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This paper assesses the quantitative impact of ambiguity on historically observed
financial asset returns and growth rates. The single agent, in a dynamic exchange
economy, treats the conditional uncertainty about the consumption and divi-
dends next period as ambiguous. We calibrate the agent’s ambiguity aversion to
match only the first moment of the risk-free rate in data and measure the uncer-
tainty each period conditional on the actual, observed history of (U.S.) macroeco-
nomic growth outcomes. Ambiguity aversion accentuates the effect of conditional
uncertainty endogenously in a dynamic way, depending on the history; for exam-
ple, it increases during recessions. We show the model implied time series of asset
returns substantially match the first and second conditional moments of observed
return dynamics. In particular, we find the time-series properties of our model
generated equity premium, which may be regarded as an index measure of re-
vealed uncertainty, relates closely to those of the macroeconomic uncertainty in-
dices developed recently in Jurado, Ludvigson, and Ng (2015) and Carriero, Clark,
and Marcellino (forthcoming).
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1. Introduction

This paper seeks to assess the quantitative impact of ambiguity on financial asset re-
turns and prices, in particular their dynamic paths, conditioned on observed historical
growth rates. Ambiguity refers to uncertainty about the “true” probability distribution
governing future consumption and dividend outcomes. The decision maker’s ambigu-
ity attitude determines how and to what extent such uncertainty affects his choices. Our
goals are two-fold: to connect the macroeconomic uncertainty as it obtained on the path
of history to the movements in asset returns and prices along that path and to assess
quantitatively the role of ambiguity sensitivity in that connection. To serve these goals,
we incorporate two components in our analysis. One, we only consider conditional un-
certainty at information sets adapted to the path of observed historical macroeconomic
growth rates, as opposed to counterfactual, simulated sample paths. Two, our model of
agent’s preferences departs from standard expected utility solely by allowing for sensi-
tivity to ambiguity; take that away, and the agent’s preferences reduce to standard ex-
pected utility. These two components, together with the demonstration that they alone
are sufficient to substantially explain a range of asset return dynamics, distinguish the
contribution in this paper.

Ambiguity-averse agents are inclined to choose actions whose consequences are
more robust to the perceived ambiguity, for example, a portfolio position whose (ex
ante) value is relatively less affected by the uncertainty about probability distribution
governing the future payoffs.1 An important reason why ambiguity may be pervasive in
economic and financial decision making is model uncertainty. For example, a typical
professional investor may have different forecasting models for the same variable or dif-
ferent parameter estimates for the same model, all of which are plausible on the basis of
historical data. If the models make distinct (probabilistic) forecasts about key variables
of interest, it is natural to seek a portfolio that accounts for differences in the agent’s
outcome across the range of forecasts rather than optimizing exclusively to the forecast
from a single model as argued, for example, in Hansen (2007).

This paper considers a standard single agent, Lucas-tree, pure-exchange economy
with two less standard assumptions. First, the agent’s belief about the consumption and
dividend process is ambiguous, that is, in each period, he is uncertain about the ex-
act probability distribution governing the realization of consumption and dividends in
the following period. Furthermore, this belief is dynamic, evolving as the agent learns
from history. Second, the agent’s preferences are ambiguity-sensitive, modeled using the
smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005), Klibanoff, Mari-
nacci, and Mukerji (2009) (henceforth KMM2005, KMM2009).

The assumed source of the ambiguity in the agent’s beliefs is the occurrence of peri-
odic, temporary changes in the probability distribution governing next period’s growth

1See Dow and Werlang (1992), Epstein and Wang (1994), Mukerji and Tallon (2001), Caballero and Kr-
ishnamurthy (2008), Chen, Ju, and Miao (2014), Gollier (2011), Boyle, Garlappi, Uppal, and Wang (2011),
Hansen and Sargent (2010), Maccheroni, Marinacci, and Ruffino (2013), and Uhlig (2010), inter alia. Sur-
veys of the related literature may be found in Gilboa and Marinacci (2016) (decision theory) and Mukerji
and Tallon (2004) (applications).
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outcome due to the effect of the business cycle. These transient deviations are assumed
to be governed by an autoregressive (AR(1)) latent variable. The agent is, however, un-
sure about the value of the persistence parameter of the AR(1) process since, even with a
large sample of growth rates, it is difficult to distinguish the case where the latent growth
state is highly volatile but moderately persistent, from the case where the state is less
volatile but highly persistent. Uncertainty about persistence, in turn makes it harder to
estimate the evolving location of the latent variable precisely. Furthermore, depending
on the observed history, the imprecision of the estimate of the location will vary over
time, making the uncertainty about the probability distribution governing next period’s
growth vary over time.

The ambiguity-averse agent’s robustness concerns generate, endogenously, doubt
and pessimism, to use the language of Abel (2002). The portfolio choice of the ambiguity-
averse agent in the model may be understood as that of an expected utility agent with
an “as if” (probabilistic) belief that is more uncertain and pessimistic than the one ob-
tained by objective inference, in the standard fashion, from data. Moreover, the endoge-
nous accentuation of doubt depends on the observed history and the level of ambiguity
aversion, making the severity of the effect of uncertainty endogenously time-varying. For
instance, after a negative shock that follows a series of “normal” ones, the agent behaves
as if the uncertainty is more severe and more persistent than what is implied by pure
Bayesian inference (and the opposite, if it were a positive shock that broke the normal
sequence). The level of ambiguity aversion is calibrated to match the average risk free
rate (no other moment is used); all other parameters are either inferred/estimated from
the history or fixed at values widely used in the literature.

We present two kinds of results on model implied conditional moments of rates of
return and price-dividend ratio: (time-)averages of the moments over the sample period
(1978–2011) and time series of the moments over the same sample period, all based
on conditional uncertainty at information sets reconcilable with historical growth data.
We compare the level, volatility, and dynamics of the model implied rates of return and
price-dividend ratio to their counterparts in U.S. data.

The model generated conditional equity premium is a measure of conditional
macroeconomic uncertainty as revealed by the behavior of the agent in the model. We
show its time-series properties match those of the purely statistical index of macroeco-
nomic uncertainty, recently developed in Jurado, Ludvigson, and Ng (2015) and Carriero,
Clark, and Marcellino (forthcoming). Our model gives a theory of why an agent makes
decisions following a positive shock that (endogenously) underplays the uncertainty
and its persistence, while following a negative shock, behaves as if a more severe and
a more persistent shock were in play, thus explaining a key feature of the index and re-
lated findings of the recent literature on uncertainty shocks. In particular, the counter-
cyclical persistence of equity premium and (revealed) uncertainty speaks directly to the
mechanism of ambiguity aversion in our model.

Altogether, our contribution is to demonstrate that model/parameter uncertainty
and learning coupled with ambiguity aversion, by themselves, create a quantitatively
plausible and intuitively meaningful mechanism for explaining the relationship be-
tween macroeconomic uncertainty and the dynamics of equity prices and returns.
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The time-averaged conditional moments predicted by the model match data moments
as well as the best matches in the literature (e.g., in Collin-Dufresne, Johannes, and
Lochstoer (2016) and papers cited therein). Our more distinctive results are those on
the predicted time series of conditional moments statistics. Two key stylized facts our
model matches are the countercyclicality of conditional equity premium and the pro-
cyclicality of conditional (excess) return volatility. Models in the literature have found it
hard to explain these facts without introducing at least one of the following elements:
(a) some exogenously time varying uncertainty, such as, time dependent, stochastic
volatility; (b) aversion to later resolution of risk via an intertemporal elasticity of substi-
tution (IES) that is significantly greater than unity; (c) habit formation; all elements that
are not part of our mechanism.2 A reason to be interested in the mechanism posited in
the present paper alongside these “best performing” alternatives in the recent literature
is that the alternatives rest on assumptions that have been empirically questioned, and
hence cannot be regarded as the “last word” on the subject. At the same time, the first
findings on the estimation and calibrations of ambiguity aversion in the context of asset
pricing are promising.

The route of relying on exogenously posited stochastic volatility of aggregate con-
sumption has been questioned because “the evidence for heteroskedasticity in aggre-
gate consumption is fairly weak,”(Campbell (2000)). In a similar vein, Lettau and Ludvig-
son (2010) and Ludvigson (2012) in their surveys argue that the evidence for stochastic
volatility suggests it has neither the intertemporal shape nor the size required for mod-
els based on stochastic volatility to fit facts about inter-temporal variation in return mo-
ments. A more fundamental difference between stochastic volatility based asset pricing
models and ours is that in the former there is no explanation, as such, of the variation
in volatility: in those models agents are more uncertain when they believe they are in a
state where future economic shocks are assumed (exogenously) to be more volatile. In
contrast, our model gives a theory why an agent makes decisions following a positive
shock that underplays the inferred uncertainty and, after a negative shock that follows
a series of “normal” ones, behaves as if the uncertainty is more severe and persistent,
than pure Bayesian inference would suggest.

It is well documented that the empirical evidence on whether IES is greater than 1 is
very mixed (see discussions, e.g., in Beeler and Campbell (2012) and Bansal, Kiku, and
Yaron (2012).) Furthermore, recently, Epstein, Farhi, and Strzalecki (2014) argue using
a calibration exercise, that the IES > 1 values applied in the recent asset pricing litera-
ture imply a very implausible premium for early resolution of uncertainty. While we do
not know of conclusive direct evidence for or against habit formation, there is some ev-
idence against the key underlying mechanism. Neither in data (nor in the model in the
present paper) does lagged consumption growth predict the future price-dividend ratio,

2Bansal and Yaron (2004) incorporate (a) and (b); Campbell and Cochrane (1999) have (c); Drechsler
(2013) incorporates model uncertainty, learning, ambiguity aversion (a) and (b); Collin-Dufresne, Johannes,
and Lochstoer (2016), model uncertainty, learning and (b); Ju and Miao (2012) and Hansen and Sargent
(2010) incorporate model uncertainty, learning, ambiguity aversion and (b). We discuss more details of this
related literature in Section 5.
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while in the habit-formation model it predicts the future price-dividend with an R2 of
over 40%.

A recent study, Gallant, Jahan-Parvar, and Liu (2015), which uses macroeconomic
and financial data to estimate the size of ambiguity aversion (as a parameter in a
consumption-based asset pricing model based on an elaborated version of the smooth
ambiguity model), finds that the estimate “suggests ample scope for ambiguity aversion”
to explain asset pricing facts. In the present paper, in Section 4, we conduct a calibration
exercise to argue that the size of the ambiguity aversion parameter we apply has very
plausible implications for uncertainty premia.

We view the preceding discussion about alternative models and ours as not an ar-
gument for considering the approach taken here to be the best, but as showing that it
merits careful study and development. The rest of the paper is organized as follows. Sec-
tion 2 introduces the relevant details of smooth ambiguity preferences, describes and
analyzes the amended Lucas tree economy, assuming a general form of beliefs. In a sub-
section, we describe and motivate the specific model of ambiguous beliefs we adopt.
Section 3 first outlines the numerical solution method we employ, then identifies the
key qualitative mechanisms at work in our model and finally presents and explains the
quantitative implications of our model for asset prices and returns in the light of the
mechanisms identified. In Section 4, using a thought experiment, we show that a de-
cision maker with preferences and beliefs calibrated to match those of our agent’s will
demand a total uncertainty premium (for the Lucas tree) that is well within the bounds
of the amounts widely considered as plausible. Section 5 discusses the more closely re-
lated literature. A final section concludes. The Appendix gathers several items, includ-
ing, details of parameter values used in the model, details of the model including the
specification of beliefs, how they are updated, and the formulae for rates of return.

2. The model

2.1 Agent’s preferences: Recursive smooth ambiguity

We follow KMM2009, which develops a dynamic, recursive version of the smooth am-
biguity model in KMM2005. In KMM2009, the basis of the dynamic model is the state
space, the set of all observation paths generated by an event tree, a graph of deci-
sion/observation nodes. The root node of the tree, s0, branches out into a set of im-
mediate successor nodes, s1 ≡ (s0� s1) where s1 ∈ S1, the set of possible observations at
time t = 1; and, so on. The decision maker (DM) chooses between consumption plans
f , each of which associates a payoff to a node st in the event tree. The DM is uncertain
about which stochastic process governs the probabilities on the event tree. The domain
of this uncertainty is given by a parameter spaceΘ � θ, the set of unobservable parame-
ters, over which the DM makes inference at each st . We denote by πθ(st+1 | st) the prob-
ability under likelihood distribution πθ that the next observation will be st+1, given that
node st is reached. The decisions maker’s prior on Θ is denoted by μ. KMM2009 give
assumptions such that recursive smooth ambiguity preferences over plans f at a node st

are updated and represented as:

Vst (f )= u(f (st)) +βφ−1
[∫
Θ
φ

(∫
St+1

V(st �st+1)(f )dπθ
(
st+1 | st))dμ(

θ | st)]� (1)
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where Vst (f ) is a recursively defined (direct) value function, u characterizes attitude to
risk, β is a discount factor,φ is a function characterizing the decision maker’s ambiguity
attitude, while μ(· | st) denotes the Bayesian posterior. A concave φ characterizes am-
biguity aversion, which is defined to be an aversion to mean preserving spreads in the
distribution over expected utility values. In general, the model does not impose reduc-
tion between the second-order belief μ and the first-order probabilities πθ’s; reduction
only applies whenφ is affine, representing an ambiguity neutral Bayesian expected util-
ity maximizer.

Ambiguity aversion in this model is equivalent to the DM behaving as more risk
averse when choosing between bets on θ than when choosing between objective lot-
teries. That is, the DM strictly prefers a lottery which yields a unit payoff with objective
probability m (and 0 with probability 1 −m) to a (same stakes) bet on an event T ⊂ Θ,
where μ(T) = m and also strictly prefers the complementary lottery to the bet on the
complementary event.3 The behavior is exactly analogous to the modal behavior in the
Ellsberg two-urn example: preference for betting on a draw from the urn with a known
50 : 50 mix over betting on a draw from the urn with unknown mix. Hence, the second-
order measure μ cannot be calibrated with a lottery; behaviorally, μ is not treated as an
objective probability. The standard interpretation is that the DM views his belief about
events such as T to be less reliable than an objective probability.

