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Do basketball scoring patterns reflect illegal point shaving
or optimal in-game adjustments?

Jesse Gregory
Department of Economics, University of Wisconsin and NBER

This paper develops and estimates a model of college basketball teams’ search
for scoring opportunities, to provide a benchmark of the winning margin dis-
tributions that should arise if teams’ only goal is to win. I estimate the model’s
structural parameters using first-half play-by-play data from college games and
simulate the estimated model’s predicted winning margin distributions. Teams’
optimal state-dependent strategies generate patterns that match those previously
cited as evidence of point shaving. The results suggest that corruption in NCAA
basketball is less prevalent than previously suggested and that indirect forensic
economics methodology can be sensitive to seemingly innocuous institutional
features.
Keywords. Forensic economics, estimating dynamic games, point shaving.

JEL classification. C61, K42, L83.

Measuring corruption is inherently difficult because law-breakers cover their tracks.
For that reason, empirical studies in forensic economics typically develop indirect tests
for the presence of corruption. These tests look for behavior that is a rational response
to incentives that only those who engage in the particular corrupt behavior face. The
validity of these indirect tests depends critically on the assumption that similar patterns
do not occur if agents only respond to the incentives generated by the institutions that
govern noncorrupt behavior.

Research designs in forensic economics vary to the extent that they are informed
by formal economic theory. In a survey of the field, Zitzewitz (2012) proposes a “tax-
onomy” of forensic economic research designs that ranges from the entirely atheoreti-
cal, in which corrupt behavior is measured directly, to the formally theoretical, in which
corrupt behavior is inferred from particular violations of price theory or the efficient-
market hypothesis. A common intermediate approach is to posit a statistical model of
noncorrupt behavior and to measure the extent to which observed behaviors deviate
from that model in a manner that is consistent with corrupt incentives. The soundness
of a research design of this variety depends on the plausibility of the assumed statisti-
cal model and the extent to which the study’s findings are robust to deviations from the
assumed statistical model.
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A recent application of this “intermediate” forensic economic strategy purports to
find evidence of rampant illegal point shaving in college basketball (Wolfers (2006)).
Point shaving is when a player on a favored team places a point-spread bet that the
opposing team will “cover” the point spread—win outright or lose by less than the point
spread—and then manages his effort so that his team wins but by less than the point
spread.1 Because this behavior causes some games that would otherwise end with the
favored team winning by more than the median winning margin to win by just below the
median winning margin, point shaving tends to increase the degree of right skewness in
the distribution of favored teams’ winning margins. Under an assumption that the distri-
bution of winning margins would be symmetric in the absence of point shaving, Wolfers
(2006) tested for point shaving by measuring skewness in the empirical distribution of
winning margins around the point spread. The skewness-based test suggests that point
shaving is rampant, occurring in about 6% of games where one team is strongly favored.
Wolfers’ study garnered significant attention in the popular media,2 reflecting public
surprise that corruption might be so pervasive in amateur athletics. While point-shaving
scandals have been uncovered with some regularity dating as far back as the early 1950s,
the public’s perception seems to be that such scandals are fairly isolated incidents.

To obtain a more formal benchmark of the patterns that one should expect under the
no-point-shaving null hypothesis, this paper develops and estimates a dynamic model
of college basketball teams’ within-game searches for scoring opportunities. Using play-
by-play data from the first halves of NCAA games linked to gambling point-spread data,
I estimate the model’s structural parameters from play during the first halves of games.
With the estimated model, I then simulate play during the second halves of games. I find
that the sorts of strategic adjustments across game states (current score and time re-
maining) that are commonly observed in actual games are consistent with an optimal
policy. Further, I find that the scoring patterns generated by optimal policies generate
skewness patterns that closely match those previously cited as evidence of illegal point
shaving. The analysis suggests that the existing skewness-based test greatly exaggerates
the prevalence of point shaving.

In the model, teams take turns as the offensive side searching for scoring oppor-
tunities. The offensive side faces a sequence of arriving shot opportunities which vary
in their probability of success. As in actual NCAA basketball games, the offensive side
has 35 seconds to attempt a shot before the opponent is automatically awarded the
ball. Like a worker in a job-search model, the searching team compares each arriving
opportunity with the value of continued search. Because of the fixed horizon, the op-
timal strategy within a possession is a declining reservation policy where initially only
the most advantageous opportunities are accepted and less advantageous opportuni-
ties become acceptable as time goes by. The optimal reservation policy depends on the

1A point-spread bet allows a gambler to wager that a favored team’s winning margin will exceed a given
number, the point spread, or bet that the winning margin will not exceed the point spread. A typical arrange-
ment is for the bettor to risk $11 to win $10 for a point spread bet on either the favorite or the underdog.

2Bernhardt and Heston (2010) cited a group of media outlets in which Wolfers’ (2006) study was featured.
These include the “New York Times, Chicago Tribune, USAToday, Sports Illustrated, and Barrons, as well as
National Public Radio and CNBC TV.”
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current relative score and the time remaining in the game. Especially near the end of the
game, a trailing team prefers to hurry by taking short possessions, and the leading team
prefers to stall by taking long possessions. I show that the direction of skewness that this
process introduces to the distribution of the stronger team’s winning margin depends
on whether stalling incurs the larger opportunity cost (causing left skewness) or hurry-
ing incurs the larger opportunity cost (causing right skewness). The parameters of the
search process determine the opportunity cost of stalling and the opportunity cost of
hurrying.

I estimate the model’s parameters using play-by-play data from the first halves of
games, and I find that under the estimated parameter values stalling is less costly than
hurrying. As a result, the leading team makes larger strategic adjustments than the trail-
ing team, and the score difference tends to shrink (or grow more slowly) on average com-
pared to what would occur if each team chose the strategy that maximized its expected
points per possession. These optimal adjustments result in a right-skewed distribution
of winning margins in games in which one team is a large favorite. As a false experiment,
I apply the skewness-based test for point shaving to simulated data. I find “evidence” of
point shaving in the two highest point-spread categories, and the implied prevalence of
point shaving is statistically indistinguishable the Wolfers’ (2006) estimate.3

Studies in economics that treat sports as a research laboratory are sometimes crit-
icized as being unlikely to generalize to more typical economic settings. However, for
forensic economics, studies involving sports have provided particularly compelling case
studies. Participants’ willingness to engage in illegal behavior in the highly monitored
environment of sports competitions suggests that corruption likely plays a more promi-
nent role in less well-monitored settings (Duggan and Levitt (2002), Wolfers (2006), Price
and Wolfers (2010), Parsons, Sulaeman, Yates, and Hamermesh (2011)). The high-quality
data and well-defined rules and institutions that are perhaps unique to sports also pro-
vide an excellent opportunity to assess the robustness of forensic economic methodol-
ogy. This study’s findings suggest that forensic economic studies should take great care
to assess the robustness of their methods to unmodeled assumptions about even seem-
ingly innocuous institutional features. Further, the findings suggest that structural mod-
eling can yield improved predictions of behavior under the no-corruption null hypoth-
esis even in settings in which off-the-shelf price theory and efficient market theory do
not yield immediate predictions.

The conclusions of this paper conform with those of Bernhardt and Heston (2010).
Bernhardt and Heston found that the patterns attributed to point shaving by Wolfers
(2006) are present in subsets of basketball games in which gambling related malfea-
sance is less likely on prior grounds. The authors conclude that even in the absence

3It should be noted that Wolfers’ (2006) article acknowledged the limitations of the skewness-based test
relative to a test more formally grounded in theory, and characterizes the resulting estimates as “prima fa-
cie” evidence of widespread point shaving. The structural approach that Wolfers’ article outlined as a pos-
sible extension differs from the approach in this study. Wolfers suggests that a structural model of the point
shaver’s behavior might allow for a more accurate inference about the prevalence of point shaving based
on the observed deviation from symmetry in the empirical distribution. This study adopts a structural ap-
proach to more accurately characterize the distribution one might expect under the no-point-shaving null.



1056 Jesse Gregory Quantitative Economics 9 (2018)

of point shaving, asymmetries exist in the distribution of the final-score differentials
among games in which one team is a large favorite.4 Because the approach of this pa-
per and the purely empirical approach of Bernhardt and Heston (2010) are vulnerable to
different criticisms, I consider my study a complement to their work.

The remainder of the paper is organized as follows: Section 1 develops a simple il-
lustrative model, Section 2 develops a richer model of the basketball scoring environ-
ment, Section 3 describes estimation, Section 4 describes the data, Section 5 presents
point estimates of the model’s structural parameters and examines the model’s fit, Sec-
tion 6 presents the results of simulations calibrated with estimated parameters, Sec-
tion 7 provides corroborating evidence for the main model-based results, and Sec-
tion 8 concludes. Appendices and replication files are available in a supplementary file
on the journal website, http://qeconomics.org/supp/519/supplement.pdf and http://
qeconomics.org/supp/519/code_and_data.zip.

1. Illustrative two-stage dynamic game

Before turning to the full dynamic model, I use a simple two-stage model to illustrate the
kinds of model primitives that can rationalize a skewed distribution of winning margins
in a dynamic competition.

In this simple model, two competitors A and B accumulate points during a two stage
game. Let X1 represent the difference between A’s and B’s points during stage 1, and let
X2 represent the difference between A’s and B’s points during stage 2. Following stage 2,
A receives a payoff of one if X1 + X2 ≥ 0 and zero otherwise, and B receives a payoff of
one if X1 +X2 < 0 and zero otherwise.

