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Inference for VARs identified with sign restrictions
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There is a fast growing literature that set-identifies structural vector autoregres-
sions (SVARs) by imposing sign restrictions on the responses of a subset of the en-
dogenous variables to a particular structural shock (sign-restricted SVARs). Most
methods that have been used to construct pointwise coverage bands for impulse
responses of sign-restricted SVARs are justified only from a Bayesian perspec-
tive. This paper demonstrates how to formulate the inference problem for sign-
restricted SVARs within a moment-inequality framework. In particular, it devel-
ops methods of constructing confidence bands for impulse response functions of
sign-restricted SVARs that are valid from a frequentist perspective. The paper also
provides a comparison of frequentist and Bayesian coverage bands in the context
of an empirical application—the former can be substantially wider than the latter.

Keywords. Bayesian inference, frequentist inference, set-identified models, sign
restrictions, structural VARs.

JEL classification. C1, C32.

1. Introduction

During the three decades following Sims (1980) “Macroeconomics and Reality,” struc-
tural vector autoregressions (SVARs) have become an important tool in empirical
macroeconomics. They have been used for macroeconomic forecasting and policy anal-
ysis, as well as to investigate the sources of business cycle fluctuations and to provide a
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benchmark against which modern dynamic macroeconomic theories are evaluated. The
most controversial step in the specification of a structural VAR is the mapping between-
reduced form one-step-ahead forecast errors and orthogonalized, economically inter-
pretable structural innovations. Traditionally, SVARs have been constructed by imposing
sufficiently many restrictions such that the relationship between structural innovations
and forecast errors is one-to-one.

Over the past decade, starting with Faust (1998), Canova and De Nicolo (2002), and
Uhlig (2005), empirical researchers have used more agnostic approaches that generate
bounds on structural impulse response functions by restricting the sign of certain re-
sponses. We refer to this class of models as sign-restricted SVARs. They have been em-
ployed, for instance, to measure the effects of monetary policy shocks (e.g., Faust (1998),
Canova and De Nicolo (2002), Uhlig (2005)), technology shocks (e.g., Dedola and Neri
(2007), Peersman and Straub (2009)), government spending shocks (Mountford and Uh-
lig (2009), Pappa (2009)), oil price shocks (e.g., Baumeister and Peersman (2013), Kilian
and Murphy (2012)), and financial shocks (e.g., Hristov, Hülsewig, and Wollmershäuser
(2012), Gambetti and Musso (2017)).

Because impulse responses in sign-restricted SVARs can only be restricted to a
bounded set, they belong to the class of set-identified econometric models, using the
terminology of Manski (2003).1 With the exception of Faust, Rogers, Swanson, and Wrigh
(2003) and Faust, Swanson, and Wright (2004) (since the two papers are methodolog-
ically equivalent, we are using the abbreviation FRSW to refer to both of them), re-
searchers have exclusively reported Bayesian credible bands for sign-restricted VARs,
and a general method for constructing uniformly asymptotically valid frequentist confi-
dence intervals was absent from the literature when the first draft of this paper was writ-
ten; see Moon, Schorfheide, Granziera, and Lee (2011). As shown in detail in Moon and
Schorfheide (2012), the large-sample numerical equivalence of frequentist confidence
sets and Bayesian credible sets breaks down in set-identified models, which means that
Bayesian credible bands should not be interpreted as approximate frequentist confi-
dence bands.2

The goal of this paper is to provide researchers with an easy-to-use tool to construct
valid frequentist confidence bands for impulse responses and other measures of the
dynamic effects of structural shocks (e.g., variance decompositions) of sign-restricted
SVARs. The specific contributions are the following: First, we formulate the problem
of analyzing set-identified sign-restricted SVAR models in a moment-inequality-based
minimum distance framework. Second, we find an easily interpretable sufficient con-
dition for the nonemptiness of the identified set of sign-restricted structural impulse
responses, and we propose a consistent estimator of the identified set that is straightfor-
ward to compute. Third, using our minimum distance framework, we formally analyze

1The microeconometrics literature uses the terms set and partially identified model interchangeably. In
the VAR literature, a partially identified structural VAR is one in which the researcher tries to identify only
a subset of the structural shocks. To avoid confusion, we shall use the term set identified because we are
focusing on models in which impulse responses can only be bounded.

2Treatments of Bayesian inference in sign-restricted SVARs can be found, for instance, in Uhlig (2005),
Rubio-Ramirez, Waggoner, and Zha (2010), Baumeister and Hamilton (2015), Kilian and Lütkepohl (2017),
and the references cited therein.
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Bonferroni confidence sets. Fourth, we provide step-by step recipes for practitioners on
how to compute these confidence sets.3

At an abstract level, our inference problem is characterized by a vector of point-
identified reduced-form parameters φ, a vector of structural parameters (impulse re-
sponses or variance decompositions) θ, and a vector of nuisance parameters q. The sign
restrictions generate an identified set for q, Fq(φ). Conditional on q and φ the vector θ
is point identified, but because q is set-identified, so is θ and we denote its identified set
by Fθ(φ). To obtain a confidence set for θ, we pursue a Bonferroni approach: We con-
struct a confidence interval for the set-identified nuisance parameter q and then take
the union of standard Wald confidence sets for θ that are generated conditional on all q
in the first-stage confidence set. The Bonferroni inequality is used to ensure the desired
coverage probability of the resulting confidence set for θ. We also show that the plug-
in estimator Fθ(φ̂) delivers a consistent estimate of the identified set for θ, denoted by
Fθ(φ).

In the first draft of this paper, we used a projection approach instead; see Moon et al.
(2011).4 We constructed a joint confidence interval for the set-identified pair (q�θ) and
projected it onto the θ ordinate. Here, θ is the response of a particular variable at a par-
ticular horizon to a particular shock. In order to generate point-wise confidence bands
for impulse response functions, we repeated the computations for different definitions
of θ. In subsequent research, we compared the projection approach and the Bonferroni
approach and found that there is no clear ranking of the two types of confidence sets.
However, the Bonferroni approach has a clear computational advantage: the irregular
confidence set for the nuisance parameter q only has to be computed once. Conditional
on Fq(φ), one can easily generate standard confidence sets for impulse responses of
different variables at different horizons, of vectors of responses, and of variance decom-
positions and then take unions over q. Thus, we decided to focus on the Bonferroni set
in the current version of the paper.

The Bonferroni approach has a long history in the time series literature. For instance,
Cavanagh, Elliott, and Stock (1995) and Campbell and Yogo (2006) used it to eliminate
nuisance parameters that characterize the persistence of error terms or regressors. In
the context of structural VARs, the Bonferroni approach has been used by FRSW. How-
ever, FRSW’s setup is quite different from ours. In their framework, the set identification
of q arises from a rank deficiency in equality restrictions, which depend on estimated
parameters. While FRSW restrict q further by imposing inequality conditions, these in-
equality conditions do not depend on estimated parameters. Our analysis, on the other
hand, focuses on inequality restrictions for q that may bind and depend on estimated
parameters. This generalization is essential to cover the wide range of empirical applica-
tions referenced above. In the Monte Carlo analysis, we explore ideas by Campbell and
Yogo (2006) and McCloskey (2017) to tighten the Bonferroni sets.

3The contribution of this paper is meant to be positive. We do not criticize the use of Bayesian inference
methods as long as it is understood that their output needs to be interpreted from a Bayesian perspective.
We provide applied researchers who are interested in impulse response confidence bands that are valid
from a frequentist perspective with econometric tools to compute such bands.

4Inference procedures for subvectors have been further developed by Chaudhuri and Zivot (2011), Kaido,
Molinari, and Stoye (2016), Andrews (2017), and Bugni, Canay, and Shi (2017).
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Building upon recent advances in the moment-inequality literature in microecono-
metrics, in particular, Chernozhukov, Hong, and Tamer (2007), Rosen (2008), Andrews
and Guggenberger (2009), and Andrews and Soares (2010), we provide an asymptotic
analysis of the Bonferroni approach to constructing confidence sets for the dynamic ef-
fects of shocks in sign-restricted SVARs. Because the number of linearly independent
moment conditions is a function of the nuisance parameter q, we need to modify some
of the existing microeconometric theory. As is common in the literature, we use a point-
wise testing procedure to obtain a confidence set for q. We use Andrews and Soares’
(2010) moment selection procedure to tighten the critical values for the point-wise test-
ing procedures.5 We adapt their theory to account for the q-dependent rank of the set of
moment inequalities in our model and prove that the proposed confidence sets are uni-
formly asymptotically valid. Our results on the nonemptiness of identified sets for im-
pulse responses complement the equality-restriction-based VAR identification results
reported in Rubio-Ramirez, Waggoner, and Zha (2010).

Since the working paper versions of this paper have been written, a series of alterna-
tive approaches for the construction of frequentist confidence bands of sign-restricted
SVARs have been proposed. Gafarov, Meier, and Montiel (2016) developed an alternative
projection-based approach that starts from a Wald confidence ellipsoid for the reduced-
form VAR parameters and takes unions of the identified sets Fθ(φ). Because it relies on
the regular behavior of the estimator of the reduced-form coefficients, this method also
has the interpretation of delivering Bayesian credible sets for the identified set Fθ(φ).
The downside is that it is quite conservative. Gafarov, Meier, and Montiel (2018) propose
a δ-method confidence interval for sign-restricted SVARs which relies on a closed-form
characterization of the endpoints of the identified set. While the resulting intervals are
less conservative, their drawbacks are that they are only pointwise but not uniformly
consistent, and that they can only be applied to scalar θ’s. Finally, Giacomini and Kita-
gawa (2015) construct robust Bayesian credible sets for impulse response functions in
set-identified SVARs that have good frequentist properties.

