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Dynamics of strategic information transmission in
social networks

Manuel Foerster
Department of Economics, University of Hamburg

We develop a dynamic framework of strategic information transmission through
cheap talk in a social network. Privately informed agents have different prefer-
ences about the action to be implemented by each agent and repeatedly com-
municate with their neighbors in the network. We first characterize myopic (best
response) equilibria as well as fully informative myopic equilibria. Second, we
provide a sufficient condition for the existence of a fully informative farsighted
(perfect Bayesian) equilibrium. Fully informative myopic and farsighted equilib-
ria essentially take a particular simple form: all communication is truthful along
a subnetwork that is a tree. We also consider societies in which both myopic and
farsighted agents are present, and we analyze equilibrium welfare. Furthermore,
we extend our model to public communication and investigate the implications of
our results for the design of institutions. Finally, our analysis reveals that myopic
equilibria tend to Pareto dominate farsighted equilibria, in particular if a social
planner has designed the network optimally.

Keywords. Cheap talk, information aggregation, learning, social networks,
strategic communication.

JEL classification. C72, D82, D83, D85.

1. Introduction

In many economic, political, and social situations, decision-making relies on informa-
tion agents gather through communication with their social environment. Sharing in-
formation allows for better individual decisions, but revealing all may not be the best
strategy when interests diverge and individual decisions have spillovers on other agents.
We consider this type of context but drop the typical assumption that agents communi-
cate directly with all other agents. If a large number of agents are involved in a decen-
tralized decision process, it is likely that not all decision-makers interact—at least not
directly.1 For example, we can think of an organization where decision-making is decen-
tralized at the division level and these divisions do not share the same preferences about
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1Framed differently, we consider information aggregation through communication in social networks
but drop the typical assumption that the agents’ interests are aligned.
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optimal decisions; possible reasons include local costs of adaptation, career concerns,
and priorities. Before making decisions, division leaders interact with those other divi-
sion leaders they have direct operational relations with, resulting in information being
transmitted indirectly throughout the organization.

Our objective in this paper is to develop a tractable dynamic framework of belief
formation under payoff externalities to analyze how agents strategically transmit in-
formation through cheap talk with their neighbors in a social network. The central re-
search questions are whether such belief dynamics lead to the aggregation of dispersed
information and how the information is effectively transmitted through the network.
A comprehensive analysis of these questions requires distinguishing different degrees
of sophistication of the agents—myopic and farsighted—as well as different modes of
communication—private and public.2

Our framework is a natural extension of the model of cheap talk by Galeotti et al.
(2013) (henceforth GGS) to a dynamic game on a network.3 There is an unknown state
of the world and each agent has a bias relative to the state that determines the agent’s
ideal action or bliss point. We can view the profile of biases as a measure for the con-
flict of interest between the agents: each agent would like the other agents’ actions to
be as close as possible to her ideal action. Each agent initially receives a private signal
correlated with the unknown state and can communicate with her direct neighbors in
the social network. Agents sequentially “wake up” (in a random order) to communicate
with their neighbors by sending messages about their information. They decide for each
piece of information they hold whether to transmit it to their neighbors.4 Agents up-
date their beliefs about the state based on their private signal and information received
from their neighbors via Bayes’ rule. Finally, after the repeated information exchange
has taken place, each agent takes an action and payoffs realize.5

Our analysis proceeds in several steps. In the baseline setup, we consider myopic
agents and private communication. Myopic agents play myopic best response and thus
ignore that other agents’ beliefs may change subsequently due to further information
transmission.6 Agents can differentiate their messages across neighbors by sending
them privately to every neighbor; private communication is assumed throughout if not

2The distinction between myopic and farsighted behavior is common in the literature on strategic in-
teraction on networks. A widely used example is the myopic pairwise stability concept by Jackson and
Wolinsky (1996), which has been extended to farsighted network formation by Dutta et al. (2005), Herings
et al. (2009), and Page et al. (2005).

3These authors study an extension of the uniform-quadratic version of Crawford and Sobel (1982) to
multiple players.

4More precisely, information is “tagged” so that agents can share information along with its source. No-
tably, recent experimental evidence by Mobius et al. (2015) suggests that people make use of tagging to
aggregate information.

5This implies that there are no time constraints, which is a simplifying assumption that allows us to focus
on the effects of payoff externalities. In the context of an organization, we can think about this assumption
as that agents start exchanging information early enough so that the information exchange is finished when
decisions are to be made.

6We could also think of these agents as purposely avoiding the computational burden associated with
computing a sequentially rational response. We refer to Bala and Goyal (1998) for a discussion of this as-
sumption.
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stated otherwise. Herein, we refer to perfect Bayesian equilibria with myopic best re-
sponse as myopic equilibria and employ an adaptation of the intuitive criterion by Cho
and Kreps (1987) to restrict off-equilibrium beliefs.7 We characterize myopic equilib-
ria as well as optimal myopic equilibria, which are optimal from an informational point
of view, in a myopic sense: they maximize the transmitted information at each time
instant, which makes them prominent for myopic agents. Surprisingly, partial infor-
mation transmission is ruled out in optimal myopic equilibria. We then show that the
ability of a sender to communicate all her information truthfully in an optimal myopic
equilibrium (at a given time instant) depends on the number of signals the receiver al-
ready holds and the number of signals the sender could potentially transmit: the upper
bound on the number of signals the sender would like the receiver to hold is decreas-
ing in the conflict of interest.8 Furthermore, we show that optimal myopic equilibria
are fully informative if and only if there exists a subnetwork that is a tree along which
the conflicts of interest between neighbors are below some threshold. In this case, all
communication is truthful along the tree.

Second, we consider farsighted agents who have perfect foresight. Herein, we refer
to perfect Bayesian equilibria as farsighted equilibria. We show that there exists a fully
informative farsighted equilibrium if there exists a subnetwork that is a tree such that
for each agent the absolute differences of her bias and the average bias of all agents
reachable through each of her neighbors in the tree are below the same threshold as for
myopic equilibria. Again, all communication is shown to be truthful along the tree.

We then combine our findings on myopic and farsighted agents, and study hetero-
geneous societies in which both myopic and farsighted agents are present. With a slight
modification to account for the presence of myopic agents, we show that our result for
farsighted agents extends to heterogeneous societies. Notably, heterogeneous societies
provide testable implications: we can construct a network and preferences such that
certain agents can only transmit all their information if they are myopic (farsighted).

Fourth, we analyze equilibrium welfare. As in GGS, more ex ante expected infor-
mation transmission (for at least one agent) constitutes a strict Pareto improvement.
Hence, an equilibrium is Pareto efficient if and only if it is fully informative. We add
that optimal myopic equilibria are utility-maximizing equilibria—equilibria that Pareto
dominate all other equilibria—if they are fully informative, and otherwise they may not
be utility-maximizing.

Next, we consider public communication, that is, agents cannot differentiate their
messages across neighbors. Our findings are in line with the existing literature regard-
ing local communication; see, e.g., Farrell and Gibbons (1989) and Goltsman and Pavlov
(2011). In particular, we also observe what Farrell and Gibbons (1989) refer to as subver-
sion (truthful communication is possible with some audience in private but impossible
in public), which interestingly has further implications in our context. When looking

7Broadly speaking, the criterion effectively eliminates the possibility of sowing doubt about information
that was already transmitted earlier.

8Notice that this result essentially is a generalization of the main result in GGS to agents holding multiple
private signals.
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beyond local communication, we find that, unlike in static models, subversion may also
prevent fully informative equilibria if agents are myopic.

Furthermore, we analyze the implications of our model for the design of institutions.
Consider a manager who is planning to move her company to new headquarters. How
would she organize the new building and place the different divisions? According to
the biography by Isaacson (2011), Steve Jobs, the former Chief Executive Officer (CEO)
of Apple and Pixar, designed the Pixar headquarters “to promote encounters and un-
planned collaborations.” If we think that encounters occur if individuals are linked in
the network and collaborations are essentially the exchange of information, then, in
our context, the objective of the CEO, or, more generally, a social planner, would be to
choose a network that maximizes equilibrium welfare. Our analysis suggests that agents
should be placed in increasing order of their biases to create a “line” network, both if
agents are myopic and (at least for small conflicts) if they are farsighted. Notably, this
implies that homophily—the well documented tendency of individuals to connect to
others with similar preferences (“love of the same”) (see McPherson et al. (2001) for a
literature overview)—is beneficial for information transmission under conflicts of inter-
est.

Finally, we consider the complete network to investigate whether allowing for dy-
namic communication aids or impedes information transmission relative to the static
game of GGS. We show that dynamics ease the constraints on conflicts of interest for
fully informative equilibria to exist, both with myopic and with farsighted agents. Addi-
tionally, a general comparison of myopic and farsighted equilibria reveals that myopic
agents tend to reach outcomes that Pareto dominate those of farsighted agents, in par-
ticular if a social planner has designed the network optimally.

Our work contributes to the literature on cheap talk as well as to that on learning and
information aggregation in social networks. We extend the static framework of cheap
talk by GGS to a dynamic game on a network. A closely related contribution is Hagen-
bach and Koessler (2010), who study a model of multiplayer cheap talk in which agents
have incentives to coordinate their actions.9 Furthermore, Ambrus et al. (2013) inves-
tigate a game in which the sender and the receiver can communicate only through a
chain of intermediators. They assume that all involved agents are strategic—but differ-
ent from our approach, only the receiver takes an action—and find that pure strategy
equilibrium outcomes are monotonic in the intermediators’ biases and do not depend
on the order of intermediators.10

From the point of view of the literature on learning and information aggregation in
social networks, our contribution is that we introduce payoff externalities. Acemoglu
et al. (2014) study information aggregation through communication on a network in a
closely related model, but consider aligned preferences. In their model, agents can take

9We refer to GGS for a detailed discussion of the differences from our statistical framework.
10Other related contributions study cheap talk with either multiple senders, e.g., Ambrus and Takahashi

(2008), Austen-Smith (1993), Battaglini (2002), Krishna and Morgan (2001), Morgan and Stocken (2008), and
Wolinsky (2002), or multiple receivers, e.g., Farrell and Gibbons (1989) and Goltsman and Pavlov (2011).
Baumann (2017) studies information transmission between agents in a network and an uninformed prin-
cipal who wants to extract information from the network.
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the decision at any time and payoffs are discounted so that agents prefer earlier deci-
sions. They show that under truthful communication, asymptotic learning—defined
as the fraction of agents who take the correct action converging to 1 as the society
grows—occurs if most agents are close to “information hubs,” which receive and dis-
tribute a large amount of information.11 Other papers that study information aggre-
gation through communication in social networks typically use non-Bayesian rules to
update beliefs. These approaches emphasize the complexity of updating beliefs when
agents share their ex post beliefs (and not messages on the signals as in our case) and
study the pattern of the agents’ influence on long-run beliefs; see, e.g., Acemoglu et al.
(2010), DeMarzo et al. (2003), and Golub and Jackson (2010).12 Furthermore, our pa-
per is related to contributions on Bayesian models of observational learning, in which
agents learn from observing the actions of their neighbors. Despite aligned interests, in-
formation aggregation may fail in these models, as observed actions do not reflect all in-
formation an agent has; see, e.g., Acemoglu et al. (2011), Bala and Goyal (1998), Banerjee
and Fudenberg (2004), Gale and Kariv (2003), and Mueller-Frank (2013).13 Another re-
lated paper is Hagenbach (2011), who studies information centralization on a network.
In her model, agents face a trade-off between supporting fast information centralization
and increasing the chances to themselves centralize the information first, which would
yield an additional personal reward.

The paper is organized as follows. In Section 2 we introduce the model and notation.
Section 3 presents our main results on myopic and farsighted agents. We also derive
results on heterogeneous societies and analyze equilibrium welfare. Section 4 considers
public communication. The problem of a social planner concerned with the formation
of the network is analyzed in Section 5. We compare our framework with the static game
of GGS in Section 6. Section 7 concludes. The proofs are presented in the Appendix.

2. Model and notation

We consider a set N = {1�2� � � � � n}, with n ≥ 2, of agents or players and each agent i ∈ N

has a bias bi ∈ R. The unknown state of the world θ is distributed uniformly on [0�1].
At time t = 0, each agent i receives a private signal si ∈ {0�1} about the realization of θ,
where si = 1 with probability θ and si = 0 with probability 1 −θ. Signals are independent
across agents, conditionally on θ.

Let gN denote the set of all subsets of N with cardinality 2, called the complete graph.
The social network is given by an undirected graph g ⊆ gN . For simplicity, we denote

11Fan et al. (2015) build on this model and investigate learning with finite populations. Another related
strand of literature is that on knowledge and consensus, which studies repeated information exchange
through truthful private messages. In particular, Parikh and Krasucki (1990) and Krasucki (1996) analyze
which conditions on the communication network lead to consensus.

12While these contributions assume truthful communication, Buechel et al. (2015) study a model in
which agents act strategically in that stated beliefs depend on preferences for conformity. Förster et al.
(2013) develop a model in which agents aggregate information anonymously, based on how many agents
hold certain beliefs.

13Mueller-Frank (2014) studies boundedly rational agents and shows that the presence of at least one
Bayesian agent in the network is sufficient for every agent to perfectly aggregate information.
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a link {i� j} ∈ g by ij. Agent i can exchange information with agent j (and vice versa) if
ij ∈ g. We denote the neighborhood of agent i by Ni(g) = {j ∈N|ij ∈ g}. A path from agent
i to agent j in g is a sequence of distinct agents i = i1� i2� � � � � iK = j such that ikik+1 ∈ g

for all k = 1�2� � � � �K − 1. We say that the graph g is a tree if there exists a unique path
from i to j in g for all distinct i� j ∈ N . The set of agents C ⊆ N is a component of g if
there is a path from i to j in g for all distinct i� j ∈ C and Ni(g) ⊆ C for all i ∈ C. The set of
components of g is denoted C(g).