2.2 A Lucas-tree economy and Euler equations with general beliefs

There is an infinitely-lived agent, with recursive smooth ambiguity preferences, con-
suming a single good. He can trade in a short lived risk-free asset, whose holding and

price at time t are denoted bt and Pft , respectively. There is also an asset (whose quan-
tity is normalized to one unit) that yields a stochastic dividend at each period, Dt . The
asset with uncertain dividend (the “risky” asset) has a price Pt at time t, and its hold-
ing is denoted et . Consumption at time t is denoted Ct . As in Bansal and Yaron (2004)
and Campbell (1996), we will assume that dividend and consumption follow different
stochastic processes, thus departing from the original Lucas tree economy. The gap be-
tween consumption and dividend is due to some (exogenously given) labor income lt .4

Equilibrium will require that at each time Ct = lt +Dt .
Next, we derive Euler equations that define equilibrium prices in this economy. At

a node {Cτ�Dτ}tτ=1, let μt denote the second-order belief, on parameters in Θ defining
first-order probability distributions on immediate successors (Ct+1�Dt+1). Beliefs are
updated as a function of the observed realizations of the consumption and dividend
signals according to Bayes’ law. Wealth at time t + 1 is Wt+1 = (Pt+1 + Dt+1)et + bt +
lt+1, and the budget constraint in period t is given by Ct =Wt − Ptet − Pft bt . The agent’s
maximization problem may be described in terms of a recursive Bellman equation given
by:

J(Wt�μt)= max
Ct�bt �et

u(Ct)+βφ−1[Eμt (φ(
Eπθ

(
J(Wt+1�μt+1)

)))]
� (2)

3See Section D in the Appendix for details.
4In other words, we assume directly a stochastic process for Ct andDt , leaving labor income lt implicit.
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subject to the budget constraint and the law of motion of the two “state” variables
(wealth and beliefs), where J(Wt�μt) denotes a recursively defined indirect value func-
tion (as opposed to the direct value function in equation (1)). An equilibrium of this
economy is given by {(Pτ�Pfτ � eτ�bτ�Cτ)}∞τ=1 such that the consumption and asset hold-
ing processes solve the maximization program and the market clears, that is, et = 1,
bt = 0, Ct =Dt + lt at each t. First-order conditions are given by:

βΥtEμt
[
ξt(θ)Eπθ

(
u′(Ct+1)

)] = P
f
t u

′(Ct)� (3)

βΥtEμt
[
ξt(θ)Eπθ

(
(Pt+1 +Dt+1)u

′(Ct+1)
)] = Ptu

′(Ct) (4)

where Υt =Eμt [φ′(Eπθ(J(Wt+1�μt+1)))] × (φ−1)′[Eμt (φ(Eπθ(J(Wt+1�μt+1))))] and

ξt(θ)= φ′(Eπθ(J(Wt+1�μt+1)
))

Eμt
[
φ′(Eπθ(J(Wt+1�μt+1)

))] � (5)

The function ξt is a Radon–Nikodym derivative effecting a node specific change of
measure, or “distortion,” on the posterior μt , akin to martingale distortions arising in
robust control problems considered by Hansen and Sargent. The distortion is a function
of the continuation expected values obtained at successor nodes. In this paper, we as-
sume φ(x)= −exp(−αx)/α, where the parameter α represents ambiguity attitude. This
specification simplifies the expressions significantly, since we now have Υt = 1. It is also

assumed that u(x)= x1−γ
1−γ . With these specifications, the Euler equations are as follows:

βR
f
t Eμt

[
ξt(θ)Eπθ

[
exp(−γgt+1)

]] = 1� (6)

βEμt
[
ξt(θ)Eπθ

[
Rt+1 exp(−γgt+1)

]] = 1 (7)

⇔ βEμt

[
ξt(θ)Eπθ

[(
exp(zt+1)+ 1

exp(zt)

)
exp(dt+1 − γgt+1)

]]
= 1 (8)

where zt = ln( PtDt ), gt+1 = ln(Ct+1
Ct
), dt+1 = ln(Dt+1

Dt
), the logarithm of price-dividend ra-

tio, rates of growth of consumption and dividend, respectively, while Rft = 1
P
f
t

, Rt+1 =
Pt+1+Dt+1

Pt
denote the risk-free and risky rates of return.

Remark 1. Observe these Euler equations look identical to ones obtained in a stan-
dard Bayesian model except for the inclusion of the distortion function, ξt . The distor-
tion, in the case of ambiguity aversion, increases the (posterior) weight on likelihoodsπθ
with lower expected continuation values, Eπθ(J(Wt+1�μt+1). One could splice together
the one-period ahead predictive distributions, [ξt(θ)×μt(θ)] ⊗πθ(gt+1� dt+1), and con-
struct an overall “as if” unconditional probability distribution over the event tree which
could be reinterpreted as coming from a Bayesian model. However, seen by itself, the
constructed as if distribution cannot be linked to the given set of likelihoods {πθ}θ∈Θ;
indeed, typically, it is not possible to obtain the constructed distribution by starting at
the initial node with a different prior μ′

1 
= μ1 on Θ with μ′
t , t > 1, obtained by updat-

ing in the usual way. Hence, an understanding of the role of ambiguity aversion in the
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modeling exercise is that it provides a link between the subjective as if distribution and
a specification of beliefs about possible data generating the processes ({μt}t � {πθ}θ∈Θ);
beliefs which, in principle, can be objectively reconciled with data.

Remark 2. If φ(· ) were different from an exponential, for example, a power function,
then Υt 
= 1, in general, and hence in such a case the difference between these Euler
equations and the standard set would not simply be the change of measure term ξt(θ).
Thus it is down to our choice of the specification of φ(· ) and of u(· ) that we may in-
terpret our Euler equations as arising from an agent we see in standard macro-finance
models (with the preference over consumption given by a power function who has non-
standard (though Savage–Bayes’ rational) beliefs which may be justified by appealing to
robustness/model uncertainty concerns. This way we can embed our model within that
standard literature and, very much in terms of that literature, motivate and explain its
point of departure and intuition. Given the specification, the point of departure is just
the nonstandard beliefs that can be motivated entirely in terms of robustness concerns,
arguably very reasonable, even normatively compelling, given the model and parame-
ter uncertainty faced by a typical agent in the real world. Furthermore, the fact that the
(nonstandard part of) beliefs is entirely shaped by the history dependent ξt(θ) is the key
that will allow us to make transparent (as will be seen in Section 3.2) the two key mecha-
nisms driving the results, the higher time averages and the endogenously dynamic fluc-
tuation of returns.

A drawback of this specification is that our value function misses a homogeneity
property; note the dependence on (Wt) in (2) and, equivalently, on (Ct) in (10). Thus, the
curse of dimensionality makes numerical analysis of the decision maker’s dynamic pro-
gramming problem more complicated. Numerically, we already have a relatively high
dimension problem. If we were to use a power function specification for ambiguity pref-
erence, wealth in (2) and consumption level in (10) will be factored out. This will not only
reduce the dimension by 1, consumption level will drop out of all pricing equations.

Our modeling choice reflects our belief that the two advantages of the adopted spec-
ification in providing economic motivation and intuition, outweigh the disadvantage of
the ensuing numerical complication. Furthermore, dispensing with homogeneity, a de-
parture from standard practice, required us to be innovative with our numerical method;
these innovations might prove useful in future research.

2.3 Beliefs and how they are applied in the evaluation of the Lucas tree

2.3.1 Description We now describe the specific belief about the Lucas tree economy
that we apply in our analysis. It is assumed the agent believes the growth rate of con-
sumption (gt ) and dividends (dt ) are partly driven by a common latent state, xt , which
evolves according to an AR(1) process with persistence ρ. While it is assumed there is
a single persistence parameter operating through history, the agent is unsure what it is,
believing there are two possible values of the parameter, high (ρh) or low (ρl). At time t,
the agent puts probability ηt on persistence being low and (1 −ηt) on persistence being
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high. Each possible process is:5

xk�t+1 = ρkxk�t + σxkεxk�t+1�

dk�t+1 = d̄+ψxk�t+1 + σdkεdk�t+1 = d̄+ψ(ρkxk�t + σxkεxk�t+1)+ σdkεdk�t+1�

gk�t+1 = ḡ+ xk�t+1 + σgkεgk�t+1 = ḡ+ ρkxk�t + σxkεxk�t+1 + σgkεgk�t+1

(9)

where (εgk�t+1� εdk�t+1� εxk�t+1)
′ ∼N(0� I), for k= l�h. We denote using, ḡ, d̄ the long-run

growth rate of consumption and dividend, respectively. The shock xk�t is the temporary
deviation from the trend (identified by the long-run growth rate). The interpretation is
that the mean of the distribution on growth is partly fixed by the long-run trend and
partly by a temporary shock to productivity due to the business cycle. The business cy-
cle effect on the productivity across the economy is not observed directly. Though an
innovation in each period, today’s business cycle shock is, naturally, related to previ-
ous period’s shock, and, so, is modeled by a autoregressive latent variable. The factor
ψ accounts for the empirically observed greater volatility of dividend relative to that of
consumption.6 Note, there is a different tuple of volatility parameters (σgk�σdk�σxk) as-
sociated with each possible value of persistence, ρk.

The agent is assumed to know the values of parameters (ḡ� d̄�σgk�σdk�σxk�ψ). The
agent observes, contemporaneously, the consumption and dividend growths. Given
xk�t , ρk, and the current node {(Cτ�Dτ)}tτ=0 the probability distribution over the im-
mediate successor nodes, identified by (gt+1� dt+1), is the product of two conditionally
independent, given xk�t and ρk, Normal distributions,

gk�t+1 ∼N(
ḡ+ ρkxk�t�σ2

gk
+ σ2

xk

)
and dk�t+1 ∼N(

d̄+ψρkxk�t�σ2
dk

+ σ2
xk

)
�

This product distribution is the typical first-order distribution, the object πθ(· | st) in the
abstract KMM formulation, with (ρk�xk�t) playing the role of the unobserved parameter
“θ.” (Note, since the volatilities σgk , σdk , σxk may vary with k, the parameter fixes both
mean and variance.)

Thus, the domain (i.e., the support) of the second-order uncertainty at time t is an
union of two component sets, {ρlxl�t | xl�t ∈ R} ∪ {ρhxh�t | xh�t ∈ R}. The agent’s prior be-
lief ascribes a measure to each component set: the measure on the first component is
given by η0 ⊗ N(0�σ2

0 ) and that on the second by (1 − η0) ⊗ N(0�σ2
0 ). The agent up-

dates beliefs using Bayes’ rule, based on the history of growth realizations and the pre-
sumption that the economy conforms to one of the two processes described in (9). Let
x̂k�t ≡ E[xk�t | gk�1� � � � � gk�t � dk�1� � � � � dk�t] denote the expectation of xk�t conditional on
the history of growth rates up to t if the beliefs were updated assuming ρ = ρk is the
data generating process. The filtered latent state corresponding to process k, x̂k�t , is ob-
tained by applying the (steady state) Kalman filter that takes the process with ρ = ρk
as the “true” data generating process. The agent’s posterior belief then ascribes a mea-
sure on the first component set given by ηt ⊗ N(x̂l�t �Ωl) and that on the second by

5When η0 = 0, the model reduces to the CASE I in Bansal and Yaron (2004).
6This modeling device was introduced in Abel (1999) and is followed widely in the finance literature and

may be interpreted as the “leverage ratio” on (expected) consumption growth.
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(1 − ηt)⊗N(x̂h�t�Ωh), where Ωk, k= l�h, denotes the steady state variance associated
with the Kalman filter based on the process with ρ= ρk andηt shows the posterior belief
on ρl. Hence, the agent’s posterior may be summarized by the tuple, (x̂l�t � x̂h�t �ηt).7

We now turn to the evaluation of the Lucas tree with the specified beliefs. Denote
by x̂(i)k�t+1, i = l�h, k = l�h, the agent’s forecast for the (one period ahead) update using
a Kalman filter which assumes the model with ρ = ρk as the data generating process,
when the data is actually generated by the ρ= ρi model. Correspondingly, η(l)t+1 (respe.,

η(h)t+1) is the posterior probability that the low persistence process is the correct model
when the low (high) persistence model is the data generating process. The direct con-
tinuation value is a function of the current node but does not distinguish between two
histories which have the same current consumption and same current belief, summa-
rized by (x̂l�t � x̂h�t �ηt). The function is defined by the following recursion:

V (Ct; x̂l�t � x̂h�t �ηt)= u(Ct)+βφ−1(Vt+1)� (10)

where

Vt+1 ≡ ηtEx̂l�t
[
φ

(
Exl�t

[
V

(
Ct exp(gl�t+1)� x̂

(l)
h�t+1� x̂

(l)
l�t+1�η

(l)
t+1

)])]
+ (1 −ηt)Ex̂h�t

[
φ

(
Exh�t

[
V

(
Ct exp(gh�t+1)� x̂

(h)
h�t+1� x̂

(h)
l�t+1�η

(h)
t+1

)])]
�

To see how the KMM representation is being implemented, we note the following.
The argument of a φ(·) is an expectation of the continuation value/utility at successor
nodes, where the expectation Exk�t is taken with respect to the typical first-order distri-
bution described earlier, defined by fixing the “parameter pair” (ρk�xk�t). The measure
on (ρk�xk�t) is given by ηt�k ⊗N(x̂k�t�Ωk) and we calculate the expectation of the func-
tionsφ(·) by applying this measure, which corresponds to the second-order measure μt
in the KMM representation.

2.3.2 Motivation for the beliefs model and parameter choice Hamilton (1989) pio-
neered the idea of modeling consumption growth as an autoregressive process, with
parametric shifts occurring through Markovian transitions on latent states. That pa-
per also showed that the idea was a particularly good fit for the U.S. growth experience
through the improved facility of capturing the effect of business cycles. Hence, the ba-
sic functional form of (9) with a given ρk, is a plausible starting point for describing the
beliefs of an investor for whom the key source of uncertainty is the business cycle.

Adding uncertainty about ρk to (9) is empirically justified and improves it as a frame-
work for understanding and quantifying ambiguity about macroeconomic growth; this
enables (9) to encapsulate a theory of why it is difficult to precisely estimate the proba-
bility distribution of growth, and of why and how that imprecision will vary with history.
The key is that the two uncertainties, about persistence ρk, and about xk�t , which con-
trols the mean of the distribution, go hand in hand: they interact and reinforce each
other to make the belief about the “true” growth distribution unreliable and inference
about it imprecise. Shephard and Harvey (1990) explains that it is very difficult (in that

7See Section B in the Appendix for further details about the updating.
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it would take an inordinately long series of observations) to determine whether the true
growth process is a very persistent process where the persistent component has a small
volatility or whether it is a moderately persistent process with a persistent component
that has a large volatility. Thus, uncertainty about the volatility of the latent variable
makes the persistence parameter difficult to estimate. Indeed, even after almost a cen-
tury of data the learning, far from settling down on one value of ρk, produces posteriors
ηt that have varied continually between 0�3 and 0�7. In turn, the uncertainty about ρk de-
grades the inference on the evolving latent variable xk�t . The expectation of this variable
is tracked by the Kalman filter, but the specification of the Kalman filter is determined
by the value of the persistence parameter. Since that is not reliably known, the Kalman
forecast is imprecise.

This understanding of the uncertainty described by (9) motivates how it is repre-
sented in the different parts of the KMM preference functional. Given (ρk�xk�t), the un-
certainty about the parameters of the distribution on growth is almost objective since
the other parameters fixing the distribution may be reliably estimated given this knowl-
edge and the run of data. On the other hand, the uncertainty about (ρk�xk�t), though
probabilistically represented, may be viewed as a deeper uncertainty, far less reliably es-
timated and more variable. Thus, the former uncertainty appears as a first-order belief
in the KMM functional (i.e., “inside” the φ) whereas the latter uncertainty is treated as a
second-order uncertainty (i.e., “outside” the φ).

There are two reasons for choosing a two point support for the uncertainty about
persistence. One is computational limitation (with more than two points the number of
“state variables” in the dynamic problem that we have to solve goes beyond the state
of art capabilities, as we not only need to introduce other persistence parameters, but
also to keep track of the updated latent variable in each regime). The second is that a
two-point support is an efficient way of capturing Shephard and Harvey’s (1990) key
insight that the crucial empirical confound underlying the uncertainty is the confound
between a high persistence combined with low volatility parameters on one hand and
low persistence combined with larger volatility parameters, on the other.

