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First-price auctions with budget constraints

Maciej H. Kotowski
John F. Kennedy School of Government, Harvard University

Consider a first-price sealed-bid auction with interdependent valuations and pri-
vate budget constraints. Focusing on the two-bidder case, we identify new suffi-
cient conditions for the existence of a symmetric equilibrium in pure strategies.
In equilibrium, agents may adopt discontinuous bidding strategies that result in
a stratification of competition along the budget dimension. Private budgets can
simultaneously lead to more aggressive bidding (a high-budget agent leverages
his wealth to outbid rivals) and more subdued bidding (competition becomes less
intense among bidders at distinct budget levels). The presence of budget con-
straints may lead to multiple symmetric equilibria in the first-price auction.

Keywords. First-price auction, budget constraints, interdependent values.

JEL classification. D44.

1. Introduction

Private budgets arise in many economic situations, including auctions. Once bidders
have multidimensional private information involving a value signal, which informs their
preferences, and a budget, which defines their feasible strategy set, even simple bid-
ding games exhibit nontrivial equilibria. Many familiar intuitions require qualification
or reassessment.

For concreteness, consider a first-price sealed-bid auction for one item. Bidders
simultaneously place bids, the highest bidder wins, and he pays his own bid. Private
budgets affect equilibrium bidding in two opposing ways in this familiar setting. First,
budgets dampen bids by introducing a spending limit. Che and Gale (1998) character-
ize this feature in their seminal analysis of the first-price auction with private budget
constraints.1 Assuming private values, they propose sufficient conditions that ensure
equilibrium bidding strategies assume the canonical form

β(si�wi)= min
{
b̄(si)�wi

}
� (1)

Maciej H. Kotowski: maciej_kotowski@hks.harvard.edu
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supersedes and corrects results originally circulated in a 2010 working paper by the same title and included
in Kotowski (2011). It is a substantial revision of both preceding studies.

1Most related to our study is the model found in Section 3 of Che and Gale (1998).
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In (1), si is bidder i’s private value, wi is his private budget, and b̄(·) is an increasing,

continuous function that defines the bid of an “unconstrained” agent who bids less than

his budget.

Second, and less intuitively, budgets can amplify certain agents’ equilibrium bids.

A higher bid may be disproportionally effective at defeating budget-constrained rivals,

thus giving a high-budget bidder a valuable strategic option. Exercising this option can

lead to an equilibrium where agents adopt discontinuous bidding strategies, even in a

symmetric setting. A stratification of competition between high- and low-budget bid-

ders emerges in equilibrium. Hitherto underappreciated in the literature, these strate-

gic implications complicate equilibrium bidding and affect the auction’s efficiency and

revenue potential.

To illustrate our argument, it is helpful to consider an example that conveys its cen-

tral intuition. The following example is an extension of Vickrey’s (1961) model.2

Example 1. Consider a first-price sealed-bid auction for one item. There are two ex

ante identical bidders. Each bidder i observes an independent, uniformly distributed

signal si ∈ [0�1] regarding his value for the item. Signals are private, but their distribution

is common knowledge. If a bidder with value signal si wins the auction with the bid bi,

his payoff is si − bi; otherwise, it is zero. A fair coin flip resolves ties. It is well known that

in this auction’s Bayesian–Nash equilibrium, both bidders adopt the strategy si/2.

Suppose, additionally, that each bidder has a budget wi, which is independent of his

value signal. Budgets are private, but their distribution is common knowledge. With

probability 1/2, a bidder’s budget is 1/4; with probability 1/2, it is 3/4. A budget is a hard

constraint on bids and a type-(si�wi) bidder cannot bid above wi.

A tempting conjecture is that

min{si/2�wi} (2)

is a symmetric equilibrium strategy in this enriched setting. In (2), which has the canon-

ical form, a bidder follows the usual equilibrium strategy si/2 until he exhausts his funds.

Though intuitive, (2) cannot be a symmetric equilibrium strategy. If bidder j follows (2),

then bidder i has a profitable deviation when si = 1/2 − ε and wi = 3/4. According to

(2), he should bid 1/4 − ε/2. But if he bids ε more, 1/4 + ε/2, his probability of winning

jumps from approximately 1/2 to over 3/4. At infinitesimal added cost, this deviation is

worth it.3

Reflecting on the preceding reasoning, we are led to an equilibrium strategy with

jump discontinuities. Figure 1 sketches β(si�wi), this auction’s symmetric equilibrium

2Milgrom (2004) presents a related example with a common budget constraint.
3Similar reasoning applies whenever the bid distribution has a mass point due to a mass point in the

budget distribution. When this occurs, the first-price auction cannot have an equilibrium in continuous
strategies.
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Figure 1. The equilibrium strategy in Example 1. Figure not to scale.

strategy:

β(si�1/4)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
si/2 if si ∈ [0� s̃]
1 + 9s2i
6 + 18si

if si ∈
(
s̃� s̃′

]
1/4 if si ∈

(
s̃′�1

] β(si�3/4)=

⎧⎪⎨
⎪⎩
si/2 if si ∈ [0� s̃]

5 + 9s2i
18 + 18si

if si ∈ (s̃�1]�

where s̃ = 1/3 and s̃′ = 11/27.4

Both dampening and strategic consequences of private budgets are apparent in this
example’s equilibrium. The former is obvious. A high-valuation (si > s̃′) low-budget
(wi = 1/4) bidder hits his spending limit in equilibrium: his bid is capped.

More interesting and consequential are the strategic implications. First, a high-
budget bidder’s strategy features a prominent jump discontinuity that amplifies his bid
at s̃. A high-budget bidder has the option of bidding above 1/4, thus outbidding with
certainty a low-budget competitor. Exercising this option becomes worthwhile when
his value exceeds s̃. The intuition for the discontinuity at s̃′ is similar. Given that low-
budget agents cannot bid above 1/4, there is a chance of a tie at this bid. A low-budget
bidder with valuation si > s̃′ finds this outcome sufficiently attractive to actually bid 1/4.
He would like to bid more to break the (possible) tie in his favor, but lacks the funds to
do so.

Second, despite occasional jumps, on the margin bidding is less brazen due to a
stratification of competition along the budget dimension. When an agent bids above
1/4, he need only worry about a competing bid from another high-budget bidder, which
occurs with probability less than 1/2. Similarly, in equilibrium, a low-budget bidder of

4We verify that the defined strategy is a symmetric equilibrium in Appendix A. The working paper Ko-
towski (2019) examines a generalized version of this example: valuations are distributed according to the
continuous cumulative distribution function H(s) on [0� s], and budgets assume low (w) and high (w)
values with probabilities p and 1 − p, respectively. The equilibrium remains qualitatively similar when
w< s− ∫ s

0 H(z)dz < w.
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type si > s̃ competes on the margin only against a low-budget adversary.5 In each case,
there is less incentive to bid aggressively since segregation has reduced competition in
the relevant range of bids. ♦

Although the preceding observations appear to be specific to Example 1 or are per-
haps an artifact of the discrete budget distribution, this is not the case. As explained in
Section 3, the strategic amplification and the competitive stratification can arise even
when budgets assume a continuum of values. Necessarily, the construction is more
elaborate, but the intuition is the same. Focusing on the two-bidder case, we propose
new sufficient conditions for the existence of an equilibrium that satisfies the canonical
form (1), even when values are interdependent. Relaxing these assumptions leads to a
noncanonical equilibrium that echoes the intuition of Example 1. The resulting empir-
ical confounds can be substantial. For example, a uniform distribution of value signals
and budgets may result in a bimodal equilibrium bid distribution (Example 2). Budget
constraints may also lead to multiple symmetric equilibria (Example 3). This is because
jump discontinuities that arise in equilibrium reflect an underlying coordination prob-
lem. An increase in bid to a particular value may only be worthwhile if the other bidder
adopts the same strategy.

Our study has three main contributions. First, our results offer guidance concerning
bidding in first-price auctions by isolating the strategic implications of private budgets.
The importance of the strategic dimension is surprising given the simplicity of the first-
price sealed-bid auction format.

Second, we offer a cautionary message for empirical studies. The conflicting damp-
ening and amplifying responses to the budget constraint variable imply that bids need
not be skewed in one direction. Local incentive constraints, which underlie many em-
pirical methods for auction analysis, need not fully characterize equilibrium bidding.
Even small changes in a bidder’s type may lead to large changes in his equilibrium bid.
We hope our analysis provides a useful step toward better integrating budgets in empir-
ical analysis of auctions.

Third, our methods may be useful in further investigations of auctions with budget
constraints or with other forms of multidimensional private information. The phase-
plane analysis employed in Section 3 is both simple and informative of associated eco-
nomic incentives.

Outline. Section 2 surveys the related literature. Section 3 generalizes Example 1
to allow for interdependent valuations and continuously distributed budgets. We ex-
amine both canonical equilibria and noncanonical, discontinuous equilibria. Section 4
presents a discussion of our results, including a comparison with the second-price auc-
tion. We also provide an example that demonstrates that budget constraints can lead to
multiple symmetric equilibria in the first-price auction. Appendices A–D collect omitted
proofs and calculations.

5Consider the equilibrium bid of agent i with value signal si ∈ (s̃� s̃′). When he bids β(si�1/4), bidder i
wins the auction when sj < si and wj = 1/4 or sj < s̃ and wj = 3/4. If bidder i bids slightly more, he now
wins when sj < si + ε and wj = 1/4 or sj < s̃ and wj = 3/4. Agent i’s higher bid is effective only against a
low-budget adversary.
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2. Related literature

Che and Gale (1998) were the first to study standard auctions with private values and pri-
vate budget constraints.6 They investigate equilibria that satisfy the canonical form (1).
In Section 3.1, we study canonical equilibria in a complementary class of cases, includ-
ing those with interdependent values. Fang and Perreiras (2002, 2003) study the second-
price auction with private budgets and interdependent values. We discuss their results
in detail in Section 4. In a similar setting, Kotowski and Li (2014a, 2014b) analyze all-pay
auctions. Ghosh et al. (2018) study wars of attrition with private budgets.

In developing our model, we suppress several embellishments commonly associ-
ated with budget constraints. Unlike Zheng (2001), Jaramillo (2004), or Rhodes-Kropf
and Viswanathan (2005), we model budgets as hard bounds on bids, rather than as im-
perfections in bid-financing ability. We also abstract from the risk of collusion or the
formation of bidding consortia due to limited liquidity (Cho et al. 2002). Burkett (2016)
argues that budget constraints solve a principal–agent problem when bidding is dele-
gated to a third party. Budgets are exogenous in our model, as they would be in the
absence of delegation.

Interest in the role of budgets in auctions has grown due to their salience in many
Internet-related applications (Ashlagi et al. 2010, Balseiro et al. 2015) and spectrum auc-
tions (Cramton 1995, Bulow et al. 2017). Noting these applications, several authors build
models to investigate budget constraints in sequential or multi-unit auctions (Pitchik
and Schotter 1988, Benoît and Krishna 2001, Pitchik 2009, Brusco and Lopomo 2008,
2009, Ghosh 2015, Kariv et al. 2018). Our model is not a special case of any of them.

The auction design problem following Myerson (1981) that incorporates budget con-
straints is particularly challenging and has been considered under various guises (Laf-
font and Robert 1996, Monteiro and Page 1998, Che and Gale 1999, 2000, Maskin 2000,
Malakhov and Vohra 2008, Pai and Vohra 2014, Kojima 2014, Baisa 2018, Boulatov and
Severinov 2018, Carbajal and Mu’alem 2018, Richter 2019). Auction design with budgets
has also spurred an interest among computer scientists.7 Our analysis takes the auc-
tion format as given and examines equilibrium bidding. Che and Gale (2006) examine
auction revenue when bidders have multidimensional types, which may include private
financial constraints.