The remainder of the paper is organized as follows. Section 2 develops the nota-
tion used in this paper and provides a simple example of a sign-restricted SVAR. We
describe how set-identification arises in this model and sketch the Bonferroni approach
to the construction of confidence intervals for the dynamic effects of structural shocks.
Section 3 is geared toward practitioners and discusses the step-by-step implementation
and computational aspects of the proposed inference method in the context of a general
SVAR. Technical assumptions and large sample results are presented in Section 4. Some
extensions are discussed in Section 5. To illustrate the proposed methods, we conduct
a Monte Carlo study in Section 6 and generate confidence bands for output, inflation,
interest rate, and money responses to a monetary policy shock in an empirical applica-
tion in Section 7. Finally, Section 8 concludes. Proofs and detailed derivations as well as
further information about the Monte Carlo experiments and the empirical analysis are

5A recent survey of the moment-inequality literature is provided by Canay and Shaikh (2017). Alterna-
tive procedures include Andrews and Barwick (2012) and Romano, Shaikh, and Wolf (2014). Because of a
potentially large number of inequality restrictions, the refinements to the moment selection proposed in
Andrews and Barwick (2012) did not seem practical.
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relegated to the online Appendix in the Supplementary Material (Granziera, Moon, and
Schorfheide (2018)).

We use the following notation throughout the remainder of the paper: I{x ≥ a} is the
indicator function that is one if x≥ a and zero otherwise. 0n×m is an n×m matrix of zeros
and In is the n × n identity matrix. We use [AB](i�) to denote the ith row of the matrix
(A · B) and [AC]i to denote the ith element of the vector (A · C). ⊗ is the Kronecker
product, vec(·) stacks the columns of a matrix, and vech(·) vectorizes the lower triangular
part of a square matrix. We use diag(A1� � � � �Ak) to denote a quasi-diagonal matrix with
submatrices A1� � � � �Ak on its diagonal and zeros elsewhere. If A is an n×m matrix, then
‖A‖W = √

tr[WA′A]. In the special case of a vector, our definition implies that ‖A‖W =√
A′WA. If the weight matrix is the identity matrix, we omit the subscript. We write x � 0

to mean that all elements of the vector x are strictly greater than zero; we write x > 0 to
mean that all elements of x are greater than or equal to zero but not all equal to zero, that
is, x �= 0; finally, we write x ≥ 0 to mean that all elements of x are greater than or equal to

zero. We use ∝ to indicate proportionality and “
p−→” and “=⇒” to indicate convergence

in probability and convergence in distribution, respectively, as T −→ ∞. A multivariate
normal distribution is denoted by N(μ�Σ). We use χ2

m to denote a χ2 distribution with
m degrees of freedom.

2. General setup and illustrative example

Throughout this paper, we consider an n-dimensional VAR with p lags, which takes the
form

yt = A1yt−1 + · · · +Apyt−p + ut� E[ut | Ft−1] = 0� E[utu′
t | Ft−1] = Σu� (1)

Here, yt is an n × 1 vector and the information set Ft−1 = {yt−1� yt−2� � � �} is composed
of the lags of yt . Constants and deterministic trend terms are omitted because they are
irrelevant for the subsequent discussion. The one-step-ahead forecast errors (reduced-
form shocks) ut are linear functions of a vector of fundamental innovations (structural
shocks) εt :

ut = Aεεt = ΣtrΩεεt� E[εt |Ft−1] = 0� E
[
εtε

′
t |Ft−1

] = In� (2)

where Σtr is the lower triangular Cholesky factor of Σu and Ωε is an arbitrary orthogonal
matrix. Assuming that the lag polynomial associated with the VAR in (1) is invertible, one
can express yt as the following infinite-order vector moving average (VMA) process:

yt =
∞∑
h=0

Ch(A1� � � � �Ap)ΣtrΩεεt−h� (3)

We assume that the object of interest is the propagation of the first shock, ε1�t , and de-
note the first column of the matrix Ωε by q, where q is a unit-length vector. The domain
of q is the n-dimensional unit sphere S

n = {q ∈ R
n | ‖q‖ = 1}. In Section 2.1, we discuss

how imposing sign restrictions on some impulse responses generates set identification
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of the dynamic effects of ε1�t . Section 2.2 provides a bivariate VAR(0) illustration. Sec-
tion 2.3 introduces some important notation. We present the construction of a Bonfer-
roni confidence set for the dynamic effects of ε1�t in Section 2.4. The Bonferroni set is
based on a confidence set for q, which is described in Section 2.5.

2.1 Sign restrictions and set identification

The SVAR identification problem arises because the one-step-ahead forecast error co-
variance matrix Σu is invariant to the orthogonal matrix Ωε, which implies that Ωε

and its first column q are not identifiable from the data. Point identification could be
achieved by selecting a particular q as a function of (A1� � � � �Ap�Σtr). The recent SVAR
literature has pursued a more agnostic approach and restricted the set of admissible q by
a collection of sign restrictions on impulse responses.6 The impulse response of variable
yi�t to ε1�t at horizon h is given by

IRF(i�h | ε1�t = 1)= [
Ch(A1� � � � �Ap)Σtr

]
(i�)

q� (4)

We define the n× 1 vector

φj = [
Ch(A1� � � � �Ap)Σtr

]′
(i�)

as the responses of a variable i at horizon h to the vector of reduced-form innovations
ut and summarize the sign-restricted impulse responses as

Φ′
qq ≥ 0� where Φq = [φ1� � � � �φr]� (5)

r is the number of restrictions, and Φq is a n× r matrix. The vectors φj are possibly mul-
tiplied by −1 to restrict the response to be weakly negative rather than weakly positive.
Moreover, the notation in (5) is general enough to accommodate sign restrictions on

cumulative impulse responses over h̄ periods, obtained from
∑h̄

h=0 Ch(A1� � � � �Ap)Σtrq.
The object of inference is a k-dimensional parameter defined as

θ = f
(
Φθ(A1� � � � �Ap�Σtr)�q

) ∈Θ ⊂R
k� (6)

The parameter set Θ is chosen to be consistent with potential sign restrictions for ele-
ments of θ implied by (5). Our leading example of f (·) is a vector of impulse responses,
which can be expressed as a linear function of the reduced-form impulse responses

f
(
Φθ(A1� � � � �Ap�Σtr)�q

) = Φ′
θq� (7)

where the definition of Φθ is similar to the definition of Φq in (5). In addition to impulse
responses, researchers often report variance decompositions. For instance, the fraction

6We assume that these sign restrictions do not encode equality restrictions (e.g., by representing a = 0
as a ≤ 0 and a ≥ 0). The extension to models that combine sign-restrictions and equality restrictions is
deferred to Section 5.
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of the one-step-ahead forecast error variance of variable y1�t explained by shock ε1�t is
given by

f
(
Φθ(A1� � � � �Ap�Σtr)�q

) = ι′1Σtrqq
′Σ′

trι1

ι′1ΣtrΣ
′
trι1

�

where ι1 = [1�0� � � � �0]′ is a n× 1 vector.
While Φq and Φθ can be consistently estimated, the vector q as well as the object of

interest θ are only set identified. We use Fq(Φq) and Fθ(Φq�Φθ) to denote the identified
sets of q and θ, respectively. Formally, they are defined as

Fq(Φq) = {
q ∈ S

n |Φ′
qq ≥ 0

}
� (8)

Fθ(Φq�Φθ) = {
θ ∈Θ | ∃q ∈ Fq(Φq) s.t. θ = f (Φθ�q)

}
� (9)

The goal is to construct a confidence set for θ. As an intermediate step in a Bonferroni
approach, we will also construct a confidence set for q.

2.2 Identified sets Fq(·) and Fθ(·) in a bivariate VAR(0)

For concreteness, consider the following example. Suppose the vector yt is composed of
inflation and output growth and the one-step-ahead forecast errors are linear functions
of structural demand and supply shocks, stacked in the vector εt = [εD�t� εS�t]′. In order
to obtain bounds for the effects of a demand shock, we impose the sign restriction that,
contemporaneously, a demand shock moves prices and output in the same direction
and the normalization restriction that a positive demand shock increases prices:

φ′
1q = [

Σtr
11 0

][
q1

q2

]
≥ 0� φ′

2q = [
Σtr

21 Σtr
22

][
q1

q2

]
≥ 0� Φq = [φ1�φ2]� (10)

Suppose that the object of interest, θ, is the contemporaneous inflation response to a
demand shock εD�t :

θ = φ′
1q� Φθ =φ1� (11)

Figure 1 provides an illustration of the two inequality constraints and the resulting
identified sets. To simplify the graphical illustration, we assume that Σtr

11 = 1 which im-
plies θ = q1. Because the Cholesky factorization of the covariance matrix Σu is normal-
ized such that Σtr

11 and Σtr
22 are nonnegative, (10) implies that

q1 ≥ 0 and q2 ≥ −
(
Σtr

21

Σtr
22

)
q1� (12)

The x-axis of both panels corresponds to θ = q1 and the y-axis represents q2. Each panel
depicts a unit circle as well as the locus φ′

2q = 0. In the left panel Σtr
21 < 0, whereas in

the right panel Σtr
21 > 0. The identified set Fq(Φq) is given by the arc that ranges from

the intersection of the unit circle with the y-axis to the intersection with φ′
2q = 0. The

identified set Fθ(Φq�Φθ) is given by the projection of the arc onto the x-axis. The iden-
tified set is a singleton only if Σtr

22 = 0 and Σtr
21 < 0, which means that the one-step-ahead
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Figure 1. Identified Sets for VAR(0).

forecast error covariance matrix is singular. We will rule out this case because it is not
empirically relevant in practice.

2.3 Rank reductions and notation

In order to develop a notation for the general inference problem we need to accommo-
date two types of rank reductions. First, consider the matrix Φq for the bivariate VAR(0):

Φq =
[
Σtr

11 Σtr
21

0 Σtr
22

]
�

To construct a confidence set for q, we will replace the unknown Φq by a sample es-
timate Φ̂q and start from the high-level assumption that Φ̂q has a normal limit distri-
bution. Because of the zeros in the Cholesky factorization of Σu (and possibly other re-
strictions imposed on the reduced-form parameters), the covariance matrix of Φ̂q has a
rank-reduction. We circumvent this issues as follows. Let

S̄′ =
⎡
⎢⎣1 0 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦

be the selection matrix that deletes the zero elements in vec (Φq) such that

φq = S̄′ vec (Φq) and S̄φq = vec (Φq)�

Then we can express the sign restrictions as

S̃(q)φq = (
I ⊗ q′)S̄φq ≥ 0� (13)
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The second type of rank reduction arises as follows. After eliminating Σtr
12 = 0, we

obtain φq = [Σtr
11�Σ

tr
21�Σ

tr
22]′ in the bivariate VAR(0). In turn, the matrix S̃(q) takes the

form:

S̃(q) =
[
q1 0 0
0 q1 q2

]
�

The first row of S̃(q) equals zero if q = [q1� q2]′ = [0�1]. As a consequence the covariance
matrix of S̃(q)φ̂q is singular at q = [0�1]′ and cannot be inverted to form a weight matrix
for the estimation of q. In order to eliminate the rows of zeros in S̃(q), we introduce the
selection matrix V (q) and define

S(q)= V (q)S̃(q)� (14)

The row dimension of S(q) is r(q). By construction, the matrix S(q) has the full row rank
for all q.