We were guided in part by findings in the literature, and in part by our own em-
pirical investigations, in choosing the values of ρk. One substantial strand of literature
(the long run risk literature, pioneered in Bansal and Yaron (2004)) argues there is strong
justification, based on asset pricing moments, for assuming a high value of ρ. Another
strand points out that pure consumption growth data suggest a more moderate value.
It is generally agreed the estimates are quite fragile. Using annual data, we set ρh = 0�85
as the standard case (and 0�90 for robustness checks), which correspond to the end-
points of the interval of (annualized) values suggested by this literature,8 and ρl = 0�30,
motivated by studies in Beeler and Campbell (2012) and Constantinides and Ghosh

8For example, Bansal and Yaron (2004) calibrate ρ for a monthly frequency which corresponds to the 0�85
annualized value. We used annual series rather than monthly/quarterly to enable us to include the Great
Depression in the agent’s memory (through the time series estimates of the parameters and evolution of η).
Findings of Pohl, Schmedders, and Wilms (2015) show that price-dividend ratio is approximately log linear
for persistence below 0�95. For higher level of persistence (such as for monthly data), important nonlinear
effects appear. Thus our results might be missing some of these effects that appear at higher frequency.



956 Collard, Mukerji, Sheppard, and Tallon Quantitative Economics 9 (2018)

(2010).9 Our own investigations found, setting ρl = 0�3 and ρh = 0�85,ηt is approximately
50% in 1977, the beginning of the model evaluation period, and is consistently in the
interval [0�3�0�7] throughout the period 1978–2011, demonstrating how difficult it is to
separate the two persistence models on the basis of growth data.10

In our model, the domain of ambiguity consists of the x’s and ρ’s. It is evident from
the first line of (9) the x’s are Markovian states. So, the agent would never learn the con-
temporary x and this part of the ambiguity persists even in the steady state. However, the
uncertainty about ρwill not last in steady state, the true value will be learnt eventually. In
practice, because of the problem pointed out by Shephard and Harvey, learning does not
occur fully even with long runs of data (as we see in our sample and even in Hansen and
Sargent (2010), which applies a quarterly series from 1947). Having a Markovian process
for the persistence would be better to the extent that the entire ambiguity then will per-
sist in the steady state and our analysis would be a full steady state analysis. However, for
the moment this proves to be technically intractable since we lose the linear updating
formulation the present model allows.

The time-series parameters of the model (except for the persistence parameters ρk,
and the leverage-ratio parameter ψ) were estimated using maximum likelihood on an-
nual U.S. data from 1930 to 1977 (see Section A in the Appendix for details about the
data set and the parameter values.) The remaining years in the data set, 1978–2011, were
used in the evaluation of the model. Our aim was to have the longest run of data for the
evaluation of the model. Parameter estimates change significantly through the 70s be-
cause of the macroeconomic events. By starting the evaluation at 1978, the maintained
assumption that the agent behaves as if he knows the parameter values of the model
becomes more credible.11 Turning to preference parameters, in all cases the ambiguity
aversion parameter α was calibrated to produce a real risk-free rate of 1�5%, averaged
over t = 1978� � � � �2011, which is the average observed rate in that period. Section 4 dis-
cusses whether the calibrated level is plausible for an individual agent. No other mo-
ments were used in the choice of α. Choice of the other preference parameters follows
the standard practice in the literature.

9Constantinides and Ghosh (2010) provided a GMM estimate (based on the years 1931–2006) of ρ= 0�32
(see their Table 4). Though we set ρl = 0�30, (we found) values between 0�25 and 0�40 have virtually identical
posteriors (and implications for rates of returns).

10Bidder and Dew-Becker (2016) argued a case for embedding the LRR model into an ambiguity setting

as follows:

“A criticism of the long-run risk model has always been that it depends on a process for consumption

growth that is difficult to test for. We turn that idea on its head and argue that it is the difficulty of

testing for and rejecting long-run risk that actually makes it a sensible model for investors to focus

on.”

11This sample split is the benchmark split and our results everywhere in the paper are based upon this,
unless stated otherwise. Table 3 reports on the robustness of our results to alternative learning assump-
tions that would be implied by splitting the sample differently. Different sample splits imply the learning is
different because the parameter estimate the agent learns is potentially different due to being based on a
different sample and furthermore, the different estimates imply different filtered values of x and updates of
η because the formula of the Kalman filter is a function of these estimates (see equations (21) to (26)).
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3. Implications of the model for asset returns and prices

3.1 Solution method

We pursue the following methodology to numerically solve our model. We solve the
model using a projection method, which allows us to express asset prices as a function
of the state variables. We then evaluate the state variables at the observed exogenous
variables (the history of GDI and dividend growths), which allows us to generate a time-
series of predicted asset prices.12 Using this, we are able to match the equity premium,
the risk-free rate and the price-dividend ratio. We now give more detail on how the so-
lution method works.

An approximate solution to the model is obtained by using the minimum weighted
residuals method proposed by Judd (1992).We compute two approximation functions:
one for the risky rate,R, and one for the value function, V , which is required to compute
the belief distortion. Both are approximated by a parametric function of the form

�y(Xt)= exp
( ∑
ic�ih�i��iη∈I

θ
y
ic�ih�i��iη

Hic
(
ϕc(Ct)

)
Hih

(
ϕh(x̂h�t)

)
Hi�

(
ϕ�(x̂��t)

)
Hiη

(
ϕη(ηt)

))

whereXt ≡ (Ct� x̂h�t � x̂��t �ηt) denotes the vector of state variables and y ∈ {V �R}. We use
a complete basis of orthogonal polynomials, such that the set of indices I is defined13

by

I = {
iz = 1� � � � � nz;z ∈ {C�h���η} | ic + ih + i� + iη ≤ max(nc�nh�n��nη)

}
�

Because the model is not homogeneous, we could not deflate the variables, and the sup-
port for the approximation is potentially non bounded from above. We therefore rely on
Hermite polynomials which are defined over R+. Accordingly, Hι(·) denotes a Hermite
polynomial of order ι and ϕz(·) is a strictly increasing function that maps R into R. This
function is used to map Hermitian nodes into values for the vector of state variables,
Xt ≡ (Ct� x̂h�t � x̂��t �ηt).14 The parameters θy , y ∈ {V �R}, are then determined by a mini-
mum weighted residuals method. More precisely, θy corresponds to the vector of param-
eters that solve the projection equation of the residuals15 of, respectively, the Bellman
equation, RR(θ

V ;Xt), and Euler equation, RR(θ
R�θV ;Xt) on Hermite polynomials.16

12Hence, we evaluate the model on the actual, observed, history. If we chose to simulate history, we
would need to present results based on simulations of two sets of histories, generated by assuming the true
persistence to beH and L, respectively.

13In our application, we use (nc�nxh �nx� �nη)= (5�2�2�2) for the value function and (nc�nxh �nx� �nη)=
(3�3�3�3) for the interest rate. We use 8 nodes in each dimension (4096 nodes).

14We use this function in order to be able to narrow down the range of values taken by the state variables,
such that the approximation performs better when evaluated on the data. The transform functions ϕ(·)
are assumed to be linear ϕz(x) = κzx where κz , z ∈ {c�h� ��η} is a constant chosen such that the focus of
the approximation is put on values of state variables taken in the data. More precisely, we set κc = 2�0817,
κh = 40, κ� = 350, and κη = 1.

15Information can be found on the journal website at http://qeconomics.org/supp/708/supplement.pdf
for more details on these residuals.

16Note that while the Bellman equation only depends on the parameters θV , the Euler equation depends
both on θR and θV , through the belief distortion. We therefore first solve the value function approximation
problem, and use the result vector of parameters θV to solve for the risky rate problem.

http://qeconomics.org/supp/708/supplement.pdf
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More precisely, we solve17

〈
RV

(
θV ;Xt

) | H(Xt)
〉 = ∫

RV

(
θV ;Xt

)
H(Xt)Ω(Xt)dXt = 0�

〈
RR

(
θR�θV ;Xt

) | H(Xt)
〉 = ∫

RR

(
θR�θV ;Xt

)
H(Xt)Ω(Xt)dXt = 0

where H(Xt) ≡ Hic (ϕh(Ct))Hih(ϕh(x̂
h
t ))Hj(ϕ�(x̂

�
t ))Hk(ϕη(ηt)) with ic + ih + i� +

iη ≤ max(nc�nh�n��nη) and Ω(Xt) ≡ ω(ϕh(Ct))ω(ϕh(x
h
t ))ω(ϕ�(x

�
t ))ω(ϕη(ηt)) where

ω(x) = exp(−x2) is the appropriate weighting function for Hermite polynomials. This
system of equations is solved by means of a Gauss–Newton algorithm.

This problem involves computing various integrals. These integrals are approxi-
mated using a monomial approach whenever we face a multidimensional integration
problem (inner integrals in the computation of expectations and projections) and a
Gauss Hermitian quadrature approach when dealing with unidimensional integrals
(outer integrals in the computation of expectations).18 The number of nodes used in the
unidimensional quadrature method used in the outer integral involved in the computa-
tion of expectations is set to 12. In the case of the multidimensional integrals, we use a
degree 5 rule for an integrand on an unbounded range weighted by a standard normal.

We follow Judd (1992) and assess the accuracy of our approximation by looking at
the Euler equation error

E(Xt)= u′−1(βEt+1)

Ct
− 1�

Since we are mostly interested in the empirical properties of the model, we mainly eval-
uate the accuracy of the solution for the data. This measure then gives us the error an
agent would make by using the approximate solution for the risky rate as a rule of thumb
for deciding investing one additional dollar as asset holding. This quantity is computed
for each value of the state variables in the data. Then three measures, formerly proposed
by Judd (1992) are considered

E1 = log10
(
E

(∣∣E(Xt)∣∣))� E2 = log10
(
E

(
E(Xt)2

))
� and E∞ = log10

(
sup

∣∣E(Xt)∣∣)�
The first measure corresponds to the average absolute error, the second one corre-
sponds to the quadratic average of the error, while the last one reports the maximal
error an agent would make using the rule of thumb. All measures are expressed in log10
terms, which furnishes a natural way of interpreting the accuracy measure. For instance,
a value of E1 equal to −4 indicates that an agent who uses the approximated decision
rule would make—on average—a mistake of one dollar for each $10�000 invested in the
risky asset. These measures are evaluated using the data and, therefore, outside the grid
points that are used to compute the approximation. Since our ultimate goal is to assess
the quantitative relevance of the model, we need to make sure that our approximation

17It should be clear to the reader that the integral refers to a multidimensional integration problem, as
we integrate over C, xh, x�, and η.

18See Judd (1998), Chapter 7.
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Table 1. Accuracy of the numerical solution. This table reports the measure of accuracy for the
Euler equation. In each case, α was set such that the model generates a risk-free rate of 1�5%.

Known Persistence Unknown Persistence

γ α E1 E2 E∞ α E1 E2 E∞

2�0 11�51 −4�98 −8�18 −4�52 17�75 −3�63 −5�63 −3�34
2�5 7�24 −5�54 −9�29 −5�09 11�35 −4�07 −6�50 −3�77
3�0 4�21 −8�66 −15�59 −8�05 6�65 −5�78 −9�93 −5�48

performs well for the data we use. Results for both models are reported in Table 1 and
show that the approximation is accurate.

Let us first consider a special case of our model where ηt = 0, “known persistence,”
that is, the agent acts as if he knew the persistence parameter ρ were equal to 0�85. In
this case, taking γ = 2 for example, an agent who uses the approximate solution based
on consumption claims would make, on average, a one dollar mistake for every $95�500
invested in the assets, while the maximal error would be of the same order. In the general
case of the model, with unknown persistence, the performances of the approximation
slightly deteriorate. This accuracy loss is essentially due to the structure of the problem.
When persistence is known, the model is almost log linear, and our approximation per-
forms remarkably well. In the full model, the quasi log linearity is lost as we have to com-
pose probabilities of each model. Increasing the degree of the polynomials yields some
(marginal) improvements but (i) leave the results almost unchanged and (ii) comes at
a substantial computational cost. We therefore kept the degrees of the polynomials as
they are.

3.2 Understanding the mechanism of ambiguity aversion

A good way to understand the key channels through which ambiguity aversion affects
asset returns in our model is by understanding how the distortion function, ξ, shown in
equation (5) shapes the “as if” belief of the agent, that is, the (probabilistic) belief which
supports the action chosen by the agent in equilibrium. We identify two main mecha-
nisms. The first works through the endogenous pessimism and added doubt that the “as
if” belief embodies, at any one point in time, compared to the belief of an agent with
rational expectations based on the processes underlying the specified belief model. The
second mechanism is an endogenous accentuation of the cyclical variation in uncer-
tainty.

3.2.1 Endogenous pessimism and doubt The intuition behind the first channel can be
more transparently understood in the special case of the model of beliefs where there is
no uncertainty about the persistence (e.g.,η0 = 0). Under this assumption, the argument
(xl�t �ηt) drops out of the value function described in (10), and the distortion is given as
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(suppressing “k” subscripts):19

ξt(xt | Ct� x̂t;α)≡ exp
(−α(

Ext
(
V (Ct+1; x̂t+1)

)))
Ex̂t

[
exp

(−α(
Ext

(
V (Ct+1; x̂t+1)

)))] � (11)

The effect of ξt is to create an “as if” posterior on xt , that is, a distorted posterior,
μ̃t ≡ ξt(xt) ⊗ N(x̂t�Ω), where x̂t is the filtered value at time t. In the case of ambigu-
ity aversion, that is, α > 0, it is evident from equation (11) that μ̃t puts relatively greater
probability mass (compared to μt ) on xt ’s that generate probability distributions associ-
ated with lower expected continuation values, Ext (V (Ct+1; x̂t+1)). The distorted poste-
rior gives rise to an “as if” conditional one-step-ahead distribution on growth which we
call the twisted (predictive) distribution:

gt+1 ∼ ξt(xt)⊗N(x̂t�Ω)⊗N(
ρxt + ḡ�σ2

x + σ2
g

)
� (12)

When ξt(xt) = 1, the formula (12) describes the belief of a Savage–Bayes’ rational (or,
equivalently, ambiguity neutral) agent, a useful benchmark. Such an agent, whom we
dub “Bayesian,” is uncertain about xt with belief about growth described by a mixture
of normals. The twisted distribution, on the other hand, describes the predictive “as if”
belief of an ambiguity-sensitive agent.

Another useful benchmark is the predictive belief of an agent with “rational expecta-
tions,” narrowly defined. This distribution, N(ρx̂t + ḡ�σ2

x + σ2
g), arises from a posterior

that is degenerate on x̂t . As Figure 1 shows, compared to the rational expectations dis-
tribution, the twisted distribution has a lower mean and a larger spread. Abel (2002)
argued that one can account for the observed equity premium and the risk-free rate by
invoking pessimism and doubt in an otherwise standard asset pricing model. Pessimism
is deemed, by Abel, as a subjective distribution on growth that is first order stochasti-
cally dominated by the “objective” distribution; doubt, corresponds to a subjective dis-
tribution that is a mean preserving spread of the objective distribution. Evidently, an
ambiguity-averse agent’s conditional (“as if”) beliefs, in effect, incorporate endogenously
both these elements while the Bayesian agent only incorporates the doubt. These ob-
servations will be the key to understanding our results on time averages of conditional
returns moments.