3. A symmetric auction with interdependent values

Consider the following adaptation of Milgrom and Weber’s (1982) model of a first-price
auction. There are two ex ante symmetric bidders. Let si ∈ [0�1] be the value signal
of bidder i. It defines his information about the item for sale. Value signals are inde-
pendently and identically distributed according to the twice continuously differentiable

6The works of Che and Gale (1996a, 1996b) are precursors that examine a common-value setting where
only budgets are private information. Bobkova (2019) generalizes these models to an asymmetric set-
ting. Kariv et al. (2018) corroborate the equilibrium predictions of Che and Gale (1996a) with a laboratory
experiment.

7Borgs et al. (2005) and Dobzinski et al. (2012) are representative contributions.



204 Maciej H. Kotowski Theoretical Economics 15 (2020)

cumulative distribution function (c.d.f.)H(si). (We relax independence in Remark 3 be-
low.) The associated probability density function (p.d.f.) h(si) is strictly positive and
bounded. Given si and sj , v(si� sj) is bidder i’s valuation for the item. The valuation
function is continuously differentiable, strictly increasing in the first argument, nonde-
creasing in the second argument, v(0�0)= 0, and v(1�1)= v. If bidder iwins the auction
with the bid bi, his payoff is v(si� sj) − bi; otherwise, it is 0. Ties are resolved with a
uniform randomization.

When budget constraints are absent, Milgrom and Weber (1982) show that there ex-
ists a Bayesian–Nash equilibrium where all bidders adopt a common strategy, α(si), that
solves

α′(si)= (
v(si� si)− α(si)

) h(si)
H(si)

(3)

subject to α(0)= 0. Henceforth, we reserve the notation α(·) for this specific strategy.
Generalizing the model, let wi ∈ [w�w] be the budget of bidder i. Budgets are inde-

pendently and identically distributed according to the twice continuously differentiable
c.d.f.G(wi). We assume that 0 ≤w< v <w and that the associated p.d.f. g(wi) is strictly
positive and bounded for all wi ∈ [w�w]. For convenience, we defineG(wi)= 0 if wi < w
andG(wi)= 1 ifwi > w. A bidder’s type (si�wi) is private information; otherwise, the en-
vironment is common knowledge. We focus on a symmetric Bayesian–Nash equilibrium
and we henceforth suppress bidder subscripts.

3.1 A canonical equilibrium

Positing private values, Che and Gale (1998) identify a sufficient condition (see Remark 2
below) that ensures that the first-price auction has an equilibrium where bidders adopt
a common canonical strategy, β(s�w)= min{b̄(s)�w}. The function b̄(s), which is strictly
increasing and continuous, defines the bid of an “unconstrained” bidder who bids less
than his budget in equilibrium. Figure 2 illustrates a representative canonical strategy.

We first investigate conditions that ensure a canonical equilibrium exists in our
model. As an initial step, we derive some properties of b̄(·). If bidder j follows a canoni-
cal strategy, the expected payoff of a type-(s�w) bidder i when he bids b̄(x)≤w is

U
(
b̄(x)|s�w)=

∫ x

0

∫ w

0

(
v(s� y)− b̄(x))h(y)g(z)dz dy

+
∫ 1

x

∫ b̄(x)

0

(
v(s� y)− b̄(x))h(y)g(z)dz dy� (4)

The first term in (4) is the expected payoff from defeating an opponent with a value sig-
nal less than x. The second term is the expected payoff from defeating an opponent
with a value signal greater than x who has a budget less than b̄(x). This term vanishes if
b̄(x) < w. By computing the first-order condition, dU(b̄(x)|s�w)/dx|x=s = 0, and defin-
ing the expressions

λ(s) := h(s)

1 −H(s)
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(a) Level sets of β(s�w) (b) Three dimensional sketch of β(s�w)

Figure 2. Illustration of a canonical strategy, β(s�w)= min{b̄(s)�w}, when w= 0.

γ(b) := g(b)

1 −G(b)

η(x� s) :=
∫ 1

x

v(s� y)h(y)

1 −H(x) dy

δ(b� s) := b+ G(b)

g(b)
+ H(s)

g(b)
(
1 −H(s)) �

we can characterize b̄(s) at its points of differentiability as

b̄′(s)=

⎧⎪⎪⎨
⎪⎪⎩
(
v(s� s)− b̄(s)) h(s)

H(s)
if b̄(s) < w

λ(s)

γ
(
b̄(s)

)( b̄(s)− v(s� s)
η(s� s)− δ(b̄(s)� s)

)
if b̄(s) > w�

(5)

When b̄(s) < w, (5) reduces to (3), the differential equation that characterizes the equi-
librium strategy in the absence of budget constraints. To interpret (5) when b̄(s) > w,
we expand the equation and rearrange its terms. Omitting the function arguments for
readability yields

h(1 −G)(v− b̄)︸ ︷︷ ︸
[A]

+ b̄′g(1 −H)(η− b̄)︸ ︷︷ ︸
[B]

= b̄′(G(1 −H)+H)︸ ︷︷ ︸
[C]

� (6a)

Terms [A] and [B] are the expected marginal benefit of an infinitesimally higher bid.
When the higher bid defeats an opponent with a value signal less than s, the payoff gain
is v(s� s)− b̄(s); otherwise, when it defeats an opponent with a budget less than b̄(s), the
payoff gain is η(s� s)− b̄(s).8 Term [C] is the expected marginal cost of a higher bid.

8The termη(x� s) is the expected value of the item to a bidder with value signal s conditional on defeating
an opponent with a value signal greater than x.
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Further rearrangement of (6a) gives

b̄′ = h(1 −G)(v− b̄)(
G(1 −H)+H)− g(1 −H)(η− b̄) � (6b)

For b̄′(s) to be positive, as assumed throughout its derivation, both numerator and de-
nominator in (6b) must have the same sign. When the budget distribution is relatively
dispersed and say g(b)≈ 0, this is not a demanding requirement, as the denominator is
positive. If the budget distribution is concentrated near some value and g(b) is relatively
large, the denominator of (6b) may approach zero or be negative. Intuitively, when this
occurs, the likelihood of defeating a budget-constrained opponent is large and a (high-
budget) bidder wishes to increase his bid aggressively to capitalize on this opportunity.
In Example 1, the return to a slightly higher bid spiked at the atom in the budget distri-
bution and led to a discontinuous jump in bid. As (6b) reveals, an atom is not necessary
to provoke a similar response.

Motivated by the preceding discussion, we introduce a regularity condition that en-
sures the marginal returns to a slightly higher bid are moderate and well behaved. As
explained below, it is a sufficient condition for a canonical equilibrium to exist when
w= 0.

Assumption 1. For each s, the function b �→ η(s� s) − δ(b� s) crosses zero at most one
time. Furthermore, if η(s′� s′)− δ(b′� s′)= 0, then ∂δ(b� s′)/∂b|b=b′ > 0.

Remark 1. Assumption 1 holds when the budget c.d.f.G(·) is concave.

Remark 2. Assumption 1 is implied by Assumption 5 of Che and Gale (1998) when the
latter is applied to the case of independent budgets and value signals, as in our model.9

When value signals and budgets are mutually independent, our contribution beyond
Che and Gale’s is to show that canonical equilibria continue to obtain in a setting with
interdependent values and a weaker restriction on the budget distribution.

Assumption 1 has two parts. The first says that the denominator of (5) satisfies a
single-crossing condition. Since η(s� s)− δ(w� s) < 0, any crossing must be from above.
Thus, the second part is a technical restriction that ensures the crossing is strict.

Theorem 1. Suppose Assumption 1 holds and w= 0. There exists an equilibrium where
each bidder adopts a common strategy, β(s�w) = min{b̄(s)�w}. The function b̄(·) is in-
creasing, continuous, and for a.e. s,

b̄′(s)= λ(s)

γ
(
b̄(s)

)( b̄(s)− v(s� s)
η(s� s)− δ(b̄(s)� s)

)
� (7)

9Che and Gale (1998) invoke their Assumption 5 to prove their Lemma 1. Fang and Perreiras (2002, foot-
note 7) point out that Che and Gale’s lemma may not be true without additional assumptions in their model.
When applied to our model, Che and Gale’s assumption is sufficient for the existence of an equilibrium in
canonical strategies when w= 0.
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Generically, the equilibrium is unique in the class of symmetric equilibria in canonical
strategies.

We provide a numerical example that illustrates an equilibrium in Section 3.3.

Identification of b̄(·) and the proof of Theorem 1 To prove Theorem 1, we must first
confirm that the function b̄(·) exists with the stated properties. A natural approach is
to (try to) solve (7) assuming b̄(0) = 0. This is premature. With interdependent values,
zero may not be an optimal bid for an unconstrained bidder. A small bid may defeat a
budget-constrained opponent with favorable information concerning the item’s value.
This attenuation of the winner’s curse can inflate an agent’s bid, even if he observes a
low value signal. Moreover, (7) may lack an increasing solution that is defined for all s,
as assumed throughout its derivation.

Acknowledging the above complications, we identify b̄(·) indirectly by focusing on
the qualitative behavior of solutions to (7). To do so, we use phase-plane analysis to
study the closely related plane-autonomous system

ṡ(s� b)= γ(b)(η(s� s)− δ(b� s))� ḃ(s� b)= λ(s)(b− v(s� s))� (8)

where (s� b) ∈ [0�1] × [w�w].10 In analyzing this system, we are interested in the graphs
of its solutions and not in its dynamics. Graphs of its solutions can be identified with
integral curves of (7) since, following Birkhoff and Rota (1978, Chapter 5), we observe
that

db

ds
= db

dt

/ds
dt

= ḃ(s� b)

ṡ(s� b)
= b̄′(s)�

Interpreting the problem as proposed lets us use graphical techniques to discern the
behavior of candidate solutions over a large domain (Strogatz 1994, Perko 2001). Addi-
tionally, our reinterpretation placates the singularities encountered in a direct analysis
of (7).

Analysis of system (8) focuses on its nullclines and critical (or fixed) points. The
nullclines are

ψ(s) := {
b | η(s� s)− δ(b� s)= 0

}
and ν(s) := {

b | b− v(s� s)= 0
}
�

These graphs characterize points where ṡ = 0 and ḃ = 0, respectively. Their economic
interpretation is the following. At b= ψ(s), the denominator of (7) changes sign. When
η(s� s)− δ(b� s) > 0, marginally higher bids are relatively effective (conditional on s) at
defeating a budget-constrained opponent. Otherwise, this dimension’s marginal contri-
bution to a bidder’s payoff is more subdued. By definition, ν(s) = v(s� s). Thus, ν(s) is
a type-(s�w) bidder’s valuation conditional on his opponent observing the same value
signal. If a type-(s�w) agent bids more than ν(s), then he is overbidding conditional on
defeating only an opponent with a value signal less than his own. A critical point occurs
where nullclines intersect.

10The functions ṡ and ḃ are not defined at the boundaries where b = w and s = 1, respectively. This
technical fact is not a concern and we suppress it for expositional clarity. We can perform the analysis on
the domain’s interior. The identified solution can be extended to the boundary using standard results in the
theory of ordinary differential equations.
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Figure 3. A phase portrait of system (8) with one critical point.

Assumption 1 ensures that the analysis of system (8) is routine. Figure 3 illustrates a
representative case. Six facts are noteworthy.

(i) The curve ν(s) runs from the origin to the figure’s top-right corner. In the region
below ν(s), ḃ < 0; otherwise, ḃ > 0.

(ii) Assumption 1 implies that ψ(s) is at most single-valued. When not empty, ψ(s) is
a continuous curve.11 In the region below ψ(s), ṡ > 0; otherwise, ṡ < 0.