A random component influences the scoring process. Before each stage, A and B

each select an action that influences the mean and the variance of scoring during that
stage. Before stage 1, A selects σA1 ∈ [0�1] and B selects σB1 ∈ [0�1]. Stage 1 then occurs,
and both competitors observe the realized value of X1. Then before stage 2, A selects
σA2 ∈ [0�1] and B selects σB2 ∈ [0�1]. The quantities X1 and X2 are given by

X1 = μ(σA1)−μ(σB1)+ (σA1 + σB1)Z1 +Δ� (1)

X2 = μ(σA2)−μ(σB2)+ (σA2 + σB2)Z2 +Δ� (2)

where μ() is a twice differentiable real-valued function that describes the relationship
between a players chosen action and the mean of scoring, Z1 and Z2 are standard nor-
mal random variables that are independent from one another, and Δ ≥ 0 is a constant
that allows for the possibility that A is stronger than B. I assume that μ() is bounded,
strictly concave, and reaches an interior maximum on [0�1]. The choice of a very high
variance (σ near one) or a very low variance (σ near zero) involves a lower expected
value of scoring. To ensure an interior solution, I assume that the μ′(σ) is unbounded,
going to −∞ as σ approaches 1 and going to ∞ as σ approaches 0 (an example of a
function satisfying these assumptions is a downward-facing semicircle).

4Bernhardt and Heston (2010) suggested that the goal of maximizing the probability of winning could
induce an asymmetric final-score distribution, but stop short of suggesting a theoretical model.

http://qeconomics.org/supp/519/supplement.pdf
http://qeconomics.org/supp/519/code_and_data.zip
http://qeconomics.org/supp/519/code_and_data.zip
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Because each competitor maximizes a continuous function on a compact set, the
minimax theorem ensures that a solution to this zero-sum game exists, and inspection
of the players’ best reply-functions finds that the solution is unique. The optimal stage 2
actions (σ∗

A2�σ
∗
B2) satisfy the first-order condition

μ′(σ∗
A2

) = X1 +μ
(
σ∗
A2

) −μ
(
σ∗
B2

) +Δ

σ∗
A2 + σ∗

B2
= −μ′(σ∗

B2
)
� (3)

Figure 1 plots A’s iso-payoff curves along with the choice set μ() to illustrate the reason-
ing behind this result. The vertical axis plots the expected final score entering stage 2.
The horizontal axis plots the standard deviation of the stage 2 score differential. A’s win
probability depends on the ratio of the expected final score differential to the standard
deviation of stage 2 scoring, so the Iso-payoff curves are rays away from the origin.5 Pro-

Figure 1. The optimal choice of a mean-variance pair during stage 2 of the stylized model.
Note: Taking B’s strategy as given, A faces a choice among combinations of the mean and the
variance of the final score. Two example choice sets are provided, one corresponding to A trailing
after stage 1 and the other corresponding to A leading after stage 1. Iso-expected payoff curves
are represented by dashed lines. Because X2, the score during stage 2, is normally distributed,
A’s probability of winning depends on the ratio of the expected value of the final score to the
standard deviation of X2. As such, the iso-expected payoff curves are rays away from the origin.

5Specifically, A’s win probability is �(
X1+μ(σ∗

A2)−μ(σ∗
B2)+Δ

σ∗
A2+σ∗

B2
), where �() is the standard normal cumulative

distribution function (CDF).
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portional increases in the expected final score differential and in the standard deviation
of stage 2 scoring do not affect win probabilities. If X1 + Δ = 0, A and B (depicted by
the iso-payoff ray extending horizontally from the origin) each have an equal chance of
winning heading into stage 2, and each chooses the strategy that maximizes its expected
points. If X1 +Δ> 0, A’s chance of winning is greater than 1/2, and A’s optimal strategy
is to select a relatively low-variance action in order to reduce the chances of a come from
behind win for B. If X1 +Δ< 0, A’s chance of winning is less than 1/2, and A selects a rel-
atively high-variance action in order to increase its chances of a come from behind win.
These optimal choices are characterized by the tangency of the mean-variance choice
set μ() to the state-dependent iso-payoff curves, with this result occurring because A’s
iso-payoff curve is downward sloping when its win probability is below 1/2 and is up-
ward sloping when its win probability is above 1/2.

In stage 1, A and B each have a unique optimal strategy. Define V (X1) to be A’s
expected payoff entering stage 2 if the relative score after stage 1 is X1. The optimal
stage 1 actions (σ∗

A1�σ
∗
B1) are the solution to

max
σA1

min
σB1

∫ ∞

−∞
V

(
μ(σA1)−μ(σB1)+Δ+ (σA1 + σB1)z

)
d�(z)� (4)

where �() is the standard normal CDF.
Now consider how the players’ optimal strategies influence the shape of the distri-

bution of winning margins. One might expect for the winning margin X to be symmet-
rically, because X = X1 + X2 is the sum of two normally distributed random variables.
That is not the case in general, because the players’ choices introduce dependence be-
tween X1 and X2. In two particular cases, the distribution of X is symmetric. The first
case relies on the symmetry of the game when A and B are evenly matched.

Proposition 1 (The Winning Margin Is Symmetric When A and B Are Evenly Matched).
Assume that Δ = 0, which means that the two teams are evenly matched. Then the distri-
bution of winning margins is symmetric.6

Symmetry also holds when A and B are not evenly matched if the menu function
μ() is symmetric. In that case A’s and B’s strategic adjustments, based on the realized
value of X1, have exactly offsetting impacts on the mean and the variance of X2.

Proposition 2 (The Winning Margin Is Symmetric (Normally Distributed) When In-
creasing Variance and Decreasing Variance Are Equally “Costly”). Assume that μ() is
symmetric, that is, that μ′(0�5) = 0 and that μ(0�5 + c) = μ(0�5 − c) for any c ∈ [0�0�5].
Then E(X1) =E(X2|X1) = Δ, σA1 + σB1 = σA2 + σB2 = 1, and X ∼N(2Δ�2).

The proof provided in Appendix A.
When μ() is symmetric, E(X2|X1) is constant. In general, though, E(X2|X1) is not

constant, and dependence between X1 and X2 can generate skewness in the sum of

6This result follows directly from the symmetry of the game. Because the solution is unique, switching
the names of A and B cannot change the distribution of winning margins.
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X1 and X2. Proposition 3 provides conditions under which E(X2|X1) monotonically in-
creases or decreases in X1.

Proposition 3 (The Monotonicity of E(X2|X1) if Strategic Adjustment of the Vari-
ance Is More Difficult in One Direction Than the Other). Let σ∗ be the action that
maximizes μ(). Assume that for any σ ′ < σ∗ and σ ′′ > σ∗ with u′(σ ′) = −u′(σ) that
|u′′(σ ′)| < |u′′(σ ′′)| (a player who prefers to increase variance faces a steeper marginal cost
than a player who prefers to reduce variance). Then E(X2|X1) monotonically decreases
in X1. Conversely, assume that for any σ ′ < σ∗ and σ ′′ > σ∗ with u′(σ ′) = −u′(σ) that
|u′′(σ ′)| > |u′′(σ ′′)| (a player who prefers to reduce variance faces a steeper marginal cost
than a player who prefers to increase variance). Then E(X2|X1) monotonically increases
in X1.

The proof provided in Appendix A.
The results thus far characterize the slope of the expected second-half scoring “drift”

E(X2|X1) with respect to X1. Proposition 4 suggests that the direction of skewness in the
winning margin distribution depends on the curvature of E(X2|X1) in X1.

Proposition 4 (A Sufficient Condition for Determining the Direction of Skewness in
Winning Margins). Assume that E(X2|X1) is convex in X1. Then the winning margin
is right skewed. Conversely, assume that E(X2|X1) is concave in X1. Then the winning
margin is left skewed.

The proof is an application of van Zwet (1964). See Appendix A for more details.
Because the function μ() is bounded, E(X2|X1) is also bounded and, therefore,

may not be convex or concave over all values of X1. Nonetheless, Propositions 3 and 4
together with the boundedness of E(X2|X1) suggest circumstances under which one
might expect to find skewness in the distribution of winning margins. Figure 2 illus-
trates this idea. When Δ is large, X1 will typically be large. If E(X2|X1) monotonically
decreases in X1 but is bounded, one might expect E(X2|X1) to be convex over many
large values of X1. In that case, one would expect the distribution of winning margins
in games with large Δ to be right skewed. Similarly, if E(X2|X1) monotonically increases
in X1 but is bounded, one might expect E(X2|X1) to be concave over many large values
of X1. In that case, one would expect the distribution of winning margins in games with
large Δ to be left skewed.

Wolfers’ (2006) statistical test attributed right skewness in the distribution of the fa-
vorite’s winning margins to the influence of point shaving. If winning margins are right
skewed in the absence of point shaving, then that test overstates the true prevalence of
point shaving. On the other hand, if winning margins are left skewed in the absence of
point shaving, then that test understates the true prevalence of point shaving.