3.2.2 Endogenous accentuation of cyclical variation in uncertainty To understand the
second mechanism, we return to the beliefs model without the restriction of η0 = 0.
Learning about persistence leads to time-varying mixing of the two processes through
ηt . This produces a posterior predictive belief about consumption growth which is het-
eroskedastic across time, even though in each process (with a given persistence) the

19Henceforth, we shall write ξt as a function of direct continuation value V (·) instead of the indirect
value, J(Wt+1�μt+1). In a single agent economy consumption is exogenously determined, and so it is pos-
sible to solve for the continuation value at any node on the event tree without solving for the equilibrium
prices first.
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Figure 1. Beliefs and “as-if” beliefs. The agent’s “as-if” belief about the conditional distribution
of consumption growth with no uncertainty about the latent state (R.E.), with uncertainty about
the latent state but without ambiguity aversion (Bayesian) and with ambiguity aversion about
the uncertainty of the latent state (Twisted). The distributions were computed using ρ = 0�85,
and the level of consumption and latent state as the average over 1978–2011.

growth distribution is homoskedastic. The mean and variance of the mixture distribu-
tion on the latent state are

x̂t = ηtx̂l�t + (1 −ηt)x̂h�t � (13)

Vart (xt)= ηtΩl + (1 −ηt)Ωh +ηt(1 −ηt)(x̂h�t − x̂l�t)2� (14)

It is as if the agent has two forecasting models. When the history is such that both mod-
els explain that history just as well (i.e., ηt is close to 0�5) and yet their core forecasts
markedly disagree (i.e., (x̂h�t − x̂l�t)2 is large), the uncertainty, as shown by the variance,
rises. In contrast in the case with η0 = 0, what happens over time to the posterior is that
its mean x̂t may change but not its variance, ensuring a homoskedastic predictive dis-
tribution.20

The endogenously time varying uncertainty in our model, due to learning about the
persistence, creates a potential for uncertainty shocks, sudden sharp increases in un-
certainty about consumption growth. One way an uncertainty shock can come about
is as follows. A sequence of moderately positive growth realizations, being quite con-
sistent with high and low persistent processes, brings ηt close to 1/2. If one or more
negative realizations arise after such a sequence, (x̂h�t − x̂l�t)2 increases, thus increasing
Vart (xt). Ambiguity aversion exacerbates the time variation of the Savage–Bayes uncer-
tainty by endogenously accentuating that uncertainty asymmetrically between positive
and negative shocks, creating “as if” uncertainty shocks that are far sharper than what is
reflected by the dynamics of Vart (xt).

20The time-varying heteroskedasticity generated endogenously in our model is a forecast uncertainty, of
beliefs, empirically driven by the history of growth outcomes and consistent with a stationary volatility of
consumption shocks.
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To see how, consider the following. The distorted posterior is a mixture of two com-
ponent distorted posteriors, ξkt ⊗ ηt ⊗N(x̂k�t�Ωk) for k= h� l, where ξkt is as in eq. (28)
in Section B.1.2 in the Appendix. Let x̃k�t denote the mean of a distorted component
posterior, ξkt ⊗ N(x̂k�t�Ωk). Due to the greater persistence, the aggregate uncertainty
around x̂h�t—captured by Ωh—is larger than that around x̂l�t . Since the distortion func-
tion is proportional to a negative exponential, it has more bite on a distribution which
has more probability mass on the left tail by whipping up that mass even more; hence,
we have x̂h�t − x̃h�t > x̂l�t − x̃l�t . Which means that (x̂h�t − x̂l�t)

2 > (x̃h�t − x̃l�t)
2 when

x̂h�t > x̂l�t (as would be, following a positive shock) and (x̂h�t − x̂l�t)2 < (x̃h�t − x̃l�t)2 when
x̂h�t < x̂l�t (following a negative shock). Hence, when x̂h�t < x̂l�t , the components of the
mixture yielding the “as if” posterior are further apart compared to the components of
the Bayesian posterior (and, conversely, when x̂h�t > x̂l�t ). This has two implications.
One, Ṽart (xt), the variance of the distorted posterior21 understates that of the Bayesian
posterior following a positive shock, and exaggerates it following a negative shock, mak-
ing it more pronouncedly countercyclical than Vart (xt). Two, the distorted posterior
demonstrates a significant negative skewness compared to the Bayesian posterior in re-
cessionary periods, but not in good times.

The left panel in Figure 2 shows how x̂h�t and x̂l�t have moved with the business
cycle. The right panel compares the variance of the posterior and the variance of the
distorted posterior showing that the latter greatly amplifies movements in the former,
especially at downturns. Figure 2 also shows that in 1992 x̂h�t < x̂l�t while in 1999 x̂h�t >
x̂l�t , though |x̂h�t − x̂l�t | were similar in these two years. Figure 3 demonstrates how much
more significant the effect of the distortion was on the posterior in the latter year.

The following argument focused on the uncertainty about ρk offers another, and
perhaps pithier, intuition. The ambiguity-averse agent behaves as if he forecasts con-
sumption growth putting more weight (compared to the Bayesian posterior) on the
“worst case” persistence, that is, the ρk that minimizes the expected continuation util-
ity. When consumption growth is below the mean, the worst case persistence parameter
is ρh, suggesting that we will remain below the mean for a long time. In contrast, when

Figure 2. Explaining time-varying ambiguity: The left panel shows the filtered latent variables
assuming that the high (x̂h�t ) and low (x̂l�t ) persistence as the DGP. The right panel graphs the
conditional variance of the latent state variable (Vart (xt)) and the “as if” conditional variance
(Ṽart (xt)). In both panels, the gray line shows the HP–filtered consumption growth, indicating
the business cycle.

21See Section B.1.1 in the Appendix for an analytical expression.
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Figure 3. Time-varying distortion. The two panels plot beliefs about the latent state without
ambiguity aversion (Bayesian) and with ambiguity aversion. The left panel shows a “bad” year
where x̂h�t < x̂l�t , and the right panel shows a “good” year where x̂h�t > x̂l�t .

consumption growth is above the mean, the worse case is that the persistence is ρl, so
we revert quickly to the mean. Thus, the ambiguity-averse agent, endogenously behaves
as if the uncertainty is more persistent and severe following negative shocks than in nor-
mal times (even though ηt � 1/2). These insights about the asymmetric reaction to good
and bad news will be key to understanding how ambiguity aversion affects conditional
returns and their variation over time, in particular, over the business cycle.

3.3 Comparing model implications with data

We use annual data on real per-capita consumptionCt and estimates of x̂k�t correspond-
ing to the filtration imposed by the observed history of growth of real consumption and
of real dividends to obtain a time series of model implied conditional moments of the
annual rates of return using our numerical solution technique (see Section 1 in the sup-
plementary material found on the journal website http://qeconomics.org/supp/708/
supplement.pdf.) We compute the model implied price-dividend ratio applying the re-
lationship

Rt+1 = exp(pt+1 − dt+1)+ 1
exp(pt − dt) exp(dt+1 − dt) (15)

where dt is taken from the historical data, Rt+1 and pt+1 are computed from the model,
and the recursion is started from the actual price-dividend ratio in 1977 (t = 0). Through-
out the exercise, the level of ambiguity aversion was calibrated so that the average risk-
free rate was 1�5%.

We present and discuss two kinds of results on model implied conditional moments
of rates of return and price-dividend ratio: averages of the moments over the sample
period, 1978–2011 in Section 3.3.1, and time series (and time-series properties) of the
moments over the same sample period in Section 3.3.2. In Section 3.3.3, we compare
the time series of our model implied equity premium with the leading macroeconomic
uncertainty index in the literature.

http://qeconomics.org/supp/708/supplement.pdf.
http://qeconomics.org/supp/708/supplement.pdf.
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3.3.1 Time averages of moments Table 2 reports the model implied conditional mo-
ments of returns and price-dividend ratio, time averaged over the sample period.22 The
panels in Figure 4 show the comparative statics of ambiguity aversion and risk aversion
on the conditional rates of return. The model’s match of the first moments of returns is
quite perfect and second moments are predicted to a large extent.

Table 3 reports on some further robustness checks. In particular, it checks for the
consequences from alternative learning assumptions that would be implied by splitting
the sample differently. As was explained, our benchmark calculations are obtained by
splitting the 1930–2011 sample between a “learning period,” 1930–1977, where the time-
series parameters were estimated, and the remaining period where the model was eval-
uated, that is, the benchmark split is (1930–1977; 1978–2011). Table 3 considers three
alternative splits: (1930–1968; 1969–2011), (1930–1959; 1960–2011), (1930–1950; 1951–
2011). In addition, the Table 3 allows for alternative pairs of values of high and low per-
sistence parameter. As we can see, findings on average of conditional moments of rates
of return are remarkably robust to alternative learning assumptions implied by the dif-
ferent sample splits.

To help us understand these results (which were obtained numerically), we con-
sider analytical approximations23 for the rates of return for the case where persistence
is known, for example, with ηt = 0. The risk-free rate is approximated as

r
f
t = − lnβ+ γg+ γρx̃t − γ2

2
(
σ2
x + σ2

g + ρ2Ṽart (xt)
)

(16)

where x̃t is the mean of the distorted posterior at time t.
An increase in ambiguity aversion, α, decreases x̃t making the agent behave as if he

were expecting a lower endowment income in future states. Implying, a rise in demand
for the risk-free asset (a “flight to quality,” as termed by Caballero and Krishnamurthy
(2008)) driving up its equilibrium price and lowering the risk-free rate. The accentuation
of doubt, working through Ṽart (xt) reinforces the effect. This is a key effect of ambiguity
aversion. Note, when α > 0 the term γρx̃t acts to dampen the effect of γg, making the
comparative static of γ on the risk-free rate very different, qualitatively and quantita-
tively, depending on whether α > 0 or α = 0, as a comparison of the middle and right
panels of Figure 4 shows. Hence, it is not possible to replicate the effect of ambiguity
aversion by turning it off and simply varying γ.

The first moment of the risky rate is approximated as

Etrt = Const1 + ρ(γ−ψ)x̃t +ψρx̂t − ρ2

2
[
(γ−ψ)2Const2

]
Ṽart (xt) (17)

where Et ≡Ex̂tExt describes the conditional expectation of a Savage–Bayes’ rational ob-
server/analyst who observes these prices and uses the same information as the agent to

22When trying to infer how ambiguity aversion affects returns/prices from the entries in Table 2, bear in
mind α is calibrated so that rf is equal to 1�5%. So, when γ is changed, α does also to ensure calibration.
From Table 2, if one wants to infer anything about a change in ambiguity aversion alone, then one can
compare what happens in the Bayesian case (γ = 2�5 and α= 0) with our benchmark case (γ = 2�5, α= 11�3).

23See Appendix C for details of the derivation.
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Table 2. The top panel contains the average of the predicted conditional moments of rates of
return (on dividend claim) for different values of γ and calibrated α. Immediately below is a se-
ries of robustness checks where the parameter in the left-most column was changed from the
basic specification (ρh = 0�85, ρl = 0�3, ψ = 3, β = 0�975), taking γ = 2�5 as part of the baseline
specification. The bottom panel contains the time-averaged model implied price/dividend ratio
statistics over the period 1978–2011. AC1 and AC2 denote the first- and second-order autocorre-
lation of p− d.

Returns and Volatility

γ α E(r) E(r − rf ) σ(rf ) σ(r) σ(r − rf )

Data 8�08 6�68 2�20 16�5 16�1

1�0 31�5 6�61 5�08 1�20 22�2 22�2
2�0 17�8 7�36 5�85 2�58 23�0 23�0
2�5 11�3 7�97 6�46 3�29 23�55 23�6
3�0 6�65 8�66 7�14 3�96 24�17 24�2

Robustness Checks

ρh = 0�90 2�5 7�30 7�88 6�36 3�83 23�5 23�6
ρl = 0�25 2�5 11�1 7�98 6�48 3�05 23�7 23�7
ψ= 2�50 2�5 11�3 7�58 6�07 3�15 23�6 23�5
β= 0�965 2�5 13�0 9�15 7�62 3�44 23�8 23�8
β= 0�97 2�5 12�2 8�56 7�05 3�36 23�7 23�7
Bayesian 2�5 ≈ 0 7�62 0�62 1�70 23�1 23�2

Price-Dividend Ratio

γ α E(P/D) σ(P/D) E(p− d) σ(p− d) AC1 AC2

Data 45�513 19�954 3�724 0�445 0�803 0�759

1�0 31�5 29�3 4�34 3�37 0�15 0�51 0�48
2�0 17�8 32�3 5�92 3�46 0�19 0�65 0�60
2�5 11�3 44�0 14�5 3�73 0�34 0�85 0�78
3�0 6�65 52�9 22�2 3�88 0�43 0�88 0�81

Robustness Checks

ρh = 0�90 2�5 7�30 42�9 13�7 3�71 0�33 0�84 0�78
ρl = 0�25 2�5 11�1 44�3 14�8 3�74 0�35 0�85 0�78
ψ= 2�5 2�5 11�3 39�6 11�1 3�64 0�29 0�82 0�75
β= 0�965 2�5 13�0 59�9 28�1 3�98 0�49 0�89 0�82
β= 0�97 2�5 12�2 51�3 20�6 3�86 0�42 0�88 0�81
Bayesian 2�5 ≈ 0 40�0 11�5 3�65 0�30 0�82 0�75
Bayesian, β= 0�97 2�5 ≈ 0 46�3 16�5 3�77 0�37 0�86 0�79

predict dividend at t+1. Const1 and Const2 collect terms which are constant across time
and not affected by ambiguity aversion. An increase in α has two countervailing effects.
The first effect, given by ργx̃t , was also present in the expression for the risk-free rate;
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Figure 4. Comparative statics. In the left panel, α varies with γ fixed at 2�5. In the middle panel,
αwas fixed at 11�3 and γ varies. The average comparative statics are constructed by first comput-
ing the comparative statics for each year using the filtered values x̂t and then averaging across
t = 1978� � � � �2011. The right panel depicts the Bayesian case, that is, with α≈ 0. (The graphs cor-
respond to our model with unknown persistence.)

the intuition here is analogous. The second effect is in the term −ρψx̃t . As α increases x̃t
decreases, hence decreasing the (“as if”) expected future dividend payoff from the asset
causing the agent to want to pay less for the asset. With γ ≤ 3 andψ= 3, as we have here,

Table 3. Robustness of returns moments to the sample split.