(iii) There exists at least one critical point whenw= 0 (Lemma B.2 in Appendix B). For
simplicity, Figure 3 shows an instance with one critical point at (s0� b0). Multiple
critical points do not affect Theorem 1, though an extended analysis is needed to
identify b̄(·). We outline the identification of b̄(·) in the case of multiple critical
points in the working paper (Kotowski 2019).

(iv) The ratio ḃ/ṡ is positive at point (s� b) only when b is “in between” ν(s) and ψ(s).
These are regions R1 and R2 in Figure 3. In these regions, the solutions of (8) can
be identified with increasing functions of s. Elsewhere, solutions have negative
slope and, therefore, cannot constitute part of an admissible solution for b̄(s).

(v) Generically, each critical point is either a saddle point or a node (Lemma B.3).
When there is one critical point, it is a saddle point.

(vi) When there is one critical point, of particular interest are the stable manifolds
that approach it from below and above in regions R1 and R2. (The Hartman–

11Continuity follows from the implicit function theorem. Lemma B.1 in Appendix B records additional
properties of ψ(s), including the fact that ψ(s) < v.
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Grobman theorem implies that these manifolds are generically unique.) In Fig-
ure 3, these are the bold curves connecting (s0� b0) with the boundaries. Hence-
forth, we use b∗(s) to denote the union of these solution paths’ closures as a func-
tion of s. The function b∗(s) is strictly increasing, continuous, and an integral
curve of (7).

We are now ready to identify the function b̄(·). This function must be strictly in-
creasing, continuous, and an integral curve of (7). When there is one critical point, as
in Figure 3, only the stable solutions of (8) approaching the critical point—the function
b∗(s)—satisfy the stated requirements. So, in this case, we define b̄(s)≡ b∗(s) for all s.

The identification of b̄(s) illustrates the competing incentives facing a high-budget
bidder. Consider again Figure 3. When b̄(s) is confined to regionR1, a type-(s�w) bidder
would like to bid more to capitalize on his opponent’s (possible) budget constraint. His
incentive to do so is moderated by the fact that he is overbidding conditional on defeat-
ing an adversary with a value signal less than his own, i.e., b̄(s) > v(s� s). In region R2,
these incentives flip and v(s� s) > b̄(s).

A standard argument lets us confirm that Theorem 1 characterizes an equilibrium.12

Proof of Theorem 1. Suppose bidder j adopts the strategy β(s�w) = min{b̄(s)�w},
where b̄(s) satisfies the conditions stated in Theorem 1. (The preceding discussion has
established the existence of this function.) The expected utility of bidder i of type (s�w)
who bids b̄(x) is given by (4). Differentiating (4) yields

∂U
(
b̄(x)|s�w)
∂x

= g(b̄(x))(1−H(x))[ λ(x)

γ
(
b̄(x)

)(v(s�x)− b̄(x))+ b̄′(x)
(
η(x� s)−δ(b̄(x)�x))]�

Suppose x > s. Clearly, η(x�x) ≥ η(x� s) and v(x�x) ≥ v(s�x). Thus, ∂U(b̄(x)|s�w)/∂x ≤
∂U(b̄(x)|x�w)/∂x= 0. Hence, bidder i can increase his payoff by bidding less than b̄(x).
A parallel argument shows that when x < s, bidder i can increase his payoff by bidding
more than b̄(x). Together, the two cases imply that bidder i has no incentive to deviate
from β(s�w) to another bid in the range of b̄(·).13

Instead, suppose bidder i bids outside the range of b̄(·). Any bid strictly exceeding
b̄(1) is dominated by b̄(1). The bid b≤ b̄(0) yields an expected payoff of

U(b|s�w)=
∫ 1

0

∫ b

0

(
v(s� y)− b)h(y)g(z)dz dy =G(b)(η(0� s)− b)� (9)

To complete the proof, it is sufficient to show that ∂U(b|s�w)/∂b ≥ 0 when w ≤ b <

b̄(0). Differentiating (9), ∂U(b|s�w)/∂b = g(b)(η(0� s)− b)−G(b) ≥ g(b)(η(0�0)− b)−
G(b). Given the definition of b̄(·), if b̄(0) > 0, then ψ(0) > b̄(0). Recalling Assump-
tion 1, b < ψ(0) implies that η(0�0) > δ(b�0)= b+G(b)/g(b). Rearranging terms gives
g(b)(η(0�0)− b)−G(b)≥ 0, which implies the desired conclusion.

12See Fang and Perreiras (2002) and Kotowski and Li (2014a) for similar proofs in the case of the second-
price and all-pay auctions with budget constraints.

13We have shown that a type-(s�w) bidder can improve his payoff by increasing his bid whenever it is

less than b̄(s). If β(s�w)=w≤ b̄(s), then he cannot increase it above his budget constraint.
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Remark 3. Theorem 1 generalizes to the case of affiliated value signals (Milgrom and
Weber 1982). In this case, let h(si� sj) be the strictly positive, bounded, permutation-
symmetric, and log-supermodular joint density of value signals.14 Define h(x|s)
and H(x|s) as the conditional p.d.f. and c.d.f., respectively, and let λ(x|s) := h(x|s)/
(1 − H(x|s)). The analogue of Theorem 1 holds if v(·�x)λ(x|·) is nondecreasing, a
common assumption (Krishna and Morgan 1997, Lizzeri and Persico 2000, Fang and
Perreiras 2002). This condition holds when, for example, v(si� sj) = (si + sj)/2 and
h(si� sj) = 4(1 + sisj)/5. Intuitively, the restriction limits the informativeness of si con-
cerning sj relative to its impact on bidder i’s own payoff. The supporting analysis is
essentially identical to the preceding case and is omitted.

Remark 4. A closed-form expression for b̄(·) is unavailable, but the preceding analysis
suggests how to approximate it numerically. First, identify a critical point in (8) through
which the function must pass. The stable manifolds of system (8) approach this point
with a slope equal to that of the negative eigenvector from the system’s Jacobian ma-
trix. An approximate linearized solution can be defined locally at the critical point. This
solution can be extended to the domain’s remainder with standard numerical methods,
thus approximating b̄(·).

Remark 5. Allowing for N > 2 bidders requires amending (4), the expression for an
agent’s expected payoff. Defeating an opponent with a low value signal or a low bud-
get implies different conclusions concerning the item’s value. Each possibility needs to
be accounted for on an opponent-by-opponent basis. Kotowski and Li (2014a) present
this extension for the all-pay auction with interdependent values. The equilibrium with
N bidders in that setting is qualitatively similar to the two-bidder case. Che and Gale
(1998) allow forN bidders and study canonical equilibria in the private-values case.

3.2 A noncanonical equilibrium

A canonical equilibrium may not exist in the absence of Assumption 1 or if w > 0. To
investigate this possibility, we focus on the case where w> 0, as the logical parallel with
Example 1 is easiest to appreciate. A canonical equilibrium may not exist when w > 0
because the marginal return to a slightly higher bid changes appreciably at w. A bid
above w defeats a budget-constrained opponent while a bid below w does not. This
change in a bid’s marginal return is exaggerated in Example 1 by the mass point in the
budget distribution at 1/4. As shown below, a mass point is not necessary to induce a
similar jump discontinuity in the equilibrium strategy of a high-budget bidder.

Consider the strategy illustrated in Figure 4, which translates the intuition from Ex-
ample 1 to a model with a continuous type space. It has three parts. First, a bidder with
a low value signal bids less than w. Second, a high-budget bidder increases his bid dis-
continuously when his value signal is s̃. Third, a low-budget bidder cannot match the
jump in a high-budget bidder’s strategy at s̃. Competition is stratified and low-budget
bidders with value signals s ∈ (s̃� s̃′) compete only in a low range of bids. A novelty is
that the distinction between high- and low-budget bidders is endogenous and changes

14These assumptions follow Milgrom and Weber (1982) and are standard in the literature.
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(a) Level sets of β(s�w). The discontinuity
occurs along the dashed curve

(b) Three dimensional sketch of β(s�w)

Figure 4. Illustration of a noncanonical equilibrium strategy β(s�w) when w> 0.

with the agent’s value signal. In Figure 4(a), this boundary is given by the function φ̃(·).
If w < φ̃(s), the agent’s budget is “low” (conditional on his value signal) and he bids
less than w; otherwise, his budget is “high” and he bids above w. An important fea-
ture of the strategy illustrated in Figure 4 is that there are no gaps in its range, despite
β(·�w) : [0�1] →R being discontinuous for each w ∈ (w�w].

While an equilibrium with the above characteristics can arise when w > 0, its pres-
ence is not assured. For some parameters, a canonical equilibrium may apply instead.
To characterize all possibilities, we extend Theorem 1 to allow w ≥ 0. Concurrently, we
also strengthen Assumption 1 (see Remark 1 above) to simplify the technical analysis.

Assumption 1′ . The c.d.f. of budget constraintsG(·) is concave on [w�w].
Theorem 2. Suppose Assumption 1′ holds and w ≥ 0. There exist constants s̃ and s̃′, in-
creasing functions b̄ : [0�1] → [0�w] and b̃ : [s̃� s̃′] → [0�w], and a nonincreasing function
φ̃ : [s̃� s̃′] → [w�w] such that the first-price auction has a symmetric equilibrium β(s�w)

with the following properties:

(a) For all s ∈ [s̃� s̃′) and w< φ̃(s), β(s�w)= b̃(s). The function b̃(·) is the solution of

b̃′(s)= (
v(s� s)− b̃(s)) G

(
φ̃(s)

)
h(s)

H(s̃)+
∫ s

s̃
G
(
φ̃(y)

)
h(y)dy

(10a)

that satisfies the boundary condition b̃(s̃)= lims→s̃− b̄(s).

(b) Otherwise, β(s�w)= min{b̄(s)�w}. For all s < s̃, the function b̄(·) is continuous, less
than w, and is the solution of

b̄′(s)= (
v(s� s)− b̄(s)) h(s)

H(s)
(10b)
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that satisfies the boundary condition b̄(0) = 0. For all s > s̃, the function b̄(·) is
continuous, greater than w, and for a.e. s > s̃,

b̄′(s)= λ(s)

γ
(
b̄(s)

)( b̄(s)− v(s� s)
η(s� s)− δ(b̄(s)� s)

)
� (10c)

Remark 6. Recall that (5) characterizes the bid of an unconstrained agent. Acknowl-
edging the similarity between (5), (10b), and (10c), and noting that w > v (the item’s
maximal value), β(s�w)= b̄(s) in the equilibrium defined in Theorem 2.

Theorem 2 allows for both canonical and noncanonical equilibria. Which case ap-
plies depends on the economy’s parameters. Two qualitatively distinct canonical equi-
libria are defined solely by part (b). The function b̄(·) in a type-1 canonical equilibrium is
characterized only by (10c).15 This class subsumes the analysis in the preceding subsec-
tion. As in the preceding subsection, the function b̄(·) coincides with the stable solutions
of system (8), the function b∗(·). Given Assumption 1′, a necessary and sufficient con-
dition for a type-1 canonical equilibrium to exist when w ≥ 0 is that b∗(·) exists and has
domain [0�1]. Intuitively, such equilibria tend to arise when w is close to zero.

A type-2 canonical equilibrium is characterized by (10b) and (10c).16 For low values
of s, an agent bids less than w. In particular, b̄(s) = α(s), the equilibrium bid in the
absence of budget constraints and the solution to (10b).17 If there exists a value sα ∈
(0�1) such that α(sα)=w, then b̄(·)makes a continuous transition into the range of bids
above w at s̃ = sα. For s > s̃, b̄′(s) is given by (10c). Given Assumption 1′, a necessary and
sufficient condition for a type-2 canonical equilibrium is the following: ifα(sα)=w, then
η(sα� sα)−δ(w� sα)≤ 0. This condition must hold for (10c) to have an increasing solution
at (sα�w). Intuitively, type-2 canonical equilibria tend to arise when w is relatively large.
See the working paper (Kotowski 2019) for an expanded account of type-2 canonical
equilibria.