Agents communicate with their neighbors and update their beliefs at discrete time
periods. At each time instant t = 1�2� � � � , one agent i wakes up and communicates with
her neighbors. We assume, without loss of generality, that agents wake up with equal
probability 1/n independent across periods.14 The agent who is active at time instant
t ≥ 1 is denoted ι(t) and the history of active agents before time t by

Ht = (ι(t ′))t−1
t′=1�

The set of possible histories at time t ≥ 1 is denoted Ht . If agent i = ι(t) is active at time
instant t, she communicates with each neighbor j ∈ Ni(g) by sending a private message
m̂ij�t ∈ {0�1}n. Without loss of generality, the kth entry of m̂ij�t , m̂ij�t�k, represents the
information i sends to j at time instant t regarding the signal of agent k. In other words,
information is “tagged” so that agents can share their information along with its sources.
The information set of agent i at time t ≥ 0 is defined as

Ii�t = (si� (m̂ij�t ′)i=ι(t ′)
ij∈g
t ′<t

� (m̂ki�t ′)k=ι(t ′)
ki∈g
t ′<t

)
and contains the agent’s own private signal and all messages that she has sent and re-
ceived up to time t. The set of possible information sets of agent i at time t ≥ 0 is de-
noted Ii�t . A (pure) communication strategy for the active agent i = ι(t) at time instant t
regarding each agent j ∈ Ni(g) is defined as a mapping

mij�t : Ii�t ×Ht → {0�1}n�
After the repeated information exchange has taken place, i.e., in the limit t → ∞, each
agent i has to choose an action âi ∈R.15 Agent i’s action depends on the information that
she has acquired during the information exchange and the history of communication,

ai :
(

lim
t→∞Ii�t

)
×
(

lim
t→∞Ht

)
→ R�

Given the state of the world θ, the payoff of agent i from the profile of actions â =
(â1� â2� � � � � ân) is

ui(â|θ)= −
∑
j∈N

(θ+ bi − âj)
2�

14Our results hold as long as each agent wakes up with strictly positive probability that is independent
across periods.

15Notice that, as there are only finitely many agents and signals, the information exchange terminates
after finitely many periods (with probability 1) in the equilibria we consider. Therefore, the outcomes were
the same with high probability if the agents chose the action at some time period T < ∞ large enough.
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Agent i’s payoff depends on how close her own action âi and the actions âj of the other
agents j �= i are to her ideal action or bliss point θ + bi. We denote the belief of agent
i about her ideal action at time t ≥ 0 by xi(t); her equilibrium action hence is given by
ai = limt→∞ xi(t). The profile of beliefs is denoted x(t) = (x1(t)�x2(t)� � � � � xn(t)). We as-
sume that every aspect of the model except the state of the world and the agents’ private
signals is common knowledge.

The equilibrium concept we employ for farsighted (myopic) agents is perfect
Bayesian Nash equilibrium (with myopic best response). Let m = (m1�m2� � � � �mn), with
mi = (mij�t)j∈Ni(g)�t=1�2����, denote a communication strategy profile for all agents. Notice
that mij�t denotes the strategy of agent i with respect to her neighbor j for the case that
she is active at time instant t. We denote the strategy profile of all agents except agent
i by m−i = (m1�m2� � � � �mi−1�mi+1� � � � �mn). The strategy profile of agent i at all time
instants except t is denoted mi�−t = (mij�t ′)j∈Ni(g)�t ′=1�2�����t−1�t+1����. We say that there is
a truthful communication path from i to j in g (with respect to i’s signal si) at time t

under strategy profile m if there exist distinct agents i = i1� i2� � � � � iK = j and time in-
stants t1 < t2 < · · · < tK−1 < t such that ik = ι(tk), ikik+1 ∈ g and mikik+1�tk�i = si for all
k= 1�2� � � � �K − 1. Furthermore, let

Imi�t = {si} ∪ {sj|∃ truthful communication path from j to i at time t under m}

denote the actual information set of agent i at time t under strategy profile m, i.e., the set
consisting of her own signal and the signals that were transmitted to her up to time t un-
der strategy profile m. Notice that for convenience we denote the actual information set
as a set (and not as a vector) and omit the dependence on the history of communication
for notational clarity.

Let us denote by Em the conditional expectation when the agents behave according
to the strategy profile m. Under strategy profile m, the information set of agent i and the
history of communication induce, by sequential rationality, the following belief about
her ideal action θ+ bi:

xi(t) = argmax
x∈[0�1]

(
−Em

[
(θ+ bi − x)2 +

∑
j �=i

(
θ+ bi − xj(t)

)2|Ii�t �Ht

])

= argmax
x∈[0�1]

(
−E

[
(θ+ bi − x)2 +

∑
j �=i

(
θ+ bi − xj(t)

)2|Imi�t])
= argmax

x∈[0�1]
(−E

[
(θ+ bi − x)2|Imi�t

])
= E

[
θ|Imi�t

]+ bi�

The standard Beta-binomial model yields

xi(t) = E
[
θ|Imi�t

]+ bi =

∑
s∈Imi�t

s + 1

∣∣Imi�t∣∣+ 2
+ bi� (1)
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We denote this information exchange game by �(n�g�b) and restrict our attention to
pure strategy equilibria. Notice that if sk ∈ Imi�t at time instant t under strategy profile
m, the communication strategy of the active agent i with each agent j ∈ Ni(g) regarding
k’s signal can take, without loss of generality, one of two forms: she either reveals her
information, mij�t�k = sk, or she employs a babbling strategy, mij�t�k ∈ {0�1} independent
of sk. If sk /∈ Imi�t , then i’s message is disregarded by j, as it is necessarily uninformative.

Hence, we refer to Ĩmij�t = Imi�t\Imj�t as the set of potentially transmitted information from

i to j at time t under strategy profile m, and refer to Imij�t = {sk ∈ Ĩmij�t |mij�t�k = sk} as the
set of transmitted information from i to j at time instant t under strategy profile m (in
case i = ι(t)). Finally, we say that a strategy profile m is fully informative if limt→∞ Imi�t =
{s1� s2� � � � � sn} with probability 1 for all i ∈N .

3. Main results

In this section, we first present the equilibrium analysis in the baseline setup of myopic
agents and private communication. We then extend this analysis to farsighted agents
and also derive results for societies in which both myopic and farsighted agents are
present. Finally, we analyze equilibrium welfare.

3.1 Myopic agents

Consider myopic agents who play myopic best response, that is, ignore that beliefs may
change subsequently due to further information transmission. The equilibrium concept
we employ is perfect Bayesian equilibrium with myopic best response.

Definition 1 (Myopic equilibrium). (i) A strategy profile m∗ is a myopic equilibrium
of �(n�g�b) if for all i ∈N and all time instants t,

m∗
i�t ∈ argmax

mi�t

E(mi�t �m
∗
i�−t �m

∗
−i)

[
ui
(
x(t + 1)|θ)|Ii�t �Ht

]
�

(ii) A myopic equilibrium m∗ is (myopically) optimal if for all i ∈ N , time instants t,
and j ∈Ni(g), ∣∣Im∗

ij�t

∣∣= max
m∈M∗(m∗�t)

∣∣Imij�t∣∣�
where M∗(m∗� t)= {m myopic equilibrium|Imk�t = Im

∗
k�t for all k ∈N} and |·| denotes

the cardinality of a set.

In a myopic equilibrium, each agent maximizes her expected instantaneous payoff
(at the next time instant t + 1) whenever she is active, i.e., the payoff she would get if ac-
tions were taken immediately after she has sent her messages and agents have updated
beliefs accordingly. Furthermore, the equilibrium is (myopically) optimal if at each time
instant the active agent transmits as much information as possible in equilibrium. For
brevity, we refer to these equilibria as optimal myopic equilibria. We study optimal my-
opic equilibria as they are optimal from an informational point of view, in a myopic
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sense: they maximize the transmitted information at each time instant, which makes
them prominent equilibria for myopic agents.16

As information could potentially be transmitted through several paths in the net-
work, a deviation by some agent may be detected in some instances. More precisely, a
deviation is detected in this information exchange game if and only if some agent re-
ceives inconsistent information regarding some signal (possibly from the same neigh-
bor) even though the respective communication was supposed to be truthful under the
equilibrium m∗. We propose the following adaptation of the intuitive criterion by Cho
and Kreps (1987) to restrict off-equilibrium beliefs to reasonable beliefs. For any strategy
profile m, agent i, signal sk, and time instant t, let

Ni(m� sk� t)= {(j� t ′)|j ∈Ni(g)� t
′ ≤ t� j = ι

(
t ′
)
� sk ∈ Imj�t ′�mji�t ′�k = sk

}
be the collection of all pairs of neighbors and time instants (at time t) such that these
neighbors are supposed to have truthfully communicated agent k’s signal to i at the
respective time instant under strategy profile m. Notice that we omit the dependence
on the history of communication for notational clarity. Furthermore, let

N∗
i (m� sk� t) = {(j� t ′) ∈Ni(m� sk� t)|∃μ ∈ �∗(Ni(m� sk� t)

) :
Em
[
uj
(
x
(
t ′ + 1

)|θ)|Ĩj�t ′�Ht ′
]
< Em̃

[
uj
((
x̃i
(
t ′ + 1

)
�x−i

(
t ′ + 1

))|θ)|Ĩj�t ′�Ht ′
]

for some realization Ĩj�t ′ consistent with I
m̃�μ
i�t

}
be the subset of pairs (j� t ′) such that agent j possibly (for some belief μ of i and re-
alization Ĩj�t ′ of j’s information set) had an incentive to deviate regarding sk at time t ′,
where m̃ = (1 − mji�t ′�k�m−(ji�t ′�k)) is such that agent j has deviated in the communica-
tion with agent i at time t ′ regarding sk, �∗(Ni(m� sk� t)) is the set of consistent beliefs
over Ni(m� sk� t) regarding the origin of the deviation, Im̃�μ

i�t is the actual information set

of agent i at time t under m̃ and μ, and x̃i(t
′ + 1) = E[θ|Im̃�μ

i�t ′+1] + bi.17

Definition 2 (Intuitive criterion). Consider a myopic equilibrium m∗, any agent i ∈N ,
signal sk, and time instant t. If for any (j� t ′) ∈ N∗

i (m
∗� sk� t),

Em∗
[
uj
(
x
(
t ′ + 1

)|θ)|Ĩj�t ′�Ht ′
]
< Em̃∗

[
uj
((
x̃i
(
t ′ + 1

)
�x−i

(
t ′ + 1

))|θ)|Ĩj�t ′�Ht ′
]

for all μ ∈ �∗(N∗
i (m

∗� sk� t)) and some realization Ĩj�t ′ consistent with I
m̃∗�μ
i�t , then we say

that m∗ violates the intuitive criterion. If there is no such agent i, signal sk, and time
instant t, we say that m∗ survives the intuitive criterion. We refer to myopic equilibria
that survive the intuitive criterion as intuitive myopic equilibria.

16Compared to, for instance, utility-maximizing equilibria. Coordination on such equilibria would cer-
tainly require some farsighted reasoning. We discuss this in more detail in Section 3.4.

17Notice that beliefs in �∗(Ni(m� sk� t)) are not necessarily probability distributions. We require beliefs
in �∗(Ni(m� sk� t)) to be consistent with Ii�t , i.e., agents who have sent the same messages regarding signal
sk are assigned the same deviation probability. Furthermore, two information sets are consistent if they do
not contradict each other regarding the realization of some signal.
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Definition 2 posits a criterion to restrict off-equilibrium beliefs and select only those
equilibria that are still equilibria under this restriction. If an agent detects a deviation on
some signal, i.e., one of her neighbors has sent an off-equilibrium message with respect
to this signal to her, then the intuitive criterion requires her belief regarding the origin of
the deviation to be restricted to those agents who possibly could have benefitted from
the deviation. The equilibrium violates the criterion if the deviation still could have
been profitable despite the restriction of the receiver’s beliefs. In other words, intuitive
myopic equilibria are such that off-equilibrium deviations are deterred by reasonable
beliefs. Notice that existence is not an issue as there always exists an intuitive equilib-
rium in which no information is transmitted. In the following lemma, we characterize
intuitive myopic equilibria.

Lemma 1. A strategy profile m∗ is an intuitive myopic equilibrium if and only if for all
ij ∈ g and all time instants t such that Im

∗
ij�t �=∅,

|bi − bj| ≤ 1∣∣Im∗
j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2

[
1/2 −

∣∣Ĩm∗
ij�t \Im

∗
ij�t

∣∣∣∣Im∗
j�t

∣∣+ ∣∣Im∗
ij�t

∣∣+ 2

(∣∣Im∗
i�t ∩ Im

∗
j�t

∣∣
+ ∣∣Im∗

ij�t

∣∣+ 1/2 + ∣∣Im∗
j�t \Im∗

i�t

∣∣ ∣∣Im∗
i�t ∩ Im

∗
j�t

∣∣+ ∣∣Im∗
ij�t

∣∣+ 1∣∣Im∗
i�t

∣∣+ 2

)]
�

(2)

First of all, Lemma 1 says that the only relevant messages are those that actually
convey new information. In particular, the intuitive criterion implies that messages re-
garding signals that were already transmitted earlier do not matter: as the agent who
initially transmits a signal to some agent does not have an incentive to deviate (other-
wise it would not be a myopic equilibrium), a later deviation on this signal (that would
be profitable for some off-equilibrium belief of the receiver) is attributed correctly and,
hence, is not profitable.18 Interestingly, this means that the intuitive criterion effectively
eliminates the possibility of sowing doubt about information that was already trans-
mitted earlier. To illustrate this, suppose that ij ∈ g, Im

∗
i�t = Im

∗
j�t = {si� sj� sk} and that all

communication is truthful whenever possible under equilibrium m∗. Consider the com-
munication of agent i = ι(t) with agent j at time t. If it is profitable for some belief of
agent j to deviate on signal sk of agent k, m′

ij�t�k = 1 − sk, then this deviation is attributed
correctly to agent i by the intuitive criterion. Without the criterion, the receiver could
also mistake the deviation for truthful communication or assign a certain probability to
this possibility, which could make the deviation beneficial.