The remainder of the paper considers a model of basketball teams’ search for scoring
opportunities in order to assess whether a skewed distribution of winning margins is
consistent with optimal strategies. In basketball games, the two teams alternate turns
as the offensive side, and the game ends after a fixed amount of time has passed. The
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Figure 2. State dependent strategies can skew winning margins in either direction. Note: Pan-
els (a) and (b) illustrate the average change in the relative score in the second half as a function
of the halftime score in the illustrative two stage model. Panel (a) gives an example second-half
scoring drift pattern where the drift declines with the favorite’s halftime lead, a pattern that oc-
curs in the illustrative two stage model when adjusting to a low variance strategy incurs a lower
marginal cost than adjusting to a high variance strategy. Panel (b) gives an example second-half
scoring drift pattern where the drift increases with the favorite’s halftime lead, a pattern that oc-
curs when adjusting to a low variance strategy incurs a higher marginal cost than adjusting to
a high variance strategy. Panels (c) and (d) illustrate the effect of second half play on the shape
of scoring distribution in these two cases. Panel (c) shows that when second half scoring drift is
a convex function of the halftime lead over the support of the halftime lead distribution, as in
the right portion of panel (a), second half play introduces right skewness to the winning mar-
gin distribution. Panel (d) shows that when second half scoring drift is a concave function of the
halftime lead, as in the right portion of panel (b), second half play introduces left skewness to
the winning margin distribution.

total number of possessions that occurs has a significant influence on the variance of
the score. During a given possession, a team can reduce the variance of the scoring that
will occur during the remainder of the game by stalling, that is, taking a lot of time before
attempting a shot. A team can increase the variance of the scoring that will occur during
the remainder of the game by hurrying, that is, attempting a shot very quickly.
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The reasoning behind this simple model suggests that the favored team’s winning
margin should be right skewed if increasing the variance of points has a lower opportu-
nity cost than reducing the variance of points. In the context of the richer model that I
consider, that condition is satisfied when stalling has a lower opportunity cost than hur-
rying. The estimated model finds that, indeed, the opportunity cost to stalling is lower
than the opportunity cost of hurrying in NCAA basketball games. Further, the simu-
lations that I conduct using the estimated model suggest that teams’ optimal end-of-
game adjustments generate skewness patterns that closely resemble those previously
attributed to point shaving.

2. Full model

2.1 Model

In this section, I propose a more detailed model of the environment in which basketball
teams compete. Teams alternate turns as the offensive side, and the team that is on of-
fense faces a sequence of arriving shot opportunities that vary stochastically in quality.
I refer to a single turn as the offensive side as a possession. The team that is searching
for a scoring opportunity must compare the potential reward of each opportunity with
the option value of continued search. As such, I model the game as a sequence of many
alternating periods of finite horizon search.7

In this model, the tradeoff between the expected value of points and the variance
of points is endogenous. A unique reservation policy exists that maximizes a team’s ex-
pected points per possession. If the team chooses to hurry, by selecting a lower reserva-
tion policy, its expected points per possession will be lower. Also if it stalls by choosing
a very high reservation policy, its expected points will be lower. The duration of a given
possession influences the variance in the score in the remainder of the game through
its influence on the total number of possessions that will occur. Hence, as in the sim-
ple model, an opportunity cost is associated with choosing a strategy that substantially
raises or substantially reduces the variance of points.

In this more complex model, the team that is on defense is given the opportunity to
intentionally foul the offensive team. I include this feature because the strategy is ubiq-
uitous in the final minutes of actual NCAA basketball games, and the strategy influences
the distribution of winning margins in a way that the simulation experiments I conduct
find to be important.

In the model, two teams, A and B, accumulate points during a single competition
with a typical duration of T seconds. In NCAA basketball games, T = 2,400 seconds
(40 minutes). If the score is not tied at time T , then the game ends. If the score is tied
at time T , then play is repeatedly extended by an additional 300 seconds (5 minutes)
until a winner is determined. Two measures of time are relevant. Let t ∈ [0�1�2� � � � �T ]
measure the time since the game began in discrete periods of one second each. At any t,
let s ≥ 0 describe the number of seconds since the current possession began. The vari-
able s corresponds to the “shot clock” in NCAA basketball games.

7Romer (2006) uses a related dynamic programming to study the in-game choices of NFL football teams.
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One team at a time is on offense searching for a scoring opportunity. Let o ∈ {A�B}
indicate the team that is on offense. The team that is on offense faces a sequence of
scoring opportunities. A scoring opportunity is characterized by a pair of variables, p
and π. The variable p ∈ [0�1] describes the probability with which an opportunity will
succeed if it is accepted. The variable π ∈ {1�2�3} describes the number of points that
will be awarded if the opportunity is accepted and succeeds. For standard opportunities,
π ∈ {2�3}, and the particular case when π = 1 is described below.

Each period, time t increases by one. The team on offense switches if one of three
events occurs; the team on offense accepts a scoring opportunity at t−1, the possession
duration s reaches a maximum limit or 35 seconds at t − 1 (known as a shot clock viola-
tion), or an exogenous turnover occurs between period t − 1 and t. The arrival process
for turnovers is described later. If the offensive team does not switch from one period to
the next, s increases by one. Otherwise, s is reset to zero.

The variable X = XA − XB measures the difference in the two teams’ accumulated
point totals. When a team accepts a shot opportunity, the uncertainty is resolved and
the offensive team receives either 0 or π points.

Scoring opportunities and turnovers arrive stochastically. I impose that no turnovers
or shot opportunities arrive during the first 5 seconds of the possession to reflect the
time required in actual games for the offensive team to move the ball from its defensive
portion of the court to its offensive portion. Following this initial 5-second span, one
scoring opportunity arrives each second.8 The variables that describe a scoring oppor-
tunity are drawn from the conditional density function f (p�π|t� s�X�o). I impose the
simplifying assumption that the distribution from which p and π are drawn depends
only on the team that is offense but does not otherwise vary. That is f (p�π|t� s�X�o) =
f (p�π|o). I also assume that draws of (p�π) are independent across time. Finally, I as-
sume that turnovers arrive with a constant probability for each team, and I let υA and
υB denote the turnover probabilities when the team on offense is A or B. I refer to these
assumptions jointly as a conditional independence assumption (CIA).9 These assump-
tions facilitate estimation of the model and allow me to conduct simulations of end-of-
game play using parameters estimated from data on play early in games.

Both the offense and the defense face a choice during each 1-second increment. If
no turnover occurs, the team on defense has the option to intentionally foul the team on
offense. The defense’s choice of whether to foul or not occurs before realizations of the
draw of (p�π). When an intentional foul is committed, the offense is granted two 1-point
(π = 1) scoring opportunities during the same period known as free throws. Free throws

8The assumption that a scoring opportunity arrives every second is not as restrictive as it might seem,
because the arrival of a very poor scoring opportunity (one that succeeds with very low probability) is no
different from a nonopportunity.

9This assumption implies that teams’ turnover hazards and arriving shot quality distributions are con-
stant within possessions (over the course of the shot clock) and across possessions (by time-by-score game
states). These assumptions may be violated to some extent within actual games if teams adopt tactics that
tradeoff turnover hazard against shot quality (a risk/reward tradeoff) or choose to remove star players from
the game when the score differential becomes large. I discuss the potential consequences of these sorts of
model failures below, arguing that if anything they are likely to exacerbate any right-skewness in the distri-
bution of favored teams’ winning margins.
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succeed with known (to the teams) probabilities pft
A and pft

B. If no turnover occurs and
the defense chooses not to intentionally foul, a shot opportunity (p�π) is drawn. The of-
fense must choose whether to accept the current opportunity or to continue searching.
I denote the choice spaces of the defense and offense with AD = {0�1} and AO = {0�1}.
For the team on defense, 1 represents the choice to intentionally foul. For the team on
offense, 1 represents the choice to accept a scoring opportunity.

When the game ends, the teams receive payoffs UA and UB. The team with the
higher score receives a payoff of one and the team with the lower score receives a payoff
of zero.10,11 Because the model is used to benchmark the patterns one should expect in
the absence of corruption, teams’ only objective is to win the game. Each team chooses
its strategy to maximize its expected payoff. Denote the vector of state variables with
ω = {t� s�X�o�p�π}, and let Ω = {ω} denote the state space. Define the value function
V A(ω) =E(UA|ω) to be A’s expected payoff from the state ω. Because the game is zero-
sum, this value function also characterizes B’s expected payoff. The uniqueness of this
expected payoff function follows directly from the uniqueness of the teams’ reservation
policies.

By CIA and the assumed process for the state transitions, state transitions are Marko-
vian. That property allows the optimization to be expressed as the following dynamic
programming problem:

V A(ω) = max
a∈AA(ω)

{
min

b∈AB(ω)

{
E

[
V A

(
ω′)|ω�a�b

]}}
� (5)

The sets AA(ω) and AB(ω) represent the teams’ choice sets given the current state.
A team’s choice set is AO if ω indicates that the team is on offense and is AD otherwise.

2.2 Approximate model solution

The model developed in the previous section does not have an analytic solution. How-
ever, for any parameterization of the density function f , a numerical solution can be

10One deviation from this payoff function would be if teams place some utility weight on the final score
differential in addition to a discrete preference for winning over losing. This would be rational if, for in-
stance, selection into postseason tournaments is awarded based partially on winning margins in addition
to teams’ simple win/loss records. If teams do have payoff functions that place weight on score differen-
tial, optimal end of game strategies would tend to be closer to those that maximize points per possession
than those predicted by this model, and would thus generate less skewed winning margins distributions
than those predicted by this model. This is apparent by considering the extreme case where teams only
place weight on score differential (and place no additional weight on winning), in which case winning mar-
gins will be approximately symmetric as teams would simply maximize expected points per possession
throughout the game.

11Another deviation from this payoff function would be if teams place disproportionate weight on some
of their games during the season (e.g., conference games or games against rivals) than others. This could be
modeled by providing teams with zero versus one payoffs in some games and, say, 0 versus V (with V > 1)
payoffs in other games. Holding teams’ structural search parameters fixed, these payoff changes would have
no effect on teams’ strategies, since the optimal strategy is still to maximize win percentage. Similarly, even
if teams allocate their game-to-game effort over the course of the season disproportionately to these “high-
payoff” games, as long as these incentives are reflected in the point spread (as Table 4 suggests is the case)
the estimated model should capture these effects because the structural search parameters are allowed to
depend on the point spread.
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computed using backward induction. I compute the full numerical solution to the
model when performing dynamic simulations in Section 6. In this section, however, I
develop an approximate solution method that describes the optimal policy within a sin-
gle possession. I use this approximate solution as the basis for estimating the model’s
parameters. There are several advantages to this approach. Most importantly, the ap-
proach ensures that the model’s parameters are identified by teams’ choices within pos-
sessions during the portion of games where pace adjustments are not important, as op-
posed to being identified by teams’ end-of-game adjustments, which may or may not
be contaminated by point shaving incentives. Also, the approach provides significant
computational savings because it avoids having to repeatedly solve the full model with
backward induction during estimation.