The third case corresponds to the noncanonical equilibrium sketched in Figure 4. In
this case, both parts (a) and (b) in Theorem 2 contribute to the definition of the equi-
librium strategy. In the remainder of this subsection, we outline the construction of this
equilibrium. The associated proofs are relegated to Appendix C. A numerical example is
presented in Section 3.3.

Construction of a noncanonical equilibrium Paralleling Section 3.1, the following dis-
cussion presumes the existence of one critical point. The absence of a critical point
or multiple critical points does not affect Theorem 2, though an extended analysis is
required to identify b̄(·). See the working paper (Kotowski 2019) for analysis of these
cases.

15In this case, s̃ = 0 and φ̃(s)=w.
16In this case, s̃ ∈ (0�1] and φ̃(s)=w.
17If α(s)≤w for all s, then s̃ = 1 and a type-2 equilibrium reduces to β(s�w)= α(s). Though nominally in

the model, agents’ budgets are always so large that they never bind in equilibrium.
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We first introduce an assumption (henceforth maintained) precluding type-1 or
type-2 canonical equilibria. It assures the applicability of the noncanonical case given
Assumption 1′. Recall that b∗(·) defines the stable solutions to system (8) and α(·) is the
first-price auction’s equilibrium strategy in the absence of budget constraints.

Assumption 2. (a) The domain of b∗(·) is [s∗�1] and s∗ > 0.

(b) There exists an sα ∈ (0�1) such that α(sα)=w and η(sα� sα)− δ(w� sα) > 0.

Figure 5 illustrates a case that satisfies Assumption 2. Assumption 2(a) says that
b∗(·) is not defined for all s.18

 Assumption 2(b) implies that (10c) does not have an
increasing solution at (sα�w). In the private-values case, i.e., v(si� sj) = si, it holds
when (1−H(sα))

∫ sα
0 H(z)/H(sα)

2 dz > 1/g(w). Thus, a sufficient condition for Assump-
tion 2(b) to be satisfied is that the budget distribution is relatively concentrated near w.
In this light, Example 1 can be interpreted as a limiting case where w = 1/4 is a mass
point of the budget distribution.

Figure 5. A portrait of system (8) when w> 0. Assumptions 1′, 2(a), and 2(b) are satisfied.

18It can be verified that b∗(·) is defined near the right boundary given Assumption 1′. Thus, s∗ > 0 is the
only possible failure of the full domain assumption when there is one critical point.
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(a) Definition of b̄(·)when μ(s̃)= b∗(s̃) (b) Definition of b̄(·)when μ(s̃)=ψ(s̃)

Figure 6. Identification of b̄(·) when w> 0.

Next, we explain how to identify s̃, b̄(·), b̃(·), and φ̃(·).19 To identify s̃, we first intro-
duce the function μ : [s∗�1] → [w�w] defined as

μ(s) :=
{

min
{
b∗(s)�ψ(s)

}
if ψ(s) �= ∅

min
{
b∗(s)�w

}
if ψ(s)= ∅�

Recall that ψ(s) is the zero of the function b �→ η(s� s)− δ(b� s). The function μ(·) is la-
beled in Figures 6 and 7. Through each point along this curve passes a solution of system
(8) that can be extended as an increasing, continuous function to the boundary.20 The
value s̃ is a solution to

Ū
(
α(s̃)|s̃�w)= Ū(μ(s̃)|s̃�w)� (11)

where

Ū(b|s�w) :=
∫ s

0

(
v(s� y)− b)h(y)dy +G(b)

∫ 1

s

(
v(s� y)− b)h(y)dy� (12)

In words, a bidder with value signal s̃ is indifferent between the bids α(s̃) and μ(s̃).
Lemma C.1 in Appendix C shows that (11) has a solution s̃ ∈ [s∗� sα] given the maintained
assumptions.

Given s̃ that satisfies (11), b̄(·) is defined as follows. For s < s̃, b̄(s) solves (10b). Of
course, this implies b̄(s) = α(s) for s < s̃. For s ≥ s̃, b̄(s) coincides with the increasing
solution to system (8) passing through point (s̃�μ(s̃)), which assures (10c) is satisfied.
Figure 6 illustrates this definition in two representative cases. In Figure 6(a), μ(s̃)= b∗(s̃)
and b̄(s) = b∗(s) for all s > s̃. In Figure 6(b), μ(s̃) = ψ(s̃) and b̄(s) < b∗(s) for all s > s̃.
There is a jump discontinuity in b̄(·) at s̃.

19The value s̃′ is pinned down during the definition of b̃(·) and φ̃(·). It is the largest value for which the
domain of these functions can be defined.

20This solution may coincide with b∗(s) and pass through the critical point.
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Figure 7. The functions b̄, φ̃, and b̃. The function b̄ has a jump discontinuity at s̃.

Given s̃ and b̄(·), we can pin down b̃(·) and φ̃(·). The former solves (10a) subject
to the boundary condition b̃(s̃) = lims→s̃− b̄(s). Differential equation (10a) resembles
(10b), but accounts for the reduced competition given the jump in a high-budget bid-
der’s strategy. This is captured by the “G(φ̃(·)) weightings” in the reversed hazard rate
term.

The function φ̃(·) defines the boundary between high- and low-budget bidders
along which β(s�w) is discontinuous. Accordingly, it is defined by an indifference con-
dition. A type-(s� φ̃(s)) bidder is indifferent between the bids b̃(s) and φ̃(s). Thus,

Ũφ̃
(
b̃(s)|s�w)= Ũφ̃

(
φ̃(s)|s�w) (13)

for all s ∈ [s̃� s̃′], where

Ũϕ(b|s�w) :=
∫ s̃

0

(
v(s� y)− b)h(y)dy +

∫ s

s̃

(
v(s� y)− b)G(ϕ(y))h(y)dy

+G(b)
∫ 1

s

(
v(s� y)− b)h(y)dy� (14)

A subtle complication is that the definitions of b̃(·) and φ̃(·) reference one another. Thus,
a fixed point argument is needed to show that these functions exist with the stated prop-
erties.
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To reinforce intuition for φ̃(·), recall Example 1. In that case, a high-budget bidder’s
strategy is discontinuous in a neighborhood of s̃. A low-budget agent bids less than 1/4
when s ∈ (s̃� s̃′), but his bid increases to 1/4 once s > s̃′. The function φ̃(·) generalizes
this sequence of jump discontinuities to a continuum type space.

Verification that Theorem 2 describes an equilibrium mimics the proof of Theorem 1
and is relegated to Appendix C.

Remark 7. Absent Assumption 1′, the auction’s equilibrium depends on the specifics of
the model. When the function b �→ η(s� s) − δ(b� s) crosses zero multiple times, some
crossings occur at values where the budget distribution is (relatively) concentrated.
Around these values, a bidder has an incentive to increase his bid substantially as the
marginal returns to a slightly higher bid rise significantly. Jump discontinuities around
such values allow b̄(s), the bid of an unconstrained bidder, to “skip around” regions
where (10c) lacks increasing solutions. Multiple discontinuities are possible if G(·) is
sufficiently irregular. Despite similar intuition, identifying the analogues of φ̃(·) and
b̃(·) becomes challenging. Our proof does not extend immediately, as it relies on the
concavity ofG(·) for this step.

3.3 An example

An example can illustrate both canonical and noncanonical equilibria.

Example 2. Suppose v(si� sj)= si+ sj and value signals are uniformly distributed on the
unit interval. In the absence of budget constraints, α(s)= s is the symmetric equilibrium
strategy. Suppose budgets are distributed uniformly on [w�2] and w = 0. Figure 8(a)
shows b̄(s), ψ(s), and ν(s). There is one critical point at s0 ≈ 0�105. Representative solu-
tions from the associated plane-autonomous system and α(s) are graphed for context.
Since values are interdependent, even a bidder for whom s = 0 bids a positive amount
(b̄(0) > 0).

Assumption 2 holds when 0�15< w < 0�27; thus, a noncanonical equilibrium exists.
Figure 8(b) illustrates b̄(s), ψ(s), ν(s), φ̃(s), and b̃(s) when w = 0�2. The functions b̄(s)
and α(s) coincide when s is small, but b̄(s) jumps up at s̃ ≈ 0�181. A high-budget bidder
with that value signal increases his bid from 0�181 to 0�286—an increase of 58 percent.
Thus, an agent’s strategic response to an opponent’s possible budget constraint can be
quantitatively large. Whenw> 0�27, the equilibrium is again canonical, but of the type-2
variety. The jump discontinuity in b̄(s) disappears.

To highlight the empirical implications, Figure 8(c) and (d) present histograms ap-
proximating the equilibrium bid distributions. In the canonical case, the bid distribu-
tion has a peak at b̄(0)≈ 0�12 for the following reason. In equilibrium, the bid b < 0�12 is
placed by a type-(s�w) agent if and only if w = b. In contrast, the bid b > 0�12 is placed
by a type-(s�w) agent in two contingencies. In the first, w = b and s > b̄−1(b); thus, the
agent is constrained by his budget. In the second, w > b and s = b̄−1(b); thus, the agent
is unconstrained but finds it not worthwhile to bid more given his private information.
The peak reflects the additional fraction of types covered by the second contingency.
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(a) Characterization of the equilibrium strategy

when wi
i.i.d.∼ U[0�2]

(b) Characterization of the equilibrium strategy

when wi
i.i.d.∼ U[0�2�2]

(c) Distribution of equilibrium bids when

wi
i.i.d.∼ U[0�2]. Histogram of 1 million simulated

bids (rescaled to unit area)

(d) Distribution of equilibrium bids when

wi
i.i.d.∼ U[0�2�2]. Histogram of 1 million simulated

bids (rescaled to unit area)

Figure 8. Equilibrium bidding in Example 2.

In the noncanonical case, the equilibrium bid distribution is irregular, with a val-
ley between the bids 0�181 and 0�286. No agent bidding less than 0�181 in this example
is constrained by his budget. However, it is not in his interest to bid more. Since few
bids are placed between 0�181 and 0�286, the probability of winning does not increase
commensurably with the payment conditional on winning with a bid in this range. Ad-
ditionally, a bid above 0�286 is unattractive because the agent’s value signal is relatively
low. Conversely, no agent bidding above 0�286 wishes to bid less. Slightly lower bids
defeat only a budget constrained opponent (who wishes to bid more than he can). In
addition, bids below 0�181 are unattractive to a high value signal bidder. The item is suf-
ficiently valuable to merit a higher bid. The indifference conditions (11) and (13) ensure
that each type’s incentives are balanced in equilibrium. The equilibrium bid distribution
would be uniform on [0�1] in the absence of budget constraints. ♦
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4. Discussion

4.1 The second-price auction

It is instructive to compare equilibrium bidding in first- and second-price auctions. In
the case of private values, i.e., v(si� sj) = si, the second-price auction has an equilib-
rium where each type-(s�w) agent bids min{s�w} (Che and Gale 1998). Fang and Per-
reiras (2002) examine the second-price auction with interdependent values in a two-
bidder setting. They identify an equilibrium where each bidder’s strategy is βII(s�w)=
min{b̄II(s)�w} and b̄II(·) is an increasing function. When b̄II(s) < w, then b̄II(s)= v(s� s),
which is the equilibrium strategy identified by Milgrom and Weber (1982) in the absence
of budget constraints. When b̄II(s)≥w, then b̄II(s) solves the differential equation

b̄′
II(s)= λ(s)

γ
(
b̄II(s)

)( b̄II(s)− v(s� s)
η(s� s)− b̄II(s)

)
(15)

subject to the boundary condition b̄II(1) = v.21 There exists a value s̃II such that
b̄II(s) < w ⇐⇒ s < s̃II and, generally, b̄II(·)may be discontinuous at s̃II .