Returns and Volatility

(ρl�ρh) γ α E(r) E(r − rf ) σ(rf ) σ(r) σ(r − rf )

Data 8�08 6�68 2�20 16�5 16�1

1969–2011 evaluation period
(0�30�0�85) 2�00 17�100 7�475 5�981 2�398 23�056 23�056
(0�30�0�85) 2�50 10�900 8�084 6�575 3�061 23�661 23�653
(0�30�0�85) 3�00 6�400 8�775 7�277 3�699 24�352 24�329
(0�25�0�85) 2�50 11�050 8�096 6�602 2�937 23�766 23�730
(0�30�0�90) 2�50 7�390 8�036 6�534 3�420 23�881 23�842

1960–2011 evaluation period
(0�30�0�85) 2�00 15�050 7�064 5�555 2�276 24�412 24�409
(0�30�0�85) 2�50 9�500 7�592 6�089 2�863 25�088 25�074
(0�30�0�85) 3�00 5�535 8�196 6�690 3�430 25�845 25�815
(0�25�0�85) 2�50 9�150 7�634 6�128 2�671 25�244 25�204
(0�30�0�90) 2�50 6�030 7�630 6�121 3�105 25�401 25�354

1951–2011 evaluation period
(0�30�0�85) 2�00 24�270 6�270 4�763 4�612 27�183 27�464
(0�30�0�85) 2�50 15�100 6�888 5�389 5�594 28�150 28�490
(0�30�0�85) 3�00 8�695 7�587 6�085 6�473 29�254 29�634
(0�25�0�85) 2�50 15�100 6�957 5�456 4�738 28�327 28�538
(0�30�0�90) 2�50 7�840 7�075 5�574 3�859 28�711 28�760
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the second effect dominates (very slightly) and equilibrium risky rate varies positively
(but quite minimally) with ambiguity aversion.

The approximation for the equity premium may be written as

Etrt − rft = Const3 +ψρ(x̂t − x̃t)+ ρ2

2
[
γ2 − (ψ− γ)2Const2

]
Ṽart (xt)� (18)

where we have explicitly left the two terms which are affected by ambiguity aversion,
(x̂t − x̃t) and Ṽart (xt). The first term shows that the premium increases with ambigu-
ity aversion (the difference (x̂t − x̃t) increases when α is increased) and the magnitude
of this effect is accentuated by persistence and leverage. A doubt factor also comes into
play (principally) through its effect on the risk-free rate, discussed earlier. Since, the risk-
free rate is conditionally nonstochastic, the conditional volatility of equity premium co-
incides with that of the risky rate. The overwhelming factor fixing the (average) condi-
tional volatility of risky return is the volatility of the dividend claim, in turn determined
by the volatility of the latent state multiplied by ψ and ρ.

To summarize, ambiguity aversion gets the first moment of equity premium right by
holding the risk-free rate down while affecting the risky rate only very marginally. The
volatility comes from two sources, the uncertainty about the latent state accentuated by
the uncertainty about the persistence and the leverage factor.

3.3.2 Time series profiles of conditional rates of return and price-dividend ratio Per-
haps the more distinctive results of the analysis in this paper concerns the time series
of conditional moments. These are largely driven by dynamics of the “as if” belief ex-
plained in Section 3.2.2. Figure 5 demonstrates this quite vividly in the case of the equity
premium, especially the crucial role of the uncertainty about persistence. Studies have
estimated conditional moments of equity premium on historical data, notably Whitelaw
(1994) and Lettau and Ludvigson (2010). The former summarizes a key finding as follows
(p. 526; in the quote “expected return” is the conditional first moment of equity returns
in excess of risk-free rate):

“The expected return seems to reach a maximum at the trough of the business cycle and
reach a minimum before, or at, the peak of the business cycle. Expected returns appear

Figure 5. Movements in variance and model implied equity premium. Panel (a) shows the con-
ditional equity premium and the conditional variance of the “as-if” posterior from the model
with known persistence, ρ= 0�85. Panel (b) shows the same as well as the variance of the undis-
torted posterior for the model with unknown persistence. Vertical dashed lines indicate years
featuring a recession.
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Figure 6. The two panels depict the conditional variance of (excess) returns and Covt (zt+1�

dt+1), implied by the model, demonstrating the close link between the dynamics of the two. Ver-
tical dashed lines indicate years featuring a recession.

to decrease during economic expansions and increase during economic contractions. In
contrast, the conditional volatility appears to reach a maximum earlier in the business cy-
cle, at or slightly after the peak in the cycle, and to reach a minimum just after the business
cycle trough.”

Figures 5(b) and 6(a) show how well the series predicted by our model match the
above quote. Equity premium, as predicted by the model, is countercyclical; its corre-
lation with H-P filtered consumption growth is −0�59. Whitelaw (1994) estimated the
contemporaneous correlation between the first and second (conditional) moments (of
equity premium) to be −0�34; based on the data considered for this paper, which per-
tains to a different time period and frequency, the correlation of the same two statistics
in our model is −0�86.

What accounts for the pro-cyclical volatility of returns in our model? Starting from
the standard approximation for the risky rate (equation (33) in Section C in the Ap-
pendix), its variance may be seen to be composed as

Vart (rt)� κ2
1 Vart (zt+1)+ Vart (dt+1)+ 2κ1 Covt (zt+1� dt+1)�

(In our data, κ1 = 0�98.) It turns out the time averaged variance is completely swamped
by the term Vart (dt+1) (Vart (rt)= 0�0555, Vart (dt+1)= 0�0541 and Vart (zt+1)= 1�17e− 4).
However, as seen from Figure 6, the dynamics of Vart (rt) are very largely determined
by Covt (zt+1� dt+1). To see an intuition why this covariance is negative and even more
so in recessionary times, note that the belief about dt+1 is determined by the Bayesian
posterior, with mean x̂t , while zt+1 is guided by x̃t , the mean of the distorted posterior.
As explained in Section 3.2.2, x̃t is below x̂t , and even more so and less mean reverting
(i.e., more persistent) than x̂t in recessions. Hence, in recessions there is a bigger mea-
sure of events where dt+1 realizes above its mean while zt+1 stays below its mean. The
price-dividend ratio is function of the agent’s view of the longer term prospects while
the dividend is just the outcome in the next period; the former may remain relatively
downbeat and sluggish, especially in recessionary times, despite a positive outcome of
the latter.

Together, the countercyclical variation of the mean and the increase in volatility
during recessions leads to countercyclical variation of the conditional Sharpe ratio,
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Et(r − rf )/σt(r − rf ). The Sharpe ratio rises from the peak to the trough of every com-
pleted business cycle in the data and in our model implied series. Lettau and Ludvigson
(2010) investigate how leading, established asset pricing models explain this time-series
behavior of the conditional Sharpe ratio. They find that neither the Bansal and Yaron
model nor the standard model with constant relative risk aversion and time-varying
consumption volatility matches the dynamic behavior of the empirical Sharpe ratio: the
models predict a conditional Sharpe ratio that is negatively correlated with the empiri-
cal Sharpe ratio, “because both models are linear functions of the consumption volatil-
ity, which itself is negatively correlated with the Sharpe ratio for the U.S. stock market.”
The prediction of our model is very similar to Campbell and Cochrane’s Habits’ model;
it has the right shape over time and in relation to business cycles but amplitudes are less
pronounced than in data. However, different from Campbell and Cochrane, ours has a
lower and more realistic autocorrelation.

While equity premium is not directly observed, we do observe the realized risky rate,
risk-free rate, the realized excess return (the difference between the two) and the price-
dividend ratio. Figure 7 plots these and the corresponding series implied by the model
(each point shows the value of the variable forecast by the model at a date given the in-
formation set at that date).24 This sets out a stark, stiff test for the model. The predictions
are evidently good, especially for returns but reasonably good too for the price-dividend

Figure 7. Returns and price-dividend ratio. Panel (a) contains a plot of the model-implied ex-
cess return along with the actual excess return. Panel (b) shows the model-implied risk-free rate
along with the actual real risk-free rate. Panel (c) contains the actual and model implied price–
dividend ratios. Panel (d) shows the time series of Vt (Rt+1)≡ √

Et(Rt+1 −ERt+1)2 and stock mar-
ket volatility index constructed in Bloom (2009). For comparison purposes, both the Bloom index
and Vt (Rt+1) are normalized by their respective mean levels. So, on the vertical axis, we measure
the (signed) percentage deviations from the respective means.

24The fact that we use annual data inevitably makes the time alignment across variables rather imperfect,
which needs to be taken into account when reading the graphs.
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ratio. The correlation of the realized risky rate and excess return with x̂t is −0�08 and −0�1
in data compared to −0�07 and −0�21, respectively, in the model prediction. The instan-
taneous correlation betweenR and (p−d) is positive in the data (0�54) and in the model
0�66. The correlation of the linearly detrended (in logs), HP-filtered (in logs) and un-
filtered predicted price-dividend ratio and the correspondingly treated price-dividend
observed in data are 0�67, 0�77, and 0�83, respectively. However, the prediction does not
match the data in the period between 1995 and 2000 which corresponds to the dot-com
bubble (see, e.g., Kraay and Ventura (2007)). This is only to be expected in our model,
where prices are determined in general equilibrium entirely based on the stochastic evo-
lution of real output. In this respect, it is significant that the predicted price-dividend
returns to the actual path following the collapse of the bubble.

Panel (d) of Figure 7 plots the model implied times series of the (square root of)
conditional expectation of the deviation of the rate of return from its unconditional25

mean. One may consider this a measure of variability of risky returns and as shown, it
is a good match with Bloom’s (2009) measure of stock market volatility (the correlation
between the two is 0�38).

Excess returns tend to mean revert over long horizons. Applying a statistic used in
the literature (see, e.g., Guvenen (2009)) that aggregates consecutive autocorrelation
coefficients of excess returns from the U.S. data in our 1978–2011 sample, we find a
strong pattern of mean reversion, shown in the second row in Table 4. The third row
displays the model counterparts of this measure of mean reversion, which are consis-
tent with the signs and rough magnitudes of these statistics in the data. Such mean
reversion is a clear departure from the martingale hypothesis of returns and is some-
times linked to the predictability of returns. Table 5 allows a comparison, between the
data and the model implications, of coefficients from predictive regressions of annual
returns on lagged price-dividend ratio. The estimated coefficients match sign and while
the model implied coefficients are smaller they are within the 95% confidence interval
of the corresponding estimates in the data.26

Table 4. Mean reversion of returns: Autocorrelation structure of excess returns in the data and
as implied by the model (baseline specification). The cumulative autocorrelation is defined as
(
∑j
i=1 Corrl((Rt −Rft )� (Rt−i −Rft−i))).

Cumulative Autocorrelation

Lag, in years 1 2 3 5 7

Data −0�16 −0�30 −0�32 −0�79 −0�33
Model implied returns −0�54 −0�35 −0�58 −0�76 −0�52

25More precisely, the unconditional mean ERt+1 ≡ T−1 ∑T
t=1Rt , where Rt is as implied by the model

given the observed history growth outcomes up to t.
26The estimates of coefficients from model implied values are fragile since the nature of the exercise lim-

its us to historical sample points and hence very few observations. In the literature, predictability regres-
sions are typically run on data obtained from model simulations; Beeler and Campbell (2012), for example,
use a million such data points.
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Table 5. Predictability regression coefficients (1978–2011): The
table reports coefficients from predictive regressions of annual
returns on lagged price-dividend ratios over the sample period,
1978–2011, in the data and in the time series implied by the
model. The third column shows the 95% confidence interval on
the estimated regression coefficient.

∑N
n=1 rt+n = θ0 + θp(p− d)t + εt+n

Data
Model

N θp 95% C.I. θp

3 −0�56 [−1�30;0�18] −0�07
5 −1�03 [−2�03;−0�02] −0�14

Note: Standard errors are robust to heteroskedasticity and autocorrelation.

Thus, there is suggestive but not strong evidence of stock return predictability by
p−d ratio in our model. However, it is worth noting that stock return predictability is not
always visible in subsamples (see Goyal and Welch (2008)). As Koijen and Van Nieuwer-
burgh (2011), p. 8, remarked, “significant instability over time (. . . ) in other words, for
30-year samples ending in between 1965–1995, there was evidence for stock return pre-
dictability but this evidence disappeared after 1995. It was absent for pre-war period as
well.” Nevertheless, a significant part of the literature gives return predictability a status
of stylized fact (see Cochrane (1999) and Cochrane (2008) who argue it is hard to make
sense of the time series properties otherwise.) We take the view, given the short period of
model evaluation, it is difficult for the model to really address stock return predictability.

We turn now to some other indicators that shed light on the question whether
the model implies the right variation in expected stock returns and expected dividend
growth rates. Too little persistence in the p− d ratio is usually taken as a sign of too lit-
tle variation in expected stock returns. However, as shown in Table 6 the model implied
p − d has a high persistence that matches the data very well. Does the model gener-
ate too much predictability in dividend growth rates by the p− d ratio? Table 7 reports
results of running a regression of dividend growth on the lagged p− d ratio at various
horizons and compares the outcomes to the data, and demonstrates, if anything, the
model implications have slightly less predictability than in the data. Consistent with this
lack of dividend growth predictability is the evidence from a Campbell–Shiller variance

Table 6. Price/dividend ratio, autocorrelation.

P/D in Level P/D in Logs.

k: 1 2 4 1 2 4

Data 0�84 0�76 0�58 0�80 0�76 0�64
Model 0�82 0�72 0�59 0�85 0�78 0�66
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Table 7. Predictability regressions: This table reports the R2 and the p-value of the global sig-
nificance test of the regression yt = α0 + ∑k

i=1 αiPDt−i, y = d�g, where H0 : αi = 0 ∀i = 1� � � � �k.
PDt−i is the ith lag of the price dividend ratio.

Dividend Growth Consumption Growth

Data Model Data Model

k R2 p-Value R2 p-Value R2 p-Value R2 p-Value

Price/Dividend in Logs.
1 0�19 0�0096 0�09 0�0911 0�06 0�1558 0�00 0�8484
2 0�55 0�0000 0�29 0�0050 0�11 0�1509 0�00 0�9608
4 0�57 0�0000 0�35 0�0108 0�28 0�0404 0�14 0�3212
8 0�69 0�0001 0�52 0�0092 0�54 0�0059 0�30 0�2675

Price/Dividend in Levels
1 0�15 0�0215 0�09 0�0875 0�07 0�1302 0�00 0�9598
2 0�46 0�0001 0�21 0�0258 0�13 0�1111 0�01 0�9156
4 0�48 0�0006 0�26 0�0602 0�22 0�1152 0�13 0�3828
8 0�61 0�0011 0�54 0�0062 0�53 0�0074 0�36 0�1343

decomposition that the estimate of proportion of variation in model implied p− d ex-
plained by variation in dividend is about as much as it is in data (for an 8-year horizon,
along our sampled history, in the model it is 21% and in the data 29%, approximately).
However, the evidence is not conclusive because the standard errors of the estimates are
quite high. Relatedly, as shown in Table 7, consumption growth too is unpredictable in
data and in our model, unlike in the Bansal and Yaron (2004) model, for example, which
implies significant predictability of consumption growth by price-dividend ratios. This
excess predictability, which has been seen as a weakness of long-run risk models (see
Beeler and Campbell (2012)), is not present when there is uncertainty about the persis-
tence parameter and learning. Finally, as Table 8 shows, price-dividend ratio is not pre-
dicted by consumption growth, neither in data nor in our model, drawing a sharp dis-
tinction with the implication of habit formation models (e.g., Campbell and Cochrane
(1999)) where consumption growth strongly predicts price-dividend ratio.