Define the function EV to be A’s expected payoff in a state prior to the realization of
the offensive team’s shot opportunity,

EV
([t� s�X�o]) = E(p′�π′)

[
V

([
t� s�X�o�p′�π ′])]� (6)

I now construct a linear approximation of EV within a single possession that begins in
the state ω0 = [t� s = 0�X�o]. Let s� denote the duration of the possession, and let x�

denote the change in X that occurs as a result of the possession. Then the state of the
following the possession is ω� = [t + s�� s = 0�X +x��−o], where −o indicates the oppo-
nent of team o. I next note that the expected payoff in the state ω� can be approximated
linearly using

ẼV
A(

ω�
) ≈ EV A(ω0)+EV A

X (ω0)x
� +EV A

t (ω0)s
��

ẼV
A(

ω�
) ≈ EV A(ω0)+EV A

X (ω0)
(
x� +φ

(
ω�

0
)
s�

)
� (7)

where EV A
X = EV ([t� s�X + 1�o]) − EV ([t� s�X�o]), EV A

t = EV ([t + 1� s�X�o]) −
EV ([t� s�X�o]), and φ(ω�

0) = EV A
t (ω�

0)/EV
A
X (ω�

0). The term φ(ω�
0) can be thought of

as a marginal rate of substitution between time and points. The partial effect of 1 sec-
ond passing on A’s expected payoff is the same as a φ(ω�

0) point change in the relative
score.

Now note that because EV A(ω�) is a positive affine transformation of the expression
(x� + φ(ω�

0)s
�), the within-possession policy that maximizes EV A is the same as the

policy that maximizes (x� + φ(ω�
0)s

�). Thus, up to a linear approximation of the value
function, all strategically relevant information from the states t and X is embedded in
φ(ω�

0).
The optimal policy for the team on offense is a reservation rule that I denote with

R(s;φ). For each value of s within the possession, the reservation rule describes the
point value pπ for which the offense is indifferent between accepting the opportunity
and opting for continued search. Using the linear approximation developed above, it is
straightforward to show that when A is on offense the optimal reservation rule is

RA(s;φ) = E
(
x�|s� > s

)︸ ︷︷ ︸
points from continued search

+ φE
(
s� − s|s� > s

)︸ ︷︷ ︸
point value of continued search time

� (8)
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That is, the reservation expected-point value for a particular shot is equal to the expected
number of points scored later in the possession conditional on continued search (the
first term) plus the points value of the expected passage of time later in the possession
conditional on continued search (the second term). Early in the game and in other states
where φ ≈ 0 this is the policy that maximizes expected points per possession. The pol-
icy sacrifices expected points to lengthen possessions when φ > 0 (i.e., when a team
leads late in a game) and sacrifices expected points to shorten possessions when φ< 0
(i.e., when a team trails late in a game). Given the fixed boundary at s = 35, the reser-
vation value can be defined recursively. First, define the auxiliary function zA(s;φ) =
E[s�φ + x�|s� ≥ s]. I first construct an expression for zA, and then use zA to construct
RA:

zA(s;φ) =
{

35υAφ+ (1 − υ)Emax(pπ�0) if s = 35�

sυAφ+ (1 − υ)Emax
(
pπ�zA(s + 1;φ)) if s < 35�

(9)

RA(s;φ) =
{

0 if s = 35�

(1 − υA)
[
Emax

(
pπ�zA(s + 1;φ)) − sφ

]
if s < 35�

(10)

Recall that υ is the hazard of a turnover in each 1-second period. The optimal strategy
is a declining reservation policy. An analogous derivation yields the optimal policy for
team B.

To illustrate how the optimal policy varies across game states, Figure 3 plots the pre-
dicted reservation policies in three different game states holding the model parameters
constant; one for which φ = 0, one in which the φ< 0 (offensive team trails late in game),
and one in which φ > 0 (offensive team leads late in game). The plots are constructed
using the search parameters estimated for the favored team in games with a point spread
between 0 and 4. When φ = 0, the intermediate reservation policy is implemented. That
is the point-maximizing policy. When φ< 0, a lower reservation policy is chosen, which
leads to shorter average possessions and fewer points per possession than when φ = 0.
When φ > 0, a higher reservation policy is chosen, which leads to longer average pos-
sessions and fewer points per possession than when φ= 0.

Below I use simulation experiments to examine the extent to which these sorts of
optimal pace adjustments introduce skewness to the distribution of winning margins.
There are other types of in-game adjustments that teams may make in actual basketball
games that are not included in this model. For example, the offensive team and/or de-
fensive team may adjust their tactics to trade- off turnover hazard against the quality of
arriving shots. If both teams are on the tactical frontier, then adjustments (by the offense
or defense) that increase the expected turnover hazard should improve the expected
quality of arriving shots conditional on the shot opportunity arriving (“high-risk/high-
reward”). Tactical adjustments that reduce the turnover hazard should reduce the qual-
ity of arriving shot opportunities (“low-risk/low-reward”). Similar to understanding the
consequences of pace adjustments on the skewness of winning margins, one would
need to understand whether the relative cost in terms of expected points per possession
is larger for adjustments toward high-risk or low-risk strategies. If adjustments toward
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Figure 3. Predicted reservation policies across game states. Note: Shot opportunities are char-
acterized by a success probability and a point value. The graphed reservation values depict for
a single team type (teams favored by 0 to 4 points) the expected success probability times point
value above which it is optimal to accept the opportunity. The optimal policy depends on the
game state. The top, middle, and bottom lines correspond to game states in which the marginal
rate of substitution between time and points (φ) for the favorite is positive (0�15), zero, and neg-
ative (−0�15). When the partial effect of the passing time on a team’s expected payoff is higher,
the team adopts a higher reservation policy that results in longer average possessions. Source:
author’s calculations.

low-risk tactics are less costly than adjustments toward high-risk tactics, one would ex-
pect larger adjustments by leading teams, toward those low-risk strategies, exacerbating
the right-skewness of winning margins.12

3. Estimation

I estimate the parameters governing the search process separately for each of six cat-
egories defined by the size of the point spread. The first 5-point spread categories are
each 4 points wide, and the sixth category includes all games with a point spread above
20. I estimate one set of parameters describing the favorite’s search process and another
set of parameters describing the underdog’s search process. Favorites and underdogs in
the 6-point spread categories make up 12 team types. This approach allows me to con-
duct separate simulation experiments by point spread categories.

I estimate the model’s parameters by maximum likelihood using data from the first
halves of games. Estimating the model’s parameters from first-half possession data re-
quires two approximating assumptions. I assume that during that first half of the game
the team on defense does not intentionally foul.13 I also impose that φ = 0, an approxi-

12While these other sorts of model features are interesting in their own right, I leave the estimation of the
“menu” of such adjustments available to teams for future work.

13A team on defense that is trailing near the end of the game may choose to intentionally foul its oppo-
nent in order to increase the number of possessions in the remainder of the game. In practice, the expected
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Table 1. Descriptive statistics—possessions.

PS ∈ [0�4] PS ∈ (4�8] PS ∈ (8�12] PS ∈ (12�16] PS ∈ (16�20] PS > 20

All F U F U F U F U F U F U

All possessions
Duration of possession (sec) 16�11 16�32 16�26 16�27 16�17 16�09 16�23 15�78 16�18 15�28 16�19 14�51 16�14
Points 0�84 0�85 0�82 0�88 0�81 0�90 0�78 0�92 0�75 0�93 0�72 0�94 0�69
Made two point shot 0�30 0�31 0�30 0�31 0�29 0�33 0�28 0�33 0�27 0�33 0�26 0�34 0�24
Missed two point shot 0�25 0�25 0�25 0�24 0�26 0�23 0�26 0�23 0�27 0�24 0�27 0�22 0�28
Made three point shot 0�10 0�10 0�09 0�10 0�09 0�10 0�09 0�10 0�09 0�10 0�08 0�11 0�08
Missed three point shot 0�17 0�17 0�17 0�17 0�17 0�17 0�17 0�17 0�17 0�16 0�17 0�17 0�17
Turnover 0�18 0�18 0�18 0�17 0�19 0�17 0�20 0�17 0�20 0�17 0�22 0�17 0�23

Observations 641,447 93,547 93,760 87,139 88,005 57,293 58,325 39,879 41,005 21,121 21,762 19,384 20,227

First half possessions
Duration of possession (sec) 16�11 16�18 16�29 15�96 16�37 15�71 16�59 15�46 16�61 14�97 16�76 14�34 16�59
Points 0�80 0�82 0�79 0�83 0�77 0�87 0�75 0�90 0�72 0�90 0�69 0�93 0�65
Made two point shot 0�27 0�28 0�27 0�28 0�26 0�30 0�25 0�30 0�25 0�30 0�24 0�32 0�22
Missed two point shot 0�26 0�25 0�26 0�25 0�27 0�24 0�27 0�24 0�27 0�24 0�27 0�22 0�27
Made three point shot 0�10 0�10 0�10 0�10 0�09 0�11 0�09 0�11 0�09 0�11 0�08 0�11 0�08
Missed three point shot 0�17 0�17 0�17 0�18 0�17 0�18 0�17 0�18 0�17 0�17 0�17 0�18 0�17
Turnover 0�20 0�19 0�20 0�19 0�20 0�18 0�22 0�17 0�22 0�17 0�24 0�17 0�26