Inference about q will be based on the objective function

G
(
q;φq�W (·)) = min

μ≥0

∥∥S(q)φq − V (q)μ
∥∥2
W (q)

� (15)

The vector μ captures the slackness in the inequalities generated by the sign restrictions
in (13). W (q) is a symmetric and positive-definite weight matrix with a dimension that
adjusts to the dimension of V (q):

W (q) = V (q)W̃ (q)V (q)′�

The matrix W̃ (q) is a weight matrix that conforms with S̃(q)φq. An important example
of a W̃ (q) is the inverse of the asymptotic covariance matrix of

√
T S̃(q)(φ̂q −φq). It can

be verified that

q ∈ Fq(φq) if and only if G
(
q;φq�W (·)) = 0� (16)

where we now write Fq(φq) instead of F(Φq).

2.4 A Bonferroni confidence interval for θ

Let S′
θ be the selection matrix that deletes the zeros other pre-determined elements in

vec (Φθ) and define φθ = S′
θ vec (Φθ). Moreover, let φ = [φ′

q�φθ]′. We will often write

Fθ(φ) to abbreviate Fθ(Φq�Φθ). The goal is to obtain a confidence interval CSθ(φ̂) that
satisfies the condition

lim inf
T−→∞

inf
ρ∈R

inf
θ∈Fθ(φ(ρ))

Pρ
{
θ ∈ CSθ(φ̂)

} ≥ 1 − α� (17)

The vector φ may be a subvector of a larger reduced-form parameter vector ρ with do-
main R, that characterizes the distribution of the data y1� � � � � yT , which is why we write
φ(ρ). For instance, in a Gaussian VAR ρ comprises the elements of A1� � � � �Ap, and Σu;
see (1). The parameter θ does not appear as an index of the probability distribution P ,
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because conditional on φ the parameter θ does not affect the distribution of the estima-
tor of the reduced-form parameters φ̂. The confidence interval is indexed by φ̂ because
it is a sufficient statistic in our setup.

As mentioned in the Introduction, in our application it is quite natural to use a Bon-
ferroni approach to compute an asymptotic 1−α confidence set for θ. Under the Bonfer-
roni approach, one first constructs a confidence set for q. This is a “nonstandard” object
because q is a set-identified parameter. Conditional on q, however, inference for θ be-
comes “standard,” because θ is point-identified. Let α = α1 + α2. Bonferroni confidence
steps can be obtained in three steps:

1. Construct a 1 − α1 confidence interval CSq(φ̂q) for q with the property that

lim inf
T−→∞

inf
ρ∈R

inf
q∈Fq(φq)

Pρ
{
q ∈ CSq(φ̂q)

} ≥ 1 − α1� (18)

2. Generate a confidence set for θ conditional on q. This is a “regular” problem be-
cause conditional on q, the vector θ is point identified. For instance, if θ is scalar and
defined as θ =φ′

θq, one can use a Wald confidence interval of the form:

CSθ
q(φ̂θ) =Θ∩ [

φ̂′
θq− zα2/2σ̂θ̂� φ̂

′
θq+ zα2/2σ̂θ̂

]
� (19)

Here, zα2/2 is the two-sided α2 critical value associated with the N(0�1) distribution and
σ̂θ̂ is a standard error estimate for θ̂ = φ̂′

θq. The intersection of the symmetric confidence
interval for θ can be used, for instance, to truncate the symmetric interval at zero, if θ is
a response that is assumed to be nonnegative.

3. Construct the confidence set for θ by taking the following union of CSθ
q(φ̂θ) sets:

CSθ(φ̂)=
⋃

q∈CSq(φ̂q)

CSq
θ(φ̂θ)� (20)

2.5 A confidence set for q

The main contribution of this paper is to adapt an inference procedure from the mo-
ment inequality literature to obtain a confidence set for q in the first step of the Bon-
ferroni procedure. The confidence set is generated as a level set based on the sample
analogue of the objective function in (15):

CSq(φ̂q) = {
q ∈ S

n | G(
q; φ̂q�W (·)) ≤ cα1(q)

}
� (21)

Here, cα1(q) is a critical value that guarantees that the confidence set satisfies (18). In the
remainder of this subsection, we outline the derivation of the critical value cα1(q) for the
bivariate VAR(0) example.

For illustrative purposes, suppose that the estimates of the reduced-form parame-
ters have an exact standard normal distribution:

√
T(φ̂q −φq) ∼N(0� I3)�
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We parameterize the slackness in the inequality restrictions as

q1φq�1 = μ̃1� q1φq�1 + q2φq�2 = μ̃2

and use the weight matrix that standardizes the distribution of S̃(q)φ̂q:

W (q) = T

[ 1
q2

1
0

0 1

]
�

In turn, we can express the sample analogue of the objective function in (15) as

G
(
q; φ̂q�W (·)) = min

μ≥0

[√
T(φ̂q�1 −φq�1)+ √

T(μ1 − μ̃1)/|q1|
]2I

{
q �= [0�1]′}

+ [√
T(φ̂q�2 −φq�2)q1 + √

T(φ̂q�3 −φq�3)q2 + √
T(μ2 − μ̃2)

]2

= min
ν≥−√

Tμ̃

[
Z1 − ν1/|q1|

]2I
{
q �= [0�1]′} + [Z2 − ν2]2�

where μ = [μ1�μ2]′, ν = [ν1� ν2]′, and Z1 and Z2 are two independent N(0�1) random
variables.

A conservative upper bound on the sample objective function can be obtained by
assuming that both inequalities are binding, that is, μ̃1 = μ̃2 = 0:

G
(
q; φ̂q�W (·)) ≤Z2

1I{Z1 ≤ 0} +Z2
2I{Z2 ≤ 0}�

Critical values for the distribution of the bound can be easily obtained by simulation.
A sharper bound and a smaller critical value that leads to a smaller confidence set can
be obtained by realizing that at most one inequality is binding. Thus, we will use the
moment selection approach of Andrews and Soares (2010) to eliminate nonbinding mo-
ment conditions constructing critical values for G(q; φ̂q�W (·)). This means that in our
illustrative example, the critical value can be essentially reduced to the 100(1−α1) quan-
tile of the distribution of Z2

1I{Z1 ≤ 0}.

3. Implementation

This section focuses on the implementation of the proposed inference methods. A for-
mal statement of assumptions and a rigorous analysis of the large sample properties of
the confidence set will follow in Section 4. The remainder of this section is organized
as follows. Section 3.1 briefly discusses the estimation of φ. Section 3.2 describes how
we construct the confidence set for q. The calculation of confidence sets for θ given q is
reviewed in Section 3.3. Finally, we provide some additional details for the computation
of confidence bands for impulse responses in Section 3.4. Throughout this section, we
assume that the impulse responses are not restricted through equality conditions (e.g.,
the restriction that certain responses must be zero). Extensions of our approach to a
setting in which some identifying information is extracted from equality conditions are
straightforward but notationally cumbersome and discussed in Section 5.
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3.1 Estimating the reduced-form coefficients φ

We start from the assumption that φ̂q and φ̂θ have Gaussian limit distributions and that
the asymptotic covariance matrices can be estimated consistently:

√
T(φ̂q −φq) =⇒ N(0�Λqq) and Λ̂qq

p−→Λqq > 0�
√
T(φ̂θ −φθ) =⇒ N(0�Λθθ) and Λ̂θθ

p−→ Λθθ > 0�
(22)

This assumption requires that all roots of the characteristic polynomial associated with
the difference equation (1) lie outside of the unit circle. Throughout the paper, we rule
out the presence of unit roots and assume that yt is trend stationary.

We will also assume that Λqq and Λθθ are full rank. Because most impulse response
function confidence bands are pointwise, the dimension of θ is typically one, which im-
mediately leads to Λθθ > 0. Whether or not Λqq > 0 is satisfied depends on the number
of imposed sign restrictions. In a first-order approximation, the reduced-form responses
stacked in φq are linear functions of the n2p+n(n+1)/2 coefficients in (A1� � � � �Ap�Σtr).
In order to restrict r structural responses, we need at least nr − n(n− 1)/2 reduced form
responses (recall that n(n − 1)/2 responses upon impact are zero because Σtr is lower
triangular). Thus, for r > n(p + 1) the matrix Λqq cannot be of full rank. In practice,
most applications will satisfy the rank condition because we previously eliminated the
n(n−1)/2 zero elements of the lower triangular matrix Σtr from the vector φq. The num-
ber of sign restrictions is usually small relative to the number of reduced-form VAR pa-
rameters.7

The VAR coefficient matrices A1� � � � �Ap and Σu can be estimated by OLS. An esti-

mate of Σtr is obtained by applying the Cholesky decomposition to Σ̂u. We then evaluate
the functions Φq(·) and Φθ(·) at Â1� � � � � Âp� Σ̂tr to obtain φ̂q and φ̂θ. We obtain Λ̂qq and

Λ̂θθ by using a parametric bootstrap procedure: conditional on Â1� � � � � Âp� Σ̂u we sim-
ulate nΛ bootstrap samples Y ∗

1:T from the VAR in (1). Innovations u∗
t can either be drawn

by resampling the residuals ût or by i.i.d. sampling from a N(0� Σ̂u) distribution. In Sec-
tions 6 and 7, we do the latter. From each bootstrap sample, we compute φ̂∗

q. Finally,

we compute the bootstrap sample covariance matrix of φ̂∗
q and scale it appropriately to

obtain Λ̂qq. The same approach is used to compute Λ̂θθ.

3.2 Confidence set for q

The confidence interval for q is obtained by verifying whether

G
(
q; φ̂q�W (·)) ≤ cα1(q)

7Consider a 4-variable VAR(4) and suppose that the responses of 3 of the 4 variables are restricted upon
impact and for the subsequent 3 periods. The number of estimated reduced-form coefficients is 4 ·16+10 =
74. In order to construct the sign-restricted responses, the number of elements in the vector φq is bounded
by 3 · 4 · 4 − 3 = 45 (because the impact effect of the structural shocks depends on a minimum of 3 reduced-
form responses that are zero).
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for q ∈ Q. This requires the selection of a grid Q and the evaluation of the critical-value
function cα1(q).