3.3.3 Equity premium and macro-uncertainty measures In this section, we show one
more way to assess the model’s performance in matching historical data. The model im-
plied equity premium is the conditional expectation of the model implied return of a
share of the equity in excess of the (model implied) risk- free return. The risk-free return
may be understood as the return under the assumption the asset delivers the condition-
ally expected (or, the forecasted) payoff for sure. The premium is the compensation for
the uncertainty that the equity may deliver a payoff different from what is forecasted,
hence a compensation for possible forecast error. Since the taste parameters (e.g., atti-
tudes toward time and uncertainty) have been held fixed across time in the model, we
may interpret the movements in equity premium to be driven by coincident movements
in the perceived macroeconomic uncertainty. Thus, the model generated conditional
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Table 8. Price-dividend ratio and backward consumption
growth: This table reports results for the regression (p−d)t+1 =
α0 +∑L

j=1 αjgt+1−j+ut+1.p-val denotes thep-value associated
to the joint significance test of H0 : αj = 0 for j = 1� � � � �L. Pre-
dictability is rejected at any lag.

Data Model

L p-val. R2 p-val. R2

1 0�5369 0�01 0�3319 0�03
2 0�8138 0�01 0�5821 0�03
4 0�9462 0�02 0�7677 0�06
8 0�9963 0�04 0�9637 0�08

equity premium is an index measure of the conditional macroeconomic uncertainty re-
vealed by equilibrium behavior, the perceived uncertainty. Thus, how well the model
predicted historical perceived uncertainty matches actual indices of such uncertainty
available in the literature presents a test of the model.

Jurado, Ludvigson, and Ng (2015) (henceforth JLN) constructed an index of macroe-
conomic uncertainty by averaging the (conditional) uncertainty of the forecast errors
of 132 variables selected to represent broad categories of macroeconomic time series:
ranging from real output, employment, real retail, labor compensation, price indexes
to financial market indexes. The conditional uncertainty in each variable is a moment
measure: the conditional volatility of the unforecastable component of the future value
of the series, with the property that if the conditional expectation of the squared error
in forecasting the future value rises, uncertainty in the variable increases. The average
of these uncertainties captures the common variation in uncertainty across the many
series, and hence the macro-uncertainty. Note, since the measure accounts for the en-
dogenous economic response to uncertainty (of endogenous price and quantity vari-
ables) it is a measure of perceived uncertainty. Hence, it is comparable to our computed
equity premium, which is also a measure of endogenous perceived uncertainty revealed
through equilibrium asset prices. Actually, in footnote 2, JLN speculated that their mea-
sure could be a result of Knightian uncertainty, “in which agents are uncertain about the
probability distribution itself.”

As panels (a) and (b) of Figure 8 show, JLN’s conjecture is largely vindicated since the
JLN index and our model implied conditional equity premium are closely related: the
correlation is 0�58 for both levels and differences.27 Contrastingly, the conditional equity
premium implied by the Bayesian case (i.e., by setting α� 0) yields correlations of −0�02
and 0�11, for levels and differences, respectively. We have already noted the pronounced

27The JLN uncertainty measure is available monthly, whereas our conditional equity premium is an an-
nual measure. We compare the equity premium to the trailing 12-month average of the monthly JLN mea-
sure. This is done to facilitate a more realistic alignment of when data is made available to market partici-
pants. However, the adjustment is far from perfect. Our equity premium variable, by construction, is based
on the annual GDP growth report, and hence effectively shows the uncertainty lagged by about a year. This
is worth bearing in mind when looking at the graphs.
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Figure 8. Comparing time series (levels in panels (a) and (c) and differences in panels (b)
and (d)) of model implied equity premium and uncertainty indices. For comparison purposes,
both the uncertainty index and the equity premium are normalized by their respective mean
levels. So, on the vertical axes, we measure the (signed) percentage deviations from the respec-
tive means. The (dashed) vertical bars indicate years with at least one NBER declared recession
episode.

countercyclicality of the model implied conditional equity premium (a correlation of
−0�61 with the Kalman filtered latent variable). The JLN index is similarly countercycli-
cal, with a correlation of −0�60 with the filtered value of our latent variable. Another
salient feature is persistence: both series are persistent but the persistence is significantly
greater in years with recessionary episodes, as the numbers reported in the first two rows
of Table 9 show. The final row of the table shows, in contrast, that the model generated
conditional equity premium in the Bayesian case demonstrates no significant difference
in persistence across the business cycle.

Figure 9 demonstrates the close dynamic relationship between price dividend ratio
and the JLN uncertainty index both in the data and in the model implied series. The
interpretation of the graphs is simple. For example, a high uncertainty today (i.e., high
JLN t , t = 0) is foreshadowed in a lower price dividend ratio with a lead of up to three pe-
riods ((p−d)t+k, k= 0�−1�−2�−3); and, it depresses prices with a lag of up to 6 periods
(k= 1� � � � �6). However, prices are not adversely affected by anticipation of uncertainty
at horizons of four and more years, both in our model and in the data.

JLN emphasize in their concluding remarks that the key features of macroeconomic
uncertainty are its countercyclicality and its persistence during recessions. These two
features speak directly to the mechanism at work in our model. As we showed, the
Bayesian uncertainty does increase, if minimally, following a shock; but that increase
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Table 9. Countercyclical persistence: Columns 2 and 3 show estimates, corresponding to the
time series indicated in column 1, of the AR(1) parameter and between parenthesis its standard
deviation and the associated Student-t statistic in years with and without recessionary episodes,
respectively; the final columns show the p-value of the test for statistical significance of the dif-
ference in estimates in columns 2 and 3 and the associated level of significance. The final row of
the table shows these numbers for the series obtained from the model with ambiguity neutrality
(i.e., α� 0).

Persistence in Years
p-Value Level of

w/ Recession w/o Recession Test Significance
(1) (2) (1)–(2)

Model Cond. Eqty. Prm. 0�76 0�55 0�004 100%
(0�12;6�19) (0�12;4�75)

JLN Uncertainty index 0�89 0�48 0�272 73%
(0�22;4�06) (0�26;1�84)

Bayes case Eq. Prm. (α� 0) 0�68 0�69 0�436 –%
(0�13;5�18) (0�13;5�16)

is symmetric with respect to the sign of shock. It is ambiguity aversion that is respon-
sible for the asymmetric behavioral response to good and bad news and for increasing
the (“as if”) belief on high persistence in recessionary periods, the key mechanism in our
model. Could these features obtain in a model with stochastic volatility but no ambiguity
aversion? As discussed earlier, investigations have shown that the evident consumption
volatility in data has neither the right variation over time nor the size needed to explain
the observed time variation in equity premium and the Sharpe ratio.

Carriero, Clark, and Marcellino (forthcoming) (CCM henceforth) construct a mea-
sure of macro-uncertainty based on a large vector autoregression with stochastic volatil-
ity driven by common factors representing macroeconomic uncertainty. The index re-
flects changes in both the conditional mean and volatility of the variables. An advantage
of this approach over JLN is that, the authors argue, it reduces the risk of biases and

Figure 9. Dynamic correlations of (log) price/dividend ratio with JLN uncertainty index. Note:
The graphs report the correlations corr(JLN t � (p − d)t+k), for k = −8� � � � �8, where JLN t is the
JLN uncertainty index and (p − d)t+k is the log of the price/dividend ratio (in data and model
implied) evaluated at various leads and lags.
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endogeneity problems stemming from measurement errors and omitted variables. As
panels (c) and (d) of Figure 8 show, compared to the JLN measure this index and our
model implied conditional equity premium are even more closely related: the correla-
tion is 0�73. both in levels and in differences.

Recently, Orlik and Veldkamp (2014) have constructed a measure of macroeconomic
uncertainty which also comes with a theory why such uncertainty is more countercycli-
cal than stochastic volatility alone. In their model the agent does not know the true
distribution of macroeconomic outcomes, but estimates its parameters in the way of
a Bayesian econometrician using real time (GDP) data. They measure uncertainty as the
conditional standard deviation of GDP growth, which captures uncertainty about the
distributions’ estimated parameters. When the forecasting model admits only normally-
distributed outcomes, they find small, acyclical changes in uncertainty. But when the
forecasting model is enlarged in a specific way, so that agents also estimate parameters
that regulate skewness, uncertainty fluctuations become more pronouncedly counter-
cyclical. However, they find the uncertainty diminishes secularly and significantly due
to the learning of the parameters. To rectify this, they add an exogenously specified
stochastic volatility component which, like in Bansal and Yaron (2004), has a persistence
that is independent of the business cycle. They report that their measure has a correla-
tion of 0�31 with the JLN uncertainty index (recall, for our model this correlation is 0�58).

4. Assessing the calibrated value of ambiguity aversion

Here, we discuss a way of assessing the plausibility of the calibrated levels of ambiguity
aversion in terms of implied individual (as opposed to market) behavior.

In standard analysis of the equity premium question, the value of (relative) risk aver-
sion parameter is motivated by using a thought experiment; the typical question being
how much an agent would pay to avoid a given risk. Arguably, neither the question nor
the intuitive answer refers to the expected utility model, or any formal model of decision
making for that matter. We now consider as a thought experiment the implied uncer-
tainty premium of an individual investor with preferences and dynamic belief, precisely
like the agent in our model, evaluating a Lucas’ tree prospect. We find the investor is
willing to pay an overall uncertainty premium (a sum of the risk premium and the ambi-
guity premium) that is well within the bounds of what is regarded as intuitively plausible
per the standard intuition and analysis.

Our thought experiment consists of an offer at time t to our Lucas’ economy agent,
with preference parameters (γ�α�β), to replace the uncertain consumption prospect
he faces with a fixed consumption in each period, now and for ever. Define the con-
sumption certainty equivalent, c�(γ�α�β; ct), to be the c� that makes the agent in-
different, given information at t, between the plan (c�� c�� c�� � � �) and his endowed
stochastic consumption plan (ct� ct+1� � � �). Hence, c�(γ�α = 0�β; ct) is the certainty
equivalent for the Bayesian agent and c�(γ = 0�α = 0�β; ct) is the certainty equivalent
for a risk neutral agent [hence, sum of discounted conditional expectations.] The risk
premium is R(γ�0�β; ct)≡ c�(0�0�β; ct)− c�(γ�0�β; ct), and the ambiguity premium is
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Table 10. Uncertainty premia in the thought experiment : We
report the time average of γ�(γ�α�β; ct) computed at each t on
the sample path.

β= 0�975 β= 0�965

γ 2�0 2�5 3�0 2�5
α 17�75 11�35 6�65 13�00
γ�(γ�α�β) 3�48793 3�51117 3�52169 3�76459

A(γ�α�β; ct) ≡ c�(γ�0�β; ct) − c�(γ�α�β; ct). Then the total uncertainty premium paid

by our agent with preference parameters (γ�α�β) is given by

U(γ�α�β; ct)≡ R(γ�α�β; ct)+A(γ�α�β; ct)�

Hence, when α= 0, U(γ�0�β; ct)= R(γ�0�β; ct).
Finally, define γ�(γ�α�β; ct), to be the value of the relative risk aversion parameter

which solves the following equation:

R
(
γ��α= 0�β; ct

) =U(γ�α�β; ct) ⇔ c�
(
γ��0�β; ct

) = c�(γ�α�β; ct)� (19)

On the left and right of the first equality in (19) we have, respectively, the uncertainty

premium of an ambiguity neutral and the uncertainty premium of an ambiguity averse

agent, both facing the same uncertain prospect as the agent in our model. Table 10 re-

ports calculations with γ = 2�2�5�3 and α set to the corresponding calibrated values used

in our model. Hence, our agent is calibrated to pay as much uncertainty premium (in

total) as a standard expected utility agent with relative risk aversion around 3�5. Almost

every equity premium study in the literature considers this amount of uncertainty pre-

mium very much within the range of plausibility in the context of a financial economy

(Mehra and Prescott (1985), for example, had argued on this basis that γ ≤ 10 was plausi-

ble). In this sense, the calibrated uncertainty attitude parameters, taken together, make

a plausible preference configuration for an individual DM in a financial economy.

The fact that our ambiguity averse agent is paying the same overall uncertainty pre-

mium as an expected utility maximizer with risk aversion 3�5 may seem odd given how

large the average model implied equity premium we find. Note, however, that the (con-

ditional) equity premium is calculated, as is standard, by taking the expectation of risky
rate (implied by the model) with respect to the posterior predictive distribution, as a

Savage–Bayes’ ambiguity neutral outside observer would evaluate it. If we were to com-

pute Er − rf as our ambiguity averse agent would, it would be much smaller given the

pessimism of his evaluation functional. Thus, the equity premium the agent perceives

he is paying is consistent with the uncertainty premium values implied by the values of

γ� in the Table 10.
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5. Related literature

We describe next how the analysis here relates to other explanations in the literature (of
the observed behavior of equity premium) based on aggregate uncertainty in represen-
tative agent frameworks.

Bansal and Yaron (2004) pioneered the use of the (basic) model of beliefs we apply to
show how long run risk (LRR) and aversion to such risk (while allowing a Kreps and Por-
teus (1978)/Epstein and Zin (1989)/Weil (1989) like separation of IES from risk aversion)
could explain aspects of the observed equity premium. The changes we introduce are:
(1) letting the belief about the latent state be the full Bayes’ posterior, instead of degener-
ate, probability-one-belief on the filtered state; (2) letting the agent be uncertain about
the value of the persistence parameter; (3) letting the agent preferences treat (1) and
(2) as ambiguity without separation of IES from risk aversion. We show these changes
are sufficient to yield a model of beliefs where the (endogenously accentuated) uncer-
tainty varies enough over time, without resorting to an exogenously specified stochastic
volatility. Bansal and Yaron’s Case II model assumed an exogenous stochastic volatil-
ity. In our model, notice the volatilities, σxk , σdk , σgk , are different conditional on the
value of persistence, ρk, but since there is “one true model” for all time, the volatility
is nonstochastic, per se. Our agent is agnostic about the value of persistence and never
puts probability one on either value, k = h� l. However, as has been explained in Sec-
tion 3.2.2, depending on history, and because of ambiguity aversion, the agent amplifies
the posterior probability mass on one or the other value, therefore, creating an endoge-
nously accentuated stochastic volatility, that is, the uncertainty about the value of σ ’s
are accentuated endogenously.

In Hansen and Sargent (2010), countercyclical risk prices are driven by a represen-
tative investor’s robust model averaging and a preference for early resolution of uncer-
tainty. The investor carries along two difficult-to-distinguish models of consumption
growth, one asserting i.i.d. log consumption growth, the other asserting that the growth
in log consumption is a process with a slowly moving conditional mean. The investor
uses observations on consumption growth to update a Bayesian prior over these two
models, starting from an initial prior probability of 0�5. Each period, the agent expresses
his specification distrust by pessimistically exponentially twisting a posterior over the
two baseline models. That leads the investor to interpret good news as temporary and
bad news as persistent, causing him to put countercyclical uncertainty components into
the equilibrium price of risk.