Second, whether player i can transmit some set of signals to player j depends on
the conflict of interest between the two as well as on the information both agents hold
at that point in time and the information that i intends to transmit to j. Consider first
the—as we will see later on—most important case in which the sender i transmits all

18Essentially, the criterion exploits that myopic agents do not anticipate that an initial deviation becomes
off equilibrium eventually and, instead, consider it as on equilibrium.



Theoretical Economics 14 (2019) Information transmission in networks 263

signals she could possibly transmit, i.e., Im
∗

ij�t = Ĩm
∗

ij�t . The right-hand side of (2) simplifies
drastically in this case and we get

|bi − bj| ≤ 1

2
(∣∣Im∗

j�t

∣∣+ ∣∣Im∗
ij�t

∣∣+ 2
) �

To understand the intuition behind this condition, notice that by sequential rationality
and the properties of the Beta-binomial model (see (1)), the receiver’s updated belief is

xj(t + 1)=

∑
s∈Im∗

j�t+1

s + 1

∣∣Im∗
j�t+1

∣∣+ 2
+ bj =

∑
s∈Im∗

j�t

s +
∑
s∈Im∗

ij�t

s + 1

∣∣Im∗
j�t

∣∣+ ∣∣Im∗
ij�t

∣∣+ 2
+ bj�

and, furthermore, that deviating on one signal is most profitable.19 Hence, the most
profitable deviation induces an expected absolute change in the receiver’s belief of
1/(|Im∗

j�t | + |Im∗
ij�t | + 2), i.e., Lemma 1 says that the sender i can transmit all her (currently

held) information to the receiver j in equilibrium if and only if the absolute difference
of her bias and the receiver’s bias is at most half the expected absolute change in the
receiver’s belief induced by the most profitable deviation. In particular, as the expected
absolute change in the receiver’s belief is decreasing in the number of signals the re-
ceiver already holds as well as in the number of signals the sender is transmitting, truth-
ful communication becomes more difficult over time as agents accumulate information.

Next we turn to the case where the sender i transmits only a part of the signals she
could possibly transmit, i.e., ∅ �= Im

∗
ij�t � Ĩm

∗
ij�t . Observe that the right-hand side of (2) has a

unique maximizer with respect to Im
∗

ij�t : Ĩm
∗

ij�t . That is, it is generally more difficult to trans-
mit only a part of the information that could possibly be transmitted than to transmit
all the information. In particular, this implies that the transmission of all information
may be feasible in equilibrium, while the transmission of only a part of this informa-
tion is not. Furthermore, whenever the transmission of all information is not feasible in
equilibrium, then neither is the transmission of only a part of it.

The reason is that if the sender only transmits a part of her information, i.e., with-
holds at least one signal from the receiver, then the transmitted information may induce
a change in the receiver’s belief that is too large relative to the sender’s belief (which takes
into account the information withheld) and thus make a deviation profitable. To illus-
trate this, consider for instance Ĩm

∗
ij�t = {s� s′� s′′} with realizations s = 1, s′ = 1, and s′′ = 0.

Transmitting only the signals s and s′ (instead of all three signals), Im
∗

ij�t = {s� s′}, increases
the receiver’s belief relative to the sender’s belief, which makes a deviation more likely
to be profitable if bj > bi, and the same holds for the complementary realization of the
signals (s = 0, s′ = 0, and s′′ = 1) if bj < bi.

19A deviation on more than one signal either cancels out (e.g., if the sender deviates on two signals s = 1
and s′ = 0), is equivalent to a deviation on one signal (e.g., if the sender deviates on three signals s = 1, s′ = 1,
and s′′ = 0, which is equivalent to a deviation only on s = 1), or leads to an expected change in the receiver’s
belief that is too large to be profitable (e.g., if the sender deviates on two signals s = 1 and s′ = 1).
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Moreover, a careful inspection of (2) reveals that surprisingly partial information is
generically ruled out in equilibrium: the right-hand side of (2) is at most equal to zero
in case of partial information transmission. We summarize our findings in the following
proposition.

Proposition 1. A strategy profile m∗ is an intuitive myopic equilibrium if and only if for
all ij ∈ g and all time instants t, either

(i)

Im
∗

ij�t = Ĩm
∗

ij�t and |bi − bj| ≤ 1

2
(∣∣Im∗

j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2
) �

(ii) |Im∗
ij�t | = 1 < |Ĩm∗

ij�t | = 2, |Im∗
i�t ∩ Im

∗
j�t | = 0, and bi = bj , or

(iii) Im
∗

ij�t =∅.

Next we turn to optimal myopic equilibria. We know from the above analysis that it
is generally more difficult to transmit only a part of the information that could possibly
be transmitted than to transmit all the information. Hence, in optimal intuitive myopic
equilibria, either all information that could possibly be transmitted is transmitted or
no information is transmitted. Combining these findings with Proposition 1 yields the
following result.

Theorem 1. A strategy profile m∗ is an optimal intuitive myopic equilibrium if and only
if for all ij ∈ g and all time instants t,

Im
∗

ij�t = Ĩm
∗

ij�t if |bi − bj| ≤ 1

2
(∣∣Im∗

j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2
) and Im

∗
ij�t =∅ otherwise.

Theorem 1 says that the ability of the sender to communicate her information truth-
fully in an optimal intuitive myopic equilibrium depends—given the conflict of interest
between her and the receiver—on the number of signals the receiver already holds and
the number of signals the sender could potentially transmit (and actually does trans-
mit). If interests are aligned, bi = bj , the sender transmits all her information, as the
right-hand side of the inequality in Theorem 1 is strictly positive. However, whenever
there is a conflict of interest, bi �= bj , there exists a threshold that depends on the size of
the conflict of interest,

κ(bi� bj) =
⌊

1
2|bi − bj| − 2

⌋
�

such that the sender transmits all her information if |Im∗
j�t | + |Ĩm∗

ij�t | does not exceed the
threshold, and otherwise no information transmission takes place. This leads to an in-
teresting finding: an agent may not be able to transmit any information to a particular
neighbor if she received too much information before communicating with that neigh-
bor for the first time. The following example illustrates this point.
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Example 1. Consider n = 4 agents, the “line” network g = {12�23�34}, and biases b1 =
1/10 and b2 = b3 = b4 = 0. Notice that agents 2, 3, and 4 have aligned interests, while
information transmission is only feasible in equilibrium between agents 1 and 2 if jointly
both agents do not hold all signals as κ(b1� b2) = 3. Suppose that the agents play an
optimal intuitive myopic equilibrium and consider the following two scenarios of active
agents in the first three time periods:

(i) H4 = (1�3�2). Agent 1 transmits her signal to agent 2 in period 1. The next pe-
riod, agent 3 transmits her signal to her neighbors, agent 2 and agent 4. In pe-
riod 3, agent 2 transmits agent 3’s signal as well as her own signal to agent 1,
as they jointly only hold three (different) signals, and she also transmits agent
1’s signal as well as her own signal to agent 3. The only agent who does not
eventually get all information in this scenario is agent 1, who was excluded ex
ante.

(ii) H4 = (4�3�2). In this scenario, agent 4 becomes active first instead of agent 1
and transmits her signal to agent 3, who one period later transmits this signal as
well as her own signal to agent 2. Hence, when agent 2 becomes active for the
first time in period 3, she already holds all signals except that of agent 1, which
precludes the transmission of any information to the latter, and the same holds
vice versa for agent 1 when she becomes active. As a consequence, no signal
is transmitted to agent 1 and no other agent gets to know her signal in this sce-
nario.

A comparison of the information the agents eventually hold in these scenarios re-
veals that each agent is better informed in scenario (i) than in scenario (ii). In fact, (i) is
the best-case scenario from an informational point of view, while (ii) is the worst-case
scenario (given the equilibrium).

Notice that we can use Theorem 1 to derive thresholds on the conflict of interest
for the extreme cases where information transmission is not constrained and where it
does not take place at all in optimal myopic equilibria. As the right-hand side of the
inequality in Theorem 1 is strictly decreasing in |Im∗

j�t | + |Ĩm∗
ij�t |, information transmission

is not constrained if the inequality holds even when the sender i knows all signals that
the receiver j does not yet know, that is, |Ĩm∗

ij�t | = n − |Im∗
j�t |. Alternatively, information

transmission does not take place at all if the inequality does not hold, even when both
agents only know their private signal, i.e., |Im∗

j�t | = |Ĩm∗
ij�t | = 1.

Corollary 1. In an optimal intuitive myopic equilibrium m∗, information transmission
between agents i and j ∈Ni(g)

(i) is not constrained if |bi − bj| ≤ 1/(2(n+ 2)) (any signal is transmitted) and

(ii) does not take place at all if |bi − bj| > 1/8 (no signal is transmitted).

We next proceed with the question of when a fully informative equilibrium exists.
The first part of Corollary 1 states that the transmission of information between two
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agents is not constrained if their conflict does not exceed 1/(2(n+ 2)). Hence, the trans-
mission of a particular signal to some agent is guaranteed in optimal intuitive myopic
equilibria if there exists a path from the agent whose private signal is concerned to the
former agent along which this condition is fulfilled for any pair of subsequent agents.
Thus, the transmission of all signals to all agents is guaranteed if there exists a path be-
tween any two agents along which the condition holds, that is, along a subnetwork that
is a tree. In particular, all communication is truthful along the tree. Additionally, as oth-
erwise at least one signal would not be transmitted to everyone, we get the following
characterization of fully informative equilibria.

Theorem 2. Suppose that m∗ is an optimal intuitive myopic equilibrium. Then m∗ is
fully informative if and only if there exists a tree g̃ ⊆ g such that

|bi − bj| ≤ 1
2(n+ 2)

for all ij ∈ g̃� (3)

In particular, in this case Im
∗

ij�t = Ĩm
∗

ij�t for all ij ∈ g̃ and all time instants t.

Notice that in the static game of GGS, there exists a fully informative equilibrium if
and only if inequality (3) holds for all i� j ∈ N ; see Section 6 for details. Hence, with my-
opic players, our framework puts weaker constraints on conflicts of interest compared
to GGS for a fully informative equilibrium to exist.

3.2 Farsighted agents

Next we study farsighted agents who have perfect foresight and correctly anticipate sub-
sequent changes in beliefs due to further information transmission in later time periods.
The equilibrium concept we employ is perfect Bayesian equilibrium.

Definition 3 (Farsighted equilibrium). (i) A strategy profile m∗ is a farsighted equilib-
rium of �(n�g�b) if for all i ∈N and all time instants t,(

m∗
i�l

)∞
l=t

∈ argmax
(mi�l)

∞
l=t

E
((m∗

i�l)
t−1
l=1�(mi�l)

∞
l=t �m

∗
−i)

[
ui(a|θ)|Ii�t �Ht

]
�

In a farsighted equilibrium, each agent maximizes her expected payoff from the ac-
tions the agents eventually choose whenever she is active. Hence, agents take into ac-
count the consequences the transmission of their information, both in the current pe-
riod and in future periods, has on the actions of all agents. This implies that the agents’
strategies are interdependent, which makes a characterization of equilibria a hopeless
endeavor. Therefore, we concentrate on fully informative equilibria, where interdepen-
dent strategies are much less an issue, as all agents eventually hold all information. No-
tice that again existence is not an issue, as there always exists an equilibrium in which
no information is transmitted. We provide a sufficient condition for the existence of a
fully informative equilibrium.
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Figure 1. Example for the sufficient condition (4) in Theorem 3. We highlight a possible tree
g̃ ⊆ g and the corresponding collection of subsets C(g̃−i) = {C�C ′�C ′′} for some agent i.

Theorem 3. Suppose that g̃ ⊆ g is a tree such that∣∣∣∣bi − 1
|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all i ∈N and C ∈ C(g̃−i)� (4)

Then there exists a fully informative farsighted equilibrium m∗ such that for all ij ∈ g and
all time instants t,

Im
∗

ij�t =
{
Ĩm

∗
ij�t if ij ∈ g̃�

∅ if ij ∈ g\g̃�

Broadly speaking, Theorem 3 says that there exists a fully informative farsighted
equilibrium if we can restrict information transmission to a tree along which all com-
munication is truthful. More precisely, this requires that for each agent the absolute
differences of her bias and the average bias of all agents reachable through each of her
neighbors in the tree are below the familiar threshold 1/(2(n + 2)). Notably, the sender
behaves with respect to each neighbor j in the tree as if j were the only agent in C, where
j ∈ C ∈ C(g̃−i), and her bias were bC = |C|−1∑

l∈C bl. Notice also that there is no need to
restrict off-equilibrium beliefs here, as we can assume a babbling strategy with respect
to signals that were already transmitted earlier.

To illustrate Theorem 3, consider the network g and the tree g̃ ⊆ g depicted in Fig-
ure 1. In this example, agent i can communicate truthfully in equilibrium with all neigh-
bors in the tree if (given all other agents communicate truthfully) the absolute difference
of her bias and the average bias of the agents in each of the three sets C, C ′, and C ′′ is
below 1/(2(n+ 2)).