Observations 320,064 46,531 46,697 43,845 43,889 28,719 28,928 19,945 20,277 10,644 10,814 9,736 10,039

Note: The sample excludes possessions with a duration of 5 seconds or less and possessions that end with a defensive foul that does not result in free throws. Source: author’s calculations
using play-by-play data from statsheet.com merged to point-spread data from covers.com.

http://statsheet.com
http://covers.com
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mation that is reasonable because the importance of expected scoring swamps the im-
portance of possession duration early in the game. In addition to the computational
savings that result from the φ = 0 simplification, restricting attention to first-half pos-
sessions is also appealing, because the approach ensures that the model’s parameters
are identified from choices that are entirely distinct from the second-half choices that
the model is used to investigate.14

For estimation, I impose a parametric functional form for the joint density f (π�p|o);
the joint density from which shot opportunities come for a given offense. Because π

is discrete, it is convenient to express the joint density as the product of a probabil-
ity mass function and a conditional density; f (π�p) = fπ(π)f (p|π). I treat fπ(2), the
probability that an opportunity is worth 2 points, as a parameter to be estimated. I next
impose that f (p|π = 2) and f (p|π = 3) belong to the family of beta density functions,
each described by 2 parameters to be estimated (M2, V2, M3, and V3).15 The final pa-
rameter governing the search process is υ, the constant per-second turnover hazard.
The full parameter vector describing a single team type’s search process is given by
θ = [fπ=2�M2� V2�M3� V3�υ]′.16

Maximum likelihood estimation requires an expression of the conditional proba-
bility of observed outcomes in terms of model parameters. In available data, I observe
the duration of each possession and a record of which of the five mutually exclusive
events caused the possession to end. Terminal events include turnovers and success-
ful and unsuccessful 2- or 3-point shots. I observe the score differential X and time t

when each possession begins, but I do not observe the sequence of state variables p

and π.
Given a reservation rule Ro(s) ≡ Ro(s;φ = 0) defined as in equation (10), the condi-

tional probabilities of each event for each value of the shot clock can be calculated by
taking appropriate integrals over values of (p�π) with respect to the parameterized joint
density function f . I let F represent the distribution function corresponding to density
function f ; and I let S represent the survivor function corresponding to density func-

number of points scored by the offense when it is intentionally granted two free throws far exceeds the ex-
pected number of points scored on a typical possession. Two free throws result in an average of nearly 1�4
points, and an average possession results in less than 1 point. See Tables 1 and 2 for the relevant success
rates across point-spread categories.

14Appendix C (available in a supplementary file on the journal website, http://qeconomics.org/supp/
519/supplement.pdf) provides theoretical and empirical evidence in support of this assumption.

15The family of beta density functions is a convenient choice because the functional form is flexible,
parsimonious, and has support confined to the interval [0�1]. Because the random variables being drawn
from the densities f (p|π) are themselves probabilities (of particular shots succeeding), any chosen func-
tional forms for f (p|2) and f (p|3) must have support confined to [0�1]. A common parameterization of the

beta density is given by fX(x) = xα−1(1−x)β−1∫ 1
0 xα−1(1−x)β−1 dx

for x ∈ [0�1]. I use the reparameterization M = α
α+β and

V = α+β. M is the mean of the random variable and V is inversely related to the variable’s dispersion.
16For numerical stability in the estimation routines, I estimate continuous transformations of pa-

rameters that have unbounded support instead of directly estimating those parameters. The likelihood-
maximizing parameter vector is invariant to these transformations, and the transformations ensure that an
intermediate iteration of the hill-climbing algorithm does not step outside of a parameter’s support.

http://qeconomics.org/supp/519/supplement.pdf
http://qeconomics.org/supp/519/supplement.pdf
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Table 2. Maximum likelihood estimates of structural parameters by point-spread category.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
PS ∈ [0�4] PS ∈ (4�8] PS ∈ (8�12] PS ∈ (12�16] PS ∈ (16�20] PS > 20

F U F U F U F U F U F U

Prob. shot opportunity is worth two points 0�533 0�536 0�603 0�563 0�568 0�520 0�607 0�551 0�797 0�515 0�823 0�489
(0�036) (0�031) (0�041) (0�035) (0�062) (0�037) (0�069) (0�044) (0�049) (0�058) (0�043) (0�062)

Mean of success prob. distribution—two pointers 0�139 0�133 0�134 0�127 0�157 0�118 0�163 0�112 0�144 0�102 0�151 0�121
(0�008) (0�007) (0�008) (0�007) (0�015) (0�008) (0�016) (0�008) (0�012) (0�011) (0�012) (0�0144)

Scale of success prob. distribution—two pointers 3�557 3�695 3�543 3�959 3�590 3�579 3�721 3�834 3�633 3�391 3�364 5�436
(0�138) (0�143) (0�144 (0�162) (0�220) (0�167) (0�255) (0�231) (0�283) (0�254) (0�259) (0�636)

Mean of success prob. distribution—three pointers 0�068 0�058 0�089 0�056 0�095 0�047 0�109 0�043 0�177 0�038 0�223 0�030
(0�005) (0�004) (0�008) (0�004) (0�012) (0�004) (0�015) (0�004) (0�025) (0�005) (0�024) (0�0034

Scale of success prob. distribution—three pointers 6�215 5�109 7�250 5�233 7�178 4�879 7�652 4�280 11�450 4�637 18�284 2�662
(0�371) (0�265) (0�525) (0�297) (0�714) (0�331) (0�888) (0�339) (2�450) (0�547) (4�772) (0�211)

Turnover hazard 0�016 0�016 0�016 0�016 0�015 0�017 0�015 0�018 0�016 0�018 0�017 0�020
(0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000) (0�000)

Observations 46,531 46,697 43,845 43,889 28,719 28,928 19,945 20,277 10,644 10,814 9,736 10,039

Free throw success probability 0�691 0�68 0�694 0�686 0�697 0�68 0�692 0�667 0�695 0�678 0�702 0�652
(0�005) (0�005) (0�004) (0�005) (0�005) (0�006) (0�006) (0�007) (0�008) (0�01) (0�008) (0�01)

Observations 10,294 9,913 11,187 9,709 8,084 6,516 5,813 4,324 3,426 2,352 3,475 2,102

Note: Standard errors in parentheses. Estimation is by maximum likelihood using data from the first halves of games. Free throw success probabilities are estimated by the sample mean
success rate for free throws. A nested fixed point algorithm is used to compute all remaining parameters. The parameters are estimated separately for the favorite and underdog within each
of the six point-spread categories. Source: author’s calculations using play-by-play data from statsheet.com merged to point-spread data from covers.com.

http://statsheet.com
http://covers.com
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tion f . The conditional probabilities of the various events e are given by,

P(e|s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

υ for e = turnover�

(1 − υ)fπ(2)S
(
R(s)/2|π = 2

)
EF

[
p|s�π = 2�2p>R(s)

]
for e = successful 2�

(1 − υ)fπ(2)S
(
R(s)/2|π = 2

)
EF

[
1 −p|s�π = 2�2p>R(s)

]
for e = unsuccessful 2�

(1 − υ)fπ(3)S
(
R(s)/3|π = 3

)
EF

[
p|s�π = 3�3p>R(s)

]
for e = successful 3�

(1 − υ)fπ(3)S
(
R(s)/3|π = 3

)
EF

[
1 −p|s�π = 3�3p>R(s)

]
for e = unsuccessful 3�

(1 − υ)
[
fπ(2)F

(
R(s)/2|π = 2

) + fπ(3)F
(
R(s)/3|π = 3

)]
for e = continued search�

(11)

I use these expressions for the conditional probabilities of discrete events to construct
the likelihood function that is the basis for estimation.

I next construct a likelihood function. For each possession, I observe the time
elapsed from the shot clock when the possession ended (s�) and the event that caused
the possession to end (e�). Five of the six possible events listed in the piecewise defi-
nition of equation (11) are terminal events (turnovers and successful and unsuccessful
2-point and 3-point attempts), and hence, are directly observed. All nonterminal events
fall in the sixth category, continued search. The full sequence of events in any possession
is a sequence of choices for continued search followed by a terminal event. By CIA, the
probability of observing a possession described by the pair (s�� e�) is given by

Pr
(
s�� e�

) = Pr
(
e�|s�) s�−1∏

s=6

Pr(continued search|s)� (12)

CIA further implies that the probability of observing a sample containing possessions
j = 1� � � � �N described by the pairs {(s�j � e�j )}Nj=1 is given by

Pr
({(

s�� e�j
)}N

j=1

) =
N∏
j=1

Pr
(
s�� e�j

)
� (13)

The right-hand side of equation (13) makes use of the expression defined in equa-
tion (12), and the right-hand side of equation (12) makes use of the expressions defined
in equation (11). Finally, I define the log-likelihood function

l(θ) = ln
(
Pr

({(
s�� e�j

)}N
j=1|θ

))
� (14)

where θ = [fπ=2�M2� V2�M3� V3�υ]′. �

During estimation an inner loop computes the log-likelihood function at each can-
didate parameter vector using the numerical solution to the optimal reservation rule,
and an outer loop searches the parameter space for the likelihood maximizing param-
eter vector. To reduce the chances that a set of parameter estimates represent a local
maximum to the likelihood but not a global maximum, I repeat the estimation routine
from several different starting points in the parameter space.17

17My estimation routines converge to the same parameter vectors regardless of the initial guess.
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4. Data

I construct the dataset used for estimation from two sources. The first data source is a
compilation of detailed play-by-play records for a subset of the regular-season basket-
ball games played between November 2003 and March 2008 downloaded from the web-
site statsheet.com. Appendix B (available in a supplementary file on the journal website,
http://qeconomics.org/supp/519/supplement.pdf) describes the process of construct-
ing possession-level data from the raw event data, and the procedure for coding pos-
sessions that did not strictly fit in to one of the outcomes included in the model.18 The
second data source is a set of point spreads for regular-season games played during the
same time period for which a point spread was available. These data come from the web-
site covers.com. The final dataset contains 5,258 games that appear in both data sources.