Our framework is inspired by Hansen and Sargent (2010). Where we depart is the role
of ambiguity in the driving mechanism and in the quantitative match obtained. Their
agent believes the economy evolves according to a model like we have here but pro-
cesses belief differently, by applying two “risk-sensitivity operators.” The first operator,
which may be interpreted as a Kreps and Porteus (1978) style preference for earlier reso-
lution of risk, applies to the evaluation (of the consumption plan) conditional on each of
the two values of ρ. The other operator may be interpreted as a KMM2005 style smooth
ambiguity aversion transformation where the agent’s second order uncertainty is a two-
point (Bernoulli) belief, where each point in the support is the conditional evaluation



Quantitative Economics 9 (2018) Ambiguity and the historical equity premium 979

given a ρ. Hence, while uncertainty about the two values of ρ is treated as ambiguity, the
uncertainty about the latent state, given ρ, is not processed as ambiguity, unlike in our
model. Thus, the results they obtain have their origin both in ambiguity aversion and an
IES> 1.28

Ju and Miao (2012) use a modified smooth ambiguity framework to assess the ef-
fect of ambiguity on dynamics of asset prices. In the model of beliefs, there the latent
state variable driving the (mean) growth rate in the economy may take only two pos-
sible values. The preference model also incorporates an IES effect, in addition to am-
biguity aversion, with the IES parameter set at 1�5. They produce statistics on uncon-
ditional moments of returns and prices, by averaging across simulated, counterfactual
paths, which match data well. They also report, using graphs, model implied conditional
returns and prices along the observed, historical sample path; here, their model is evi-
dently less successful. As panel B in their Figure 3 shows, throughout the post-war pe-
riod the (second-order) belief has been almost completely stuck (virtually Dirac) on the
same latent (high-growth) state. Hence, the results we obtain about predicted time se-
ries of moments of conditional returns (even countercyclical equity premium) could not
be obtained in their model if actual history were applied.29

The part of Collin-Dufresne, Johannes, and Lochstoer (2016) most closely related to
ours applies model/parameter uncertainty and Bayesian learning in a framework where
the beliefs about the growth process is anchored to an uncertainty about whether the
true process is LRR or i.i.d. They show that even a small probability of the LRR model
being the true model leads to significant increase in the risk premium compared to the
case in which consumption growth is known to be i.i.d. They also show that this un-
certainty creates countercyclical fluctuations in the equity premium. However, as we
underlined in the Introduction, the driving force in the agent’s preferences is an IES> 1
(they consider values 1�5 and 2, together with a relative risk aversion of 10). The mech-
anism at work is thus different from ours, as ambiguity aversion plays no role in their
model. Drechsler (2013) introduced ambiguity aversion alongside model uncertainty
and an IES > 1. He obtained good matches of time-average returns moments. He used
a maxmin approach in which the set of priors, that represents uncertainty, varies over
time in an exogenous way calibrated to an uncertainty index. Bidder and Dew-Becker
(2016) is similar, in that they modeled ambiguity aversion using a worst case scenario,
à la Gilboa and Schmeidler’s maxmin expected utility model. The worst case model is lit-
erally the homoskedastic version of Bansal and Yaron’s (2004) long-run risk model. They
also apply an Epstein and Zin style IES effect, in addition to ambiguity aversion.

28We implemented, on our data set, an amended version their preference model with simply the second
(KMM style) operator on the two-point belief but excluding the other, Krep–Porteus style operator. We find
the predicted time-averaged equity premium (conditional on actual history) is about 0�6% and that the
conditional equity premium has a negative correlation with the JLN index.

29Recently, Strzalecki (2013) has shown that it is theoretically possible that recursive ambiguity frame-
works have some preference for early resolution inseparably mixed in with ambiguity aversion. Compared
to the model in the present paper what is different about the preferences in Ju and Miao (2012) and Hansen
and Sargent (2010) is that those include separate components explicitly adding preference for early resolu-
tion above and beyond what may be already mixed in with ambiguity aversion.
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Veronesi (1999) constructed and theoretically analyzed a dynamic, rational expec-
tations, expected utility representative agent model of asset pricing where beliefs are
based on two hidden states (each specifying a mean growth rate) and showed that it im-
plies time-varying expected returns and prices. However, it is a theoretical exercise and
does not show what actual values and magnitudes are implied along information paths
based on observed history. David and Veronesi (2013) studied time-varying uncertainty
but not the equity premium per se. In their model, agents must learn which regime the
economy is in through signals about growth and inflation. The learning mechanism re-
lies on (possibly small) money illusion. Gollier (2011) showed analytically, using a (static)
smooth ambiguity model, that an increase in ambiguity aversion may not, in general,
increase the equity premium, thereby making a good case for empirical investigation of
the question. Abel (2002), Cecchetti, Lam, and Nelson (2000), Giordani and Soderlind
(2006), Jouini and Napp (2006), showed that exogenously introducing pessimism and
doubt in beliefs can generate a realistic equity premium and risk-free rate. Our results
are driven by similar elements of pessimism and doubt, but in our framework these arise
endogenously. Barro (2006), and Weitzman (2007) showed that rare risks and/or heavy
tails may contribute to the large equity premium and low risk-free rate observed in the
data. Our contribution focuses on “common” uncertainty near the current growth rate
rather than on “rare” uncertainty, and so is easier to relate to observed consumption
data. Constantinides (1990) and Campbell and Cochrane (1999) studied models with
habits in consumption which can match the level, variation, and countercyclicality of
the equity premia, though, as we have observed, in these models consumption growth
predicts the price-dividend ratio, unlike in the data and in our model. Habits effectively
allow the risk aversion to vary endogenously over the business cycle. The crucial dif-
ference to our paper is that we have constant aversion (to ambiguity and risk) but our
agent faces time-varying uncertainty and it is variation in that uncertainty, rather than
variation in the aversion to it, which causes the returns and premia to vary.

6. Concluding remarks

Our model applied uncertainty and learning about persistent hidden states describ-
ing the cyclical component, and about the level of persistence; treating both these un-
certainties as ambiguous and incorporating a level of ambiguity aversion calibrated
to match the average risk-free rate. The uncertainty and learning compatible with a
Bayesian agent (but not with rational expectations), explain quite substantially the av-
erage volatility of returns and prices, and also the level of risky rate. Ambiguity aver-
sion was important in explaining the levels of risk-free rate and equity premium, and
for shaping the dynamics of all the variables, especially the first and second moments
(conditional) equity premium through the channel of an endogenously accentuated “as
if” uncertainty.

Our results show that observed levels and movements of moments of asset returns
can be explained on the basis of aggregate macroeconomic risk, conditional on the ac-
tual history of aggregate output growth reports. That both first and second moments



Quantitative Economics 9 (2018) Ambiguity and the historical equity premium 981

of conditional excess returns have the cyclical properties that match the data is a sig-
nificant finding. As was the finding that the model implied conditional equity pre-
mium matches the time-series properties of the JLN macroeconomic uncertainty index,
thereby giving a theory of uncertainty shocks and the countercyclical nature of their
severity and persistence. Thus, consistent with JLN’s conjecture, we do find that Knigh-
tian uncertainty can provide a good explanation of dynamics of macroeconomic uncer-
tainty. Finally, it is worth appreciating the minimality of the departure from expected
utility that was sufficient to capture so many aspects of returns data. These observa-
tions are very suggestive of the potential for this approach in domains of macrofinance
research where effects of endogenously time-varying uncertainty are of interest.

In terms of future work, an interesting next step would be to replace the exchange
economy with a production economy. Such a model would allow us to explore at least
two important issues. First, it would allow us to understand the effect of ambiguity
on output decisions (rather than just asset prices). Secondly, in turn, this would shed
light on how uncertainty shocks, when they are endogenously accentuated by ambigu-
ity aversion, contribute to the business cycle properties of the economy (see Backus,
Ferriere, and Zin (2015) for a first discussion of these issues.)

Appendix A: Data and estimation of parameters of the stochastic models

Equity returns are computed using the CRSP value-weighted index. Dividend growth is
imputed using the difference in the returns on the value-weighted index with and with-
out dividends multiplied by the market value. The risk-free rate was taken from Ken
French’s data library. Consumption is defined as the sum of services and non-durable
consumption and was taken from BEA Table 1.1. Population was taken from BEA Ta-
ble 2.2. Both per-capita consumption growth and dividend growth were converted to
real terms using the average CPI for the year taken from the BLS. Annual data was avail-
able from 1930 until 2011, a total of 82 observations.

Turning to preference parameters, in all cases the ambiguity aversion parameter α
was calibrated to produce a real risk-free rate of 1�5%, averaged over t = 1978� � � � �2011,
which is the average observed rate in that period. No other moments were used in the
choice of α. The relative risk aversion parameter γ was allowed to range between 1
(log utility) and 3, regarded as plausible in macroeconomic models (Ljungqvist and
Sargent (2004, p. 426)); the “baseline” calibration set γ = 2�5.30 The discount factor β
was set to 0�975, which corresponds to the discount rate used in BY. To check for ro-
bustness, we varied a number of the key non-estimated parameters, including ρ = 0�9,
β ∈ {0�965�0�97�0�98}, and ψ= 2�5.

The long-run risk model was fit to annual data using maximum likelihood. Param-
eter estimates are shown in Table 11. All parameters, except ρ and ψ were estimated
using data 1930–1977. The mean of consumption and dividends, ḡ and d̄, respectively

30If the two smooth ambiguity preferences do not share the same risk attitude, it is not necessarily true
that a more concave φ means more ambiguity aversion. Hence α is meaningfully calibrated given a value
of γ; not independent of γ.
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Table 11. Parameter estimates (standard errors below in parentheses) using annual data and
the long-run risk model, shown above, using data from 1930 until 1977. All variance estimates
and their standard errors have been multiplied by 100.

ψ= 3 ψ= 2�5

Parameter ρ= 0�25 ρ= 0�3 ρ= 0�85 ρ= 0�9 ρ= 0�3 ρ= 0�85

ḡ 1�92
(0�302)

1�92
(0�302)

1�92
(0�302)

1�92
(0�302)

1�92
(0�302)

1�92
(0�302)

d̄ 2�31
(2�21)

2�31
(2�21)

2�31
(2�21)

2�31
(2�21)

2�02
(2�21)

2�02
(2�21)

σ2
g 0�048

(0�016)
0�046
(0�016)

0�025
(0�010)

0�020
(0�007)

0�047
(0�017)

0�026
(0�008)

σ2
d 4�49

(0�893)
4�51
(0�892)

4�75
(0�909)

4�73
(0�902)

4�64
(0�914)

4�81
(0�918)

σ2
x 0�054

(0�013)
0�054
(0�013)

0�051
(0�019)

0�059
(0�021)

0�054
(0�013)

0�050
(0�021)

were set to their values in the period 1930–1977. The variances of the latent state pro-
cess, consumption growth, and dividend growth were estimated using the Kalman filter.
The dividend leverage parameter, ψ, was set to 3 as in BY, although Constantinides and
Ghosh (2010) estimated it to be slightly lower, close to the value we use for robustness
checks (ψ= 2�5).

Appendix B: Details of the model

B.1 Beliefs and the direct value function

The agent believes that the stochastic evolution of the economy follows a persistent la-
tent state process given by a BY type specification with either a low persistence (ρl) or
a high persistence (ρh), but does not know for sure which. That is, he believes either of
the models described in equation (9) represent the true data generating process. De-
fine x̂k�t ≡ E[xk�t | gk�1� � � � � gk�t� dk�1� � � � � dk�t], k= l�h, to denote the filtered x at time t
conditional on the observed history of growth rates (of consumption and dividend), if
the history were interpreted and beliefs updated using a Kalman filter which takes the
model with ρ= ρk as the data generating process. At any node on the growth path, at a
time t, the agent’s beliefs may be summarized by the tuple (x̂l�t � x̂h�t �ηt), where the first
two elements show the beliefs about the latent state variable conditional on alternative
assumptions about the true data generating process (low or high persistence, respec-
tively) while the last element shows the posterior belief that the true data generating
process is the low persistence model. We denote by x̂(i)k�t+1, i = l�h, k = l�h, the agent’s
forecast for the (one period ahead) update to his belief about the filtered x if the growth
outcome next period (along with the previous history) were interpreted using a Kalman
filter, which takes the model with ρ= ρk as the data generating process, when the data
is actually generated by the i persistence model. The direct value function obtains as
follows:

V (Ct� x̂l�t � x̂h�t �ηt)= (1 −β)C
1−γ
t

1 − γ



Quantitative Economics 9 (2018) Ambiguity and the historical equity premium 983

− β

α
ln

[
ηt

{∫ ∞

−∞
exp

(
−α

∫∫∫ ∞

−∞
V

(
Ct exp(gl�t+1)� x̂

(l)
l�t+1(�εl�t+1)�

x̂
(l)
h�t+1(�εl�t+1)�η

(l)
t+1(�εl�t+1)

)
dF(�εl�t+1)

)
dF(xl�t)

}
(20)

+ (1 −ηt)
{∫ ∞

−∞
exp

(
−α

∫∫∫ ∞

−∞
V

(
Ct exp(gh�t+1)� x̂

(h)
l�t+1(�εh�t+1)�

x̂(h)h�t+1(�εh�t+1)�η
(h)
t+1(�εh�t+1)

)
dF(�εh�t+1)

)
dF(xh�t)

}]
where �εl�t+1 = [εxl�t+1εdl�t+1εgl�t+1] is a 3 by 1 vector of standard normal shocks (and so is
�εh�t+1) and ηt is the posterior probability at time t that the model with ρl is the data gen-
erating process. F(�εl�t+1) and F(�εl�t+1) are both trivariate independent standard normal
distributions. F(xk�t), k= l�h, is a normal distribution with mean x̂k�t and variance Ωk,

whereΩk is defined below. The updates for x̂(i)k�t+1 are obtained as follows:

x̂(l)l�t+1(�εl�t+1) = ρlx̂l�t +Klν(l)l�t+1� (21)

x̂
(l)
h�t+1(�εl�t+1) = ρhx̂h�t +Khν(l)h�t+1� (22)

x̂(h)l�t+1(�εh�t+1) = ρlx̂l�t +Klν(h)l�t+1� (23)

x̂
(h)
h�t+1(�εh�t+1) = ρhx̂h�t +Khν(h)h�t+1 (24)

where ν(i)k�t+1, (i)= (l) or (i)= (h) and k= l�h, denote the “surprises.” For example, when
the DGP is (i)= (l) and the filter uses ρk, k= h, the surprise is defined

ν
(l)
h�t+1 =

[
gl�t+1 − ḡ− ρhx̂h�t
dl�t+1 − d̄−ψρhx̂h�t

]
=

[
ḡ− ḡ+ ρlxl�t − ρhx̂h�t + σxlεxl�t+1 + σglεgl�t+1

d̄− d̄+ψρlxl�t −ψρhx̂h�t +ψσxlεxl�t+1 + σdlεdl�t+1

]
�

The Kalman gain parameters, Kk, k = l�h, depending on whether low or high persis-
tence model is assumed to be the true model, respectively, are

Kk = ρkΩk
[
1 ψ

]
F̂−1
k � where F̂k =

[
Ωk + σ2

gk
ψΩk

ψΩk ψΩk + σ2
dk

]
�

Finally,Ωk, k= l�h, is defined as the solution to

Ωk = ρ2
kΩk − ρ2

kΩ
2
k

[
1 ψ

]
F̂−1
k

[
1 ψ

]′ + σ2
xk
�

The Bayes update of ηt is obtained as follows:

η
(l)
t+1(�εl�t+1)= ηtL

(
ν(l)l�t+1� F̂l

)
ηtL

(
ν(l)l�t+1� F̂l

) + (1 −ηt)L
(
ν(l)h�t+1� F̂h

) � (25)

η(h)t+1(�εh�t+1)= ηtL
(
ν
(h)
l�t+1� F̂l

)
ηtL

(
ν(h)l�t+1� F̂l

) + (1 −ηt)L
(
ν(h)h�t+1� F̂h

) (26)
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where the likelihood is