To understand the intuition behind this condition, notice first that we can concen-
trate on deviations regarding signals that the sender transmits in the current period,
as the one-shot-deviation principle by Hendon et al. (1996) applies. Similar to myopic
equilibria, the most profitable deviation is to deviate on only one signal. Furthermore,
observe that, by sequential rationality and properties of the Beta-binomial model (see
(1)), this deviation induces an expected absolute change in the action of each agent who
eventually will be affected by this deviation of 1/(n+ 2). Hence, a sender i can transmit
all her information to a neighbor j ∈ Ni(g) in equilibrium if the absolute difference of
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her bias and the average bias of the agents who would eventually be affected by a devia-
tion is at most half the expected absolute change in the actions of these agents induced
by the most profitable deviation. Notice that, similar to myopic players, with farsighted
players our framework puts weaker constraints on conflicts of interest compared to GGS
for a fully informative equilibrium to exist.

One may ask whether condition (4) is also necessary or at least somehow close to
necessity. As it turns out, the construction of a fully informative farsighted equilibrium
that does not rely on information being transmitted along a tree is possible even if such
an equilibrium does not exist when information transmission is restricted to a tree, but
requires a well tailored setup of network and preferences. To illustrate this, we consider
the following example.

Example 2. Consider n = 6 agents, the circle network g = {12�23�34�45�56�61}, and bi-
ases b1 = 0, b2 = 1/32 = b6, b3 = 1/16 = b5, and b4 = 1/10. There does not exist a sub-
network that is a tree and fulfills (4): for any tree g̃ ⊆ g, either agent 1 or agent 4 does
not want to transmit all information, as their conflict of interest is too large. However,
there nevertheless exists a fully informative equilibrium m∗ that is such that the follow-
ing statements hold:

(i) Each agent transmits signals s1 and s4 to all neighbors.

(ii) Signals s2 and s3 are transmitted along the subnetwork g̃ = g\{45}.

(iii) Signals s5 and s6 are transmitted along the subnetwork g̃ = g\{34}.

For simplicity, we assume that agents babble with respect to some signal whenever
the receiver has already received this signal in an earlier time period.20 Notice that while
the signals of agents i �= 1�4 are still transmitted along subnetworks that are trees on
which (4) is fulfilled, the trees now differ across signals. Furthermore, the signals of
agents 1 and 4 are transmitted both ways through the network. Thereby, we achieve that
a deviation by either agent 1 or agent 4 on her own signal affects either all other agents
or half of the other agents in expectation (in case of a deviation with respect to only one
of the neighbors), both of which are not profitable. We illustrate this in Figure 2. In fact,
agents 1 and 4 face the same incentives when transmitting their own signal under m∗ as
if they were peripheral agents in a line network and all other agents communicated all
signals truthfully.

Finally, we note that condition (4) also becomes necessary for the existence of a fully
informative equilibrium as soon as g is a tree.

Corollary 2. Suppose that g is a tree. Then there exists a fully informative farsighted
equilibrium m∗ if and only if∣∣∣∣bi − 1

|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all i ∈N and C ∈ C(g−i)�

20This buys us that all deviations are on-equilibrium-path deviations.
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Figure 2. Transmission of agent 1’s signal in the fully informative equilibrium in Example 2.
Italic numbers indicate biases and numbers next to dashed arcs indicate ex ante probabilities of
information transmission.

3.3 Heterogeneous societies

We now consider heterogeneous societies in which both myopic and farsighted agents
are present. Let Nmyc denote the set of myopic agents and let Nfar denote the set of
farsighted agents, with N = Nmyc ∪Nfar. While farsighted agents have perfect foresight,
myopic agents play myopic best responses. We refer to the corresponding equilibrium
concept as myopic–farsighted equilibrium.

Definition 4 (Myopic–farsighted equilibrium). A strategy profile m∗ is a myopic–
farsighted equilibrium of �(n�g�b) if for all time instants t,

(i) m∗
i�t ∈ argmax

mi�t

E(mi�t �m
∗
i�−t �m

∗
−i)

[
ui
(
x(t + 1)|θ)|Ii�t �Ht

]
for i ∈ Nmyc�

(ii)
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)∞
l=t
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(mi�l)

∞
l=t

E
((m∗

i�l)
t−1
l=1�(mi�l)

∞
l=t �m

∗
−i)

[
ui(a|θ)|Ii�t �Ht

]
for i ∈Nfar�

In a myopic–farsighted equilibrium, each myopic agent maximizes her expected
payoff if actions were taken at the next time instant and each farsighted agent maximizes
her expected payoff from the actions the agents eventually choose whenever they are ac-
tive. Notice that we do not require that the type distribution is common knowledge. In
fact, we allow for agents to not have any information on others’ types.21

Our aim is to combine our findings for myopic and farsighted agents to derive a
myopic–farsighted equilibrium. Therefore, we concentrate on fully informative equilib-
ria as we did for farsighted agents. Moreover, we need to restrict information transmis-
sion to a tree to apply Theorem 3. Take any tree g̃ ⊆ g. Then a farsighted agent i ∈ Nfar

can reveal all information to her neighbors in g̃ if condition (4) holds, i.e., if∣∣∣∣bi − 1
|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all C ∈ C(g̃−i)�

21Common knowledge of the type distribution would be crucial if we wanted to apply the intuitive crite-
rion (in case a deviation is detected). However, as our analysis will concentrate on information transmission
along trees, all deviations are on-equilibrium-path deviations.
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By Corollary 1, a myopic agent i ∈ Nmyc can reveal all information to her neighbors in g̃

if

|bi − bj| ≤ 1
2(n+ 2)

for all j ∈Ni(g̃)�

The following corollary summarizes our findings.

Corollary 3. Suppose that there exists a tree g̃ ⊆ g such that

(i)

|bi − bj| ≤ 1
2(n+ 2)

for all i ∈Nmyc and j ∈Ni(g̃)�

(ii) ∣∣∣∣bi − 1
|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all i ∈Nfar and C ∈ C(g̃−i)�

Then there exists a fully informative myopic–farsighted equilibrium m∗ such that for all
ij ∈ g and all time instants t,

Im
∗

ij�t =
{
Ĩm

∗
ij�t if ij ∈ g̃�

∅ if ij ∈ g\g̃�

In other words, Corollary 3 says that there exists a fully informative myopic–
farsighted equilibrium if we can restrict information transmission to a tree along which
all communication is truthful. The latter is feasible in equilibrium if for each myopic
agent, the conflict of interest with each of her neighbors in the tree is below 1/(2(n+ 2))
(condition (i)), and for each farsighted agent and each of her neighbors in the tree, the
absolute difference of her bias and the average bias of that neighbor and agents reach-
able through the latter in the tree is also below 1/(2(n+ 2)) (condition (ii)).

Similarly to the case of only farsighted agents, conditions (i) and (ii) in Corollary 3
also become necessary for the existence of an equilibrium as described as soon as g is a
tree.

Corollary 4. Suppose that g is a tree. Then there exists a fully informative myopic–
farsighted equilibrium m∗ such that for all ij ∈ g and all time instants t, Im

∗
ij�t = Ĩm

∗
ij�t if and

only if

(i)

|bi − bj| ≤ 1
2(n+ 2)

for all i ∈Nmyc and j ∈Ni(g)�

(ii) ∣∣∣∣bi − 1
|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all i ∈Nfar and C ∈ C(g−i)�
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Notice, however, that there is one difference between the case of only farsighted
agents (Corollary 3) and Corollary 4. Conditions (i) and (ii) in Corollary 4 are necessary
for the existence of a fully informative equilibrium in which each agent immediately re-
veals all information to her neighbors, but not for the existence of a fully informative
equilibrium in general. With heterogeneous types, farsighted agents may in some sit-
uations improve the outcome by delaying their information transmission until myopic
agents have revealed all information. The following example illustrates this point.

Example 3. Consider n = 4 agents, the line network g = {12�23�34}, the type distribu-
tion Nmyc = {2} and Nfar = {1�3�4}, and b1 = 1/20 = b4, b2 = 0, and b3 = 1/10. Then
condition (i) in Corollary 4 is violated, as the conflict between agents 2 and 3 is too large.
Hence, there is no fully informative equilibrium in which each agent immediately re-
veals all information to her neighbors. However, there does exist a fully informative
equilibrium in which agent 4 does not transmit her signal to agent 3 until agent 2 has
transmitted her own signal as well as agent 1’s signal to agent 3. The myopic agent 2 is
willing to do this if agent 3 does not yet hold the signal of agent 4, as κ(b2� b3) = 3, which
agent 4 can guarantee by delaying the transmission of her signal to agent 3.

Notably, a fully informative equilibrium would no longer exist in Example 3 if agent
2 were slightly biased to the left, while such an equilibrium would exist even then if she
were farsighted.22 This shows that studying heterogeneous societies is not only for the
sake of generalization, but provides testable implications. We can construct a network
and preferences such that a certain agent could only transmit all her information to a
particular neighbor if she were myopic (farsighted).

3.4 Welfare

Finally, we analyze equilibrium welfare. We provide a straightforward extension of the
analysis in GGS.23 We first derive a condition that allows us to rank equilibria in the
Pareto sense depending on the expected number of signals the agents eventually hold.
We can write player i’s expected utility in equilibrium m∗ as

Em∗
[
ui(a|θ)]= −

∑
j∈N

[
(bj − bi)

2 + σ2
j

(
m∗)]�

where σ2
j (m

∗) denotes the residual variance of θ that player j expects to have after the
information exchange has taken place. Next, standard properties of the Beta-binomial
model yield

σ2
j

(
m∗)= 1

6
E

[
1

lim
t→∞

∣∣Im∗
j�t

∣∣+ 2

]
�

22This holds for b2 = −ε and 0 < ε ≤ 1/120.
23Our analysis differs in that the number of signals each player holds as t → ∞ is not (necessarily) deter-

ministic.



272 Manuel Foerster Theoretical Economics 14 (2019)

Hence, an equilibrium m∗ yields a higher ex ante expected utility to player i than equi-
librium m∗∗ if and only if it does so to all players j ∈N . Furthermore, the following result
holds (GGS, Theorem 2).

Theorem 4. Equilibrium m∗ Pareto dominates equilibrium m∗∗ if and only if

∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗
j�t

∣∣+ 2

]
<
∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗∗
j�t

∣∣+ 2

]
�

In particular, Theorem 4 says that an equilibrium Pareto dominates another equilib-
rium if the expected number of signals the agents get to know during the information
exchange is weakly larger for all agents and strictly larger for at least one agent in the
former equilibrium. In other words, from an ex ante point of view, more information
transmission is better for everyone. Hence, it follows that an equilibrium is Pareto effi-
cient if and only if it is fully informative.

Corollary 5. Equilibrium m∗ is Pareto efficient if and only if m∗ is fully informative.

The next example shows that depending on the network and the agents’ preferences,
there may be a Pareto efficient myopic equilibrium while there is no such farsighted
equilibrium and vice versa.

Example 4. Consider n = 4 agents and the line network g = {12�23�34}.

(i) If bi = i/15 for all i, then any optimal intuitive myopic equilibrium is fully infor-
mative and, thus, Pareto efficient, while all farsighted equilibria are Pareto domi-
nated.24

(ii) If b1 = 0 = b4 and b2 = 1/20 = −b3, then there exists a fully informative and, thus,
Pareto efficient farsighted equilibrium, while all optimal intuitive myopic equi-
libria are Pareto dominated.25

Finally, we briefly investigate whether optimal myopic equilibria are optimal from a
welfare point of view. It follows from the above analysis that we can call an equilibrium
utility-maximizing if it maximizes the ex ante expected utility of each player. While one
may think that farsighted players can coordinate on a utility-maximizing equilibrium,
this assumption would seem odd for myopic players. Instead, optimal myopic equilibria
could be considered as being prominent in case of myopic players. An interesting ques-
tion is then whether these equilibria are nevertheless utility-maximizing, i.e., whether
the transmission of as much information as possible at each time instant leads to op-
timal outcomes. It follows from Corollary 5 that this claim is true for fully informative

24To see this, notice that |b1 − 1/3 ·∑4
j=2 bj | = 2/15 > 1/12, i.e., condition (4) is violated for agent 1, which

is also necessary if g is a tree.
25To see this, notice that |b2 − b3| = 1/10 > 1/12, i.e., the condition in Theorem 2 is violated for agents 2

and 3.
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equilibria. However, in general, the answer is no and the reason is simply that myopic
agents do not take into account the consequences of transmitting information on future
information transmission.26

Corollary 6. Consider myopic agents. An optimal intuitive myopic equilibrium
is utility-maximizing if it is fully informative, and otherwise it may not be utility-
maximizing.

4. Public communication

In this section, we analyze information transmission with public communication.
Agents can no longer discriminate between different neighbors and have to send the
same messages to all their neighbors.27 Accordingly, the information set of agent i at
time t ≥ 0 is

Ii�t = (si� (m̂i�t ′)i=ι(t ′)
t ′<t

� (m̂k�t ′)k=ι(t ′)
ki∈g
t ′<t

)
�

A communication strategy for the active agent i = ι(t) regarding her neighborhood
Ni(g) at time instant t is a mapping

mi�t : Ii�t ×Ht → {0�1}n�
Furthermore, the set of potentially transmitted information from i to her neighborhood
Ni(g) at time t under strategy profile m is denoted ĨmiNi(g)�t

= Imi�t\(
⋂

j∈Ni(g)
Imj�t), and the

set of transmitted information from i to her neighborhood Ni(g) at time instant t under
strategy profile m (in case i = ι(t)) is denoted by ImiNi(g)�t

= {sk ∈ ĨmiNi(g)�t
|mi�t�k = sk}. No-

tice that if s ∈ Imi�t , then s ∈ ĨmiNi(g)�t
if and only if s /∈ Imj�t for at least one neighbor j ∈Ni(g).

