
inequality condition is considered binding, then cα1(q) is the (1 − α1)th quantile of a
squared truncated normal Z2I{Z ≥ 0}.

* if ξ1�T (q)≥ κT and ξ2�T (q) ≥ κT , then no inequality condition is considered binding
and cα1(q) = 0.

– Let CSq = {q ∈ Q | (Gq(q; φ̂� Ŵ )− cα1(q)) ≤ 0}.

• Step 2: Construct a (1 − α2) confidence set for θ conditional on q:

CSθq =
[
max

{
0� q1φ̂1 − zα2/2

√
q2

1Λ̂11/T
}
� q1φ̂1 + zα2/2

√
q2

1Λ̂11/T
]
�

where zα2/2 is the (1 − α2/2) quantile of a N(0�1) distribution and Λ̂11 is the (1�1) ele-

ment of the matrix Λ̂.

• Step 3: Construct the 1 − α Bonferroni set for θ: Compute the minimum of the lower
bounds of CSθq and the maximum of the upper bounds of CSθq for q ∈ CSq.
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C.2 Experiment 2: Bivariate VAR(1)

The computations are very similar to the computations for the VAR(0) experiment.
Thus, we focus on highlighting the differences. The model takes the form (Designs 2
to 4 in Table 1 of the main article): yt =Ayt−1 +ut , where ut ∼N(0�Σ). Let Σtr denote the
lower-triangular Cholesky factor of Σ. The reduced-form parameters are given by

φ = vec
(
(AΣtr)

′)
= [φ1�φ2�φ3�φ4]′

= [
A11Σ

tr
11 +A12Σ

tr
21�A12Σ

tr
22�A21Σ

tr
11 +A22Σ

tr
21�A22Σ

tr
22

]′
�

where Σtr
ij are the elements of Σtr. Under our three Monte Carlo designs, the identified

set Fq(φ) has a geometry similar to that of the identified set for the VAR(0) design,
depicted in Figure 1 of the main article. Roughly speaking, it is an arc located in the
northeast section of the unit circle. Under the parameterization of the data-generating
processes (DGPs), the top-left endpoint of Fq(φ) is given by the solution of

q2
1�l =

1

1 + (φ1/φ2)
2 �

whereas the bottom-right endpoint of Fq(φ) is given by the solution of

q2
1�r = 1

1 + (φ3/φ4)
2 �

The structural parameter of interest is θ = q1φ1 +q2φ2. For our Monte Carlo designs, the
lower bound of the identified set Fθ(φ) is determined by θl = q1�lφ1 + q2�lφ2. The upper
bound is θu = q1�rφ1 + q2�rφ2 if q2�r > 0; it is θu = q1�rφ1 + q2�rφ2 otherwise.

As for the VAR(0) experiment, the minimization with respect to q is carried out using
a grid q ∈ Q, where q = [cos(ϕ) sin(ϕ)]′ and ϕ takes values on an equally spaced grid over
[−π�π] with spacing δϕ.

Generating data: The DGP is now given by yt = Ayt−1 + ut .
Estimating the reduced-form parameters: Follow the same steps as in the VAR(0)

experiment.
Bonferroni approach

• Step 1: Construct a 1 − α1 confidence set for q.

– The objective function is

Gq(q; φ̂� Ŵ )= min
μ1≥0�μ2≥0

T

∥∥∥∥∥D̂−1/2(q)

[
q1φ̂1 + q2φ̂2 −μ1

q1φ̂2 + q2φ̂3 −μ2

]∥∥∥∥∥
2

B̂(q)

�

– If ξ1�T (q) < κT and ξ2�T (q) < κT , both inequality conditions are considered binding.

For j = 1� � � � � nZ draw Z
(j)
4 from N(0� I4). The critical value is the (1 − α1) quantile of

Ḡ(j)
(
q; B̂(q)) = min

ν≥0
T

∥∥D̂−1/2(q)S(q)L̂Z
(j)
4 − ν

∥∥2
B̂(q)

�
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– If ξ1�T (q) < κT and ξ2�T (q) ≥ κT or if ξ1�T (q) ≥ κT and ξ2�T (q) < κT , that is, only
one inequality condition is considered binding, then cα1(q) is the (1 − α1) quantile of a
squared truncated normal Z2I{Z ≥ 0}.

– If ξ1�T (q) ≥ κT and ξ2�T (q) ≥ κT , then no inequality condition is considered binding
and cα1(q) = 0.

• Step 2: Construct the (1 − α2) confidence set for θ conditional on q. Follow the same
steps as in Experiment 1.

• Step 3: Construct the 1 − α Bonferroni set for θ. Follow the same steps as in the Ex-
periment 1.

C.3 Experiment 3: Four-variable VAR(2)

Design. The coefficient matrices for the DGP are given by

A′
1 =

⎡
⎢⎢⎢⎣

1�001 −0�100 0�302 −0�085
0�065 0�585 0�089 −0�055
0�126 0�284 1�072 −0�073
0�233 0�141 0�056 1�522

⎤
⎥⎥⎥⎦ �

A′
2 =

⎡
⎢⎢⎢⎣

−0�080 0�119 −0�269 0�078
−0�056 0�262 0�065 0�013
−0�223 −0�222 −0�178 0�070
−0�230 −0�097 −0�069 −0�538

⎤
⎥⎥⎥⎦ �

c =

⎡
⎢⎢⎢⎣

0�626
0�175
0�064
0�204

⎤
⎥⎥⎥⎦ � Σ =

⎡
⎢⎢⎢⎣

0�542 −0�124 0�199 0�095
−0�124 1�164 0�129 −0�369
0�199 0�129 0�912 −0�263
0�095 −0�369 −0�263 0�549

⎤
⎥⎥⎥⎦ �

Appendix D: Further details on the empirical analysis

The construction of the data set follows Aruoba and Schorfheide (2011). Unless other-
wise noted, the data are obtained from the FRED2 database maintained by the Federal
Reserve Bank of St. Louis. Per capita output is defined as real GDP (GDPC96) divided by
the civilian noninstitutionalized population (CNP16OV). The population series is pro-
vided at a monthly frequency and converted to quarterly frequency by simple averag-
ing. We take the natural log of per capita output and extract a deterministic trend by
OLS regression over the period 1959:I to 2006:IV. The deviations from the linear trend are
scaled by 100 to convert them into percentages. Inflation is defined as the log difference
of the GDP deflator (GDPDEF), scaled by 400 to obtain annualized percentage rates. Our
measure of nominal interest rates corresponds to the federal funds rate (FEDFUNDS),
which is provided at monthly frequency and converted to quarterly frequency by sim-
ple averaging. We use the sweep-adjusted M2S series provided by Cynamon, Dutkowsky,
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and Jones (2006). This series is recorded at monthly frequency without seasonal adjust-
ments. The EVIEWS default version of the X12 filter is applied to remove seasonal varia-
tion. The M2S series is divided by quarterly nominal GDP to obtain inverse velocity. We
then remove a linear trend from log inverse velocity and scale the deviations from trend
by 100. Since our VAR is expressed in terms of real money balances, we take the sum of
log inverse velocity and real GDP. Finally, we restrict our quarterly observations to the
period from 1965:I to 2005:I.
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