Generating a grid for q. We generate nQ grid points for q ∈ S
n from a distribution

that is uniform under rotations using a well-known result by James (1954). Let Z(j), j =
1� � � � � nQ, be a sequence of n × 1 vectors of i.i.d. N(0� In) random vectors and define
q(j) = Z(j)/‖Z(j)‖. Then, q(j) is uniformly distributed on the unit sphere S

n. We define
the grid as Q = {q(1)� � � � � q(nQ)}. For the confidence intervals to be asymptotically valid,
the number of grid points has to expand faster than the sample size. Our theoretical
analysis in Section 4 abstracts from the discretization of Sn.

Weight matrix for sample objective function. The weight matrix Ŵq(q) is obtained
as follows. We denote the asymptotic covariance matrix of

√
TS(q)(φ̂q − φq) as Σ(q) =

S(q)ΛqqS(q)
′. A consistent estimator is given by

Σ̂(q)= S(q)Λ̂qqS
′(q) = D̂1/2(q)Ω̂(q)D̂1/2(q)�

where Ω̂(q) is the correlation matrix associated with Σ̂(q) and D̂1/2(q) is a diagonal ma-
trix of standard deviations. We then let

Ŵ (q) = TD̂−1/2(q)B̂(q)D̂−1/2(q) (23)

and focus on two particular choices of B̂(q): B̂(q) = Ω̂−1(q) and B̂(q) = I. The choice
of B̂(q) = Ω̂−1(q) clearly requires our assumption in (22) that Λqq > 0. In the case of
B̂(q) = I, one could in principle allow for a singular covariance matrix Λqq > 0. In the
formal analysis in Section 4, one would have to replace Λqq by its singular value decom-
position. We did not pursue this extension below because it would make the notation
and exposition more cumbersome.

Overall, this leads to the sample objective function

G
(
q; φ̂q� Ŵ (·)) = min

μ≥0
T

∥∥D̂−1/2(q)S(q)φ̂q − D̂−1/2(q)V (q)μ
∥∥2
B̂(q)

�

The function G(q; φ̂q� Ŵ (·)) has the same structure as the objective functions consid-
ered in the literature on moment inequality models, for example, Chernozhukov, Hong,
and Tamer (2007), Rosen (2008), Andrews and Guggenberger (2009), and Andrews and
Soares (2010). The main difference in our setup for the VAR application is the dimen-
sion of S(q)φ̂q, D̂(q), and B̂(q) varies with q and the limit D̂(q) as a function of q can be
singular.

Critical values. In order to obtain the critical value function cα1(q), we apply the mo-
ment selection approach of Andrews and Soares (2010). The moment selection tries to
eliminate clearly nonbinding inequality conditions in the weak limit of the objective
function G(q; φ̂q� Ŵ (·)) and compute the required critical value.8 An estimate of the

8One can show that in population at most n−1 inequality conditions (recall that n is the dimension of yt )
can be binding; see also the example in Section 2.4. Thus, we experimented with an algorithm that orders
the inequalities based on the strength of their violation to select a subset of n− 1 binding conditions in case
the Andrews–Soares procedure classifies more than n− 1 inequalities as binding. In finite samples, the se-
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slackness in inequality condition j = 1� � � � � r(q) is provided by

ξ̂j�T (q)= D̂
−1/2
jj (q)

[
S(q)

]
(j�)

√
Tφ̂q� (24)

Inequality condition j is deemed nonbinding if

ξ̂j�T (q) ≥ κT � (25)

where κT is a sequence that diverges slowly to infinity, for example, κT = 1�96 ln(lnT).
Thus, estimates of the number of nonbinding and binding moment inequality con-
straints are given by

r̂2(q) =
r(q)∑
j=1

I
{
ξ̂j�T (q)≥ κT

}
and r̂1(q) = r(q)− r̂2(q)� (26)

respectively.
Define the (r̂1(q)× r(q)) selection matrix Mξ̂(q) that deletes rows of D̂−1/2(q)S(q)φ̂q

that correspond to nonbinding inequality conditions in the sense of (25). Moreover, let
m be the dimension of the vector φq,

Zm ∼ N(0� Im) and Â′(q) = D̂−1/2(q)S(q)L̂qq� where Λ̂qq = L̂qqL̂
′
qq�

Conditional on B̂(q) andMξ̂(q), define the random function (the randomness is induced
through Zm)

ḠZm

(
q; B̂(q)�Mξ̂(q)

) = min
ν≥0

∥∥Mξ̂(q)Â
′(q)Zm − ν

∥∥2
M

ξ̂
(q)B̂(q)M ′

ξ̂
(q)

� (27)

where ν is a r̂1(q) × 1 vector. We adopt the convention that ḠZm(q; B̂(q)�Mξ̂(q)) = 0 if
r̂1(q)= 0. The critical value cα1(q) is defined as

cα1(q) = 1 − α1 quantile of ḠZm

(
q; B̂(q)�Mξ̂(q)

)
(28)

and can be obtained from a simulation approximation of the limit objective function.9

If B̂(q) = I, then the evaluation of ḠZm(·) is fast because the quadratic programming
problem has the following closed-form solution:

ḠZm

(
q; B̂(q)�Mξ̂(q)

) =
r̂1(q)∑
j=1

[
Mξ̂(q)Â

′(q)Zm
]2
j
I
{[
Mξ̂(q)Â

′(q)Zm
]
j
< 0

}
�

lection of no more than n−1 restrictions could potentially sharpen the confidence set for q. However, in our
experiments the gains (if any) were so small that they were essentially not noticeable when we constructed
the confidence bands for θ. Thus, we did not explore this idea further in this paper.

9For j = 1� � � � � nZ generate random vectors Z
(j)
m and compute Ḡ(j)

Zm
(q; B̂(q)�Mξ̂(q)). Then compute the

1 − α1 percentile of the empirical distribution of the simulated limit objective functions.
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3.3 Confidence set for θ conditional on q

Conditional on q, the dynamic effects of the shock ε1�t on yt are point-identified and the
inference about impulse responses and variance decompositions is regular. Methods on
how to construct confidence intervals for these objects date back to Runkle (1987), who
proposed to use either the δ-method in combination with numerical derivatives of the
mapping from reduced-form VAR coefficients into IRFs and variance decompositions
or to use a residual-based bootstrap. Lütkepohl (1990) derived asymptotic distributions
based on analytical derivatives for the δ-method and Mittnik and Zadrozny (1993) pro-
vided extensions to VARMA models. A recent survey of the literature on frequentist in-
ference for IRFs and variance decompositions in point-identified settings is provided by
Kilian and Lütkepohl (2017). Any of these methods can be embedded into our Bonfer-
roni approach.

3.4 Special case: Confidence bands for IRFs

Confidence bands for impulse responses in the VAR literature predominantly depict
pointwise confidence intervals, which means that we can express the scalar parame-
ter θ as S̃θ(q)φθ, where φθ summarizes the reduced-form impulse responses that are
necessary to generate the structural response θ and S̃θ(q) is defined similarly as S̃(q) in
Section 2.3. For this important special case, one can show that Fθ(φq�φθ) is convex and
bounded, which simplifies computations and reporting of results.

Lemma 1. Suppose that Fq(φq) is nonempty and not a singleton. Moreover, θ = Sθ(q)φθ

and k = dim(θ) = 1. Then Fθ(φq�φθ) is convex and bounded.

Approximating Fq(φ̂q) and Fθ(φ̂). An estimate of the identified set for q can be ob-
tained from

Fq(φ̂q) ≈ F̂q(φ̂q) = {
q ∈ Q | S̃(q)φ̂q ≥ 0

}
�

Thus, for every q ∈ Q one checks whether S̃(q)φ̂q ≥ 0 and retains the q’s for which the
condition is satisfied. Denote the elements of F̂q(φ̂q) by q(j), j = 1� � � � � nq, where nq ≤
nQ. Compute θ(j) = φ̂′

θq
(j). We show in the online Appendix that Fθ(φ̂) is a bounded

interval. Thus, we define the interval

F̂θ(φ̂)=
[(

min
j=1�����nq

θ(j)
)
�
(

max
j=1�����nq

θ(j)
)]

�

Computing CSq(φ̂q) and CSθ(φ̂). The computation of CSq(φ̂q) follows the steps out-
lined in Section 3.2. Note that by construction F̂q(φ̂q) ⊆ CSq(φ̂q). Denote the elements
of CSq(φ̂q) by q(j), j = 1� � � � � nq. Then, for each q(j), compute the Wald interval with
bounds

θ
(j)
l = φ̂′

θq
(j) − zα2/2

√
q(j)

′
Λ̂θθq(j)/T and θ

(j)
u = φ̂′

θq
(j) + zα2/2

√
q(j)

′
Λ̂θθq(j)/T �

and let

CSθ(φ̂)= Θ∩
[(

min
j=1�����nq

θ
(j)
l

)
�
(

max
j=1�����nq

θ
(j)
u

)]
�
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The intersection with Θ can be used to restrict the confidence interval to values of θ
that are consistent with the assumed sign restriction. While CSq(φ̂q) has to be calcu-
lated only once, the computations for CSθ(φ̂) have to be repeated for every response θ =
∂yi�t+h/∂ε1�t of interest. Here, i potentially ranges from i = 1� � � � � n and h= 0�1� � � � �hmax.

4. Large sample analysis

This section formally establishes the consistency of the plug-in estimators Fq(φ̂q) and
Fθ(φ̂) and the asymptotic validity of the confidence sets CSq(φ̂q) and CSθ(φ̂). As men-
tioned in Section 2.4, the vectors φq and φ are not always sufficient to characterize the
sampling distribution of data and estimators. Thus, we again will use ρ to characterize
the distribution of the data under the reduced-form VAR model (1). We denote this dis-
tribution by Pρ. The statements about uniform asymptotic coverage probabilities will be
made for ρ ∈ R. Some of the regularity conditions will be required to hold for a slightly
larger, δ-inflated open set

Rδ = {
ρ̃ ∈ R̄ | ∃ρ ∈ R s.t. ‖ρ̃− ρ‖< δ

}
� (29)

where R̄ ⊃ R and δ > 0.10 Asymptotic inference for q is discussed in Section 4.1 and
Section 4.2 considers inference for θ.