Myopic and farsighted equilibria with public communication are defined as follows.

Definition 5 (Equilibria with public communication). (i) A strategy profile m∗ is a my-
opic equilibrium with public communication of �(n�g�b) if for all i ∈ N and all
time instants t,

m∗
i�t ∈ argmax

mi�t

E(mi�t �m
∗
i�−t �m

∗
−i)

[
ui
(
x(t + 1)|θ)|Ii�t �Ht

]
�

(ii) A strategy profile m∗ is a farsighted equilibrium with public communication of
�(n�g�b) if for all i ∈N and all time instants t,(

m∗
i�l

)∞
l=t

∈ argmax
(mi�l)

∞
l=t

E
((m∗

i�l)
t−1
l=1�(mi�l)

∞
l=t �m

∗
−i)

[
ui(a|θ)|Ii�t �Ht

]
�

26For instance, in Example 1 optimal intuitive myopic equilibria are Pareto dominated by an equilibrium
in which agent 4 delays her information transmission until all other information transmission has taken
place.

27More generally, we could also consider partitions of the neighborhoods and assume that agents need
to send the same messages to all agents who are in the same partition element. The conditions we derive
then need to hold for each partition element instead of for the whole neighborhood.
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We first study myopic equilibria. Not surprisingly, whether an agent can communi-
cate truthfully with public communication depends on the conflicts of interest between
the sender and her neighbors. Additionally, however, it also depends on the extent to
which each neighbor is affected by possible deviations. More precisely, if we take a sub-
set Idi ⊆ ImiNi(g)�t

of the signals that the sender i = ι(t) transmits at time t under strat-
egy profile m and consider a deviation on these signals, then the effect of this deviation
on each neighbor j ∈ Ni(g) certainly depends on the realization of the signals in Idi \Imj�t ,
while it may be independent of the signals in Idi ∩ Imj�t (for some choice of off-equilibrium

beliefs).28 Therefore, determining the most profitable deviation becomes a complex is-
sue with public communication, at least if the sender transmits more than one signal.

In the following lemma, we provide a sufficient condition for an equilibrium to exist
in which agents either transmit all signals that could possibly be transmitted or none
whenever they are active.

Lemma 2. A strategy profile m∗ is a myopic equilibrium with public communication if,
for all time instants t and all i ∈N , Im

∗
iNi(g)�t

= Ĩm
∗

iNi(g)�t
if

∑
j∈Ni(g)

2
∑

s∈Idi \Im∗
j�t

s − ∣∣Idi \Im∗
j�t

∣∣
∣∣Im∗
j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2
(bj − bi) ≤ 1

2

∑
j∈Ni(g)

(2
∑

s∈Idi \Im∗
j�t

s − ∣∣Idi \Im∗
j�t

∣∣
∣∣Im∗
j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2

)2

for all realizations of Ĩm
∗

iNi(g)�t
and all ∅ �= Idi ⊆ Im

∗
iNi(g)�t

, and Im
∗

iNi(g)�t
=∅ otherwise.

Lemma 2 says that whether player i can transmit the set of signals Im
∗

iNi(g)�t
to her

neighbors in equilibrium depends on the conflict of interest between i and each neigh-
bor, on the information agent i and each neighbor hold at that point of time, and on
the information that i transmits to her neighbors. The difference with respect to private
communication is that, due to complex interdependencies in the expected changes of
the receivers’ beliefs, we are unable to derive an explicit threshold on the conflicts of
interest.

Although this makes Lemma 2 a rather weak result, it nevertheless allows us to com-
pare myopic equilibria with private communication and with public communication.
First, when focussing on individual (local) communication, we find that it is generally
easier to communicate in public than to communicate with all neighbors in private, in
the following sense: whenever an agent can truthfully communicate with all her neigh-
bors under private communication, then, ceteris paribus, she can also do so under pub-
lic communication.

Theorem 5. Consider an optimal intuitive myopic equilibrium with private communi-
cation, m∗, and a myopic equilibrium with public communication satisfying the condi-
tions of Lemma 2, m∗∗. Furthermore, suppose that at time instant t, Im

∗
i�t = Im

∗∗
i�t for all

28The construction of the equilibrium in Lemma 2 below considers off-equilibrium beliefs in the spirit
of the intuitive criterion: upon observing a deviation, agents attribute the deviation to the agent who com-
municated later in time.
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i ∈N . Then, for any i ∈ N ,

Im
∗∗

iNi(g)�t
= Ĩm

∗∗
iNi(g)�t

if Im
∗

ij�t = Ĩm
∗

ij�t for all j ∈Ni(g)�

The intuition behind Theorem 5 is that public communication disciplines the com-
munication with agents with whom the sender has particularly large conflicts of interest.
In the worst case, private communication (with all neighbors) and public communica-
tion are equally difficult to sustain.29 This finding is in line with the results obtained
in static cheap talk frameworks, e.g., by Farrell and Gibbons (1989) and Goltsman and
Pavlov (2011).

We also observe what Farrell and Gibbons (1989) refer to as subversion. When truth-
ful communication is possible with some but not all neighbors in private, then public
communication may subvert the relationship with the neighbors with whom truthful
communication was possible in private and, therefore, make truthful communication
impossible. Our contribution is that we look beyond local communication. Interest-
ingly, we find that in our context, subversion may—unlike in static models—also pre-
vent fully informative outcomes.30 There does not necessarily exist a fully informative
myopic equilibrium with public communication whenever this is the case with private
communication. The reason is that with private communication, fully informative equi-
libria may exist despite some large conflicts between neighbors, as direct information
transmission is not necessary if there exists a path in the network between them along
which conflicts are small enough. With public communication, however, direct infor-
mation transmission to such neighbors cannot be avoided, which may preclude fully
informative myopic equilibria. The following example illustrates this point.

Example 5. Consider n = 3 agents, the complete network g = gN , and biases bi = i/10
for i = 1�2�3.

(i) Private communication. Information transmission is not constrained between
agents 1 and 2 as well as between agents 2 and 3, and, hence, optimal intuitive
myopic equilibria are fully informative.

(ii) Public communication. Suppose that agent 3 transmits her signal before agent
1 does so. Then agent 2 already holds two signals once agent 1 could transmit
her signal, which implies that agent 1 is unable to do so. Hence, there is no fully
informative myopic equilibrium with public communication.

Subversion prevents a fully informative equilibrium with public communication; see
Figure 3 for an illustration.

Example 5 exploits the fact that the network g is cyclic and, thus, with private com-
munication no direct information transmission between agents 1 and 3 is necessary in

29This is the case if the information that could possibly be transmitted to agents with different biases is
disjoint.

30In static models, this only becomes possible if one allows the sender to make certifiable statements;
see, e.g., Koessler (2008).
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Figure 3. (Non-)transmission of agent 1’s signal s1 with private communication (left) and with
public communication (right) in Example 5. Parentheses indicate that the signal is only trans-
mitted with certain probability.

fully informative equilibria. In the special case where the network is a tree, this possi-
bility does not exist; in particular, optimal intuitive myopic equilibria with private com-
munication are fully informative if and only if all agents communicate all information
truthfully to all their neighbors. In this case, Theorem 5 implies that there exists a fully
informative myopic equilibrium with public communication.

Corollary 7. Suppose that g is a tree, and consider an optimal intuitive myopic equi-
librium with private communication, m∗, and a myopic equilibrium with public com-
munication satisfying the conditions of Lemma 2, m∗∗. Then m∗∗ is fully informative if
m∗ is fully informative.

Next, we study farsighted equilibria. Due to the complexity of the problem, we
restrict our analysis to trees and show that—similar to myopic equilibria and in line
with the existing literature—the conditions for fully informative equilibria with public
communication to exist (on trees) are weaker than those for private communication.31

Corollary 2 tells us that on trees there exists a fully informative farsighted equilibrium
with private communication if and only if for each agent and each of her neighbors the
absolute difference of her bias and the average bias of that neighbor and agents reach-
able through the latter is below 1/(2(n+2)). This implies that for each agent the absolute
difference of her bias and the average bias of two or more neighbors and agents reach-
able through them is also below 1/(2(n + 2)). Hence, it follows that there exists a fully
informative farsighted equilibrium with public communication.

Proposition 2. Suppose that g is a tree. Then there exists a fully informative farsighted
equilibrium with public communication if there exists a fully informative farsighted equi-
librium with private communication.

The proof is analogous to that of Theorem 3 and is omitted. Finally, notice that
Proposition 2 also holds for myopic-farsighted equilibria.32

31With public communication, we cannot avoid in general that information flows through different paths
in the network, which implies uncertainty (that depends on the network structure and other players’ strate-
gies) about whether certain agents would be affected by a deviation.

32This is an immediate consequence of Theorem 5 and Proposition 2.
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5. Design of institutions

In this section, we analyze the implications of our model for the design of institutions.
How should a social planner organize the network to maximize equilibrium welfare?
Following the argument in Section 3.4, we assume that myopic agents coordinate on
an optimal intuitive myopic equilibrium and farsighted agents coordinate on a utility-
maximizing farsighted equilibrium. Furthermore, we restrict our attention to private
communication and assume that biases are ordered, b1 ≤ b2 ≤ · · · ≤ bn.

Consider first myopic agents. Denote the optimal intuitive myopic equilibrium that
the agents coordinate on in network g by m∗(g). Then the social planner will choose the
network g such that m∗(g) maximizes welfare. It follows from Theorem 4 that this means
choosing

g ∈ argmin
g′

∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗(g′)
j�t

∣∣+ 2

]
� (5)

Theorem 1 tells us that any agent i transmits (weakly) more information to a neigh-
bor j ∈ Ni(g) in an optimal intuitive myopic equilibrium the smaller is the conflict
of interest between them. Hence, one may conjecture that any network g such that
k(k+1) ∈ g for all k= 1�2� � � � � n−1 satisfies (5). As fully informative equilibria are Pareto
efficient (Corollary 5) and, thus, the underlying network necessarily fulfills (5), Theo-
rem 2 tells us that this is indeed true if bk+1 − bk ≤ 1/(2(n+ 2)) for all k = 1�2� � � � � n− 1.
However, if this condition is not fulfilled, optimal intuitive myopic equilibria are not
fully informative any more and, therefore, may not be utility-maximizing (Corollary 6).
Some agents may accumulate too many signals in the beginning so that they can only
transmit less information to some neighbor than they could if they did not know that
many signals; see Example 1 for an illustration of this point. Hence, as the social plan-
ner would like to minimize the risk of that happening, the best she can do in this case
is to implement the line network with agents placed in increasing order of their biases.
The following proposition summarizes our findings.

Proposition 3. Consider myopic agents. Then

g ∈ argmin
g′

∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗(g′)
j�t

∣∣+ 2

]

if either

(i) g = {k(k+ 1)|k= 1�2� � � � � n− 1} or

(ii) g ⊇ {k(k + 1)|k = 1�2� � � � � n − 1} and bk+1 − bk ≤ 1/(2(n + 2)) for all k = 1�2� � � � �
n− 1.

Let us reconsider Example 1 to illustrate why additional links may lead to worse out-
comes from a welfare point of view if conflicts are not sufficiently small.
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Example 6. Consider n = 4 agents and biases b1 = 1/10 and b2 = b3 = b4 = 0. Recall
that information transmission is only feasible in equilibrium between agents 1 and 2 if
jointly both agents do not hold all signals as κ(b1� b2) = 3. Consider the following two
networks:

(i) g = {12�23�34}. In the line network, no information transmission takes place be-
tween agents 1 and 2 if the history in the first periods is, e.g., H5 = (4�3�2�1). Alter-
natively, if H ′

5 = (3�4�2�1), then the outcome is as in a utility-maximizing equilib-
rium, as agents 1 and 2 jointly hold only three signals when each of them becomes
active for the first time.

(ii) g′ = {12�23�24�34}. This is the line network extended by a link between agents 2
and 4. Hence, whereas agent 3 as well as agent 4 is connected to agent 2, both his-
tories H5 = (4�3�2�1) and H ′

5 = (3�4�2�1) result in no information transmission
taking place between agents 1 and 2, i.e., the outcome is worse than in the line
network from a welfare point of view.

In general, for each history, the outcome is weakly better in g than in g′. Thus, in
sum the social planner would strictly prefer g over g′.

Next, we consider farsighted agents. Denote the utility-maximizing farsighted equi-
librium on which the agents coordinate in network g by m∗∗(g). Then the social planner
will choose a network g such that

g ∈ argmin
g′

∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗∗(g′)
j�t

∣∣+ 2

]
� (6)

Whereas farsighted agents coordinate on a utility-maximizing equilibrium, there can-
not be too many links in the network as was the case with myopic agents. Hence, when
agents are farsighted, a safe choice for the social planner is to implement the complete
network. However, at least if links are costly, she may want to implement the network g

with the least links that fulfills (6). From this point of view, the best case scenario is the
line network, with the natural candidate being the one with agents placed in increasing
order of their biases. While we cannot say much in general due to the lack of a character-
ization of farsighted equilibria, we nevertheless know from Corollary 5 that the existence
of a fully informative equilibrium is sufficient for the underlying network (and supersets
thereof as agents coordinate on a utility-maximizing equilibrium) to fulfill (6). Hence,
applying Theorem 3 to the line network with agents placed in increasing order of their
biases yields the following proposition.