Table 3 describes the distribution of games across seasons and across point spreads.
More recent seasons are more heavily represented in the dataset, reflecting the increas-
ing availability of detailed play-by-play game data. The lowest point-spread categories
are most common, and a smaller fraction of games fall in each larger point-spread cate-
gory.

Table 3. Descriptive statistics—games.

(1)
Category Percent

2003–2004 season 12
2004–2005 season 17
2005–2006 season 21
2006–2007 season 24
2007–2008 season 26
Point spread ∈ [0�4] 29
Point spread ∈ (4�8] 27
Point spread ∈ (8�12] 18
Point spread ∈ (12�16] 13
Point spread ∈ (16�20] 7
Point spread ∈ (20�∞] 6

Observations 5,258

Note: The sample comprises play-by-play game data from
statsheet.com merged to point-spread data from covers.com.
A game is included in the sample if it appears in both
data sources and the game’s play-by-play data contains
enough detail to perform the analysis conducted in this
study (see Data Appendix B (available in a supplementary
file on the journal website, http://qeconomics.org/supp/519/
supplement.pdf) for details). Source: author’s calculations.

18For example, the model does not allow for the possibility of possessions ending in defensive fouls in the
act of the offense shooting, which result in two or three free throw attempts depending on the value of the
attempted shot. These outcomes are classified as “made” attempts. Fewer than 6% of first-half possessions
end with fouls during the act of shooting. Because these are relatively rare “terminal” events and teams
convert nearly 70% of free throw attempts, this simplification is only a small deviation from reality and
significantly simplifies the model’s solution.

http://statsheet.com
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Table 4. Regression analysis of the point-spread’s predictive accuracy.

(1) (2)
OLS MAD

Amount by which home team is favored 1�01 1�00
(0�02) (0�03)

Constant 0�09 0�00
(0�18) (0�31)

Observations 5,258 5,258

Note: Standard errors in parentheses. This table displays regression estimates of the condi-
tional mean and median of the home team’s winning margin (negative if the home team loses).
Column (1) reports coefficient estimates for an OLS regression of the home team’s winning mar-
gin on a constant and the amount by which the home team is favored (negative if the home team
is the underdog). Column (2) reports coefficient estimates for minimum absolute deviation (me-
dian) regression of the home team’s winning margin on the amount by which the home team
is favored. Source: author’s calculations using play-by-play data from statsheet.com merged to
point-spread data from covers.com.

Table 4 presents regression estimates of the home team’s winning margin (negative
if the home team loses) on the amount by which the home team is favored on the point
spread (negative if the home team was an underdog). I estimate an OLS regression to fit a
conditional mean and a minimum absolute deviation regression to fit a conditional me-
dian. The point spread appears to provide an excellent forecast of the final-score differ-
ential. Consistent with efficiency in the point-spread betting market, neither estimated
constant is statistically different from zero, and neither estimated slope coefficient is
statistically different from one.

Table 1 provides descriptive statistics at the possession level. I report these values
separately for favorites and underdogs in each point-spread category. Because the esti-
mation routine restricts attention to possessions from the first halves of games, I provide
one set of descriptive statistics for all possessions and another restricted to first-half
possessions. To accommodate estimation, I code all possessions meeting my sample-
selection criteria to one of the outcomes that is explicitly modeled. As expected, posses-
sions of favored teams end more frequently with made shots and less frequently with
missed shots and turnovers than the possessions of underdogs, and the disparity be-
tween the outcomes of favorites and underdogs tends to grow larger in the higher point-
spread categories.

Figure 4 illustrates the skewness patterns that are the focus of the study. Figures 4(a)
and 4(b) plot kernel density estimates of the favored team’s winning margin relative to
the point spread. Figures 4(c) and 4(d) plot kernel density estimates of the difference
between the favorite’s lead at halftime and the predicted value of that quantity.19 Con-
sistent with the findings of Wolfers (2006), the distribution of favorites’ winning margins
is approximately symmetric in games with a low point spread and is right skewed in
games with a high point spread. Figures 4(c) and 4(d) demonstrate that any skewness in
winning margins arises during the second half of games, as the distributions of halftime
leads are nearly symmetric.

19The favorite’s predicted halftime lead is estimated with a regression of that quantity on a constant and
the point spread.

http://statsheet.com
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Figure 4. Game outcomes relative to point-spread prediction. Note: Plots (a) and (b) provide
kernel-density estimates of the difference between the favorite’s winning margin and the point
spread. Plots (c) and (d) provide kernel-density estimates of the difference between the favorite’s
halftime lead and the predicted value of that quantity from a linear regression of the halftime lead
on a constant and the point spread. As a reference, each plot is overlaid with a normal density
function with the same first two moments as the estimated density. Source: author’s calculations
using play-by-play data from statsheet.com merged to point-spread data from covers.com.

5. Structural parameter estimates

To recover estimates of the model parameters, I apply the estimation routine described
in Section 3 to the data described in Section 4. Table 2 provides estimates of the model’s
parameters by point-spread category.

Table 5 assesses the fit of the model to the first-half data. I compare empirical aver-
age possession duration to the average duration predicted by the model, and I compare
the fractions of possessions ending in each of the five modeled terminal events to the
fractions predicted by the model. Most of the predicted moments closely resemble the
empirical moments both within and across point-spread categories. One exception is
that the model slightly underpredicts the fraction of possessions ending in turnovers.
Presumably this occurs because the turnover hazard and shot quality distribution are
not literally constant over the course of the shot clock within possessions as the model
assumes. Allowing these arrival processes to vary over the course of possessions would
improve the model’s fit. As discussed above, endogenizing these processes by allowing
teams to control a tradeoff between the turnover hazard and likely shot quality is one
interesting avenue for future work but is not explored in this paper.

http://statsheet.com
http://covers.com
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Table 5. Comparison of empirical and predicted moments.

PS ∈ [0�4] PS ∈ (4�8] PS ∈ (8�12]
F U F U F U

m m̂ m m̂ m m̂ m m̂ m m̂ m m̂

Duration 16�18 15�85 16�29 15�94 15�96 15�69 16�37 16�00 15�71 15�48 16�59 16�16
Made 2 0�278 0�279 0�270 0�268 0�280 0�281 0�264 0�262 0�296 0�296 0�255 0�254
Missed 2 0�254 0�265 0�256 0�271 0�249 0�260 0�271 0�286 0�237 0�246 0�267 0�282
Made 3 0�0993 0�0969 0�0962 0�0974 0�102 0�100 0�0911 0�0915 0�109 0�107 0�0912 0�0899
Missed 3 0�175 0�188 0�175 0�185 0�182 0�193 0�171 0�182 0�179 0�190 0�170 0�185
Turnover 0�194 0�171 0�203 0�179 0�187 0�167 0�203 0�178 0�180 0�161 0�216 0�189

Observations 46,531 46,697 43,845 43,889 28,719 28,928

t (equality of mean duration) 10�00 10�29 7�94 10�57 5�48 10�00
p-value 0�000 0�000 0�000 0�000 0�000 0�000
Pearson’s χ2 (equality of proportions) 209�95 215�66 154�82 218�56 93�21 170�50
p-value 0�000 0�000 0�000 0�000 0�000 0�000

PS ∈ (12�16] PS ∈ (16�20] PS > 20

F U F U F U

m m̂ m m̂ m m̂ m m̂ m m̂ m m̂

Duration 15�46 15�28 16�61 16�17 14�97 14�84 16�76 16�25 14�34 14�24 16�59 16�14
Made 2 0�303 0�303 0�248 0�245 0�305 0�308 0�242 0�239 0�317 0�319 0�218 0�207
Missed 2 0�236 0�244 0�274 0�292 0�239 0�246 0�273 0�292 0�223 0�228 0�274 0�300
Made 3 0�110 0�109 0�0867 0�0886 0�111 0�106 0�0800 0�0809 0�113 0�109 0�0845 0�0959
Missed 3 0�178 0�186 0�167 0�179 0�173 0�182 0�167 0�181 0�180 0�187 0�166 0�171
Turnover 0�173 0�158 0�225 0�196 0�172 0�158 0�238 0�207 0�168 0�157 0�257 0�226

Observations 19,945 20,277 10,644 10,814 9,736 10,039

t (equality of mean duration) 3�60 8�63 1�52 7�18 1�52 6�16
p-value 0�000 0�000 0�065 0�000 0�065 0�000
Pearson’s χ2 (equality of proportions) 40�68 127�39 22�88 75�80 12�67 86�25
p-value 0�000 0�000 0�000 0�000 0�013 0�000

Note: Within each point-spread category, sample moments (m) and predicted moments (m̂) are provided separately for favorites and underdogs. Empirical moments are sample means.
Predicted moments are the equivalent means predicted by the model when each team searches optimally given estimated structural parameters with the objective of maximizing expected
points per possession. Two test statistics and corresponding p-values are provided for each combination of point-spread category and favorite/underdog. A two-sided t-test is performed
to test the null that the empirical mean possession duration is equal to the predicted mean duration. A Pearson’s chi-squared test is performed to test the null that the five empirical
proportions are equal to the predicted proportions. Under the null, the Pearson’s statistic is distributed chi-squared with J − 1 = 4 degrees of freedom (where J is the number of categories).
Source: authors calculations using play-by-play data from statsheet.com merged to point-spread data from covers.com.
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Figure 5. Predicted reservation values and average points by time elapsed from shot clock.
Note: Shot opportunities are characterized by a success probability and a point value. A reser-
vation policy is an expected point value (success probability times point value) above which an
optimizing offense is predicted to attempt an available shot. The solid line on each figure depicts
the optimal reservation policy by possession duration consistent with the estimated structural
parameters. The dashed line on each plot depicts the predicted average point value of attempted
shots (shots with expected point values exceeding the reservation level). The scatter plot de-
picts the empirical average points per attempted shot against possession duration for first-half
possessions included in the estimation sample. The points marked with x’s depict 2-point at-
tempts and the points marked with o’s depict 3-point attempts. Source: author’s calculations us-
ing play-by-play data from statsheet.com merged to point-spread data from covers.com.