L
(
ν(i)j�t+1� F̂j

) = 1

2π|F̂j|
exp

(
−

(
ν
(i)
j�t+1

)′
F̂−1
j ν

(i)
j�t+1

2

)
where i= l�h and j = l�h�

B.1.1 Mean and variance of the distorted posterior The mean of the distorted (or, “as
if”) posterior is given by

x̃t = ηt
∫ ∞

−∞
(xl�t)ξ

(l)
t (Ct� x̂l�t � x̂h�t �ηt)dF(xl�t)

+ (1 −ηt)
∫ ∞

−∞
(xh�t)ξ

(h)
t (Ct� x̂l�t � x̂h�t �ηt)dF(xh�t)

(27)

and the variance, by

Ṽart (xt)≡ ηt
∫ ∞

−∞
(
x2
l�t

)
ξ(l)t (Ct� x̂l�t � x̂h�t �ηt)dF(xl�t)

+ (1 −ηt)
∫ ∞

−∞
(
x2
h�t

)
ξ(h)t (Ct� x̂l�t � x̂h�t �ηt)dF(xh�t)− x̃2

t �

B.1.2 The rates of return The risky rate of return is a function of four state variables,Ct ,
x̂l�t , x̂h�t , ηt , just like V and ξt . In the sequel, it should be clear that variables in t + 1 are
evaluated using the relevant stochastic components. LetCk�t+1 =Ct exp(gk�t+1), k= l�h.
The risk rate, Rt , will satisfy

βηt

∫ ∞

−∞
ξ
(l)
t (Ct� x̂l�t � x̂h�t �ηt)

(∫∫∫ ∞

−∞
Rt

(
Cl�t+1� x̂

(l)
l�t+1� x̂

(l)
h�t+1�η

(l)
t+1

)
× (
u′(exp(gl�t+1)

))
dF(�εl�t+1)

)
dF(xl�t)

+β(1 −ηt)
∫ ∞

−∞
ξ(h)t (Ct� x̂l�t � x̂h�t �ηt)

(∫∫∫ ∞

−∞
Rt

(
Ch�t+1� x̂

(h)
l�t+1� x̂

(h)
h�t+1�η

(h)
t+1

)
× (
u′(exp(gh�t+1)

))
dF(�εh�t+1)

)
dF(xh�t)= 1

where

ξ
(l)
t (Ct� x̂l�t � x̂h�t �ηt)=

φ′
(∫∫∫ ∞

−∞
V

(
Cl�t+1� x̂

(l)
l�t+1� x̂

(l)
h�t+1�η

(l)
t+1

)
dF(�εl�t+1)

)
Ψ

(28)

and

ξ(h)t (Ct� x̂l�t � x̂h�t �ηt)=
φ′

(∫∫∫ ∞

−∞
V

(
Ch�t+1� x̂

(h)
l�t+1� x̂

(h)
h�t+1�η

(h)
t+1

)
dF(�εh�t+1)

)
Ψ

(29)
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with

Ψ = ηt
∫ ∞

−∞
φ′

(∫∫∫ ∞

−∞
V

(
Cl�t+1� x̂

(l)
l�t+1� x̂

(l)
h�t+1�η

(l)
t+1

)
dF(�εl�t+1)

)
dF(xl�t)

+ (1 −ηt)
∫ ∞

−∞
φ′

(∫∫∫ ∞

−∞
V

(
Ch�t+1� x̂

(h)
l�t+1� x̂

(h)
h�t+1�η

(h)
t+1

)
dF(�εh�t+1)

)
dF(xh�t)�

Then we have

EtRt = ηt
∫∫∫∫ ∞

−∞
Rt

(
Cl�t+1� x̂

(l)
l�t+1� x̂

(l)
h�t+1�η

(l)
t+1

)
dF(�εl�t+1)dF(xl�t)

+ (1 −ηt)
∫∫∫∫ ∞

−∞
Rt

(
Ch�t+1� x̂

(h)
l�t+1� x̂

(h)
h�t+1�η

(h)
t+1

)
dF(�εh�t+1)dF(xh�t)

and the risk-free rate is

R
f
t =

[
βηt

∫ ∞

−∞
ξ(l)t (Ct� x̂l�t � x̂h�t �ηt)

(∫∫∫ ∞

−∞
(
u′(exp(gl�t+1)

))
dF(�εl�t+1)

)
dF(xl�t)

+β(1 −ηt)
∫ ∞

−∞
ξ(h)t (Ct� x̂l�t � x̂h�t �ηt)

×
(∫∫∫ ∞

−∞
(
u′(exp(gh�t+1)

))
dF(�εh�t+1)

)
dF(xh�t)

]−1

and so the equity premium is EtR
p
t = EtRt − R

f
t . The variance of equity premium is

computed as

σ2(Rpt ) =EtR2
t − (EtRt)2

where

EtR
2
t = ηt

∫∫∫∫ ∞

−∞
(
Rt

(
Cl�t+1� x̂

(l)
l�t+1� x̂

(l)
h�t+1�η

(l)
t+1

))2
dF(�εl�t+1)dF(xl�t)

+ (1 −ηt)
∫∫∫∫ ∞

−∞
(
Rt

(
Ch�t+1� x̂

(h)
l�t+1� x̂

(h)
h�t+1�η

(h)
t+1

))2
dF(�εh�t+1)dF(xh�t)�

Appendix C: An analytical approximation for rates of return

in the case of known persistence model

This section develops an analytical approximation to the equilibrium rates of return
in the model with known persistence. The crucial assumption on which the following
second-order approximation analysis depends is that Eμ̃t operates with respect to some
normal distribution N(x̃t� Ω̃). As the numbers (reporting skewness and excess kurtosis)
in Table 12 generated using the accurate numerical approximation demonstrate, Nor-
mality is a fairly accurate description.

Approximating assumption 1. μ̃t =N(x̃t�Ω).
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Table 12. Conditional moments of distributions. In each case, γ = 2�5 and α was set such that
the model generates an average risk-free rate of 1�5%. Ct , x̂��t , x̂h�t , and ηt are set equal to their
mean in the data. sk and κ denote skewness and excess kurtosis (relative to a Gaussian distribu-
tion), respectively. The latent state variable is known to a rational expectations agent and so the
conditional distribution is degenerate.

Model With Known Persistence (ρ= 0�85)

xt gc�t

E σ E σ

Rat. exp. – – 0�018 0�028
Bayesian −0�002 0�023 0�018 0�032
Twisted −0�023 0�024 −0�003 0�032

sk κ sk κ

Rat. exp. – – 0�000 0�000
Bayesian 0�000 −0�000 0�000 −0�000
Twisted 0�000 −0�000 0�000 0�000

Model With Unknown Persistence (ρ= 0�85)

xt gc�t

E σ E σ

Bayesian −0�001 0�024 0�019 0�034
Twisted −0�022 0�028 −0�002 0�037

sk κ sk κ

Bayesian −0�003 0�013 −0�003 0�017
Twisted −0�005 −0�053 −0�038 −0�029

Recall that μ̃t ≡ ξt(xt)⊗N(x̂t�Ω), and thus has density given by

f̃ (xt)= ξt(xt | Ct� x̂t;α) 1√
2πΩ

exp
(

−(xt − x̂t)
2

2Ω

)
� (30)

This assumption is thus equivalent to assuming that equation (30) is exactly a nor-

mal density with the same variance as the Bayesian posterior Ω but with a different

mean (x̃t instead of x̂t ). Let Et ≡ Ex̂tExt ; Ẽt ≡ Eμ̃tExt ≡ Ex̃tExt . It is useful to recall, if

xt is normally distributed, then for any k ∈R,

Et
[
exp(kxt)

] = exp
(
kEtxt + k2

2
Vart (xt)

)
�
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Also, Ṽart (xt)≡ Varμ̃t (xt)=Ω and Vart (xt)= Varμt (xt)=Ω and all ε terms have expec-
tation zero under both Ẽt and Et since the terms have expectation zero conditional on
xt .

The first Euler equation relating to the risk-free asset may be rewritten as follows:

1 = βRft Ẽt
[
exp(−γg− γρxt − γσxεx�t+1 − γσgεg�t+1)

]
= βRft exp

(
−γg− γρx̃t + γ2

2
(
σ2
x + σ2

g

) + γ2ρ2

2
Ṽart (xt)

)
�

Taking logs and rearranging terms we obtain an approximate solution for the risk-free
rate of return:

r
f
t = − lnβ+ γg+ γρx̃t − γ2

2
(
σ2
x + σ2

g + ρ2Ṽart (xt)
)
� (31)

The second Euler equation relating to the risky asset may then be written as

Ẽt exp
[

lnβ+ ln
(
Pt+1 +Dt+1

Pt

)
− γ ln

(
Ct+1

Ct

)]
= 1� (32)

We adopt the following approximation (to the risky rate of return), proposed in Campbell
and Shiller (1988).

Approximating assumption 2.

rt ≡ ln
(
Pt+1 +Dt+1

Pt

)
� κ0 + κ1zt+1 − zt + dt+1 (33)

where zt = ln( PtDt ) and κ0 and κ1 are approximating constants.

Next, we conjecture that the log price-dividend ratio is given by

zt =A0 +A1x̃t � (34)

Our final assumption is that the mean of the distorted conditional distribution is
an affine function of the mean of the (contemporaneous) undistorted, Bayesian condi-
tional distribution, which holds well in our data; see Figure 10.

Figure 10. x̃t = Eμ̃t (xt) plotted against x̂t . The level of consumption is set to the average value
between 1978 and 2011. In each case, γ = 2�50.



988 Collard, Mukerji, Sheppard, and Tallon Quantitative Economics 9 (2018)

Approximating assumption 3. x̃t = δ0 + δ1x̂t for t = 1�2� � � � , δ1 > 0.

Note this assumption implies trivially that x̂t = (x̃t − δ0)/δ1. Hence, we obtain a sec-
ond order approximation of the second Euler equation as follows:

1 = Ẽt exp
[
ln(β)+ κ0 + κ1zt+1 − zt + dt+1 − γgt+1

]
�

Plugging the guess for zt and using the processes of growth rates, and using Assumptions
1 and 3, we obtain

1 = Ẽt exp
[
ln(β)+ d− γg+ κ0 + (κ1 − 1)A0 + κ1A1(δ0 + δ1x̂t+1)−A1x̃t + (ψ− γ)ρxt

+ (ψ− γ)σxεx�t+1 + σdεd�t+1 − γσgεg�t+1
]
�

(35)

In the expression for x̂t+1 from the Kalman filter, letK = [Kg�Kd]. Then we have now
an expression for x̂t+1 which is equal to (substituting dt+1 and gt+1 using their dynamics
in the model):

x̂t+1 = ρx̂t(1 −Kg −ψKd)+ (Kg +ψKd)ρxt + (Kg +ψKd)σxεx�t+1

+Kgσgεg�t+1 +Kdσdεd�t+1�

Taking the log of equation (35) and using x̂t = x̃t−δ0
δ1

. Hence,

0 = ln(β)+ d− γg+ κ0 + (κ1 − 1)A0 + κ1A1δ0 − δ0
(
κ1A1ρ(1 −Kg −ψKd)

)
+ [
κ1A1ρ(1 −Kg −ψKd)+ ρκ1A1δ1(Kg +ψKd)+ (ψ− γ)ρ−A1

]
x̃t

+ ρ2(κ1A1δ1(Kg +ψKd)+ψ− γ)2Ṽart (xt)/2

+ (
ψ− γ+ κ1A1δ1(Kg +ψKd)

)2
σ2
x/2

+ (κ1A1δ1Kd + 1)2σ2
d/2 + (κ1A1δ1Kg − γ)2σ2

g/2�

Since this approximation must be valid for any x̃t , we collect the x̃t terms, set the expres-
sion equal to zero and we have

κ1A1ρ(1 −Kg −ψKd)+ ρκ1A1δ1(Kg +ψKd)+ (ψ− γ)ρ−A1 = 0

which must hold for all x̃t . Hence,

A1 = ρ(ψ− γ)
1 − ρκ1

(
1 − (1 − δ1)(Kg +ψKd)

) � (36)

Doing the same for the constant terms, we have

(1 − κ1)A0 = ln(β)+ d− γg+ κ0 + κ1A1δ0 − δ0
(
κ1A1ρ(1 −Kg −ψKd)

)
+ ρ2(κ1A1δ1(Kg +ψKd)+ψ− γ)2Ṽart (xt)/2

(37)
+ (
ψ− γ+ κ1A1δ1(Kg +ψKd)

)2
σ2
x/2

+ (κ1A1δ1Kd + 1)2σ2
d/2 + (κ1A1δ1Kg − γ)2σ2

g/2�
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Using equation (34) and that Etx̃t+1 = δ0 + δ1Etx̂t+1 where Etx̂t+1 = ρx̂t(1 − Kg −
ψKd)+ (Kg +ψKd)ρEtxt = ρx̂t , we obtain

Etrt = κ0 +A0(κ1 − 1)+ κ1A1δ0(1 − ρ)+ d+A1(κ1ρ− 1)x̃t +ψρx̂t (38)

and so the equity premium is then

Etrt − rft = κ0 +A0(κ1 − 1)+ κ1A1δ0(1 − ρ)+ d+A1(κ1ρ− 1)x̃t +ψρx̂t

+ ln(β)− γg− γρx̃t + γ2

2
(
σ2
x + σ2

g + ρ2Ṽart (xt)
)
�

(39)

Note that when δ1 = 1, as is true in our data (see Figure 10), A1 simplifies to −ρ(ψ −
γ)/(κ1ρ− 1).

We need values of the approximating constants, κ0 and κ1, to compute the log price-
dividend ratio. Beeler and Campbell (2012) obtain the constants as follows:

z̄ =
∑

zt

N
�

κ1 = exp z̄
1 + exp z̄

�

κ0 = ln(1 + exp z̄)− κ1z̄�

Appendix D: Ambiguity of second-order beliefs

Let T be a second-order event, that is, T ⊂ Θ, with μ(T) =m. Consider two prospects.
One, a bet on this event, which pays x on the event and y off it, with x > y. Two, a lottery,
�m which pays x with probability m and y with probability 1 − m. Notice, when φ is
concave, by Jensen’s inequality,

mφ
(
u(x)

) + (1 −m)φ(
u(y)

)
<φ

(
m

(
u(x)

) + (1 −m)(u(y)))� (40)

The LHS of (40) is the evaluation of the bet on T while the RHS is the evaluation of the
lottery, per the smooth ambiguity model. Similarly, the bet on the complementary event
Tc is dispreferred to �1−m given a concave φ. Indeed, ambiguity aversion implies we
cannot find a calibrated lottery event such that betting on that lottery event is same as
betting on T ; there is no lottery probability that is same as μ. Hence, whenφ is concave,
the second-order measure μ cannot be calibrated with a lottery; behaviorally, μ is not
treated as an objective probability.

As shown formally in Section 2.4 in Klibanoff, Marinacci, and Mukerji (2012), this is
the heart of the argument that establishes that ambiguity of a first-order event E implies
that nonnull and nonuniversal second-order events concerning the probability of E are
treated as ambiguous. Hence, the smooth ambiguity model property of expected utility
evaluation of second-order acts (e.g., bets on events in Θ) does not mean that the DM
treats these acts as based on unambiguous events.
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