Proposition 4. Consider farsighted agents. Then

g ∈ argmin
g′

∑
j∈N

E

[
1

lim
t→∞

∣∣Im∗∗(g′)
j�t

∣∣+ 2

]

if either
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(i) g = gN or

(ii) g ⊇ {k(k+ 1)|k= 1�2� � � � � n− 1},

bk ≥ 1
n− k

n∑
l=k+1

bl − 1
2(n+ 2)

for all k = 1�2� � � � � n− 1�

bk ≤ 1
2(n+ 2)

+ 1
k− 1

k−1∑
l=1

bl for all k= 2�3� � � � � n�

Proposition 4 says that the social planner should implement any superset of the line
network with agents placed in increasing order of their biases if, for each agent, the dif-
ference of her bias and the average bias of agents with a higher (lower) bias is below
1/(2(n + 2)). Otherwise, we can only say that more links are weakly better and so the
complete network is a safe choice for the social planner.33

In sum, our analysis suggests that the social planner should implement the line net-
work with agents placed in increasing order of their biases, both if agents are myopic
and (at least for small conflicts) if they are farsighted. Notably, our results also imply
that when conflicts are small enough such that the welfare-maximizing network yields a
fully informative (and, hence, Pareto efficient) equilibrium if agents are farsighted, then
the same holds if agents are myopic, but not vice versa.

6. Dynamic versus static communication

An interesting question is whether allowing for dynamic communication aids or im-
pedes information transmission relative to the static game of GGS, where agents com-
municate simultaneously. Consider the complete network g = gN and private commu-
nication. In this case, players can potentially transmit their signal directly to all other
players as in the static game. The difference that remains is that we allow for dynamic
transmission of information through the network, but exclude the possibility that all
players transmit their information simultaneously. On the one hand, dynamics may aid
transmitting information to agents with rather large conflicts—through a chain of in-
termediaries along which conflicts are small. On the other hand, dynamics may also
impede the transmission of information if such a chain of intermediaries does not exist.
The reason is that truthful communication becomes more difficult once the sender has
received other information that she does not want to transmit further.34

However, we establish in the following discussion that dynamics unambiguously
aid information transmission when we consider fully informative (and Pareto efficient)
equilibria. We first formally introduce the static game studied by GGS. Each agent i ∈ N

simultaneously communicates with each other agent j �= i by sending a private message
m̂ij ∈ {0�1}. The information set of agent i after communication has taken place is given

33It remains an open question whether a superset of the line network with agents placed in increasing
order of their biases may actually be beneficial in this case.

34This holds at least for myopic agents and optimal myopic equilibria; see the discussion in Section 3.1
on partial information transmission for details.
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by Ii = (si� (m̂ij)j �=i� (m̂ki)k�=i). A (pure) communication strategy for agent i regarding
each agent j �= i is defined as a mapping mij : {0�1} → {0�1}. Let Imi = {si} ∪ {sj|mji = sj}
denote the actual information set of agent i under strategy profile m. After com-
munication has taken place, each agent i has to choose an action âi ∈ R. The pay-
off of agent i from the profile of actions â = (â1� â2� � � � � ân) is as in our framework,
ui(â|θ)= −∑j∈N(θ+ bi − âj)

2. Hence, under strategy profile m, agent i’s action is given
by ai = E[θ|Imi ] + bi. A strategy profile m is fully informative if Imi = {s1� s2� � � � � sn} for all
i ∈ N . Finally, a strategy profile m∗∗ is an equilibrium of the static game if for all i ∈N ,

m∗∗
i ∈ argmax

mi

E(mi�m
∗∗
−i)

[
ui(a|θ)|Ii

]
�

Corollary 1 of GGS implies the following result on fully informative equilibria in the static
game.

Proposition 5. There exists a fully informative equilibrium m∗∗ of the static game if and
only if

|bi − bj| ≤ 1
2(n+ 2)

for all i� j ∈N� (7)

In the static game, fully informative equilibria require the conflict of interest be-
tween any two agents not to exceed 1/(2(n + 2)). We show that this condition implies
that there also exists a fully informative equilibrium of the dynamic game, with myopic
and with farsighted agents (and with both), but not vice versa.

Consider the dynamic game and any tree g̃ ⊆ g. Clearly, condition (7) is stronger
than condition (3) for myopic agents. Furthermore, consider farsighted agents and any
i ∈ N and C ∈ C(g̃−i). Condition (7) implies∣∣∣∣bi − 1

|C|
∑
l∈C

bl

∣∣∣∣≤ 1
|C|
∑
l∈C

|bi − bl| ≤ 1
2(n+ 2)

�

i.e., condition (7) is also stronger than condition (4) for farsighted agents. Altogether,
this yields the following result.

Corollary 8. Suppose that in the dynamic game, g = gN and each agent is either my-
opic or farsighted. Then there exists a fully informative equilibrium m∗ of the dynamic
game if, but not only if, there exists a fully informative equilibrium m∗∗ of the static game.

The following example illustrates Corollary 8 and shows that dynamics may signifi-
cantly ease the constraints on conflicts of interest for fully informative equilibria to exist;
in particular, if agents are myopic.

Example 7. Suppose that g = gN in the dynamic game.

(i) Consider a society with n even that consists of two groups N1 and N2 of equal size
n/2 such that N1 ∪ N2 = N . Assume that the groups are homogeneous with re-
spect to preferences, while there is a conflict of interest between them. That is,
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bi = 0 for all i ∈ N1 and bi = b > 0 for all i ∈ N2. Proposition 5 implies that in the
static game, b ≤ 1/(2(n + 2)) is required for a fully informative equilibrium to ex-
ist. The same requirement applies in the dynamic game if agents are farsighted.
However, the requirement is weaker if agents are myopic. By Proposition 1, we can
construct a fully informative equilibrium if b ≤ 1/8.35 First, each agent exchanges
her signal with one agent of the other group such that afterward each agent holds
two signals. This is possible if the conflict between groups does not exceed 1/8
since myopic agents do not anticipate further information transmission, and im-
plies that each signal is held by some agent in each group. Second, all signals are
transmitted to all agents within groups.

(ii) Consider equally distributed biases, bi = i · ε for all i ∈ N and ε > 0. By Propo-
sition 5, a fully informative equilibrium exists in the static game if and only if
ε ≤ 1/(2(n + 2)(n − 1)). However, in the dynamic game with each agent being ei-
ther myopic or farsighted, a fully informative equilibrium exists if ε ≤ 1/(n(n+2)),
which is roughly twice as large as the threshold in the static game. In this equi-
librium, information is transmitted along the line with agents placed in increas-
ing order of their biases, g̃ = {k(k + 1)|k = 1�2� � � � � n − 1}. Thereby, agents do
not need to directly exchange information with those agents with whom they
have particularly large conflicts, which relaxes the constraint on the parame-
ter ε.36

7. Discussion and conclusion

In this paper, we develop a tractable dynamic framework of belief formation under pay-
off externalities in a social network. We build on the model of cheap talk by GGS and ex-
tend it to a dynamic game on a network. Agents initially receive noisy signals about the
state of the world and have different preferences about the actions to be implemented.
They repeatedly communicate with their neighbors in the social network by sending
cheap talk messages about their information. After the repeated information exchange
has taken place, each agent takes an action and payoffs realize.

We characterize (optimal) myopic equilibria as well as fully informative—and Pareto
efficient—optimal myopic equilibria and provide a sufficient condition for the existence
of a fully informative farsighted equilibrium. Essentially, fully informative equilibria ex-
ist if the transmission of all information is possible along a subnetwork that is a tree.
These results carry over to heterogeneous societies, which provide testable implica-
tions: some agent may only be able to transmit all her information if she is myopic
(farsighted).

We also extend our framework to public communication and show that subver-
sion may—unlike in static models—prevent fully informative equilibria if agents are

35Notice that the result still holds qualitatively if the groups are not equally large.
36The above threshold follows from condition (4) since agent 1 (or n) is the most constrained agent if she

is farsighted. Notice also that if all agents are myopic, a fully informative equilibrium exists if ε ≤ 1/(2(n +
2)), which is n− 1 times as large as the threshold in the static game.
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myopic. Furthermore, we analyze the implications of our model for the design of
institutions and find that the social planner should place agents in increasing order
of their biases to create a line network, both if agents are myopic and (at least for
small conflicts) if they are farsighted. We can interpret these findings in favor of ho-
mophily: sufficiently homophilic societies, that is, agents are at least connected to
those agents with the most similar preferences, aggregate information efficiently. Fi-
nally, we compare our framework with the static game of GGS and show that dynam-
ics ease the constraints on conflicts of interest for fully informative equilibria to ex-
ist.

A general comparison of myopic and farsighted equilibria reveals that farsighted
agents will typically end up less informed than myopic agents, and this is particularly so
if a social planner has designed the network optimally. Interestingly, together with The-
orem 4 this implies that myopic agents tend to reach outcomes that Pareto dominate
those of farsighted agents. One exception that we have shown is Example 4(ii), where
there exists a fully informative and Pareto efficient farsighted equilibrium, but no such
myopic equilibrium. The reason is that the agents are not placed in increasing order of
their biases in this example, which a social planner could correct and thereby ensure
the existence of a Pareto efficient equilibrium regardless of the agents’ types. Notably,
this finding is in contrast to the literature on network formation, where farsighted agents
form the network that Pareto dominates all other networks (if such network exists), while
myopic agents may fail to do so; see, e.g., Herings et al. (2009).

Our framework is closely related to Acemoglu et al. (2014), who also study informa-
tion aggregation through communication on a network. While in their model prefer-
ences are aligned, final decisions can be taken at any time and payoffs from decisions
are discounted so that agents prefer earlier decisions. We do not allow agents to take the
action at any time to focus on the effects of payoff externalities. Doing so would lead to
(weakly) less information transmission in our model, with the extent depending on the
network architecture.

Furthermore, our model relies on the quadratic loss utility known from Crawford
and Sobel (1982) in combination with the Beta-binomial model. We refer to GGS for
a detailed discussion of these assumptions and only add one point that is relevant in
our context of networks. We assume that all individual decisions are equally important
for each agent, but one may also think that agents care more about decisions of those
located close to them in the network. For instance, an agent may care more about deci-
sions of her neighbors than about decisions of the neighbors of her neighbors, etc. This
assumption would not change our results on myopic agents and would have an ambigu-
ous effect on information transmission for farsighted agents that depends on whether
conflicts increase with distance. In particular, farsighted equilibria would become more
similar to myopic equilibria. Likewise, we refer to GGS for a discussion of an extension
to mixed strategies. Essentially, they find that mixed strategies may sometimes (slightly)
improve information transmission.

Finally, our model can be extended to analyze the optimal allocation of decision-
making authority. In our model, each agent makes a decision, but in some settings one
may want to delegate the decision-making authority to better informed agents. Dewan
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et al. (2015) investigate this issue in the context of the institutional design of govern-
ments based on the model by GGS. They provide a justification for centralized decision-
making authority (e.g., by ministers or the prime minister) and cabinet meetings (public
communication in our framework). We leave the analysis of this issue in our framework
for further research.

Appendix

Proof of Lemma 1. Let m∗ be a strategy profile and consider any time instant t, i =
ι(t), and link ij ∈ g. To ease notation, we let I1 = Im

∗
i�t ∩ Im

∗
j�t denote the set of common

signals between i and j, let I2 = Im
∗

j�t \Im∗
i�t denote the set of signals of j that i does not

know, let I3 = Im
∗

ij�t denote the set of signals that i transmits to j, and let I4 = Ĩm
∗

ij�t \Im
∗

ij�t

denote the set of signals that i could, but does not, transmit to j at time instant t under
strategy profile m∗. Notice that these four sets are disjoint and, furthermore, Im

∗
j�t+1 =

I1 ∪ I2 ∪ I3 and Im
∗

i�t = I1 ∪ I3 ∪ I4. Let kl = |Il| and k=∑4
l=1 kl.

We only need to consider deviations regarding signals s ∈ Im
∗

i�t that i communicates
truthfully to j at time instant t under m∗, as messages on other signals are uninforma-
tive and, thus, are disregarded by j. Furthermore, the intuitive criterion (Definition 2)
implies that among these signals we can disregard deviations regarding signals that j

already received at some earlier time period t ′ < t, i.e., signals that are in Im
∗

j�t as well.

To see why, consider such a signal s ∈ Im
∗

i�t ∩ Im
∗

j�t and suppose that agent i has an in-
centive to deviate for some off-equilibrium belief μ of agent j about the origin of the
deviation, i.e., (i� t) ∈ N∗

j (m
∗� s� t). As the agent who initially transmitted the signal to

agent j (this could have been agent i as well) did not have an incentive to deviate by
definition of the equilibrium (with myopic agents, a deviation on a signal that has not
been transmitted before is on-equilibrium path from the point of view of the sender), j
attributes a detected deviation on signal s to agent i and time t, i.e., μ(i� t) = 1. Given
this off-equilibrium belief μ, a deviation by agent i would not alter xj(t + 1) and, thus,
would not be profitable, i.e., m∗ survives the intuitive criterion for any choice of strategy
regarding signals s ∈ Im

∗
i�t ∩ Im

∗
j�t .