Figure 5 allows for a visual inspection of the model’s fit to the observed dynamics of
the offensive possessions during the first halves of games. To reduce clutter, the figures
restrict attention to one low point-spread category [0�4] and one high point-spread cat-
egory (16�20]. The figure presents the predicted reservation values and predicted points
per attempted shot by possession duration, along with actual mean points per shot at-
tempt over the course of the 35-second shot clock. Consistent with the model, all ob-
served points per shot attempt fall above the predicted reservation value, and average
points per attempt tend to fall as time passes and the reservation value falls.

http://statsheet.com
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6. Dynamic simulation

Using the estimated model, I conduct a series of simulation experiments to assess the
skewness patterns that result from teams’ optimally chosen strategies. I conduct the
simulations separately for each point-spread category. I initialize each simulation by
drawing a halftime score difference from a discretized normal distribution that matches
the first two moments of the empirical distribution of favorite’s halftime leads. This ap-
proach guarantees that any skewness that is found in the simulated distributions is gen-
erated by the model’s predicted strategies. Table 6 reports the mean and standard devi-
ation of the favorite’s halftime lead in each point-spread category.

Figure 6 presents the full model’s prediction of how the score differential changes
over a pair of possessions (one for each team) across game states. The x-axis plots the
marginal rate of substitution between time and points, the sufficient statistic for how a
game state determines a team’s optimal strategy. The y-axis plots the conditional ex-
pected scoring drift. This can be thought of as the full model analog of Figure 2(a)
and 2(b). As argued in the context of the toy model, the convex shape of this curve for
positive values of φ ought to induce a right skewness in the distribution of final scores.

To investigate this proposition directly, I use the model to simulate the distribution
of the favorite’s winning margin.20 I then compute analogs of the two quantities required
to construct the skewness based test for point shaving from the simulated distributions.
For each point-spread category, I compute the fraction of the simulated favorite’s win-
ning margins that fall between zero and the median of the winning-margin distribution.
I also compute the fraction of the simulated favorite’s winning margins that fall between
the median of the winning-margin distribution and twice the median.21

Table 6. Mean and standard deviation of favorite’s
halftime lead by point-spread category.

Mean Standard Deviation

Point spread ∈ [0�4] 1�16 8�59
Point spread ∈ (4�12] 3�04 8�39
Point spread ∈ (8�12] 5�57 8�83
Point spread ∈ (12�16] 8�19 8�56
Point spread ∈ (16�20] 10�17 8�82
Point spread > 20 13�82 9�40

Note: The simulations described in this paper assume that halftime
score differentials follow a (discretized) normal distribution with the em-
pirical means and standard deviations contained in this table. The sim-
ulated final score distributions then reveal the extent to which optimal
second-half play induces asymmetries. Source: author’s calculations us-
ing play-by-play data from statsheet.com merged to point-spread data
from covers.com.

20See Appendix D (available in a supplementary file on the journal website, http://qeconomics.org/
supp/519/supplement.pdf) for details on computing the simulated distributions.

21I use the median of the distribution instead of a particular point spread for two reasons. First, each
point-spread category contains many individual point spreads, so the comparison to a single quantity is
convenient. Second, the medians of the predicted distributions fall systematically below each category’s
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Figure 6. Predicted scoring drift across game states. Note: The plotted curves depict the pre-
dicted average drift in the favorite’s lead over a pair of possessions (one for the favorite one for
the underdog) across states. Game states are characterized by φ, the marginal rate of substitu-
tion between time and the favorite’s points. Source: author’s calculations using estimated model
parameters.

I compute three separate versions of the simulations in order to isolate the impact of
several model features. In the first set of simulations, I impose that each offense simply
maximizes expected points per possession in all game states. This is not an optimal pol-
icy, but the exercise provides a reference to which more nearly optimal policies can be
compared. In a second set of simulations, the offensive team optimally solves the model,
but I do not allow the defense to foul intentionally. The difference between the scoring
patterns predicted by these two sets of simulations illustrates the impacts of teams’ pace
adjustments on the direction of skewness in the distribution of favorites’ winning mar-
gins. In a third set of simulations, both the offense and defense play optimal strategies.
This set of simulations shows the extent to which end-of-game fouling by trailing teams
exacerbates or lessens this skewness within each point-spread category and provides a
benchmark with which the skewness patterns in real games can be compared.

Figure 7 plots the fraction of the favorite’s winning margins falling between zero and
the median winning margin (lower region) and between the median winning margin
and twice the median (higher region) for each of the three simulation scenarios and for
the empirical distribution. Within each panel, I plot these two quantities against the
midpoint of the point spread-category from which it was computed.

mean point spread. Presumably this is attributable to an unmodeled dimension by which the strengths of
favorites and underdogs differ, rebounding for instance. Using the median preserves the interpretation of a
difference in the two proportions as a departure from symmetry.
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Figure 7. False experiments—skewness based test for point shaving applied to simulated out-
comes. Note: The solid line on each plot provides the predicted probability that the favorite’s
winning margin falls between zero and the median of the winning margin distribution. The
dashed line on each plot provides the predicted probability that the favorite’s winning margin
falls between the median of the winning margin distribution and twice the median of the win-
ning margin distribution. Source: (a)–(c) author’s simulations calibrated with estimated model
parameters, and (d) author’s calculations using play-by-play data from statsheet.com merged to
point-spread data from covers.com.

Figure 7(a) reports the results of the first set of simulations in which the offensive
team always maximizes its expected points per possession. The simulations finds that
the distribution of winning margins is nearly symmetric, with about the same fraction of
winning margins falling in the lower region as in the upper region. Figure 7(b) reports the
results of the second set of simulations in which the offense solves the full model and the
defensive team never fouls. Under that scenario, the fraction of winning margins falling
in the lower region exceeds the fraction of games falling in the higher region in all but
the lowest point-spread category. This result suggests that optimal offensive strategies

http://statsheet.com
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introduce right skewness into the favorite’s winning margin, and that the degree of right
skewness grows with the strength of the favorite. Note that the predicted right skewness
actually exceeds what occurs in actual games (Figure 7(d)) in games with point spreads
less than 12 points.

Figure 7(c) reports the results of the third set of simulations in which the offense and
the defense both adopt the optimal strategies predicted by the model. The simulations
find that the fraction of simulated winning margins falling in the lower and higher is
almost identical to the fractions of winning margins falling in those regions in actual
games. That finding is the key result of the study. The empirical patterns are graphed in
Figure 7(d). In games with a large favorite (the two highest point-spread categories), the
fraction of games falling in the lower region exceeds the fraction falling in the higher re-
gion in simulations of the full model and in actual games. In games with a small favorite,
similar fractions of games fall in the lower region and higher region in simulations of the
full model and in actual games.

Applying the skewness test for point shaving to these simulated data, the conclu-
sion is that the favorite intends to shave points in roughly 7% of games in the two high-
est point-spread categories. That predicted point-shaving prevalence is statistically in-
distinguishable from that computed from the empirical winning-margin distribution.
Because Figure 7(c) follows from innocent optimizing play, the simulation exercise sug-
gests that the patterns previously attributed to point shaving are actually indistinguish-
able from the patterns expected under a null hypothesis of no point shaving. The sim-
ulation results also suggest that modeling defensive fouling choices is necessary to
accurately predict the distribution of winning margins, as the distribution in Figure 7(c)
fit the data substantially better than the distribution in Figure 7(b).

7. Corroborating evidence

Finally, I provide direct evidence that NCAA basketball teams employ the strategic
stalling, hurrying, and intentional fouling strategies that the account for the right
skewed winning margin distributions in the model.

Table 7 presents evidence on the relationship between the length of possessions and
the favorite’s lead during different time periods within games. Specifically, I estimate the
regression,

Durationj = a0 × FavLeadj

+ a1 × FavLeadj × 1(mins. 1 to 5 of 2nd half)

+ a2 × FavLeadj × 1(mins. 6 to 10 of 2nd half) (15)

+ a3 × FavLeadj × 1(mins. 11 to 15 of 2nd half)

+ a4 × FavLeadj × 1(mins. 16 to 20 of 2nd half)+ θps�t + ej�

where Durationj is possession length in seconds, FavLeadj is the favorite’s lead enter-
ing the possession, θps�t is a point spread by time fixed effect, and the interaction terms
allow the impact of the score differential on pace to differ by time. I estimate separate
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Table 7. Second half possession durations by time remaining and
score differential.