4.1 Asymptotic inference for q

We begin by stating some high-level assumptions.

Assumption 1. There exists a compact reduced-form parameter set R and a δ-inflated
superset Rδ defined in (29) such that R ⊂ Rδ ⊂ R̄ and:

(i) For every ρ ∈ Rδ, there does not exist an r × 1 vector λ > 0 such that

Φqλ = 0�

(ii) φq(ρ) is continuously differentiable for all ρ ∈ Rδ.

(iii) There exists an estimator φ̂q of φq(ρT ) and a matrix Λ
−1/2
qq (ρT ) such that for each

sequence {ρT } ∈ R (a) φ̂q −φq(ρT )
p−→ 0; (b)

√
TΛ

−1/2
qq (ρT )(φ̂q −φq(ρT )) =⇒ N(0� I).

(iv) For each ρ ∈ R, the matrix Λqq(ρ) is continuous, positive definite, and there exists
a full-rank positive-definite matrix Λmin such that Λqq(ρ)−Λmin ≥ 0 for all ρ ∈ R.

(v) There exists an estimator Λ̂qq of Λqq(ρT ) such that ‖Λ̂qq −Λqq(ρT )‖ p−→ 0 for any
converging sequence {ρT } ∈ R.

Condition (i) of Assumption 1 states that the convex cone generated by the columns
of the reduced-form impulse response matrix Φq does not contain the zero vector. This

10For instance, suppose ρ is an autocorrelation parameter for an AR(1) model. We could define R =
[0�0�999], Rδ = [0�1) for δ = 0�001, and R̄ = [0�1].
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assumption is sufficient to ensure that the identified set Fq(φq(ρ)) is nonempty and

that the plug-in estimator Fq(φ̂q) is consistent whenever φ̂q
p−→φq (see Theorem 1 be-

low). Assumption 1(i) rules out, for instance, that equality conditions are coded as pairs
of inequalities, and, more generally, that linear combinations of inequalities constrain
impulse responses to be equal to zero. We discuss in Section 5 how our framework can
be extended to allow for a mixture of inequality and equality restrictions on impulse
responses.

Condition (i) is typically not satisfied for all values of the reduced-form parameter
ρ ∈ R̄, which is why we only require it to hold on the set Rδ ⊂ R̄. For instance, consider
a VAR(1) generalization of the bivariate VAR(0) in Section 2.2 with autoregressive co-
efficient matrix A1. As before, suppose yt is composed of inflation and output growth
and the investigator imposes the sign restriction that in response to a (positive) demand
shock inflation and output responses are both nonnegative upon impact and one period
after impact. In this case,

Φ′
q =

[
Σtr

A1Σtr

]
�

If A1 = diag(ρ1�ρ2) and ρ1�ρ2 < 0, then Condition (i) is violated. Conditional on these
reduced-form parameters, the identified set is empty. Assumption 1 excludes these val-
ues of ρ from Rδ. From a practitioner’s perspective, an empty confidence set CSq(φ̂q)

provides evidence that the imposed sign restrictions are inconsistent with the estimated
reduced-form parameters.

The continuity in Condition (ii) is with respect to the Euclidean norm. While ρ could
in principle be infinite-dimensional if the distribution of the error terms is treated non-
parametrically, the function φq(·) only depends on the finite-dimensional subvector of
ρ that contains the reduced-form parameters A1� � � � �Ap�Σu; see Equation (4). In com-
bination with the compactness of R, Condition (ii) implies that the domain of φq, which

is given by {φq(ρ) : ρ ∈ R}, is compact. Conditions (iii) and (v) require that φ̂q and Λ̂qq

converge uniformly for ρ ∈ R. Note that the stated convergences in probability and in
distribution are assumed to hold under the sequence of distributions PρT .11 The uni-
form convergence of φ̂q to a Gaussian limit distribution also requires a restriction of the
domain of ρ because it breaks down at the boundary of the stationary region in the VAR
parameter space. For instance, in the context of an AR(1) model yt = ρT yt−1 + ut with
autoregressive coefficient ρT = 1 − c/T , an estimator of an impulse response at horizon
h= 1, that is, φq(ρ) = ρ, behaves according to

√
T

(
1 − ρ2

T

)−1/2
(φ̂T − ρT ) =

1
T

∑
yt−1ut√

c(2 − c/T)
1

T 2

∑
y2
t−1

�=⇒ N(0�1)�

11For example, ‖φ̂q − φq(ρT )‖ p−→ 0 is shorthand for PρT {‖φ̂q − φq(ρT )‖ > ε} −→ 0 as T −→ ∞ for any
ε > 0.
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Uniform convergence to a Gaussian limit distribution can be achieved if R is restricted
to the interval [−1 + ε�1 − ε] for some ε > 0.12 From a practitioner’s perspective, we are
essentially assuming that the researcher has applied some stationarity-inducing trans-
formations, for example, transformed prices into inflation rates. Because some authors,
for example, Uhlig (2005), prefer to specify VARs in terms of variables that exhibit (near)
nonstationary dynamics, our Monte Carlo experiments in Section 6 include designs in
which the roots of the vector autoregressive lag polynomial are close to the unit circle.13

Our first theorem establishes that the identified set Fq(φq) is nonempty and not
a singleton, that is, the dynamic effects of ε1�t are set-identified instead of point-
identified. This result can be deduced from Assumption 1(i) using Gordan’s alternative
theorem (see, for instance, Border (2007)).

Theorem 1. Suppose Assumption 1(i) is satisfied. Then the identified set Fq(φq(ρ)) is
nonempty and is not a singleton for all ρ ∈ Rδ.

The second theorem focuses on asymptotic inference. The first part establishes the
consistency of the plug-in estimator Fq(φ̂q). The consistency is stated in terms of the
Haussdorf distance. We denote the Hausdorff distance between two sets A and B by
dH(A�B).14 The consistency relies on the compactness of Fq(φq) and the continuity
of the correspondences with respect to φq. Unlike in some of the models studied by
Chernozhukov, Hong, and Tamer (2007), it is not necessary to inflate the set Fq(φ̂q) by
εT ↓ 0 to achieve consistency.15 The second part of Theorem 2 establishes the asymp-
totic validity of the confidence set CSq(φ̂q). A formal proof of the Theorem is provided
in the online Appendix. The proof of the second part closely follows the proof of Theo-
rem 1 in Andrews and Soares (2010). However, a number of nontrivial modifications are
required to account for the potential rank reduction of S̃(q) as a function of q.

Theorem 2. Suppose that Assumption 1 is satisfied.

(i) Then dH(Fq(φ̂q)�F
q(φq))

p−→ 0.

(ii) If 0 < α < 1/2, then the confidence set CSq(φ̂q), defined in (21), is an asymptoti-
cally valid confidence set for q:

lim inf
T−→∞

inf
ρ∈R

inf
q∈Fq(φq(ρ))

Pρ
{
q ∈ CSq(φ̂q)

} ≥ 1 − α�

12See Giraitis and Phillips (2004) for a more general discussion.
13An extension of our analysis to VARs with unit roots or cointegration restrictions is beyond the scope of

this paper. The construction of uniformly valid confidence intervals for reduced-form parameters in itself
is a very challenging task; see Mikusheva (2007).

14Formally, the Hausdorff distance is defined as d(A�B) = max{d(A | B)�d(B | A)}, where d(A | B) =
supa∈A d(a�B) and d(a�B)= infb∈B ‖a− b‖. We set d(A�B) = ∞ if either A or B is empty.

15A result similar to ours in a general GMM setting is provided by Yildiz (2012). We prove the result di-
rectly based on Assumption 1.
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4.2 Asymptotic inference for θ

As discussed in Section 3.3, we do not provide any new results on confidence intervals
for impulse responses or variance decompositions conditional on the vector q. For these
intervals, we rely on the existing literature. We use CSθ

q(φ̂θ) to denote a confidence set
for θ conditional on q. The following assumption is required for asymptotic inference
about the parameter θ.

Assumption 2.

(i) The function θ = f (Φθ�q) is continuous in both its arguments.

(ii) The set CSθ
q(φ̂θ) satisfies

lim inf
T

inf
ρ∈R

inf
(θ�q)∈Fθ�q(φ(ρ))

Pρ
{
θ ∈ CSθ

q(φ̂θ)
} ≥ 1 − α2�

where Fθ�q(φ) = {θ ∈Θ�q ∈ Sn | q ∈ Fq(φq)�θ = f (Φθ�q)}.

The first condition of Assumption 2(i) is quite weak and the two leading examples
of θ in Section 2.1 satisfy this condition. The second condition of Assumption 2(ii) is a
high-level condition that is needed for the asymptotic validity of the Bonferroni confi-
dence set of θ. The condition requires that the pointwise confidence set CSθ

q(φ̂θ) in q is
uniformly valid. In the leading examples of θ, an impulse response of the form θ = Φ′

θq,
the conditional confidence set CSθ

q in (19) satisfies the uniformity condition because

the asymptotic normality of φ̂θ in (22) holds uniformly in φ. Combining the results of
Theorem 2(ii) with Assumption 2 leads to the following theorem.

Theorem 3. Suppose that Assumption 1 is satisfied.

(i) If φ̂θ
p−→φθ, then dH(Fθ(φ̂)�Fθ(φ))

p−→ 0, where φ = [φ′
q�φ

′
θ]′.

(ii) Suppose that 0 < α < 1/2 and Assumption 2 is satisfied. Then the confidence set
CSθ(φ̂), defined in (20), is an asymptotically valid confidence set for θ:

lim inf
T−→∞

inf
ρ∈R

inf
θ∈Fθ(φ(ρ))

Pρ
{
θ ∈ CSθ(φ̂)

} ≥ 1 − α�

5. Extensions

We now discuss three extensions to the construction of CSq(φ̂q): (i) models that use both
sign restrictions and zero restrictions to identify structural impulse responses, (ii) the
identification of multiple shocks, (iii) and the use of bootstrapped critical values instead
of simulated asymptotic critical values.