Therefore, we only need to consider deviations regarding signals s ∈ I3 and write
I3 = {sr1� sr2� � � � � srk3

}. Consider, without loss of generality, that agent i misreports signals
sr1� sr2� � � � � srd , 1 ≤ d ≤ k3, and write

Id3 = {1 − sr1�1 − sr2� � � � �1 − srd � srd+1� srd+2� � � � � srk3
}�

Agent i has no incentives to do this deviation if and only if

−
∫ 1

0

∑
I′

2∈{0�1}k2

((
θ+ bi −E

[
θ|I1� I

′
2� I3

]− bj
)2

− (θ+ bi −E
[
θ|I1� I

′
2� I

d
3
]− bj

)2)
f
(
θ� I ′

2|I1� I3� I4
)
dθ ≥ 0�

where we denote by f (·) the probability density function (pdf) and, with a slight abuse of
notation, denote the sets I′

2 as vectors. The identity a2 − b2 = (a− b)(a+ b) and dividing
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by 2 yields

−
∫ 1

0

∑
I′

2∈{0�1}k2

(
E
[
θ|I1� I

′
2� I3

]−E
[
θ|I1� I

′
2� I

d
3
])

·
(
E
[
θ|I1� I

′
2� I3

]+E
[
θ|I1� I

′
2� I

d
3
]

2
+ bj − θ− bi

)
f
(
θ� I ′

2|I1� I3� I4
)
dθ ≥ 0�

Now define �(I ′
2;d) = E[θ|I1� I

′
2� I3] − E[θ|I1� I

′
2� I

d
3 ]. Since f (θ� I ′

2|I1� I3� I4) = f (θ|I1� I
′
2�

I3� I4)P(I
′
2|I1� I3� I4), it follows that

−
∑

I′
2∈{0�1}k2

∫ 1

0
�
(
I ′

2;d
)(E[θ|I1� I

′
2� I3

]+E
[
θ|I1� I

′
2� I

d
3
]

2
+ bj − θ− bi

)

· f (θ|I1� I
′
2� I3� I4

)
P
(
I ′

2|I1� I3� I4
)
dθ ≥ 0�

Next, as ∫ 1

0
θf
(
θ|I1� I

′
2� I3� I4

)
dθ = E

[
θ|I1� I

′
2� I3� I4

]
and since E[θ|·] is independent of θ, we get

−
∑

I′
2∈{0�1}k2

�
(
I ′

2;d
)(E[θ|I1� I

′
2� I3

]+E
[
θ|I1� I

′
2� I

d
3
]

2
+ bj − bi

−E
[
θ|I1� I

′
2� I3� I4

])
P
(
I ′

2|I1� I3� I4
)≥ 0 (8)

⇔ −
∑

I′
2∈{0�1}k2

�
(
I ′

2;d
)(�(I′

2;d
)

2
+ bj − bi

)
P
(
I ′

2|I1� I3� I4
)≥ 0�

where �(I ′
2;d) = E[θ|I1� I

′
2� I3] + E[θ|I1� I

′
2� I

d
3 ] − 2E[θ|I1� I

′
2� I3� I4]. To ease notation, we

let �1 =∑s∈I1
s, �′

2 =∑s∈I′
2
s, �1

3 =∑d
l=1 srl , �

2
3 =∑k3

l=d+1 srl , and �4 =∑s∈I4
s. First, as

∑
s∈Id3

s =
d∑

l=1

(1 − srl )+
k3∑

l=d+1

srl = d −�1
3 +�2

3

and by (1), we get

�
(
I ′

2;d
)= E

[
θ|I1� I

′
2� I3

]−E
[
θ|I1� I

′
2� I

d
3
]

= �1 +�′
2 +�1

3 +�2
3 + 1

k1 + k2 + k3 + 2
− �1 +�′

2 + d −�1
3 +�2

3 + 1
k1 + k2 + k3 + 2

(9)

= 2�1
3 − d

k− k4 + 2
�
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Second, it follows that

�
(
I′

2;d
)= E

[
θ|I1� I

′
2� I3

]+E
[
θ|I1� I

′
2� I

d
3
]− 2E

[
θ|I1� I

′
2� I3� I4

]
= �1 +�′

2 +�1
3 +�2

3 + 1
k− k4 + 2

+ �1 +�′
2 + d −�1

3 +�2
3 + 1

k− k4 + 2

− 2
�1 +�′

2 +�1
3 +�2

3 +�4 + 1
k+ 2

= 2
(
k4
(
�1 +�′

2 +�2
3 + 1

)+ (k+ 2)d/2 − (k− k4 + 2)
(
�1

3 +�4
)

(k− k4 + 2)(k+ 2)

)
= 2

k+ 2

(
k4

k− k4 + 2
(
�1 +�′

2 +�2
3 + 1 + d/2

)+ d/2 −�1
3 −�4

)
�

(10)

Substituting (9) and (10) into (8) and using that (9) is independent of I ′
2 yields

− 2�1
3 − d

k− k4 + 2

∑
I′

2∈{0�1}k2

[
1

k+ 2

(
k4

k− k4 + 2
(
�1 +�′

2 +�2
3 + 1 + d/2

)+ d/2

−�1
3 −�4

)
+ bj − bi

]
P
(
I′

2|I1� I3� I4
)≥ 0

⇔ − 2�1
3 − d

k− k4 + 2

[
1

k+ 2

(
k4

k− k4 + 2
(
�1 +�2

3 + 1 + d/2
)+ d/2 −�1

3 −�4

)
+ bj − bi + k4

(k+ 2)(k− k4 + 2)

∑
I′

2∈{0�1}k2

�′
2P
(
I ′

2|I1� I3� I4
)]≥ 0�

As the signals are independent, we have

∑
I′

2∈{0�1}k2

�′
2P
(
I ′

2|I1� I3� I4
)= E

[
�′

2|I1� I3� I4
]= k2

�1 +�1
3 +�2

3 +�4 + 1
k− k2 + 2

�

Hence, it follows that

− 2�1
3 − d

k− k4 + 2

[
1

k+ 2

(
k4

k− k4 + 2
(
�1 +�2

3 + 1 + d/2
)+ d/2 −�1

3 −�4

)

+ bj − bi + k2k4

(k+ 2)(k− k4 + 2)
�1 +�1

3 +�2
3 +�4 + 1

k− k2 + 2

]
≥ 0

⇔ − 2�1
3 − d

k− k4 + 2

[
1

k+ 2

(
k4

k− k4 + 2

(
�1 +�2

3 + 1 + k2
�1 +�1

3 +�2
3 +�4 + 1

k− k2 + 2

+ d/2
)

+ d/2 −�1
3 −�4

)
+ bj − bi

]
≥ 0

⇔ �1
3 = d/2 ∨

[
�1

3 > d/2 ∧ − 1
k+ 2

(
k4

k− k4 + 2

(
�1 +�2

3 + 1 + d/2
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+ k2
�1 +�1

3 +�2
3 +�4 + 1

k− k2 + 2

)
+ d/2 −�1

3 −�4

)
≥ bj − bi

]
∨
[
�1

3 < d/2 ∧ 1
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(
k4
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(
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+ k2
�1 +�1

3 +�2
3 +�4 + 1
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)
+ d/2 −�1

3 −�4

)
≥ bi − bj

]
�

Thus, the strategy profile m∗ is an equilibrium if and only if the above statement holds
for all realizations �1 ≤ k1, �1

3 ≤ d, �2
3 ≤ k3 − d, and �4 ≤ k4, and all 1 ≤ d ≤ k3,37 which

is equivalent to[
min

1≤d≤k3��1≤k1�d/2<�1
3≤d�

�2
3≤k3−d��4≤k4
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k4
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�1 +�1
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)
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)
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]
∧
[
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1
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(
�1 +�2
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]
⇔

[
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(
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(
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]
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[

min
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1
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)
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(
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(
k1 + k3 + 1/2 + k2
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))
≥ |bj − bi|�

(11)

which finishes the proof.

37To ease the exposition, we omit the restriction that all parameters need to be nonnegative.
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Proof of Proposition 1. Let m∗ be a strategy profile and consider any time instant
t, i = ι(t), and link ij ∈ g. Also recall the notation introduced in the proof of Lemma 1.
Consider k3 ≥ 1 (otherwise (iii) is satisfied and there is nothing to show). If (i) is satisfied,
i.e., k4 = 0, then by (11), agent i has no incentives to deviate if and only if

1
2(k1 + k2 + k3 + 2)

≥ |bj − bi|�

Second, suppose that (ii) is satisfied, i.e., k1 = 0, k3 = 1, k4 = 1, and bi = bj . Then the
left-hand side of (11) vanishes and, thus, agent i has no incentives to deviate as bi = bj .
Hence, it is left to show that no other case is possible if k3 ≥ 1. It is sufficient to show
that if (11) holds, k3 ≥ 1 but not (k1 = 0, k3 = 1, k4 = 1, bi = bj), then k4 = 0. We proceed
by case distinction:

Case 1. Suppose k3 ≥ 1 and bi �= bj . We show that (11) does not hold if k4 ≥ 1, thereby
implying that k4 = 0. Notice that it is sufficient to show that

1
k+ 2

(
1/2 − k4

k− k4 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k− k2 + 2

))
≤ 0

for all k1�k2 ≥ 0, k1 + k2 ≥ 1,38 k3 ≥ 1, and k4 ≥ 1, which is equivalent to

min
k1�k2≥0�k1+k2≥1�

k3≥1�k4≥1

k4

k1 + k2 + k3 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k1 + k3 + k4 + 2

)
≥ 1/2�

We get

min
k1�k2≥0�k1+k2≥1�

k3≥1�k4≥1

k4

k1 + k2 + k3 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k1 + k3 + k4 + 2

)

= min
k1�k2≥0�

k1+k2≥1�k3≥1

1
k1 + k2 + k3 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k1 + k3 + 3

)

= min
k1≥0�k2≥1�k3≥1

1
k1 + k2 + k3 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k1 + k3 + 3

)
= 1/2�

which establishes the claim.

Case 2. Suppose k3 ≥ 1 and not (k1 = 0�k3 = 1�k4 = 1). We show that (11) does not
hold if k4 ≥ 1, thereby implying that k4 = 0. Notice that it is sufficient to show
that

1
k+ 2

(
1/2 − k4

k− k4 + 2

(
k1 + k3 + 1/2 + k2

k1 + k3 + 1
k− k2 + 2

))
< 0

38We cannot have k1 = k2 = 0, as agent j holds at least her own private signal, which she may (k1 ≥ 1) or
may not (k2 ≥ 1) have transmitted to agent i before time t.
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for all k1�k2 ≥ 0, k1 + k2 ≥ 1, k3 ≥ 1, and k4 ≥ 1 such that not (k1 = 0�
k3 = 1�k4 = 1). Applying the same arguments as in the first case reveals that
the left-hand side attains its maximum 0 only if (k1 = 0�k3 = 1�k4 = 1), which
is ruled out and, therefore, finishes the proof.

Proof of Theorem 2. Suppose that there exists a tree g̃ ⊆ g such that

|bi − bj| ≤ 1
2(n+ 2)

for all ij ∈ g̃� (12)

We show that m∗ is fully informative. Fix any distinct i� j ∈ N and consider the path
i = i1� i2� � � � � ik = j such that ilil+1 ∈ g̃ for all l = 1�2� � � � �k− 1. Next, define the stopping
time

τij = min
{
t|∃t1 < t2 < · · · < tk−1 = t : ι(tl) = il ∀l = 1�2� � � � �k− 1

}
�

By Corollary 1, Im
∗

ij�t = Ĩm
∗

ij�t for all ij ∈ g̃ and all time instants t. Hence, si ∈ Im
∗

j�t for t > τij .
Moreover, notice that τij is almost surely finite. Define τ = maxj∈N maxi �=j τij and notice
that Im

∗
j�t = {s1� s2� � � � � sn} for t > τ and all j ∈N . Furthermore, τ is also almost surely finite

as a maximum over finitely many almost surely finite stopping times, which finishes this
part.

Second, suppose that m∗ is fully informative. We show that there exists a tree g̃ ⊆ g

such that (12) holds. Suppose to the contrary that there exist distinct i� j ∈ N such that
there does not exist a path i = i1� i2� � � � � ik = j such that ilil+1 ∈ g and

|bil − bil+1 | ≤
1

2(n+ 2)
for all l = 1�2� � � � �k− 1�

Hence, on any path i = i1� i2� � � � � ik = j from i to j in g,

|bil − bil+1 | >
1

2(n+ 2)
for some l ∈ {1�2� � � � �k− 1}� (13)

Next, consider the event that no more information transmission would take place un-
der m∗ by agents other than agent i at time instant t such that i = ι(t) for the first time,
which occurs with strictly positive probability. We can assume, without loss of general-
ity, that Im

∗
i�t = {s1� s2� � � � � sn} and Im

∗
k�t = {s1� � � � � si−1� si+1� � � � � sn} for k �= i. As m∗ is a fully

informative optimal myopic equilibrium, there exists a path i = i1� i2� � � � � ik = j such
that ilil+1 ∈ g and

Im
∗

ilil+1�tl
= {si} for all l = 1�2� � � � �k− 1�

where t = t1 < t2 < · · · < tk−1 are such that tl = min{t > tl−1|ι(t)= il} for l = 2�3� � � � �k− 1.
By Theorem 1, this implies that

|bil − bil+1 | ≤
1

2
(∣∣Im∗

il+1�tl

∣∣+ ∣∣Ĩm∗
ilil+1�tl

∣∣+ 2
) = 1

2(n+ 2)
for all l = 1�2� � � � �k− 1�

which is a contradiction to (13) and thus finishes the proof.
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Proof of Theorem 3. Suppose that g̃ ⊆ g is a tree such that∣∣∣∣bi − 1
|C|
∑
l∈C

bl

∣∣∣∣≤ 1
2(n+ 2)

for all i ∈N and C ∈ C(g̃−i)

and let the strategy profile m∗ be such that

Im
∗

ij�t =
{
Ĩm

∗
ij�t if ij ∈ g̃�

∅ if ij ∈ g\g̃ for all t�

Without loss of generality, we restrict our attention to signals that the receiver did not yet
receive and assume a babbling strategy regarding all other signals.39 First, notice that,
analogous to the first part of the proof of Theorem 2, m∗ is fully informative. Hence, it is
left to show that m∗ is a farsighted equilibrium.