While the resemblance of (7) and (15) is striking, three differences between the first-
and second-price auctions are noteworthy. First, the boundary condition for b̄II(s) is
predetermined. Second, the term η(s� s)− b appears in the denominator of (15) instead
of η(s� s) − δ(b� s). Third, the discontinuity that can arise in the second-price auction
is qualitatively different from that identified in the first-price auction. There is no sepa-
ration among high- and low-budget bidders in the second-price auction. A bidder with
value signal s > s̃II bids above w and a gap in the equilibrium bid distribution may arise
in the second-price auction. In contrast, the equilibrium bid distribution in the first-
price auction has connected support, even in a noncanonical equilibrium. This differ-
ence is due to the distinct pricing mechanisms. In the second-price auction, an agent
bidding infinitesimally above a gap has no reason to reduce his bid. His probability of
winning and his expected payment are unchanged if he bids a bit less. In the first-price
auction, an agent bidding infinitesimally above a (hypothetical) gap can significantly
reduce his expected payment without reducing his probability of winning. This implies
that a gap in the equilibrium bid distribution cannot arise.22

Che and Gale (1998, 2006) show that the first-price auction revenue-dominates
the second-price auction in an independent private-values setting with financial con-
straints. It is straightforward to construct examples where this revenue ranking contin-
ues to hold when valuations are interdependent but agents’ types are independent.23

21Equation (15) restates equation (11) from Fang and Perreiras (2002). We specialize it to the case of
independent types. Fang and Perreiras (2002) allow for affiliated values.

22This reasoning does not apply when there are atoms in the equilibrium bid distribution, as in Exam-
ple 1. In the example, the bid 1/4 is placed with positive probability in equilibrium. An agent bidding 1/4
would like to bid more but cannot due to his budget constraint. A bid slightly less than 1/4, in contrast,
leads to a discrete fall in the probability of winning and is, therefore, not beneficial.

23In Example 2 whenwi
i.i.d.∼ U[0�2], the expected revenue in the first-price auction is approximately 0�57;

it is around 0�48 in the second-price auction. When wi
i.i.d.∼ U[0�2�2], these values are 0�64 and 0�58, respec-

tively. In the absence of budget constraints, the first- and second-price auctions are revenue-equivalent in
this example. The expected revenue is 2/3.



Theoretical Economics 15 (2020) First-price auctions with constraints 219

We conjecture that the ranking applies generally when types are independent, though
a proof of this claim is unavailable. If agents’ types are affiliated, Milgrom and Weber
(1982) prove that the second-price auction is revenue-superior in the absence of budget
constraints. Taken together, the preceding observations imply that no revenue ranking
exists between first- and second-price auctions that allows for both budget constraints
and affiliated values.

4.2 Equilibrium nonuniqueness

McAdams (2007) shows that the first-price auction has a unique monotone pure strategy
equilibrium when bidders are ex ante symmetric, types are affiliated, and values are
interdependent. This conclusion does not extend to a setting with budget constraints.
Recall that in a noncanonical equilibrium, an agent discontinuously increases his bid
at some value signal s̃ and he conjectures the other bidder does likewise. Of course,
this conjecture is correct in equilibrium, but the construction introduces an implicit
coordination problem. Different values at which the common bidding strategy “jumps
up” may be compatible with different equilibria, as illustrated by the following example.

Example 3. Consider a first-price auction with two bidders. Given (si� sj), each bidder’s
valuation is v(si� sj) = si + sj . Each bidder’s value signal is independently distributed
according to the c.d.f. H(s)= √

s on [0�1]. The symmetric equilibrium bidding strategy
in the absence of budget constraints is α(s)= 2s/3.

Now suppose bidders face a common budget constraint: wi = wj = 1/3 with proba-
bility 1.24 There are now two symmetric equilibria with strategies

βA(s)=
{

2s/3 if s ≤ 1/9

1/3 if s > 1/9
and βB(s)= 1/3�

We confirm that the stated strategies define equilibria in Appendix D. In the βA equilib-
rium, the agents adopt the no-budget-constraints equilibrium strategy when s is small.
At s̃A = 1/9 their bids increase discontinuously from 2/27 to 1/3. In the βB equilibrium,
the threshold value signal above which agents bid their entire budget is s̃B = 0. ♦

4.3 Comparative statics

The countervailing incentives associated with budget constraints typically lead to am-
biguous comparative statics. For example, consider a “tightening” of financial con-
straints where the budget distribution is skewed in the sense of likelihood ratio domi-
nance toward a distribution favoring lower budgets.25 In the second-price auction, this
change inflates the bid of an unconstrained bidder (Fang and Perreiras 2002). In the
first-price auction, an unconstrained bidder’s response may go either way. There is now

24We interpret this example as a limiting case of the more general model developed above. Posit, for
instance, that w= 1/3 is the lower limit of the budget distribution’s support and its density becomes highly
concentrated around this value.

25Likelihood ratio dominance implies hazard-rate dominance and first-order stochastic dominance.
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less incentive to bid aggressively because competition is reduced at higher bid levels.
However, if budgets become more concentrated around particular values, it is easier to
exploit the budget dimension for strategic gain. On balance, a bidder may respond with
a higher or lower equilibrium bid. Example D.1 in Appendix D documents these phe-
nomena. The comparative static relies on identifying the critical point under various
scenarios. Since ν(s) is unaffected by changes in the budget distribution, movement of
the critical point along ν(s) lets us infer how b̄(s) shifts up and down (locally) in response
to changes in the budget distribution.

4.4 Reserve prices

Setting the optimal reserve price with budget-constrained bidders is challenging. Re-
serve prices screen bidders on both value and budget dimensions. Expected revenues
may fall if bidders are disproportionately screened along the latter, as the probability
of sale is particularly impacted. If agents are unlikely to be budget constrained, im-
posing the no-budget-constraints revenue-maximizing reserve price can be a sensible
policy. For example, in the model of Example 1, if an agent has a low budget (w = 1/4)
with probability p< 0�317, the revenue-maximizing reserve price is 1/2. This is also the
revenue-maximizing reserve price in the absence of budget constraints. Otherwise, the
optimal reserve price is less than 1/4.

5. Concluding remarks

We have examined the first-price auction under the assumption that agents face private
budget constraints. Our analysis confirms that private budgets influence bidding in sev-
eral distinct ways. They cap participants’ bids while simultaneously encouraging more
aggressive bidding in equilibrium by some agents. Together, these responses can lead
to nontrivial equilibrium outcomes. For example, agents may adopt discontinuous bid-
ding strategies; multiple equilibria are possible too. Two directions for further study are
especially noteworthy. First, we have precluded many natural embellishments from our
model such as resale, collusion, credit and financing, among others. As noted in Sec-
tion 2, several studies have probed these questions, but much work remains. Second,
the empirical implications of private budgets in auctions remain poorly understood.
The development of new models or identification strategies to tackle such questions
also seems especially promising.

Appendix A: Example 1 (calculations)

In this section, we verify that the function β(s�w) defined as

β(s�1/4)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s/2 if s ∈ [0�1/3]
1 + 9s2

6 + 18s
if s ∈ (1/3�11/27]

1/4 if s ∈ (11/27�1]
β(s�3/4)=

⎧⎪⎨
⎪⎩
s/2 if s ∈ [0�1/3]
5 + 9s2

18 + 18s
if s ∈ (1/3�1]
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is a symmetric equilibrium in Example 1. Noting the symmetry of the example, we sup-
press agent subscripts. Recall that bidders’ value signals are distributed uniformly on
the unit interval and budgets assume values of 1/4 and 3/4 with equal probability.

We proceed to rule out deviations from β(s�w) by each type of bidder given that his
opponent adoptsβ(s�w) as his strategy. It is sufficient to rule out deviations to other bids
in the range of β(s�w). To simplify notation, let β(s) := β(s�3/4) and β(s) := β(s�1/4).
Similarly, let U(b|s) be the expected utility of a type-(s�3/4) bidder when he bids b and
the other bidder follows the strategy defined above. Likewise, let U(b|s) be the expected
utility of a type-(s�1/4) bidder when he bids b and the other bidder follows the strategy
defined above.

Case 1. Consider a bidder with value signal s ∈ [0�1/3] and budgetw= 3/4. Given that
the other agent is bidding according to the strategy β(s�w), the bid β(s)= s/2
wins the auction with probability s. Therefore, U(β(s)|s) = s(s − s/2) = s2/2.
There are four classes of alternative bids.

(a) A deviation to β(x), where x ∈ [0�1/3], yields an expected payoff
of U(β(x)|s) = x(s − x/2). The net gain is U(β(x)|s) − U(β(s)|s) =
−(x − s)2/2 ≤ 0. Therefore, β(x), where x ∈ [0�1/3], is not a profitable
deviation.

(b) A deviation to β(x), where x ∈ (1/3�11/27], yields an expected payoff of

U
(
β(x)|s)=

(
1
6

+ x

2

)(
s− 1 + 9x2

6 + 18x

)
�

Observe that dU(β(x)|s)/dx = (s − x)/2, which is negative for all s ≤ 1/3
and x ∈ (1/3�11/27]. Therefore, the most profitable bid in this range for
an agent with value signal s ≤ 1/3 is limx→1/3+ β(x) = 1/6 = β(1/3). By
part (a) above, this bid is not a profitable deviation.

(c) A deviation to β(x), where x ∈ (1/3�1], yields an expected payoff of

U
(
β(x)|s)=

(
1
2

+ x

2

)(
s− 5 + 9x2

18 + 18x

)
�

Observe that dU(β(x)|s)/dx = (s − x)/2 ≤ 0 since s ≤ 1/3 ≤ x. Therefore,
the most profitable bid in this range for an agent with value signal s ≤ 1/3
is infinitesimally above 1/4, i.e., limx→1/3+ β(x)= 1/4. However,

lim
x→1/3+U

(
β(x)|s)−U(β(s)|s)= 2

3

(
s− 1

4

)
− s2

2
≤ 0

for all s ≤ 1/3. Thus, β(x), where x ∈ (1/3�1], is not a profitable deviation.

(d) The bid 1/4 cannot be a profitable deviation for a high-budget agent.
Given β(s�w), the bid 1/4 is placed with strictly positive probability by
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a low-budget agent. However, a high-budget agent can strictly improve
upon this bid by bidding infinitesimally more. The slightly higher bid in-
creases his probability of winning by a discrete amount relative to the bid
1/4, which may result in a tie with positive probability. However, subcase
(c) immediately above showed that a bid above 1/4 is not a profitable de-
viation for a bidder with value signal s ≤ 1/3.

Case 2. Consider a bidder with value signal s ∈ (1/3�1] and budget w = 3/4. When
he bids β(s) = (5 + 9s2)/(18 + 18s), he defeats a low-budget opponent with
probability 1 and a high-budget opponent with probability s. Therefore, his
expected payoff is

U
(
β(s)|s)=

(
1
2

+ s

2

)(
s− 5 + 9s2

18 + 18s

)
�

There are four classes of alternative bids.

(a) A deviation to β(x), where x ∈ (1/3�1], yields an expected payoff of

U
(
β(x)|s)=

(
1
2

+ x

2

)(
s− 5 + 9x2

18 + 18x

)
�

The net gain is U(β(x)|s)−U(β(s)|s)= −(s − x)2/4 ≤ 0. Therefore, β(x),
where x ∈ (1/3�1], is not a profitable deviation.

(b) A deviation to β(x) = x/2, where x ≤ 1/3, yields an expected payoff
of U(β(x)|s) = x(s − x/2). Since x ≤ s, U(β(x)|s) is increasing in x.
Thus, U(β(x)|s) ≤ U(β(1/3)|s). However, U(β(1/3)|s) − U(β(s)|s) =
(1 − 2s − 3s2)/12 ≤ 0 for all s > 1/3. Therefore, β(x), where x ≤ 1/3, is
not a profitable deviation.