Sign restrictions combined with equality restrictions. Assumption 1(i) rules out that
opposing sign restrictions are used to represent equality restrictions on impulse re-
sponses. Nonetheless, it is straightforward to sharpen the identified set by combining
sign restrictions with more traditional exclusion restrictions. In some applications, the
restriction that certain responses are zero on impact (zero restrictions) can be translated
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into a domain restriction for q that does not depend on any other reduced-form parame-
ters. For instance, in the empirical analysis in Section 7.2 we will replace an unrestricted
4 × 1 vector q ∈ S

n by the restricted vector q = [01×2� q
′
2]′, where q2 is a 2 × 1 vector with

‖q2‖ = 1. In this case, the previously developed methods can be applied without any
modification.

If the equality restrictions imposed on the impulse responses lead to restrictions on
q that depend on some of the reduced-form parameters, then they can be accommo-
dated by generalizing the objective function G(q;φ�W̃ ) in (15) as follows. Define

G̃(q;φ�W̃ ) = min
μ≥0

∥∥∥∥∥
(

Seq(q)φ

S(q)φ− V (q)μ

)∥∥∥∥∥
2

W̃ (q)

� (30)

where Seq(q)φ corresponds to the responses that are restricted to be zero. Following the
arguments in Andrews and Soares (2010), it is straightforward albeit tedious to extend
the proof of Theorem 2 to a mixture of equality and inequality conditions.16 The exten-
sion closely resembles the proof of Theorem 2(i) in the working paper version Moon,
Schorfheide, and Granziera (2013) for the projection-based confidence set, which also
involves a mix of equality and inequality conditions. From a practioners perspective, the
only other modification that is required, is to replace the limit objective function Ḡ(·) in
(27) that is used to simulate the critical value cα1(q) by the limit expression of G̃(q;φ�W̃ )

in (30).
Identifying multiple shocks. Some authors use sign-restricted SVARs to identify mul-

tiple shocks simultaneously. For instance, Peersman (2005) considers an n = 4 dimen-
sional VAR, composed of oil price inflation, output growth, consumer price inflation,
and nominal interest rates. He uses sign restrictions to identify an oil price shock, aggre-
gate demand, and supply shocks, and a monetary policy shock. To identify n shocks, the
unit vector q has to be replaced by an orthogonal matrix, and the restrictions will take
the form

S̃(Ω)φq ≥ 0

for a suitably defined function S̃(Ω). While all our results easily generalize to multiple
shocks (just replace q by Ω), the implementation becomes computationally more diffi-
cult because the grid for the n − 1 dimensional vector q has to be replaced by a grid for
orthogonal matrix Ω, which has n(n− 1)/2 degrees of freedom.

Bootstrapped critical values instead of asymptotic critical values. Our simulated crit-
ical values rely on the Gaussian limit distribution of

√
TD̂−1/2(q)S(q)(φ̂q − φq), which

is reflected in the vector Â′(q)Zm in the random function Ḡ(·) in (27). Alternatively, the
critical values could be constructed by replacing draws from Â′(q)Zm with draws from
the bootstrap approximation of

√
TD̂−1/2(q)S(q)(φ̂q − φq). Bootstrap procedures for

VAR impulse response functions are discussed, for instance, in Kilian (1998) and Kilian
and Lütkepohl (2017).

16If we denote the matrix of zero-restricted orthogonalized responses by Φq�eq , then the generalization of
Assumption 1(i) is: there do not exist vectors λ > 0 and λeq ≥ 0 such that Φqλ+Φq�eqλeq = 0. The generalized
analysis would use Motzkin’s transposition theorem; see Border (2007).
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Table 1. Steps of Monte Carlo experiments.

1. Generate a sample of size T from the data-generating process.
2. Compute φ̂q, φ̂θ, and the bounds of Fθ(φ̂q� φ̂θ).
3. Compute Λ̂qq and Λ̂θθ using a parametric bootstrap approach.
4. Compute the 1 − α1 confidence set CSq.
5. For each definition of θ, compute the 1 − α2 confidence sets CSθ

q.
6. For each definition of θ, compute the 1 − (α1 + α2) confidence sets CSθ.

6. Monte Carlo illustrations

In this section, we conduct three Monte Carlo experiments to illustrate the properties
of our proposed confidence sets. In these experiments, θ is a scalar impulse response.
During preliminary computations, we noticed that the results for B̂(q) = I and B̂(q) =
Ω̂−1(q) were very similar. Thus, we decided to subsequently report results for B̂(q) = I

because in this case the critical values can be computed much faster. We will drop the
φ̂ arguments from the confidence sets and report coverage probabilities and average
lengths for CSq and CSθ. Each Monte Carlo experiment involves the steps summarized
in Table 1, which are repeated nsim = 5000 times.

The three experiments differ with respect to the data generating process (DGP). Ex-
periment 1 (Section 6.1) is based on the bivariate VAR(0) model in Section 2.2. Experi-
ment 2 (Section 6.2) features a bivariate VAR(1). The simulation designs for the Experi-
ments 1 and 2 are obtained by fitting a VAR(0) to data on U.S. inflation and GDP growth
and fitting first-order VARs to inflation and either output growth or linearly detrended
log GDP. Finally, Experiment 3 (Section 6.3) mimics the four-variable VAR(2) fitted to
U.S. data on output, inflation, interest rates, and money balances in the empirical anal-
ysis of Section 7.

6.1 Experiment 1

Design. The parameterization of the DGP yt ∼ i.i.d. N(0�Σu) is provided in Table 2 in the
column labeled Design 1. We define θ as the response of y1�t to ε1�t . Because Σtr

21 < 0
in our design, the geometry of the Monte Carlo design corresponds to the left panel
of Figure 1. Thus, the upper bounds (in polar coordinates) of Fq and CSq are π/2
and the lower bounds of Fθ and CSθ are zero, respectively. The identified set for θ is
Fθ(φq�0�φθ�0) = [0�0�578]. Below, we report coverage probabilities for the lower bound
of Fq and the upper bound of Fθ because they are the least favorable parameter values in
the respective identified sets. We consider sample sizes of T = 100 and T = 500. The grid
Q for q is obtained as follows: q is transformed into polar coordinates [cos(ϕ)� sin(ϕ)]′
and we choose nQ = 315 equally spaced grid points for ϕ on the interval (−π/2�π/2].
The number of bootstrap repetitions to obtain Λ̂qq and Λ̂θθ is nΛ = 1000 and the num-
ber of simulations to obtain the critical value and cα1(q) is nZ = 500. Further details on
the implementation are provided in the online Appendix.

Results. Detailed results for the frequentist confidence intervals are summarized in
Table 3. Recall that the nominal coverage probability for θ is 90%. For T = 100 the actual
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Table 2. Monte Carlo design.

Experiment 1 Experiment 2

Design 1 Design 2 Design 3 Design 4
VAR(0) VAR(1) VAR(1) VAR(1)

Σtr
11 0�597 0�295 0�283 0�210

Σtr
21 −0�205 −0�092 −0�081 −0�043

Σtr
22 0�812 0�795 0�817 0�542

A1�11 0�873 0�806 0�450
A1�12 0�003 0�032 0�014
A1�21 −0�229 −0�278 0�060
A1�22 0�230 0�985 0�953

λ1(A1) 0�871 0�89 − 0�03i 0�955
λ2(A1) 0�231 0�89 + 0�03i 0�498

Note: Designs are obtained by estimating a VAR(0) or VAR(1) of the form yt =A0 +A1yt−1 +ut , E[utu′
t ] = ΣtrΣ

′
tr using OLS.

λi(A1) is the ith eigenvalue of A1 . y1�t is the log difference of the U.S. GDP deflator, scaled by 100 to convert into percentages.
y2�t is either the log difference of U.S. GDP or deviations of log GDP from a linear trend, scaled by 100. Design 1: inflation and
GDP growth, 1964:I to 2006:IV. Design 2: inflation and output deviations from trend, 1964:I to 2006:IV. Design 3: inflation and
output growth, 1964:I to 2006:IV. Design 4: inflation and output deviations from trend, 1983:I to 2006:IV.

Table 3. Experiments 1 and 2: single-horizon sign restrictions.

Experiment 1 Experiment 2

Design 1 Design 2 Design 3 Design 4

Coverage Length Coverage Length Coverage Length Coverage Length

Fq(φq)
42
100π

36
100π

47
100π

51
100π

Fθ(φ) 0�579 0�233 0�226 0�094

Sample Size T = 100

CSq 0�938 47
100π 0�936 81

100π 0�932 57
100π 0�940 67

100π

CSθ 0�980 0�671 0�979 0�295 0�934 0�265 0�942 0�128
CSφq 0�879 0�865 0�865 0�871

Sample Size T = 500
CSq 0�930 44

100π 0�936 44
100π 0�932 51

100π 0�936 56
100π

CSθ 0�990 0�622 0�991 0�265 0�963 0�244 0�958 0�110
CSφq 0�909 0�894 0�901 0�904

Note: Length refers to the average length of the confidence intervals across Monte Carlo repetitions. For Fq(φq) and CSq ,
we report the arc length; see Figure 1. We let α1 = α2 = 0�05, which implies that the nominal coverage probabilities are 95% for

CSq and 90% for CSθ and CSφq . The confidence interval for φq has a nominal coverage probability of 90%.

coverage probability for the Bonferroni sets is 0�98. As we increase the sample size to
T = 500, the length of the confidence intervals shrinks, while the actual coverage prob-
abilities increases to 0�99. It is instructive to also examine the coverage probabilities
of CSq and the Wald confidence set for φq = vech(Σtr), which we denote by CSφq . The
coverage probability for the reduced-form parameter vector φq is 88% for T = 100 and
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approaches its nominal value of 90% as the sample size is increased to T = 500. This
increase in coverage probability for φq mirrors the increase in coverage probability for
θ. The Bonferroni intervals are computed based on α1 = α2 = 0�05, which implies that
the nominal coverage probability of CSq is 95%. The actual coverage probabilities for
the nuisance parameter vector q are slightly smaller, namely, around 93%. Overall, the
Bonferroni-type marginalization generates conservative confidence intervals for θ.