(1) (2)
Favorite Underdog

Possessions Possessions

Favorite’s lead 0�0142∗∗∗ −0�0132∗∗∗
(0�003) (0�003)

Favorite’s lead × 1(mins. 1 to 5 of 2nd half) 0�0107∗ −0�0210∗∗∗
(0�005) (0�005)

Favorite’s lead × 1(mins. 6 to 10 of 2nd half) 0�0255∗∗∗ −0�0663∗∗∗
(0�005) (0�005)

Favorite’s lead × 1(mins. 11 to 15 of 2nd half) 0�0594∗∗∗ −0�127∗∗∗
(0�005) (0�006)

Favorite’s lead × 1(mins. 16 to 20 of 2nd half) 0�215∗∗∗ −0�280∗∗∗
(0�006) (0�006)

Observations 289,736 290,507

Note: Standard errors in parentheses. ∗ p < 0�05, ∗∗ p < 0�01, ∗∗∗ p < 0�001. The de-
pendent variable in each regression is the possession duration in seconds. The sample in-
cludes all possessions that begin with the score differential in [−20�20]. Column (1) restricts
to possessions where the favored team is on offense, and column (2) restricts to posses-
sions where the underdog is on offense. Source: author’s calculations using play-by-play
data from statsheet.com merged to point-spread data from covers.com.

regressions for possessions when the favorite is on offense (column (1)) and when the
underdog is on offense (column (2)). The parameter a0 describes the impact of the fa-
vorite’s lead on possession duration during the first halves of games. I estimate a0 values
of 0�014 for favorite possessions and −0�013 for underdog possessions. While these fig-
ures are statistically significantly different from zero given the large sample size, they
are small and qualitatively consistent with the assumption underlying the structural es-
timation approach that the marginal rate of substitution between time and points is
close to zero in the first halves of games. The point estimates imply that for both the fa-
vorite and the underdog average possession duration changes by just above 0�1 seconds
for every 10-point change in the score differential during the first half. As expected, the
relationship between score differential and possession duration grows steadily stronger
as time passes during the second half. The estimates of a4 reported in the last row (0�215
and −0�280 for the favorite and underdog, resp.) imply that average possession duration
changes by over 2 seconds for every 10-point change in score differential during the last
5 minutes of games.

Table 8 reports the results of linear probability models comparing the frequency of
likely intentional fouls (defined as fouls in the first 15 seconds of a possession) in game
states where the numerically simulated model using estimated parameter values finds
intentional fouling to be optimal and game states where the estimated model does not.
Figure 8 illustrates the states in which intentional fouling is an optimal strategy in the
estimated model. Broadly speaking, it is optimal for a team on defense to foul when
the team faces a small deficit near the end of the game. For very small deficits, fouling
is not optimal until very near the end of the game. For larger deficits, fouling is opti-
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Table 8. Regression analysis of defensive fouling policy.

(1) (2)
Foul Foul

Predicted foul region 0�312∗∗∗
(0�004)

Predicted foul region—interior 0�363∗∗∗
(0�006)

Predicted foul region—near edge 0�206∗∗∗
(0�005)

Close to predicted foul region 0�059∗∗∗
(0�004)

Constant 0�110∗∗∗ 0�110∗∗∗
(0�000) (0�000)

Observations 820,672 820,672

Note: Standard errors in parentheses. ∗ p < 0�05, ∗∗ p < 0�01, ∗∗∗ p <
0�001. All possessions played during the first and second halves are included.
The dependent variable in each regression is an indicator that a defensive
foul occurred during the possession. A possession is coded as “near the edge”
of the predicted foul region if the favorite’s lead is within 2 points of a lead at
which fouling is not optimal. A possession is coded as on the “interior” of
the predicted foul region if the possession falls inside the predicted foul re-
gion and is not coded as “near the edge.” A possession is coded as “close”
to the predicted foul region if the possession falls outside of the predicted
foul region, but the favorite’s lead is within 2 points of a lead at which foul-
ing is optimal. Source: author’s calculations using play-by-play data from
statsheet.com merged to point-spread data from covers.com.

mal with more time remaining in the game. Column (1) reports the results of regress-
ing a dummy for a possession ending with a quick defensive foul on an indicator that
the game state was in the model’s optimal fouling region. The estimates find that quick
fouls occur about four times more often in optimal fouling states than in nonoptimal
fouling states. Column (2) includes separate dummies for the possession occurring on
the interior of the optimal fouling region, the edge of the optimal fouling region, and just
outside the optimal fouling region. The results find that quick defensive fouls occur at
similarly elevated rates on both the interior and edge of the optimal fouling region, and
occur at only a slightly elevated rate just outside of the optimal fouling region. In sum,
these results suggest that the strategic adjustments in the model that induce skewness
to the distribution of favorites’ winning margins also occur in actual games.

8. Conclusion

This paper finds that the inference of widespread point shaving from skewness in the
distribution of final score differentials is ill-founded. While the skewness-based test
for point shaving relies on an assumption that winning margins are symmetric in the
absence of point shaving, the model considered in this paper finds that teams adopt
end-of-game strategies that do not in general lead to symmetric distributions. Cali-
brated with parameters estimated from first-half play-by-play data, the model of in-
nocent dynamic competition predicts skewness patterns that are statistically indistin-
guishable from the empirical patterns. While we know from the historical record (Porter
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Figure 8. Predicted optimal defensive fouling policies. Note: The region outlined by a solid line
on each plot depicts the portion of the state space in which the favored team is predicted to
foul intentionally when on defense. The region outlined by a dashed line on each plot depicts
the portion of the state space in which the favored team is predicted to foul intentionally when
on defense. Source: author’s calculation of the numerical solution to the model calibrated with
estimated model parameters.
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(2002), Rosen (2001)) that the true prevalence of point shaving is not zero, this finding
suggests that the skewness-based test is likely to drastically overstate the true preva-
lence.

A possible extension to this study might formally model the behavior of a player or
team engaged in point shaving. Wolfers (2006) proposed an exercise of that sort as a po-
tential extension. Developing a credible model of a game in which one team is point
shaving poses several obstacles that are not a problem for this study. A realistic model
of point shaving requires a departure from the perfect-information framework. A more
complex information structure would recognize that a team is probably never certain
that its opponent is point shaving. The team that is point shaving must then consider
the beliefs of its opponent regarding its objective, beliefs regarding those beliefs, and
so on. An important second complication is the need for a point shaver to avoid detec-
tion. A simple but flawed model of point shaving might begin with the model used in
this paper and replace the favorite’s objective function with one providing a reward to
not covering the point spread.22 In that model, the optimal strategy for a large favorite
who is shaving points is to play normally until near the end of the game and then, if
necessary, deploy the strategy that most rapidly reduces its lead.23 Using that strategy,
the favorite would win with the same frequency as when not point shaving and would
almost never cover the point spread. But in practice, a casual spectator would recognize
that the corrupt team was not simply trying to win. Because point shaving is illegal, a
realistic model of point shaving must include some penalty for strategies that are easily
detected.

The findings of this study cast some doubt on forensic economic studies that rely
on unmodeled assumptions about innocent behavior. In the case considered in this
study, a theoretical model is sufficient to raise the possibility that the skewness-based
test for point shaving leads to biased estimates. Theory alone is insufficient to predict
the direction or magnitude of any bias and, therefore, a calibration exercise proves in-
formative. These findings suggest that the indirect inference techniques that are com-
mon in forensic economic studies can be sensitive to seemingly minor institutional fea-
tures of the environment in which the behavior of interest takes place, and highlight the
promise of structural estimation as a tool for validating forensic economic methodol-
ogy.

Appendix A

Proof of Proposition 2. Under the proposition’s premise, it follows immediately
from the first-order condition in equation (3) that (σA2 + σB2) does not vary with X1.
The strategic adjustments of A and B exactly offset.

22For instance, the favorite might receive a payoff of one if its winning margin fell between zero and the
point spread and receive a payoff of zero otherwise.

23In the model considered in this paper, that strategy is to intentionally foul one’s opponent when on
defense and to attempt the first available shot that provides a low success probability when on offense.
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Consider how E(X2|X1) varies with X1. Totally differentiating the first-order condi-
tion in equation (3) and rearranging terms finds

∂σA2

∂X1
= 1

(σA2 + σB2)μ
′′(σA2)

and
∂σB2

∂X1
= −1

(σA2 + σB2)μ
′′(σB2)

�

Using these expressions, one can then express

∂E(X2|X1)

∂X1
= ∂μ(σA2)

∂σA2

∂σA2

∂X1
− ∂μ(σB2)

∂σB2

∂σB2

∂X1

= μ′(σA2)

(σA2 + σB2)μ
′′(σA2)

+ μ′(σB2)

(σA2 + σB2)μ
′′(σB2)

= μ′(σA2)

(
1

(σA2 + σB2)μ
′′(σA2)

− 1
(σA2 + σB2)μ

′′(σB2)

)
�

Under the symmetry assumption, the bracketed term is equal to zero, and the proposi-
tion follows. �

Proof of Proposition 3. Again, make use of the expression

∂E(X2|X1)

∂X1
= μ′(σA2)

(
1

(σA2 + σB2)μ
′′(σA2)

− 1
(σA2 + σB2)μ

′′(σB2)

)
�

If for any σ ′ < σ∗ and σ ′′ > σ∗ with u′(σ ′) = −u′(σ) that |u′′(σ ′)| < |u′′(σ ′′)| (where
σ∗ is the action that maximizes μ()), then μ′(σA2) will be opposite in sign from the
term in brackets. Conversely, if for any σ ′ < σ∗ and σ ′′ > σ∗ with u′(σ ′) = −u′(σ) that
|u′′(σ ′)| > |u′′(σ ′′)|, then μ′(σA2) will be the same sign as the term in brackets. There-
fore, the proposition holds. �

Proof of Proposition 4. By van Zwet (1964), a random variable with distribution
function G is more right skewed than another random variable with distribution func-
tion H if G−1(H(x)) is convex in x. Let H be the CDF of X1 and let G be the CDF of
X1 + E(X2|X1)t. Then G−1(H(x)) = x + E(X2|X1 = x), and because the skewness of
X1 is zero, the random variable X1 + E(X2|X1) is right skewed if E(X2|X1 = x) is con-
vex in x. By the same reasoning, the random variable X1 + E(X2|X1) is left skewed if
E(X2|X1 = x) is concave in x. �
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