(c) A deviation to β(x), where x ∈ (1/3�11/27], yields an expected payoff of

U
(
β(x)|s)=

(
1
6

+ x

2

)(
s− 1 + 9x2

6 + 18x

)
�

The net gain is �(x|s) :=U(β(x)|s)−U(β(s)|s)= (4 − 3s(4 + 3s)+ 18sx−
9x2)/36. Note that d�(x|s)/ds = (−2 − 3s + 3x)/6 ≤ 0. Thus, �(x|s) ≤
�(x|1/3) = −(1 − 3x)2/36 ≤ 0. Therefore, β(x), where x ∈ (1/3�11/27], is
not a profitable deviation.

(d) A deviation to the bid 1/4 can be strictly improved upon by a bid infinites-
imally above 1/4. However, that bid was shown to be unprofitable in sub-
case (a) above.

Case 3. Consider a bidder with value signal s ∈ [0�1/3] and budget w = 1/4. When he
bids β(s) = s/2, his expected payoff is U(β(s)|s) = s2/2. Cases 1(a) and 1(b)
confirm that this bidder has no profitable deviation to any other feasible bid
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strictly less than 1/4. If this agent bids 1/4, he defeats a high-budget opponent
only if the opponent’s value signal is less than 1/3. He defeats a low-budget
opponent with probability 1 if the opponent’s value signal is less than 11/27
and with probability 1/2 if the opponent’s value is more than 11/27. Thus, the
agent’s expected payoff is

U(1/4|s)=
(

1
2

× 1
3

+ 1
2

×
(

11
27

+ 1
2

× 16
27

))(
s− 1

4

)
= 14

27

(
s− 1

4

)
�

It is simple to verify that U(β(s)|s) ≥ U(1/4|s) for all s ≤ 1/3. Therefore, the
bid 1/4 is not a profitable deviation.

Case 4. Consider a bidder with value signal s ∈ (1/3�11/27] and budgetw= 1/4. When
he bids β(s)= (1 + 9s2)/(6 + 18s), his expected payoff is

U
(
β(s)|s)=

(
1
6

+ s

2

)(
s− 1 + 9s2

6 + 18s

)
�

There are three classes of alternative bids.

(a) A deviation to β(x) = x/2, where x ≤ 1/3, yields an expected payoff
of U(β(x)|s) = x(s − x/2), which is increasing in x since s > x. Thus,

U(β(x)|s)≤U(β(1/3)|s). However,U(β(1/3)|s)−U(β(s)|s)= −(1 − 3s)2/
36 ≤ 0. Therefore, the bid β(x), where x ≤ 1/3, is not a profitable devia-
tion.

(b) A deviation to β(x), where x ∈ (1/3�11/27], yields an expected payoff of

U
(
β(x)|s)=

(
1
6

+ x

2

)(
s− 1 + 9x2

6 + 18x

)
�

The net gain isU(β(x)|s)−U(β(s)|s)= −(s−x)2/4 ≤ 0. Therefore, the bid
β(x), where x ∈ (1/3�11/27], is not a profitable deviation.

(c) A deviation to the bid 1/4 yields an expected payoff of

U(1/4|s)= 14
27

(
s− 1

4

)
�

The net gain from this bid isU(1/4|s)−U(β(s)|s)= (1− s)(27s−11)/108 ≤
0 for all s ∈ (1/3�11/27]. Therefore, the bid 1/4 is not a profitable deviation.

Case 5. Consider a bidder with value signal s ∈ (11/27�1] and budget w = 1/4. When
he bids β(s)= 1/4, his expected payoff is

U
(
β(s)|s)= 14

27

(
s− 1

4

)
�

There are two classes of alternative bids.
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(a) A deviation to β(x), where x ∈ (1/3�11/27], yields an expected payoff of

U
(
β(x)|s)=

(
1
6

+ x

2

)(
s− 1 + 9x2

6 + 18x

)
�

which is increasing in x because x≤ 11/27< s. However, U(β(11/27)|s)−
U(1/4|s) = 44/729 − 4s/27 ≤ 0 for all s > 11/27. Thus, U(β(x)|s) ≤
U(β(11/27)|s) ≤ U(1/4|s). Hence, the bid β(x), where x ∈ (1/3�11/27],
is not a profitable deviation.

(b) A deviation to β(x) = x/2, where x ≤ 1/3, yields an expected payoff of
U(β(x)|s) = x(s − x/2). Since s > x, this expression is increasing in x.
However, U(β(1/3)|s)−U(1/4|s)= (2 − 5s)/27 ≤ 0 for all s > 11/27. Thus,
U(β(x)|s) ≤ U(β(1/3)|s) ≤ U(1/4|s). Hence, the bid β(x), where x ≤ 1/3,
is not a profitable deviation.

Appendix B: Lemmas related to Section 3.1

Lemma B.1. Suppose Assumption 1 holds.

(a) If ψ(s) �= ∅, then ψ(s) < v.

(b) Let ε > 0. If ψ(s′) �=∅ and ψ(s)=∅ for all s ∈ (s′� s′ + ε), then ψ(s′)=w.

(c) Let ε > 0. If ψ(s′) �=∅ and ψ(s)=∅ for all s ∈ (s′ − ε� s′), then ψ(s′)=w.

(d) If w= 0, then ψ(0) �=∅.

Proof. Part (a) is immediate since δ(w� s) > v ≥ η(s� s). The proofs of (b) and (c) are
similar, so we only prove (b). To derive a contradiction, suppose ψ(s′) = b̂ > w. By As-
sumption 1, there exists b̂′ ∈ (w� b̂) such that η(s′� s′)− δ(b̂′� s′) > 0. By continuity, there
exists ŝ′ ∈ (s′� s′ + ε) such that η(s′� s′)− δ(b̂′� ŝ′) > 0. Since δ(w� ŝ′) > η(ŝ′� ŝ′), we con-
clude that ψ(s′) �= ∅ by the intermediate value theorem—a contradiction. Part (d) is
implied by Assumption 1 and the fact that η(0�0)− δ(0�0)≥ 0.

Lemma B.2. Suppose Assumption 1 holds. Ifw= 0, then system (8) has at least one critical
point.

Proof. Recall that ν(0)= 0 and ν(1)= v. By Lemma B.1(d),ψ(0) �=∅. Ifψ(0)= 0, then a
critical point occurs at the origin. Instead, suppose ψ(0) > 0. There are two cases. First,
if ψ(s) �= ∅ for all s, then by the implicit function theorem, ψ(s) is continuous. Since
ψ(s) ≤ v, the intermediate value theorem implies that ψ(s0) = ν(s0) at some s0 ∈ [0�1].
Second, ifψ(s′)= ∅ for some s′, then there exists an s′′ < s′ such thatψ(s) is a continuous
function on the interval [0� s′′] and ψ(s′′) = w = 0. By the intermediate value theorem,
there exists some s0 ≤ s′′ such that ψ(s0)= ν(s0).

Lemma B.3. Suppose Assumption 1 holds. If (s0� b0) is a critical point of system (8), then
it is (generically) either a node or a saddle point.
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Proof. We first show that the eigenvalues of the Jacobian matrix evaluated at a critical
point (s0� b0),

J =

⎛
⎜⎜⎝
∂ṡ

∂s

∂ṡ

∂b

∂ḃ

∂s

∂ḃ

∂b

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
(s0�b0)

�

are real-valued. The eigenvalues will be real if(
∂ṡ

∂s
− ∂ḃ

∂b

)2
+ 4

∂ṡ

∂b

∂ḃ

∂s

when evaluated at (s0� b0) is nonnegative. Thus,

∂ṡ

∂b

∣∣∣∣
(s0�b0)

= γ′(b0)
(
η(s0� s0)− δ(b0� s0)

)︸ ︷︷ ︸
0

+γ(b0)

(
−∂δ
∂b

∣∣∣∣
(s0�b0)

)
= −γ(b0)

∂δ

∂b

∣∣∣∣
(s0�b0)

�

We know that γ(b0) �= 0 and Assumption 1 implies that ∂δ∂b |(s0�b0) > 0. Hence, ∂ṡ∂b |(s0�b0) < 0.
Also,

∂ḃ

∂s

∣∣∣∣
(s0�b0)

= ∂λ

∂s

∣∣∣∣
(s0�b0)

(
b0 − v(s0� s0)

)︸ ︷︷ ︸
0

+λ(s0)
(

−dv(s� s)
ds

∣∣∣∣
s=s0

)
< 0�

Therefore, 4 ∂ṡ∂b
∂ḃ
∂s > 0 as needed.

Since the eigenvalues of J are real, by the Hartman–Grobman theorem, the critical
point will be a saddle or a node if the eigenvalues are nonzero. This is equivalent to J
having a nonzero determinant at (s0� b0):

detJ|(s0�b0) = γ(b0)λ(s0)

(
dη(s� s)

ds

∣∣∣∣
s=s0

− ∂δ(b0� s)

∂s

∣∣∣∣
s=s0

− ∂δ(b� s0)

∂b

∣∣∣∣
b=b0

dν(s)

ds

∣∣∣∣
s=s0

)
�

A perturbation of any of the distributions or of the valuation function is sufficient to
ensure that the preceding expression is nonzero.

Appendix C: Proof of Theorem 2

The proof of Theorem 2 has two parts. The first part concerns the construction of a
noncanonical strategy and complements Section 3.2. Construction of a type-1 canonical
equilibrium strategy proceeds as in Section 3.1. Type-2 canonical equilibrium strategies
are discussed in the working paper (Kotowski 2019). The second part verifies that the
proposed strategy is a symmetric equilibrium.

C.1 Construction of a noncanonical equilibrium strategy

Outline. The construction of a noncanonical equilibrium strategy with a discontinuity
proceeds in several steps. First, Lemma C.1 confirms the existence of the value s̃ in-
troduced in (11). Given s̃, the definition of b̄(·) is provided in Section 3.2 for the case
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of one critical point. The cases of no critical points or multiple critical points are out-
lined in the working paper (Kotowski 2019). Then we consider b̃(·) and φ̃(·). These
functions are defined with reference to a fixed point of a particular operator, which is
introduced in Remark C.4. Definitions C.1–C.4 and Lemma C.2 introduce preliminary
concepts used in this definition. Subsequently, Lemmas C.3–C.6 prove some properties
of φ̃(·). Throughout we assume that Assumptions 1′ and 2 hold.

Lemma C.1. Consider Ū(b|s̃�w) defined in (12). There exists s̃ ∈ [s∗� sα] such that
Ū(α(s̃)|s̃�w)= Ū(μ(s̃)|s̃�w). Moreover, μ(s̃) > w.

Proof. Recall thatG(b)= 0 if b < w and μ(s∗)=w. We make two preliminary observa-
tions.

(i) Since G(α(s∗)) =G(μ(s∗)) = 0 and α(s∗) ≤ μ(s∗), the inequality Ū(α(s∗)|s∗�w) ≥
Ū(μ(s∗)|s∗�w) follows immediately.

(ii) Assumptions 1′ and 2 imply that ∂Ū(b|sα�w)/∂b = g(b)(1 − H(sα))(η(sα� sα) −
δ(b� sα))≥ 0 for all b ∈ [α(sα)�μ(sα)]. Hence, Ū(α(sα)|sα�w)≤ Ū(μ(sα)|sα�w).

Since Ū(α(s)|s�w) and Ū(μ(s)|s�w) are continuous functions of s, observations (i) and
(ii) imply that there exists s̃ ∈ [s∗� sα] such that Ū(α(s̃)|s̃�w) = Ū(μ(s̃)|s̃�w). Finally, if
μ(s̃) = w, then Ū(α(s̃)|s̃�w) = Ū(μ(s̃)|s̃�w) only if α(s̃) = w, which implies s̃ = sα. But
if w = μ(sα) = α(sα), then Assumption 2(b) implies that η(s̃� s̃) − δ(w� s̃) > 0 while the
definition of μ(·) implies that η(s̃� s̃) − δ(w� s̃) ≤ 0—a contradiction. Hence, μ(s̃) > w.