6.2 Experiment 2

Design. We now add first-order autoregressive terms to the simulation design to intro-
duce persistence in the endogenous variables:

yt = A1yt−1 + ut� ut ∼ i.i.d. N(0�Σu)�

The choices for A1 and Σu are summarized in Table 2 under the headings Design 2,
Design 3, and Design 4. The designs differ with respect to the persistence of the vec-
tor autoregressive process. Design 2 is the least persistent. The eigenvalues of A1 are
0�871 and 0�231. Design 4 is the most persistent with eigenvalues 0�955 and 0�498. We
focus on responses at horizon h = 1, which can be obtained from φq = vec((A1Σtr)

′).
The structural parameter of interest, θ, is defined as ∂y1�t+1/∂ε1�t . As in Experiment 1, we
compute coverage probabilities for the lower bound of Fq(φq) and the upper bound of
Fθ(φ). The grid Q for q is obtained as follows: q is transformed into polar coordinates
[cos(ϕ)� sin(ϕ)]′ and we choose nQ = 629 equally spaced grid points for ϕ on the interval
(−π�π]. The remaining aspects of the design are the same as in Experiment 1.

Sign restrictions over a single horizon. We impose the sign restrictions that ∂y1�t+1/

∂ε1�t and ∂y2�t+1/∂ε1�t are nonnegative:

φq�1q1 +φq�2q2 ≥ 0 and φq�3q1 +φq�4q2 ≥ 0�

For now, we do not impose sign restrictions on the responses at impact or at horizons
greater than h = 1. The geometry of the identified sets Fq(φq) and Fθ(φq�φθ) and its
projections is similar to the geometry depicted in Figure 1. The main difference is that
the second boundary of the identified set is given by the solution of q1φq�3 + q2φq�4 = 0
and ‖q‖ = 1, instead of q = [0�1]′. Overall, the results for Experiment 2 reported in Ta-
ble 3 are qualitatively similar to those for Design 1. The actual coverage probabilities of
the confidence sets for q are around 0�94 and, therefore, close to the nominal coverage
probability of 1 −α1 = 0�95. The θ sets, on the other hand, are conservative. Their cover-
age probabilities range from 0�934 to 0�991, thereby exceeding the nominal level of 0�9.

Sign restrictions over multiple horizons. As before, we define θ as the contempora-
neous impact of the shock on y1�t : θ = ∂y1�t/∂ε1�t . However, we now restrict the signs of
the impulse responses ∂yi�t+h/∂ε1�t ≥ 0 for both variables i = 1�2 over multiple periods:
h = 0�1� � � � �H. This increases the number of inequality conditions. Monte Carlo results
are presented in Table 4. The effect of adding sign restrictions differs across the three
designs. In Design 2, the lengths of the identified sets Fq(·) and Fθ(·) shrink drastically:
from 0�35π and 0.265 for H = 1 to 0�006π and 0.007, respectively, for H = 4. Under De-
sign 4, the sizes of the two identified sets remain constant as H is increased from 1 to 4.
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Table 4. Experiment 2: multiple-horizon sign restrictions, sample size T = 100.

Design 2 Design 3 Design 4

Coverage Length Bind. Ineq. Coverage Length Bind. Ineq. Coverage Length Bind. Ineq.

Restrictions: h = 0�1

Fq(φq)
35

100π
43
100π

47
100π

CSq 0�953 48
100π 1�29 0�976 50

100π 1�97 0�953 53
100π 2�06

Fθ(φ) 0�265 0�277 0�209
CSθ 0�982 0�307 0�977 0�317 0�949 0�236

Restrictions: h= 0� � � � �4

Fq(φq)
6

1000π
37
100π

47
100π

CSq 0�985 40
100π 7�78 0�989 49

100π 4�48 0�979 56
100π 7�83

Fθ(φ) 0�006 0�261 0�208
CSθ 1�000 0�277 0�993 0�315 0�949 0�235

Note: Length either refers to the length of the population identified set or the average length of the confidence intervals
across Monte Carlo repetitions. For Fq(φq) and CSq , we report the arc length; see Figure 1. Bind. Ineq. is the average number of
inequalities considered binding by the Andrews and Soares (2010) moment selection procedure. We let α1 = α2 = 0�05, which
implies that the nominal coverage probabilities are 95% for CSq and 90% for CSθ .

Design 2 is an intermediate case. Restricting impulse responses at multiple horizons es-
sentially adds rays to Figure 1. The location of the new rays relative to the H = 1 rays
determines whether the identified sets shrink or not.

For Designs 2 and 3, the length of the confidence intervals for q and θ are decreasing
in the number of inequality restrictions, but they do not shrink as quickly as the length of
the identified sets. Simultaneously, the actual coverage probability for q increases with
the number of sign restrictions. In Design 2, the coverage probability for H = 1 is 0�953,
which is close to the nominal coverage probability of 1 − α1 = 0�95. For H = 4, the cov-
erage probability increases to 0�985. While in population for any H only one inequality
is binding17 at the boundary of the identified set for q, the average number of moment
conditions deemed binding by the Andrews and Soares (2010) selection rule rises from
1�29 to 7�78 in Design 2. Recall that in order to guarantee a uniform asymptotic coverage
probability, the selection rule has to classify too many rather than too few moment con-
ditions as binding. This inflates the critical value as well as the coverage probability and
makes the q confidence set more conservative. We observe a similar pattern for Design 3.
The Bonferroni sets for θ are generally conservative across all designs and maximum
horizons H. Under Designs 2 and 3, the actual coverage probabilities tend to increase as
more restrictions are added. Nonetheless, the average length decreases. This decrease
is most pronounced for Design 2. Here, the length shrinks from 0�307 (H = 1) to 0�277
(H = 4). Under Design 4, the average length of the confidence interval and the coverage
probability stay essentially constant as we vary the number of restrictions.

17An inspection of Figure 1 suggests that if more than one inequality condition is binding then it must
be the case that the rays corresponding to the binding inequality conditions are identical.
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6.3 Experiment 3

Design. Finally, we consider a four-variable VAR(2) that mimics the model for per capita
GDP (in deviations from a linear trend), inflation, the federal funds rate, and real money
balances used in the empirical application in Section 7:

yt = c +A1yt−1 +A2yt−2 + ut with ut ∼ N(0�Σ)� (31)

The reduced-form parameters are set equal to the empirical point estimates (reported
in the online Appendix). As in the application below, we consider the following sign re-
strictions:

∂y2�t+h

∂ε1�t
≤ 0�

∂y3�t+h

∂ε1�t
≥ 0�

∂y4�t+h

∂εM�t
≤ 0� h = 0�1�

The sample size for the simulated data sets is T = 170. We set the number of (randomly
generated from a uniform distribution on the hypersphere) grid points for Q to nQ =
20,000. The number of bootstrap repetitions to obtain Λ̂qq and Λ̂θθ is nΛ = 1000 and the
number of simulations to obtain the critical value cα1(q) is nZ = 1000. As in the previous
experiments, we focus on B̂ = I. The implementation of the computations for CSθ(I)

follows the description in Section 3.
Benchmark results. Baseline results for α1 = α2 = 0�05 are plotted in Figure 2. The

top panels depict the upper bounds and the lower bounds for pointwise identified
sets and confidence sets for the responses of Variables 1 and Variables 2 at horizons
h= 0�1� � � � �23. The bounds of the confidence sets are averaged across Monte Carlo rep-
etitions. An economic interpretation of the responses will be provided in Section 7. For
now, we focus on the widths of the confidence bands relative to the widths of the pop-
ulation identified sets and the coverage probabilities, which are depicted in the bottom
panels. The identified sets have a considerable width that leaves the sign of the response
of y1�t undetermined. The confidence bands are noticeably wider than the identified
sets, which is a reflection of the sampling uncertainty associated with the estimators of
the reduced-form parameters. The coverage probabilities in the bottom panels are com-
puted for the upper bounds (dashed) and lower bounds (solid) of the pointwise iden-
tified sets. As in Experiments 1 and 2, the actual coverage probability is substantially
larger than the nominal coverage probability of 90% (indicated by the solid horizontal
line), making the confidence bands conservative.

Adjusting α1, keeping α = 0�1 fixed. The baseline choice of α1 = 0�05 is arbitrary. Thus,
it is worthwhile to explore what happens if we change α1, which determines the size of
CSq. Figure 1 provides some intuition for the potential outcomes of this experiment. In
the left panel of the figure (labeled Σtr

21 < 0), the upper bound for the identified set Fθ(·)
is determined by the lower bound of Fq(·). Thus, increasing α1 and thereby decreasing
the size of Fq(·) can potentially sharpen the confidence set for θ, provided that the de-
crease in Fq(·) exceeds the increase in the conditional confidence set CSθ

q. Alternatively,
if Σtr

21 > 0 (depicted in the right panel of Figure 1), the upper bound of Fθ(·) is deter-
mined by a value of q that lies strictly in the interior of Fq(·). Thus, in order to shrink the
confidence set for θ one should lower α1 and raise α2 so that CSθ

q shrinks.
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Figure 2. Impulse responses bands and coverage probabilities. Notes: Top panels: population
identified set Fθ(φ) (lines with crosses), averaged upper (dashed) and lower (solid) bounds of
pointwise confidence sets, and a zero line (thin solid). Bottom panels: actual coverage proba-
bilities for 90% confidence sets at the lower (solid) and upper (dashed) bounds of the point-
wise identified sets. The thin solid horizontal line indicates the nominal coverage probability.
α1 = α2 = 0�05

Figure 3 depicts the coverage probabilities and the average interval width for three
levels of α1: α1 = 0�05 which we used to generate the baseline results in Figure 2, α1 =
0�01, and α1 = 0�09. The figure also depicts the width of the population identified set.
The differences between the widths of the confidence intervals and the identified set can
be interpreted as the excess lengths of the confidence intervals. It turns out that in this
particular Monte Carlo design it is advantageous to reduce α1. Setting α1 = 0�01 reduces
the coverage probability of the intervals and shrinks the width of the intervals. However,
the effect is modest at best. Relative to the overall width of the identified sets and the
baseline confidence bands, the reduction is very small. The actual coverage probability
remains above 95% except for the long horizon responses of y2�t which fall slightly below
the nominal level of α = 0�9 for h ≥ 18. As we saw in Table 3, the confidence set for the
reduced-form VAR parameters can have an actual coverage probability that is less than
its nominal coverage probability, which in turn tightens the confidence interval for θ.