Take any time instant t, i = ι(t), and link ij ∈ g. We only need to consider deviations
regarding signals s ∈ Ĩm

∗
ij�t that i transmits to j at time instant t under m∗, i.e., signals

s ∈ Im
∗

ij�t , as messages on other signals are uninformative and, thus, are disregarded by j.
Hence, consider any link ij ∈ g̃. We can treat each of these links separately, as g̃ is a tree
and, thus, the strategies with respect to different neighbors of agent i are independent.
In particular, a deviation on a signal s ∈ Im

∗
ij�t eventually affects the beliefs of all agents

l ∈ C, where C is such that j ∈ C ∈ C(g̃−i). To ease notation, we let I1 = Im
∗

i�t ∩ Im
∗

j�t denote

the set of common signals between agents i and j, let I2 = {sl : l ∈ C}\Im∗
i�t denote the set

of signals of agents in C that i does not know, let I3 = {sl : l /∈ C}\Im∗
i�t denote the set of

signals of agents not in C that i does not know (and, hence, i will eventually transmit
them to C under m∗), and let I4 = Im

∗
ij�t denote the set of signals i transmits to j at the

current communication round (and, hence, indirectly to the other agents in C as well).
Notice that these four sets are disjoint and, furthermore, Im

∗
i�t = I1 ∪ I4 and limt→∞ Im

∗
l�t =⋃4

p=1 Ip = {s1� s2� � � � � sn} for all l ∈ C. Let kp = |Ip| such that n =∑4
p=1 kp.

As communication is restricted to a tree under m∗, all deviations are on-equilibrium-
path deviations. Furthermore, agent i transmits information at most n − |C| different
time instants to agent j, and the last time instant is t such that i = ι(t) and k4 ≥ 1 as well
as k3 = 0. Hence, we can apply the one-shot-deviation principle of Hendon et al. (1996).
In particular, we need to check local deviations at one communication round only, but
take into account the possibility that agent i herself deviated in earlier communication
rounds. Therefore, denote I4 = {sr1� sr2� � � � � srk4

} and I1 = {sr′1� sr′2� � � � � sr′k1
}, and consider,

without loss of generality, that agent i misreports signals sr1� sr2� � � � � srd and has misre-
ported signals sr′1� sr

′
2
� � � � � sr′

d′ in earlier communication rounds, where d ≥ 1, d′ ≥ 0, and

d + d′ ≤ n− |C|. We write

Id4 = {1 − sr′1�1 − sr′2� � � � �1 − sr′d � sr
′
d+1

� sr′d+2
� � � � � sr′k4

}�

Id
′

1 = {1 − sr1�1 − sr2� � � � �1 − srd′ � srd′+1� srd′+2� � � � � srk1
}�

39Alternatively, one could also assume that all communication is truthful and take off-equilibrium beliefs
similar to intuitive myopic equilibria.
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Agent i has no incentives to do this deviation if and only if

−
∫ 1

0

∑
l∈C

∑
I′

2∈{0�1}k2 �I′
3∈{0�1}k3

((
θ+ bi −E

[
θ|I1� I

′
2� I

′
3� I4

]− bl
)2

− (θ+ bi −E
[
θ|Id′

1 � I ′
2� I

′
3� I

d
4
]− bl

)2)
f
(
θ� I ′

2� I
′
3|I1� I4

)
dθ ≥ 0�

where we denote by f (·) the pdf and, with a slight abuse of notation, the sets I ′
2 and I ′

3
as vectors. Similar manipulations as in the proof of Lemma 1 yield

−
∑
l∈C

∑
I′

2∈{0�1}k2 �I′
3∈{0�1}k3

�
(
I ′

2� I
′
3;d�d′)(−�

(
I ′

2� I
′
3;d�d′)
2

+ bl − bi

)

· P(I ′
2� I

′
3|I1� I4

)≥ 0�

(14)

where �(I ′
2� I

′
3;d�d′)= E[θ|I1� I

′
2� I

′
3� I4]−E[θ|Id′

1 � I ′
2� I

′
3� I

d
4 ]. To ease notation, we let �1

1 =∑d′
l=1 sr′l , �

2
1 =∑k1

l=d′+1 sr′l , �
′
2 =∑s∈I′

2
s, �′

3 =∑s∈I′
3
s, �1

4 =∑d
l=1 srl , and �2

4 =∑k4
l=d+1 srl .

Notice that

∑
s∈Id′

1

s =
d′∑
l=1

(1 − sr′l )+
k1∑

l=d′+1

sr′l = d′ −�1
1 +�1�

∑
s∈Id4

s =
d∑

l=1

(1 − srl )+
k4∑

l=d+1

srl = d −�1
4 +�2

4�

Hence, (1) yields

�
(
I′

2� I
′
3;d�d′)= E

[
θ|I1� I

′
2� I

′
3� I4

]−E
[
θ|Id′

1 � I ′
2� I

′
3� I

d
4
]

= �1
1 +�2

1 +�′
2 +�′

3 +�1
4 +�2

4 + 1
n+ 2

− d′ −�1
1 +�2

1 +�′
2 +�′

3 + d −�1
4 +�2

4 + 1
n+ 2

= 2�1
1 + 2�1

4 − d′ − d

n+ 2
�

(15)

Substituting (15) into (14) and using that (15) is independent of I ′
2 and I ′

3 yields

−
∑
l∈C

2�1
1 + 2�1

4 − d′ − d

n+ 2

(
−2�1

1 + 2�1
4 − d′ − d

2(n+ 2)
+ bl − bi

)
≥ 0

⇔ −2�1
1 + 2�1

4 − d′ − d

n+ 2

(
−|C|2�1

1 + 2�1
4 − d′ − d

2(n+ 2)
+
∑
l∈C

bl − |C|bi
)

≥ 0
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⇔ �1
1 +�1

4 = d′ + d

2
∨
[
�1

1 +�1
4 >

d′ + d

2
∧ |C|2�1

1 + 2�1
4 − d′ − d

2(n+ 2)
≥
∑
l∈C

bl

− |C|bi
]

∨
[
�1

1 +�1
4 <

d′ + d

2
∧ −|C|2�1

1 + 2�1
4 − d′ − d

2(n+ 2)
≥ |C|bi −

∑
l∈C

bl

]
�

Thus, the strategy profile m∗ is an equilibrium if and only if the above statement holds
for all realizations �1

1 ≤ d and �1
4 ≤ d′, and all d ≥ 1 and d′ such that d + d′ ≤ n − |C|,40

which is equivalent to[
min

d≥1�d+d′≤n−|C|��1
4≤d�

�1
1≤d′��1

1+�1
4>(d′+d)/2

|C|2�1
1 + 2�1

4 − d′ − d

2(n+ 2)
≥
∑
l∈C

bl − |C|bi
]

∧
[

min
d≥1�d+d′≤n−|C|��1

4≤d�

�1
1≤d′��1

1+�1
4<(d′+d)/2

−|C|2�1
1 + 2�1

4 − d′ − d

2(n+ 2)
≥ |C|bi −

∑
l∈C

bl

]

⇔
[

min
d≥1�d+d′≤n−|C|

|C|2
(⌊(

d′ + d
)
/2
⌋+ 1

)− d′ − d

2(n+ 2)
≥
∑
l∈C

bl − |C|bi
]

∧
[

min
d≥1�d+d′≤n−|C|

−|C|2
(⌈(

d′ + d
)
/2
⌉− 1

)− d′ − d

2(n+ 2)
≥ |C|bi −

∑
l∈C

bl

]

⇔
[ |C|

2(n+ 2)
≥
∑
l∈C

bl − |C|bi
]

∧
[ |C|

2(n+ 2)
≥ |C|bi −

∑
l∈C

bl

]

⇔ 1
2(n+ 2)

≥
∣∣∣∣bi − 1

|C|
∑
l∈C

bl

∣∣∣∣�
which holds by assumption and, thus, finishes the proof.

Proof of Lemma 2. Let m∗ denote the candidate strategy profile and consider any time
instant t such that i = ι(t). To ease notation, we let, for each j ∈ Ni(g), I1j = Im

∗
i�t ∩ Im

∗
j�t

denote the set of common signals of agents i and j, let I2j = Im
∗

j�t \Im∗
i�t denote the set of

signals of j that i does not know, let I3 = Im
∗

iNi(g)�t
denote the set of signals that i transmits

to her neighbors, and let I3j = Im
∗

ij�t denote the subset of these signals that she transmits
to j under strategy profile m∗. Notice that, for each j, the sets I1j , I2j , and I3j are disjoint,
and, furthermore, Im

∗
j�t+1 = I1j ∪ I2j ∪ I3j and Im

∗
i�t = I1j ∪ I3j . Let klj = |Ilj| and kj = k1j +

k2j + k3j .
As argued in the proof of Lemma 1, we need to consider only deviations regarding

signals that agent i communicates truthfully at time instant t. Furthermore, we con-
sider off-equilibrium beliefs to be such that agents ignore deviations on signals that
have already been transmitted to them in earlier periods. Hence, we need to consider

40To ease the exposition, we omit that all parameters need to be nonnegative.
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only the case I3 = Ĩm
∗

iNi(g)�t
and deviations on these signals. In particular, a deviation

on s ∈ I3 affects agent j ∈ Ni(g) if and only if s ∈ I3j . Let I3 = {sr1� sr2� � � � � sr|I3| } and
I3j = {sj1� sj2� � � � � sjk3j

}.

Suppose, without loss of generality, that agent i misreports signals sr1� sr2� � � � � srd ,
1 ≤ d ≤ |I3|, and let

Id3 = {1 − sr1�1 − sr2� � � � �1 − srd � srd+1� srd+2� � � � � sr|I3| }�
Hence, without loss of generality, agent i misreports the subset sj1� sj2� � � � � sjdj to agent j,

where dj = |{k ∈ {1�2� � � � � d}|srk ∈ I3j}| and

Id3j = {1 − sj1�1 − sj2� � � � �1 − sjdj
� sjdj+1� � � � � sjk3j

} ⊆ Id3 �

Agent i has no incentives to do this deviation if and only if

−
∫ 1

0

∑
j∈Ni(g)

∑
I′

2j∈{0�1}k2j

((
θ+ bi −E

[
θ|I1j� I

′
2j� I3j

]− bj
)2

− (θ+ bi −E
[
θ|I1j� I

′
2j� I

d
3j
]− bj

)2)
f
(
θ� I ′

2j|I1j� I3j
)
dθ ≥ 0�

where we denote by f (·) the pdf and, with a slight abuse of notation, denote the sets I ′
2j

as vectors. Similar manipulations as in the proof of Lemma 1 yield

−
∑

j∈Ni(g)

( ∑
I′

2j∈{0�1}k2j

�j

(
I ′

2j;d
)(−�j

(
I ′

2j;d
)

2
+ bj − bi

)
P
(
I ′

2j|I1j� I3j
))≥ 0�

where, with �d
3j =∑dj

l=1 sjl ,

�j

(
I ′

2j;d
)= E

[
θ|I1j� I

′
2j� I3j

]−E
[
θ|I1j� I

′
2j� I

d
3j
]= 2�d

3j − dj

kj + 2
�

Using that �j(I
′
2j;d) is independent of I′

2j yields

−
∑

j∈Ni(g)

2�d
3j − dj

kj + 2

(
−2�d

3j − dj

2(kj + 2)
+ bj − bi

)
≥ 0

⇔ 1
2

∑
j∈Ni(g)

(2�d
3j − dj

kj + 2

)2
≥

∑
j∈Ni(g)

2�d
3j − dj

kj + 2
(bj − bi)�

which holds by assumption for all realizations of I3 and all Id3 ⊆ I3, d ≥ 1, and, thus,
finishes the proof.

Proof of Theorem 5. Consider any i ∈ N , time instant t, realization of Ĩm
∗∗

iNi(g)�t
, and

∅ �= Idi ⊆ Ĩm
∗∗

iNi(g)�t
. Furthermore, suppose that Im

∗
j�t = Im

∗∗
j�t for all j ∈ N and Im

∗
ij�t = Ĩm

∗
ij�t for

all j ∈Ni(g). We show that then Im
∗∗

iNi(g)�t
= Ĩm

∗∗
iNi(g)�t

.
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Fix any j ∈Ni(g). As m∗ is an optimal intuitive myopic equilibrium with private com-
munication, we have

1

2
(∣∣Im∗

j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2
) ≥ |bj − bi| ≥ bj − bi� (16)

Furthermore, as 2
∑

s∈Idi \Im∗
j�t

s − |Idi \Im∗
j�t | is an integer,

(
2
∑

s∈Idi \Im∗
j�t

s − ∣∣Idi \Im∗
j�t

∣∣)2
≥ 2

∑
s∈Idi \Im∗

j�t

s − ∣∣Idi \Im∗
j�t

∣∣� (17)

Together, (16) and (17) yield

1
2

⎛⎜⎜⎜⎜⎝
2
∑

s∈Idi \Im∗
j�t

s − ∣∣Idi \Im∗
j�t

∣∣
∣∣Im∗
j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2

⎞⎟⎟⎟⎟⎠
2

≥

2
∑

s∈Idi \Im∗
j�t

s − ∣∣Idi \Im∗
j�t

∣∣
∣∣Im∗
j�t

∣∣+ ∣∣Ĩm∗
ij�t

∣∣+ 2
(bj − bi)�

Summing up both sides over all j ∈Ni(g) yields the claim by construction of m∗∗.
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