Remark C.1. Henceforth, let s̃ ∈ [s∗� sα] be a fixed value such that Ū(α(s̃)|s̃�w) =
Ū(μ(s̃)|s̃�w). To simplify notation, let μ̃ := μ(s̃).

Remark C.2. Definitions C.1 and C.2, which follow below, reference the constantsK1 :=
v · [sups≥s̃ h(s)]/H(s̃) and s̃1 := s̃+ (w− α(s̃))/K1.

Definition C.1 (The set B). Let B be the set of all continuous, nondecreasing
functions with domain [s̃� s̃1] such that b(s̃) = α(s̃) and ∀s� s′ ∈ [s̃� s̃1] and b(·) ∈ B,
|b(s)− b(s′)| ≤K1|s− s′|.

Definition C.2 (The set F ). Let F be the set of all continuous, nondecreasing
functions with domain [s̃� s̃1] such that F(s̃) = H(s̃) and ∀s� s′ ∈ [s̃� s̃1] and F(·) ∈ F ,
|F(s)− F(s′)| ≤ (sups∈[0�1] h(s))|s− s′|.

Definition C.3 (The function �). For b(·) ∈ B and F(·) ∈ F , let

�(s�w|b�F) := [
G(w)

(
1 −H(s))(η(s� s)−w)−wF(s)]

− [
G
(
b(s)

)(
1 −H(s))(η(s� s)− b(s))− b(s)F(s)]�

Lemma C.2. Fix b(·) ∈ B and F(·) ∈ F .
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(a) The function w �→ �(s�w|b�F) is strictly concave on [w�w].
(b) If b(s) < w, then �(s�w|b�F) < 0.

(c) We have �(s̃� μ̃|b�F)= 0 and ∂�(s̃�w|b�F)/∂w|w=μ̃ ≥ 0.

Proof. Fix b(·) ∈ B and F(·) ∈ F . To simplify notation, let �(s�w) := �(s�w|b�F).
(a) Assumption 1′ says that G(w) is concave. Thus, G(w)(1 − H(s))(η(s� s) − w) is

strictly concave inw. It follows thatG(w)(1 −H(s))(η(s� s)−w)−wF(s) is strictly
concave; hence w �→ �(s�w|b�F) is also strictly concave.

(b) Since b(s) < w for all s ∈ [s̃� s̃1), then �(s�w)= (b(s)−w)F(s) < 0.

(c) Recall that b(·) ∈ B =⇒ b(s̃) = α(s̃) and F(·) ∈ F =⇒ F(s̃) = H(s̃). Thus, by
Lemma C.1, Ū(α(s̃)|s̃�w) = Ū(μ̃|s̃�w), which implies �(s̃� μ̃) = 0. Next, observe
that

∂

∂w
�(s�w)= g(w)(1 −H(s))(η(s� s)−w− G(w)

g(w)
− F(s)

g(w)
(
1 −H(s))

)
︸ ︷︷ ︸

A(s�w)

� (C.1)

Since μ̃≤ψ(s̃), thenA(s̃� μ̃)≥ 0, which implies ∂�(s̃�w)/∂w|w=μ̃ ≥ 0.

Definition C.4. The mapping � : [s̃� s̃1] × B × F → [w�w] is defined as

�(s|b�F) := min
{

argmin
w∈[w�w]

∣∣�(s�w|b�F)∣∣}�
Remark C.3. Figure C.1 illustrates the definition of � in two common cases. If
�(s�w|b�F) = 0 for some w, then � picks out the smallest solution (Figure C.1(a)). If
�(s�w|b�F) < 0 for all w, then � picks out its maximizer on [w�w] (Figure C.1(b)).

Remark C.4 (Definition of φ̃(·) and b̃(·)). Define � : B × F → B × F as follows. If
(b�F) ∈ B × F , then �(b�F)= (b̌� F̌), where

b̌(s)= α(s̃)+
∫ s

s̃

(
v(y� y)− b(y))G(�(y|b�F))h(s)
H(s̃)+

∫ s

s̃
G
(
�(z|b�F))h(z)dz dy

F̌(s)=H(s̃)+
∫ s

s̃
G
(
�(y|b�F))h(y)dy�

(a) Case 1: � identifies the smallest
solution of �(s�w|b�F)= 0

(b) Case 2: � identifies the maximizer of
�(s�w|b�F) on the interval [w�w]

Figure C.1. Definition of �.
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The function � is a continuous self-map defined on a compact, convex space. By
Schauder’s theorem, there exists a fixed point, (b̃� F̃)=�(b̃� F̃). Given such a fixed point
(b̃� F̃), we define the function

φ̃(s) :=�(s|b̃� F̃)
and we simplify notation by henceforth writing

�̃(s�w) := �(s�w|b̃� F̃)�

The preceding definitions, Lemma C.2, and Definition C.4 imply that

b̃′(s)=
(
v(s� s)− b̃(s))G(φ̃(s))h(s)
H(s̃)+

∫ s

s̃
G
(
φ̃(y)

)
h(y)dy

and F̃(s)=H(s̃)+
∫ s

s̃
G
(
φ̃(y)

)
h(y)dy�

Furthermore, b̃(s̃)= α(s̃), b̃(s) < w for all s ∈ [s̃� s̃1), and φ̃(s̃)= μ̃= μ(s̃).
Remark C.5. By substituting b̃ and φ̃, we observe that

�̃
(
s� φ̃(s)

)= Ũφ̃
(
φ̃(s)|s�w)− Ũφ̃

(
b̃(s)|s�w)�

where Ũϕ(b|s�w) is defined in (14).

Lemma C.3. For all s ∈ [s̃� s̃1], �̃(s� φ̃(s))= 0.

Proof. Since φ̃(s̃)= μ̃ and b̃(s̃)= α(s̃), Lemma C.2(c) implies that �̃(s̃� φ̃(s̃))= 0. Sup-
pose there exists ŝ ∈ [s̃� s̃1) such that �̃(ŝ� φ̃(ŝ)) = 0 and for all ε > 0 (sufficiently small),
�̃(ŝ + ε� φ̃(ŝ + ε)) < 0. (By definition of φ̃(s), �̃(s� φ̃(s)) cannot be strictly greater than
zero.) Thus, for s ∈ (ŝ� ŝ + ε), φ̃(s) = �(s|b̃� F̃) is the unique maximizer of �̃(s� ·) on the
interval [w�w]. There are two cases.

Case 1. Suppose φ̃(s) > w. Differentiating �̃(s� φ̃(s)), substituting for F̃(s) and b̃′(s),
and applying the envelope theorem yields

d

ds
�̃
(
s� φ̃(s)

)=G(φ̃(s)) ∫ 1

s

∂v(s� y)

∂s
h(y)dy −G(b̃(s)) ∫ 1

s

∂v(s� y)

∂s
h(y)dy�

Recall that φ̃(s) > b̃(s), and so d�̃(s� φ̃(s))/ds > 0 for s ∈ (ŝ� ŝ + ε). Since
�̃(ŝ� φ̃(ŝ))= 0, this implies �̃(s� φ̃(s)) > 0—a contradiction since �̃(s� φ̃(s)) is
nonpositive.

Case 2. Suppose φ̃(s) = w. By continuity, φ̃(ŝ) = w, which implies �̃(ŝ�w) =
(b̃(ŝ)−w)F̃(ŝ) < 0 since b̃(ŝ) < w. Thus, we have derived a contradiction.

The above cases exhaust the possibilities; hence, for all s ∈ [s̃� s̃1), �̃(s� φ̃(s)) = 0. By
continuity, the preceding conclusion applies to the boundary s = s̃1 as well.

Lemma C.4. The function φ̃(s) is decreasing.
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Proof. Let (ŝ� ŝ′)⊂ [s̃� s̃1]. We know that �̃(ŝ� φ̃(ŝ))= 0. Holding φ̃(ŝ) fixed,

∂

∂s
�̃
(
s� φ̃(ŝ)

)=G(φ̃(ŝ)) ∫ 1

s

∂v(s� y)

∂s
h(y)dy −G(b̃(s)) ∫ 1

s

∂v(s� y)

∂s
h(y)dy > 0�

This implies that �̃(ŝ′� φ̃(ŝ)) > 0. Thus, φ̃(ŝ′) must be the smallest value that solves
�̃(ŝ′� φ̃(ŝ′))= 0. Since �̃(s� ·) is strictly concave, φ̃(ŝ′) < φ̃(ŝ).

Lemma C.5. Suppose φ̃(s) > w. Then ∂�̃(s�w)/∂w|w=φ̃(s) = ∂Ũφ̃(b|s�w)/∂b|b=φ̃(s) ≥ 0.

Proof. The equality follows immediately from Remark C.5. That the derivative is
greater than zero when evaluated at φ̃(s) follows from the definition of φ̃(s). The value
φ̃(s) is either the smallest solution of φ �→ �̃(s�φ) or the maximizer of this function. As
the function is concave, its derivative must be nonnegative at φ̃(s) when φ̃(s) > w.

Remark C.6 (Definition of s̃′). Above we defined b̃, F̃ , and φ̃ on the interval [s̃� s̃1]. If
b̃(s̃1) < w, then the preceding argument can be repeated inductively with s̃1 replacing
s̃, b̃(s̃1) replacing α(s̃), φ̃(s̃1) replacing μ̃ = μ(s̃), F̃(s̃1) replacing H(s̃), etc. Let [s̃� s̃′] be
the maximal interval on which the functions b̃, F̃ , and φ̃ can be defined inductively in
this manner. The construction stops only in the limit. As the functions b̃, F̃ , and φ̃ are
monotone, they can be extended to s̃′ by taking the appropriate limit from the left.

Lemma C.6. Consider b̃ : [s̃� s̃′] → R and φ̃ : [s̃� s̃′] → [w�w] as defined in Remark C.6.
Then b̃(s̃′)=w= φ̃(s̃′).

Proof. If b̃′(s̃′) = w, then �̃(s̃′� φ̃(s̃′)) = G(φ̃(s̃′))(1 − H(s̃′))(η(s̃′� s̃′) − φ̃(s̃′)) + (w −
φ̃(s̃′))F̃(s̃′). Recalling the definition of φ̃(·) and that �̃(s̃′� φ̃(s̃′)) = 0, we conclude that
φ̃(s̃′)=w.

C.2 Verification of equilibrium

Let β be the strategy described in Theorem 2. We will verify that an agent does not have
an incentive to deviate to an alternative feasible bid in the range ofβ given that the other
agent bids according to β. In a type-1 canonical equilibrium, the proof of Theorem 1
applies. In a type-2 canonical equilibrium, the range of β equals the range of b̄(·) and
the argument below applies.26 Finally, in a noncanonical equilibrium, the range of β is
characterized by four segments: (a) the function b̄(s) for s < s̃, (b) the function b̃(s) for
s ∈ [s̃� s̃′), (c) the function φ̃(s) for s ∈ [s̃� s̃′), and (d) the function b̄(s) for s > s̃. We divide
our argument accordingly. Writing s− and s+ for left- and right-hand limits, respectively,
we observe that b̄(s̃−)= b̃(s̃+)≤ b̃(s̃′−)=w= φ̃(s̃′−)≤ φ̃(s̃+)= b̄(s̃+).

Case 1. Consider a type-(s�w) bidder where s < s̃. This bidder’s expected payoff when
bidding β(s�w)= b̄(s) is U(b̄(s)|s�w)= ∫ s

0 (v(s� y)− b̄(s))h(y)dy.