Adjusting α, keeping α1 fixed. Several authors have devised methods to overcome
the conservativeness of Bonferroni confidence intervals by raising the nominal level α
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Figure 3. The effect of varying α1, fixed α = 0�10. Notes: Top panels: Thin horizontal line indi-
cates the nominal coverage probability of 90%, other lines represent actual coverage probabili-
ties. Dashed lines refer to upper bounds and solid lines to lower bounds of pointwise identified
sets; α1 = 0�01 is marked by triangles, α1 = 0�05 (baseline) has no line symbols, and α1 = 0�09 is
marked by circles. Bottom panels: average width of confidence bands (triangles, no line symbol,
circles) and width of population identified set (crosses).

to target a desired actual coverage probability 1 − α∗ = 0�90, say. Examples of this ap-
proach are Campbell and Yogo (2006) and, most recently, McCloskey (2017). The former
paper reduces the size of the first-stage confidence interval by raising α1, keeping the
size of the second-stage intervals, CSθ

q in our notation constant. The latter paper pro-
poses to reduce the size of the second-stage intervals, keeping α1 constant. In view of
the results depicted in Figure 3, we informally follow McColskey’s (2017) approach by
increasing α2 from 0�05 (baseline) to 0�10 and 0�15, respectively. While, in principle, we
could choose a different α2 for each variable and each horizon, the results depicted in
Figure 4 are generated using the same α2 for each response. As expected, the actual cov-
erage probability falls as we increase α2 (and thereby α= α1 +α2). For the y1�t responses
the coverage probabilities remain above 90%, while for the long-horizon responses of
y2�t the coverage probability drops substantially below 90% for h≥ 15 and α2 = 0�10. The
attainable reduction in the width of the confidence band is larger than in the case of
fixed α, but it remains small relative to the overall width of the bands.
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Figure 4. The effect of varying α2, fixed α1 = 0�05. Notes: Top panels: Thin horizontal line indi-
cates the nominal coverage probability of 90%, other lines represent actual coverage probabili-
ties. Dashed lines refer to upper bounds and solid lines to lower bounds of pointwise identified
sets; α2 = 0�05 (baseline) has no line symbols, α2 = 0�10 is marked by triangles, and α2 = 0�15 is
marked by circles. Bottom panels: average width of confidence bands (no line symbol, triangles,
circles) and width of population identified set (crosses).

7. Empirical illustration

We now apply the previously developed methods to a four-variable VAR. The vector of
observables consists of per capita real GDP (in deviations from a linear trend), infla-
tion, the federal funds rate, and real money balances. We use quarterly U.S. data from
1965:I to 2006:IV, which excludes the 2007–09 recession and the subsequent period of
zero nominal interest rates. A detailed description of the dataset is provided in the on-
line Appendix. All VARs are estimated with p = 2 lags, which is the preferred lag length
according to BIC. We will consider two set-identification schemes for monetary policy
shocks. The first scheme involves only sign restrictions (Section 7.1), whereas the second
identification is based on a combination of equality and sign restrictions (Section 7.2).
As in Monte Carlo Experiment 3, we set nΛ = 1000, nQ = 20,000, and nZ = 1000.

In addition to computing Bonferroni confidence bands, we also generate pointwise
Bayesian credible intervals for the impulse responses, which have been widely used in
empirical research. The Bayesian credible sets reported subsequently are based on the
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VAR(p) given in (1) with Gaussian innovations ut ∼ i.i.d. N(0�Σu). Let A = [A1� � � � �Ap]′
and define the unnormalized vector q̃ such that q = q̃/‖q̃‖. If q̃ ∼N(0� In), then q is uni-
formly distributed on the hypersphere. Following Uhlig (2005), we use an improper prior
of the form

p(A�Σ� q̃) ∝ |Σ|−(n+1)/2 exp
{−q̃′q̃/2

}
I
{

q̃

‖q̃‖ ∈ Fq
(
φ(A�Σ)

)}
� (32)

We use the acceptance sampler described in Uhlig (2005) to generate 50,000 draws from
the posterior distribution of (A�Σ� q̃). These draws are then converted into impulse re-
sponses, and credible sets are computed from the impulse response draws.

7.1 Pure sign restrictions

In order to conduct inference about the effects of a contractionary monetary policy
shock, we use the following sign restrictions to bound the identified set: in periods
h = 0�1 (i) the interest rate response is weakly positive; (ii) the inflation response is
weakly negative; and (iii) real money balances do not rise above their steady-state level.
These sign restrictions were also used in Monte Carlo Experiment 3 in Section 6.3.

Figure 5 depicts three bands: (pointwise) 90% Bonferroni confidence intervals (using
a diagonal weight matrix) CSθ(I), estimated sets Fθ(φ̂), and (pointwise) 90% Bayesian

Figure 5. Pure sign restrictions over horizons h = 0�1. Notes: The figure depicts 90% Bonferroni
confidence bands CSθ(I) (no line symbols) with α1 = α2 = 0�05; 90% Bayesian credible bands
(circles); and the estimated sets Fθ(φ̂) (crosses).
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credible sets. The two most notable features of the bands are that the frequentist con-
fidence bands (solid) are substantially wider than the Bayesian credible bands (short
dashes) and that the Bayesian credible bands approximately coincide with the estimated
set Fθ(φ̂). As explained in detail in Moon and Schorfheide (2012), in a large sample, that
is, a sample in which uncertainty about φ is small compared to the size of Fθ(φ̂), the
Bayesian intervals lie inside the estimated sets Fθ(φ̂) because in the limit essentially
all of the probability mass is concentrated on Fθ(φ̂) and a 90% credible interval is al-
ways a subset of the support of the posterior distribution. The frequentist interval, on
the other hand, has to extend beyond the boundaries of Fθ(φ̂) because it has to have,
say, 90% coverage probability for every element of the identified set Fθ(φ), including
the boundary points. From a substantive perspective, the use of sign restrictions leaves
the direction of the output response undetermined.

The top panels of Figure 6 show output and inflation responses obtained by requir-
ing the the sign-restrictions hold for periods h = 0�1� � � � �8, keeping α1 = α2 = 0�05. This
modification increases the number of inequality restrictions from 6 to 27. As the num-

Figure 6. Pure sign restrictions over horizon h = 0�1� � � � �8. Notes: Top panels: 90% Bonferroni
confidence bands CSθ(I) (no line symbols); 90% Bayesian credible bands (circles); and the es-
timated sets Fθ(φ̂q� φ̂θ) (crosses). Botton panels: Bonferroni confidence bands CSθ(I) (no line
symbols) with α2 = 0�05; Bonferroni confidence bands CSθ(I) (triangles) α2 = 0�10; and the esti-
mated sets Fθ(φ̂) (crosses).
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ber of sign restrictions increases, the width of the identified sets decreases. As suggested
by the Monte Carlo simulations, the width of the Bonferroni bands also decreases. The
bottom panels of Figure 6 show the effect of raising α2 from 0�05 to 0�10. According to
the simulations in Section 6.3, this decrease in the nominal coverage probability brings
the actual coverage probability closer to the desired coverage probability of 90%. As a
result the width of the confidence bands shrinks, but not by much. In fact, in percentage
terms, the width reduction is very small.

7.2 Combining sign restrictions and zero restrictions

A commonly used identification assumption for monetary policy shocks is that private-
sector variables such as output and inflation cannot respond to changes in the fed-
eral funds rate within the period; see, for instance, Christiano, Eichenbaum, and Evans
(1999). Because the initial impact of the monetary policy shock is given by Σtrq and we
ordered the elements of yt such that output and inflation appear before interest rates
and real money balances, the identification condition implies that the first two elements
of the vector q have to equal zero. Thus, we can reduce the dimension of the vector q as
follows: q = [0�0� cosϕ� sinϕ]′, where ϕ ∈ [0�2π]. This is more efficient than adding two
equality conditions to the set of inequality conditions; see Section 5. The zero restric-
tion on the instantaneous inflation response replaces the sign restriction used in Sec-
tion 7.1. We maintain the other sign restrictions used previously, that is, the interest rate
responses for h = 0 and h = 1 are weakly positive and the inflation response in period
h = 1 as well as the real money balance responses in periods h = 0 and h = 1 are weakly
negative.

Impulse response bands are depicted in Figure 7. A comparison of Fθ(φ̂) in Figures 5
and 7 indicates that the use of zero restrictions reduces the size of the identified set dras-
tically. For instance, if the zero restrictions are imposed, the inflation response is essen-
tially point identified for horizons exceeding 8 quarters. As a consequence, for output
as well as medium- and long-run inflation responses, the width of the frequentist and
Bayesian coverage bands is now much more similar than under the pure-sign-restriction

Figure 7. Combining zero and sign restrictions over horizons h= 0�1. Notes: The figure depicts
90% Bonferroni confidence bands CSθ(I) (no line symbols) with α1 = α2 = 0�05; 90% Bayesian
credible bands (circles); and the estimated sets Fθ(φ̂) (crosses).
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scenario. However, some differences remain with respect to the short-run inflation re-
sponse. For the first two years, the frequentist intervals cover both positive and negative
inflation responses, whereas the Bayesian credible intervals suggest that the inflation
response is negative. With the zero restrictions imposed, the direction of the output re-
sponse is no longer ambiguous—it is negative over the first two years.

8. Conclusion

With the exception of FRSW, the coverage bands for impulse responses of sign-restricted
SVARs that have been reported in the literature thus far were only meaningful from a
Bayesian perspective. The main contribution of our paper is to develop an easy-to-use
frequentist method to construct Bonferroni confidence intervals for measures of the
dynamic effects of structural shocks, such as impluse responses, in VARs that are set-
identified based on sign restrictions. In the first stage, a confidence set for the vector of
weights q on the reduced-form impulse responses is obtained by inverting a point-wise
hypothesis test for the moment inequalities implied by the sign restrictions. We employ
the Andrews and Soares (2010) moment selection procedure to obtain critical values for
this test that are not diluted by nonbinding inequality conditions.

Our empirical application illustrates that in set-identified VARs, frequentist confi-
dence bands can be substantially wider than Bayesian credible bands. As a by-product,
we establish the consistency of the plug-in estimator Fθ(φ̂) of the identified set of im-
pulse responses. Fθ(φ̂) is also useful from a Bayesian perspective. Because in a Bayesian
analysis the prior distribution of the impulse response functions conditional on the
reduced-form parameters is not updated, it is useful to report the identified set and the
prior conditional on some estimate of φ, say, the posterior mean, so that the audience
can judge whether the conditional prior distribution is highly concentrated in a partic-
ular area of the identified set.
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