26Only the cases involving a deviation to b̄(x), where x ∈ [0�1], are relevant.



230 Maciej H. Kotowski Theoretical Economics 15 (2020)

(a) For all s < s̃, b̄(s) = α(s), the equilibrium bidding strategy in a first-price
auction without budget constraints. Therefore, this bidder has no prof-
itable deviation to any alternative bid b̄(x), where x < s̃ (Milgrom and We-
ber 1982). By continuity, the bid b̄(s̃−) is also not a profitable deviation.

(b) If this agent bids b̃(x), where x ∈ [s̃� s̃′), his payoff is

U
(
b̃(x)|s�w)=

∫ s̃

0

(
v(s� y)− b̃(x))h(y)dy

+
∫ x

s̃

(
v(s� y)− b̃(x))G(φ̃(y))h(y)dy� (C.2)

Differentiating with respect to x and substituting b̃′(x) as defined in (10a)
gives dU(b̃(x)|s�w)/dx = (v(s�x)− v(x�x))G(φ̃(x))h(x). Since s < s̃ ≤ x,
then U(b̃(x)|s�w) ≤ U(b̄(s̃−)|s�w) ≤ U(b̄(s)|s�w). Therefore, the bid b̃(x)
is not a profitable deviation.

(c) If this agent bids φ̃(x) for x ∈ [s̃� s̃′), his payoff is

U
(
φ̃(x)|s�w)=

∫ s̃

0

(
v(s� y)− φ̃(x))h(y)dy

+
∫ x

s̃

(
v(s� y)− φ̃(x))G(φ̃(y))h(y)dy

+G(φ̃(x)) ∫ 1

x

(
v(s� y)− φ̃(x))h(y)dy� (C.3)

Subtracting (C.2) from (C.3) yields

U
(
φ̃(x)|s�w)−U(b̃(x)|s�w)
= (
b̃(x)− φ̃(x))(H(s̃)+

∫ x

s̃
G
(
φ̃(y)

)
h(y)dy

)

+G(φ̃(x)) ∫ 1

x

(
v(s� y)− φ̃(x))h(y)dy

≤ (
b̃(x)− φ̃(x))(H(s̃)+

∫ x

s̃
G
(
φ̃(y)

)
h(y)dy

)

+G(φ̃(x)) ∫ 1

x

(
v(x� y)− φ̃(x))h(y)dy

=U(φ̃(x)|x�w)−U(b̃(x)|x�w)= 0�

The inequality follows from s ≤ x. The final equality follows from the def-
inition of φ̃. See (13), (14), and Remark C.5 above. Thus, U(φ̃(x)|s�w) ≤
U(b̃(x)|s�w) ≤ U(b̄(s)|s�w), where the final inequality is implied by sub-
case (b) above.
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(d) If this agent bids b̄(x), where x ∈ (s̃�1], his payoff is

U
(
b̄(x)|s�w)=

∫ x

0

(
v(s� y)− b̄(x))h(y)dy

+G(b̄(x)) ∫ 1

x

(
v(s� y)− b̄(x))h(y)dy�

Since s < x, by the same argument as in the proof of Theorem 1, we know
that U(b̄(x)|s�w) ≤ U(b̄(s̃+)|s�w). Since b̄(s̃+) = φ̃(s̃), the proof of sub-
case (c) implies that U(b̄(s̃+)|s�w)≤U(b̄(s)|s�w). Therefore, the bid b̄(x),
where x > s̃, is not a profitable deviation.

Subcases (a)–(d) show that a bidder with value signal s < s̃ cannot gain by
deviating to another bid in the range of β.

Case 2. Consider a type-(s�w) bidder where s ∈ (s̃� s̃′) and w < φ̃(s). This bidder’s ex-
pected payoff when bidding β(s�w)= b̃(s) is

U
(
b̃(s)|s�w)=

∫ s̃

0

(
v(s� y)− b̃(s))h(y)dy +

∫ s

s̃

(
v(s� y)− b̃(s))G(φ̃(y))h(y)dy�

Deviations to bids of (a) b̄(x), where x < s̃, or (b) b̃(x), where x ∈ [s̃� s̃′), can
be shown not to be profitable using an argument paralleling those presented
in Cases 1(a) and 1(b). Thus, we consider only the two remaining subcases,
(c) and (d).

(c) If this agent bids φ̃(x), where x ∈ [s̃� s̃′), his payoff is given by (C.3). If x < s,
then φ̃(x) > w. Hence, a deviation into this range of bids is not feasible for
this bidder. Conversely, if x > s, then the argument in Case 1(c) establishes
thatU(φ̃(x)|s�w)≤U(b̃(x)|s�w). Noting the preceding paragraph, we see
that U(φ̃(x)|s�w)≤U(b̃(s)|s�w).

(d) Since w< φ̃(s)≤ b̄(s̃+), the bid b̄(x), where x > s̃, is not feasible.

Case 3. Consider a type-(s�w) bidder where s ∈ (s̃�1] and w ∈ [φ̃(s)� φ̃(s̃+)]. There ex-
ists sw ∈ [s̃� s] such that β(s�w)= φ̃(sw)=w and this bidder’s expected payoff
is

U
(
φ̃(sw)|s�w

)=
∫ s̃

0

(
v(s� y)− φ̃(sw)

)
h(y)dy

+
∫ sw

s̃

(
v(s� y)− φ̃(sw)

)
G
(
φ̃(y)

)
h(y)dy

+G(φ̃(sw))∫ 1

sw

(
v(s� y)− φ̃(sw)

)
h(y)dy� (C.4)

First, we consider case (c). Suppose this bidder places the bid φ̃(x), where
x ∈ [sw� s]. The agent’s expected payoff at this bid is given by (C.4) with x
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replacing sw. Consider the derivative

d

dx
U
(
φ̃(x)|s�w)

= φ̃′(x)
[
g
(
φ̃(x)

)(
1 −H(x))(η(s�x)− φ̃(x)− G

(
φ̃(x)

)
g
(
φ̃(x)

) −
H(s̃)+

∫ x

s̃

G
(
φ̃(y)

)
h(y)dy

g
(
φ̃(x)

)(
1 −H(x))

)]

≤ φ̃′(x)
[
g
(
φ̃(x)

)(
1 −H(x))(η(x�x)− φ̃(x)− G

(
φ̃(x)

)
g
(
φ̃(x)

) −
H(s̃)+

∫ x

s̃

G
(
φ̃(y)

)
h(y)dy

g
(
φ̃(x)

)(
1 −H(x))

)]
︸ ︷︷ ︸

∂
∂b
Ũ
φ̃
(b|x�w)|

b=φ̃(x)

≤ 0�

The first inequality follows from φ̃′(x) ≤ 0 and η(s�x) ≥ η(x�x). The sec-
ond inequality follows from Lemma C.5, which shows that the term in square
brackets is nonnegative. Thus, each of these bids is dominated by φ̃(sw)=w.

If s ≤ s̃′, then U(φ̃(sw)|s�w)≥U(φ̃(s)|s�w)=U(b̃(s)|s�w) and the same ar-
gument as in Case 2 shows that this bidder has no profitable deviation to any
bid below φ̃(s) as well.

Similarly, if s ≥ s̃′, thenU(φ̃(sw)|s�w)≥U(w|s�w). Verifying that bids below
b̃(s̃′) = w are not profitable deviations proceeds similarly to the argument in
Case 1, subcases (a) and (b). A deviation to the bid b̄(x), where x > s̃, is not
feasible.

Case 4. Consider a type-(s�w) bidder where s ≥ s̃ andw≥ φ̃(s̃′−). The same argument
as in the proof of Theorem 1 shows that this agent has no profitable deviation
to any bid in the range of b̄(x) for x ≥ s̃. In particular, this implies that he
prefers β(s�w) to the bid b̄(s̃−)= φ̃(s̃), and so the same argument as in Case 3
above shows that he cannot gain by deviating to a bid less than φ̃(s̃).

The preceding cases show that a type-(s�w) bidder does not have a feasible, profitable
deviation from β(s�w) given that the other bidder also adopts this strategy.

Appendix D: Examples

Example 3 (calculations)

We confirm that

βA(s)=
{

2s/3 if s ≤ 1/9

1/3 if s > 1/9
and βB(s)= 1/3

are symmetric equilibrium strategies in Example 3. Recall that v(si� sj)= si+sj and value
signals are independently distributed according to the c.d.f. H(s) = √

s on [0�1]. The
equilibrium bidding strategy in the absence of budget constraints is α(s)= 2s/3.

The βA equilibrium. Suppose bidder j adopts the strategy βA(s). All bids in the
range (2/27�1/3) are dominated by the bid βA(1/9)= 2/27. Thus, to confirm that βA is
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an equilibrium strategy, it is sufficient to rule out deviations by bidder i to other bids in
the range of βA.

Consider bidder i with value signal s ≤ 1/9. If he bids βA(s) = 2s/3, his expected
payoff is (2/3)s3/2. Since 2s/3 is the symmetric equilibrium strategy in the absence of
budget constraints, bidder i has no profitable deviation to any bid in the range [0�2/27].
If he bids 1/3, he wins for sure if his opponent’s value signal is less than 1/9 and he wins
with probability 1/2 if his opponent’s value signal is more than 1/9. Thus, his expected
payoff is√

1
9

(
s+E[Sj|Sj ≤ 1/9] − 1

3

)
+ 1 −√

1/9
2

(
s+E[Sj|Sj > 1/9] − 1

3

)
= 2

9

(
3s− 2

9

)
�

For all s ≤ 1/9, (2/9)(3s− 2/9)≤ (2/3)s3/2. Thus, βA(s) is an optimal bid for bidder i
when s ≤ 1/9.

Now consider bidder i with value signal s > 1/9. If he bids βA(x) = 2x/3 for
some x ≤ 1/9, his expected payoff is

√
x(s + E[Sj|Sj ≤ x] − 2x/3) = √

x(s − x/3) ≤
(1/3)(s − 1/27). Clearly, (1/3)(s − 1/27) ≤ (2/9)(3s − 2/9) for all s ≥ 1/9. Thus, he has
no profitable deviation from 1/3 to any bid b ∈ [0�2/27].

As the setting is symmetric, we conclude thatβA is a symmetric equilibrium strategy.
The βB equilibrium. Suppose that bidder j adopts the strategy βB(s) = 1/3. The

expected payoff of bidder i with value signal s when he bids 1/3 is

1
2

(
s+E[Sj] − 1

3

)
= 1

2

(
s+ 1

3
− 1

3

)
= s

2
�

If bidder i bids less than 1/3, his expected payoff is zero as he loses the auction with
certainty. Furthermore, bids above 1/3 are not feasible. Thus, 1/3 is a best response for
bidder i given bidder j’s strategy, and so βB is a symmetric equilibrium strategy.

Example D.1. Suppose there are two bidders with uniformly distributed value signals
on the unit interval. Suppose v(si� sj) = si + sj . Consider three budget distributions on
[0�2]: G0(w) = w/2, G1(w) = √

w/2, and G2(w) = w(4 − w)/4. Each satisfies Assump-
tion 1′. The distribution G0 likelihood ratio dominates G1 and G2. There is one critical
point given each budget distribution. Given G0, the critical point occurs at (s0� b0) =
(0�1056�0�2111). Given G1, the critical point occurs at (s1� b1)= (0�0864�0�1728). Finally,
given G2, the critical point occurs at (s2� b2)= (0�1264�0�2528). By Theorem 1, the func-
tion that defines the bid of an unconstrained bidder, b̄(s), passes through the critical
point in each case. This implies that “tightening” the budget distribution from G0 to
G1 induces a lower bid by an unconstrained bidder with a value signal s ≈ 0�1. Con-
versely, tightening the budget distribution from G0 to G2 induces a higher bid by an
unconstrained bidder with a value signal s ≈ 0�1. ♦
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